
AN INTRODUCTION TO

NONLINEAR SOLUTION AND

ESTIMATION TECHNIQUES

Alexander W. Richter
Federal Reserve Bank of Dallas

Nathaniel A. Throckmorton
College of William & Mary

The views expressed in this presentation are our own and do not necessarily reflect the
views of the Federal Reserve Bank of Dallas or the Federal Reserve System.

TOOLBOX FUNCTIONS

• script.m: assigns options to O and runs the algorithm
• parameters.m: assigns model parameters to P

• steadystate.m: assigns steady state values to S(P)
• variables.m: outputs a structure, V, containing indices

of variables, forecast errors, and shocks and variable titles
• grids.m: assigns the discretized state space to G(O, P)
• guess.m: assigns the initial conjectures to pf(O,P,S,G)
• linmodel.m: outputs the linear transition matrix, T, the

impact matrix, M, and a 2-element vector of flags, eu,
indicating existence and uniqueness of the linear solution

• eqm.m: outputs a vector, R, containing the residuals to a
subsystem of expectational equations that are constrained
by all of the other equations in the equilibrium system

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: REAL BUSINESS CYCLE MODEL
A social planner chooses {ct, kt+1}∞t=0 to maximize:

E0

∞∑

t=0

βt c
1−σ
t

1− σ

subject to

ct + kt+1 = ztk
α
t + (1− δ)kt

zt = (1− ρ)z̄ + ρzt−1 + εt

Optimality condition:

1 = βEt[(ct/ct+1)
σ(αzt+1k

α−1
t+1 + 1− δ)

︸ ︷︷ ︸

≡Φ(zt+1)

]

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

DISCRETIZED STATE SPACE

• State variables: kt, zt

• Number of grid points: Nk, Nz

• Grid boundaries: [kmin, kmax] and [zmin, zmax]

• Create evenly spaced grids:

xgrid = linspace(xmin, xmax, Nx), x ∈ {k, z}

• State space contains N = Nk ×Nz independent nodes

• Create an array for each state variable, where every
position is a unique permutation of the state space:

[kgr, zgr] = ndgrid(kgrid, zgrid)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

FUNCTIONAL APPROXIMATION

• True RE solution only exists in special cases (e.g., δ = 1)

• Goal: Find an approximating function that maps the state
space to the optimal decision rule for consumption:

c(k, z)
︸ ︷︷ ︸

True RE Solution

≈ Pc(k, z)
︸ ︷︷ ︸

Approximating Function

• Basic elements of the algorithm:
1. Interpolation: Linear, Least squares

2. Integration: Gauss-Hermite, Trapezoid, Rouwenhorst

3. Iteration: Time, Fixed-point

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

INITIAL CONJECTURE

Use the linear solution as a guess for Pc(k, z):
• Linear solution from gensys.m takes the form:

Ŷ ′ = T Ŷ +Mε

where Ŷ = [k̂, ẑ, ĉ]T , x̂ ≡ (xt − x̄)/x̄, and ε ∼ N(0, σ2).
• Convert the state space to deviations from steady state
• Compute an initial conjecture for all nodes (i = 1, . . . , N):

P̂c = T (cidx, [kidx, zidx])
︸ ︷︷ ︸

1×2

[vec(k̂gr), vec(ẑgr)]
T

︸ ︷︷ ︸

2×N

• Convert P̂c to levels (Pc = c̄(1 + P̂c)) and assign to pf.c

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

LOCAL APPROXIMATION
• Piecewise Linear Interpolation: 2 state variables (k, z)
• Goal: Find the policy function value Pc(k

′, z′)
• We have policy function values on nearest nodes

[Pc(ki, zj),Pc(ki, zj+1),Pc(ki+1, zj),Pc(ki+1, zj+1)]

once we determine the grid indices, i, j
• Locate the grid point to left of x′, x ∈ {k, z}

step = x2 − x1, dist = x′ − x1

loc = min(Nx − 1,max(1, floor(dist/step) + 1))

x
1

x
2

x
3

x
4

x
5

x
a

step

dist

loc
a

x
c

loc
c

x
b

loc
b

′ ′ ′

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

LOCAL APPROXIMATION
• Interpolate in the k direction:

Pc(k
′, zj) = Pc(ki, zj) + (k′ − ki)

Pc(ki+1, zj)− Pc(ki, zj)

ki+1 − ki

=
ki+1 − k′

ki+1 − ki
︸ ︷︷ ︸

ωki

Pc(ki, zj) +
k′ − ki

ki+1 − ki
︸ ︷︷ ︸

ωki+1

Pc(ki+1, zj)

• Then interpolate in the z direction:

Pc(k
′, z′) =

zj+1 − z′

zj+1 − zj
︸ ︷︷ ︸

ωzj

Pc(k
′, zj) +

z′ − zj

zj+1 − zj
︸ ︷︷ ︸

ωzj+1

Pc(k
′, zj+1)

• Combine these two equations:

Pc(k
′, z′) =

1∑

a=0

1∑

b=0

ωki+a
ωzj+b

Pc(ki+a, zj+b)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

LOCAL APPROXIMATION

• Use a nested loop or write out all of the terms in the sum to
calculate the interpolated value of the policy function:

nestedsum = 0; %initialize
for a = 0:1 %loop for k

for b = 0:1 %loop for z
nestedsum = nestedsum + ...
wk(1+a)*wz(1+b)*pf.c(kloc+a,zloc+b);

end
end

• Must calculate the interpolated value for each realization of
the stochastic variable(s), each of which requires
calculating a different set of locations and weights

• Number of loops equals the number of exogenous states

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

GLOBAL APPROXIMATION
• A general class of polynomials can be written as:

P(x; η) =

n∑

i=0

ηiϕi(x).

• Linear interpolation is a special case of this general class
(i.e., n = 1, ϕi(x) = xi, and α is chosen appropriately)

• For n > 1, ϕi(x) = xi is a collection of monomials and

P(x; η) = η0 + η1x+ η2x
2 + · · ·+ ηpx

p

• This set of monomials may lead to multicollinearity (i.e.,
near linear dependence among the monomials)

• Bases consisting of orthogonal polynomials fix this
problem (e.g., Chebyshev and Hermite Polynomials)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: MONOMIALS
• Consider the complete set of basis functions of order 2:

P(k, z) = η0 + ηkk + ηzz + ηkkk
2 + ηkzkz + ηzzz

2

• Regressor matrix (subscripts denote grid indices):

X =

1 k1 z1 k2
1 k1z1 z21

1 k2 z2 k2
2 k2z2 z22

...
...

...
...

...
...

1 kN zN k2
N kNzN z2N

• Obtain coefficients using OLS:

η̂ = (XTX)−1XT vec(Pc(k, z))

Pc(k
′, z′) = X ′η̂

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

INTEGRATION: TRAPEZOID RULE

E[Φ(z)] ≈
Pr(ε1)Φ(z(ε1)) + Pr(ε2)Φ(z(ε2))

2
∆ε

+
Pr(ε2)Φ(z(ε2)) + Pr(ε3)Φ(z(ε3))

2
∆ε+ · · ·

+
Pr(εm−1)Φ(z(εm−1)) + Pr(εm)Φ(z(εm))

2
∆ε

=
∆ε

2

[

2
m∑

i=1

Pr(εi)Φ(z(εi))− Pr(ε1)Φ(z(ε1)) − Pr(εm)Φ(z(εm))

]

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

INTEGRATION: GAUSS-HERMITE
• Given a shock, ε ∼ N(µ, σ2),

E[Φ(z(ε))] = (2πσ2)−1/2

∫
∞

−∞

Φ(z(ε))e−(ε−µ)2/(2σ2)dε

• Apply change of variables, υ = (ε− µ)/(
√
2σ),

E[Φ(z(υ))] = π−1/2

∫
∞

−∞

Φ(z(
√
2συ + µ))e−υ2

dυ

≈ π−1/2

n∑

i=1

ωiΦ(z(
√
2συi + µ))

• ωi and υi are Gauss-Hermite weights and nodes:

ωi = 2n+1n!
√
π[Hn+1(υi)]

−2

Hn+1 is the physicists’ Hermite polynomial of order n+ 1.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: TIME ITERATION
On iteration q, solve for the Pq

c (k, z) that satisfies equilibrium
1. Use log-linear solution on each node to obtain P0

c

◮ Local: P1
c = P0

c
◮ Global: η̂0 = (XTX)−1XT vec(P0

c) so P1
c = Xη̂0

2. Solve for k′ and z′, given ε′

3. Find Pq
c (k

′, z′) given the updated state
◮ Local: use piecewise linear interpolation
◮ Global: update the basis so Pq

c (k′, z′) = X ′η̂q−1

4. Evaluate expectations (Trapezoid rule or Gauss Hermite)

E[Φ(z′)] = βE[Pq
c (k

′, z′)−σ(αz′k′α−1 + 1− δ)]

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: TIME ITERATION

5. Use nonlinear solver to find a Pq
c (k, z) that satisfies the

consumption Euler equation, Pq
c (k, z)

−σ = E[Φ(z′)].
6. Update policy function

◮ Local: Pq+1
c = Pq

c

◮ Global: η̂q = (XTX)−1XT vec(Pq
c (k, z)), Pq+1

c (k, z) = Xη̂q

7. Calculate distance between updates
◮ Local: dist = Pq

c (k, z) − Pq−1
c (k, z)

◮ Global: dist = η̂q − η̂q−1

8. If |dist| < tol, then stop. If not, then set q = q + 1 and repeat
steps 2-7 using Pq+1

c as the new initial conjecture.

Advantage: Satisfies the equilibrium system on each node and
nodes can be run in parallel.

Disadvantage: Nonlinear solver must execute on each node.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: FIXED-POINT ITERATION
Solve for the Pq

c (k, z) implied by the equilibrium system
1. Obtain an initial conjecture

(step 1 in the time iteration algorithm)
2. Calculate updated variables and expectations

(steps 2-4 in the time iteration algorithm)
3. Calculate Pq

c (k, z) = (E[Φ(z′)])−1/σ on each node
4. Execute steps 6-8 in the time iteration algorithm

Advantage: Does not require a loop, since all of the nodes are
evaluated simultaneously.

Disadvantage: Algorithm is less stable because it does not
solve for the optimal policy function on each node.

Note: To simultaneously evaluate all nodes, it is necessary to
replicate across all realizations of the shocks.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXTENSION 1: ELASTIC LABOR SUPPLY
Social planner now chooses {ct, nt, kt+1}∞t=0 to maximize:

E0

∞∑

t=0

βt

{
c1−σ
t

1− σ
− χ

n1+η
t

1 + η

}

,

subject to

ct + kt+1 = ztk
α
t n

1−α
t + (1− δ)kt

zt = (1− ρ)z̄ + ρzt−1 + εt

Optimality conditions now include:

(1− α)ztk
α
t n

−α
t = χnη

t c
σ
t

Static relation does not add a state or policy function, but it is
easier to use labor instead of consumption as a policy function.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

POLICY FUNCTION COMPARISON

−3 −2 −1 0 1 2 3

−5

−4

−3

−2

−1

0

1

2

3

Productivity (%)

O
ut

pu
t (

%
)

Trapezoid: 3 SD
Trapezoid: 3.5 SD
Trapezoid: 4 SD
Gauss Hermite

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXTENSION 2: ADDING FRICTIONS
Introduce investment adjustment costs, variable capital
utilization, and habit formation to the textbook RBC model

mt+1 = β((ct − hct−1)/(ct+1 − hct))
σ

wt = χ(ct − hct−1)
σnη

t

qt = Et[mt+1(vt+1r
k
t+1 + qt+1(1 − δt+1))]

1 = qt[1− ν(it/it−1 − 1)2/2− νit/it−1(it/it−1 − 1)] + νEt[qt+1mt+1(it+1/it)
2(it+1/it − 1)]

rkt = qt(δ1 + δ2(vt − 1))

rkt = αyt/(vtkt−1)

wt = (1− α)yt/nt

ct + it = yt

kt = (1 − δt)kt−1 + it[1− ν(it/it−1 − 1)2/2]

δt = δ0 + δ1(vt − 1) + δ2(vt − 1)2/2

yt = zt(vtkt−1)
αn1−α

t

zt = (1− ρ)z̄ + ρzt−1 + εt

State variables: {c, i, k, z}, Policy functions: {n, v} (not unique)
RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXTENSION 3: PRODUCTIVITY SWITCHING
Productivity now has a state-dependent intercept:

zt = (1− ρ)z̄(st) + ρzt−1 + εt,

where st ∈ {1, 2}, z(1) < z(2). The state evolves according to:
[
Pr[st+1 = 1|st = 1] Pr[st+1 = 2|st = 1]
Pr[st+1 = 1|st = 2] Pr[st+1 = 2|st = 2]

]

=

[
p11 p12
p21 p22

]

,

where 0 ≤ pij ≤ 1 and
∑2

j=1 pij = 1 for all i ∈ {1, 2}
Key Changes:

• Policy functions are dependent on a discrete state variable
• Policy functions account for the expectational effects of the

economy switching to the other productivity state

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

SOLVING THE MODEL

1. Calculate z(s′) for each realization of the state

2. Find the updated policy function, n(s′), for each state
3. Numerical Integration:

◮ First integrate across the continuous random variable, z,
conditional on the future realizations of the discrete
stochastic variable, s′, to obtain:

E[Φ(z′)|s′ = 1], E[Φ(z′)|s′ = 2]

◮ Then weight the conditional expectations by their
corresponding likelihood. The conditional expectations are:

E
[
Φ(z′)|s = i

]
= pi1E[Φ(z′)|s′ = 1] + pi2E[Φ(z′)|s′ = 2]

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

STATE-DEPENDENT POLICY FUNCTIONS

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

Consumption (ĉt)

Capital (k̂t−1)

−3 −2 −1 0 1 2 3

−0.4

−0.2

0

0.2

0.4

0.6
Labor (n̂t)

Capital (k̂t−1)

ẑt = −1% ẑt = 1%

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXTENSION 4: POLICY SWITCHING

• Regime dependent reaction coefficients:

φ(st) =

{

φ for st = 1,

0 for st = 2,
γ(st) =

{

γ for st = 1,

0 for st = 2.

Regime 1: Active Monetary/Passive Fiscal (AM/PF)
Regime 2: Passive Monetary/Active Fiscal (PM/AF)

• Transition probabilities:
[
Pr[st = 1|st−1 = 1] Pr[st = 2|st−1 = 1]
Pr[st = 1|st−1 = 2] Pr[st = 2|st−1 = 2]

]

=

[
p11 p12
p21 p22

]

.

• Average duration of time spent in the AM/PF regime in the
ergodic distribution: λ = (1− p22)/(2− p11 − p22)

• When λ = 1, there is no chance of moving to the PM/AF

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

POLICY FUNCTIONS (LUMP-SUM TAXES)

−3 −2 −1 0 1 2 3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Inflation (% point)

FP Shock (%)
−3 −2 −1 0 1 2 3

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Consumption (%)

FP Shock (%)

λ = 0 λ = 0.25 λ = 0.50 λ = 0.75 λ = 1

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

SIMULATING THE MODEL

• Draw random shocks
◮ Turn off shocks to compute the stochastic steady state

• Initialize state variables at the deterministic steady state

• Simulate the exogenous processes to update the state

• Interpolate current period values of the policy functions

• Use the remaining equations in the equilibrium system to
simulate the other variables (follow the order in eqm)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

GENERALIZED IMPULSE RESPONSES

• Used to study model dynamics away from steady state

• Shocks are consistent with household’s expectations

• General Procedure (see Koop, Pesaran, Potter (1996)):
1. Initialize each simulation at a certain state vector

2. Calculate the mean of 10,000 simulations of the model
conditional on a random shock in the first quarter

3. Calculate a second mean from another set of 10,000
simulations by replacing the shock in the first quarter with
the shock of interest

4. Compute the percentage change in each period (or
difference for rates) between the two means

5. Repeat 1-4 at an alternative state vector to compare GIRFs

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: NK MODEL WITH A ZLB
(DISCOUNT FACTOR SHOCK)

0 2 4 6 8 10 12

−1.2

−0.8

−0.4

0

0.4
Real GDP Growth

0 2 4 6 8 10 12

−0.5

−0.4

−0.3

−0.2

−0.1

0
Inflation Rate

0 2 4 6 8 10 12

−0.3

−0.2

−0.1

0
Nominal Rate

0 2 4 6 8 10 12
−1

−0.75

−0.5

−0.25

0
Notional Rate

Steady State (i∗0 = 1.1%) 2008Q4 (i∗0 = −0.5%)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

ROUWENHORST METHOD

• Used to approximate an exogenous AR(1) process

• Kopecky and Suen (2010) show the Rouwenhorst method
outperforms other approximations of an AR(1) process

• The approximation is a Markov switching process like the
time-varying intercept example, but with n states

• The method determines the bounds of the exogenous
state variables, the nodes, and the transition probabilities

• Let z ∼ AR(1) with persistence ρ, mean µz, and variance

σ2
z = σ2

ε/(1− ρ2).

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

APPROXIMATION OF AN AR(1) PROCESS
• The n states for the discretized process z are evenly

spaced on [µz − σz

√
n− 1, µz + σz

√
n− 1]

• The transition matrix from s to s′ is computed recursively:
◮ For n = 2, let q = (ρ+ 1)/2

P2 =

[
p11 p12
p21 p22

]

=

[
q 1− q

1− q q

]

.

◮ For n > 2,

Pn = q

[
Pn−1 0n−1×1

01×n−1 0

]

︸ ︷︷ ︸

Prob of staying in1:n−1

+(1− q)

[
0n−1×1 Pn−1

0 01×n−1

]

︸ ︷︷ ︸

Prob. of going to2:n|1:n−1

+(1− q)

[
01×n−1 0
Pn−1 0n−1×1

]

︸ ︷︷ ︸

Prob. of going to1:n−1|2:n

+ q

[
0 01×n−1

0n−1×1 Pn−1

]

︸ ︷︷ ︸

Prob of staying in2:n

.

Then divide rows 2 through n−1 by 2 so they sum to 1.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

INTEGRATION OF AN n-STATE PROCESS

• Conditional expectation of an n-state Markov process:

E [Φ(z′)|s = i] =
n∑

j=1

pijE[Φ(z′)|s′ = j]

• Let β ∼ AR(1) in addition to z. Computing expectations
across multiple exogenous processes generalizes to:

E [Φ(z′, β ′)|sz = iz, sβ = iβ] =
nβ∑

jβ=1

nz∑

jz=1

piβjβpizjzE[Φ(z′, β ′)|s′z = jz, s
′

β = jβ],

where iβ , jβ ∈ {1, 2, . . . , nβ} and iz, jz ∈ {1, 2, . . . , nz}.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

IMPLEMENTATION

• Script: Compute transition matrix (2 shocks):
e_weightVec = G.e_weight(G.z_gr(inode) == G.z_grid,:)’;
u_weightVec = G.u_weight(G.beta_gr(inode) == G.beta_grid,:)’;
e_weightMat = e_weightVec(:,ones(O.u_pts,1));
u_weightMat = permute(u_weightVec(:,ones(O.e_pts,1),[2,1]);
weightMat = e_weightMat.*u_weightMat
argzero = csolve(’eqm’,start,[],crit,itmax,state,...,weightMat);

• Eqm: Compute all combinations of shocks
EconsMat = weightMat.*(Contents of expectation);

and then integrate
Econs = sum(EconsMat(:));

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

BENEFITS OF THE ROUWENHORST METHOD

• Improves accuracy:
◮ Matches 5 statistics of an AR1 process: the autocorrelation

and the conditional and unconditional mean and SD

◮ No interpolation or extrapolation of the policy function at
future realizations of the exogenous state variables

• Reduces computation time:
◮ Requires fewer nodes relative to Gauss-Hermite quadrature

◮ Unnecessary to locate and obtain weights for the
exogenous state variables if using linear interpolation

◮ Reduces the dimension of the nested loop in the linear
interpolation step by the number of exogenous states

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

EXAMPLE: 4 STATES (2 ENDOGENOUS)
• Gauss-Hermite:

do i2 = 1,ne2
do i1 = 1,ne1
o(i1,i2) = interp(inputs)

end do
end do
...
do m4 = 0,1
do m3 = 0,1
do m2 = 0,1
do m1 = 0,1

wtemp = w1(m1+1)*w2(m2+1)*w3(m3+1)*w4(m4+1)
sum = sum + wtemp*z1(loc1+m1,loc2+m2,loc3+m3,loc4+m4)

end do
end do

end do
end do

• Rouwenhorst:
do m2 = 0, 1
do m1 = 0, 1

o = o + w1(m1+1)*w2(m2+1)*z1(:,:,loc1+m1,loc2+m2)
end do

end do
RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

INTRODUCTION TO MEX
• Advantages of MATLAB:

◮ Many built-in functions with good documentation
◮ Easy to debug code
◮ Easy to store data in structures
◮ Parallel processing easy to implement

• Main drawback: Slow at evaluating loops

• MEX (MATLAB Executable) functions: Allow programmers
to write sections of the code using a compiled language
(e.g., Fortran) and call it as a function in MATLAB

• Good intermediate step toward full fortran implementation

• Challenge: Users must write a “Gateway” function that
allows MATLAB to communicate with compiled code

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

FORTRAN 90 MEX REQUIREMENTS
• https://www.mathworks.com/support/compilers

• Intel Visual Fortran (IVF) Composer XE
◮ Basic compiler: very few intrinsic functions
◮ IMSL Library: Provides hundreds of additional functions

• Microsoft Visual Studio Professional

• MATLAB default: Fixed-format (f77) Fortran code.

• Our code: Free-format (f90), which is similar to MATLAB.

• To change the default settings, modify the batch files
(...\bin\win64\mexopts) by deleting the ‘/fixed’ flag

• Use mex -setup to select IVF as the compiler in MATLAB
RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

https://www.mathworks.com/support/compilers

WRITING A GATEWAY SUBROUTINE

1 #include "fintrf.h"
2 subroutine mexFunction(nlhs,plhs,nrhs,prhs)
! Declarations

3 implicit none
! mexFunc arguments

4 mwPointer plhs(*), prhs(*)
5 integer*4 nlhs, nrhs
• Line 1 defines pointer types in the MATLAB interface
• Function arguments:

◮ prhs: Pointer to an array which holds the input data
◮ plhs: Pointer to an array which will hold the output data
◮ nrhs: number of right-hand (input) arguments
◮ nlhs: number of left-hand (output) arguments

• Line 3 avoids Fortran’s implicit type definitions

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

KEY MATLAB INTERFACE FUNCTIONS

• mxGetPr: Accesses the real data in an mxArray

• mxGetScalar: Grabs the value of the first real element of
the mxArray (often one element)

• mxGetM/mxGetN: Determines the number of rows/columns
in a specified mxArray

• mxClassIDFromClassName: Obtains an identifier for any
MATLAB class (e.g., Double)

• mxCreateNumericArray: Creates an N-dimensional
mxArray in which all data elements have the numeric data
type specified by ClassID (7 dimensions max).

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

INPUTTING A POLICY FUNCTION
• Declare variable types and sizes (lines 1-3). If the

dimension lengths are variable, use allocatable memory:

1 mwpointer c_pr
2 mwSize nk,nz
3 real*8, allocatable, dimension(:,:) :: c
4 nk = mxGetN(prhs(1)) !Capital grid
5 nz = mxGetN(prhs(2)) !Technology grid
6 allocate(c(nk,nz))
7 c_pr = mxGetPr(prhs(3))
8 call mxCopyPtrToReal8(c_pr,c,nk*nz)

• Load the dimensions of pf from inputs (lines 4 and 5) and
allocate the memory (line 6)

• Grab the address of the pf (input 3), store in c pr (line 7),
and copy to Fortran variable c (line 8)
RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

CREATE OUTPUT MATRIX
• Load output size: stochastic realizations (lines 1-2)

1 e = mxGetM(prhs(4))
2 allocate(o(e))
!Create array for return argument

3 cid = mxClassIDFromClassName(’double’)
4 plhs(1) = mxCreateNumericArray(1,e,cid,0)
5 o_pr = mxGetPr(plhs(1))
! Call subroutine and load Fortran array

6 call interpfunction(inputs,o)
7 call mxCopyReal8ToPtr(o,o_pr,e)
• Create 1× e output vector of type double (lines 3-4) and

assign address (line 5)
• Call interpolation subroutine (line 6) and copy the data to

the output address (line 7)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

PARALLEL PROCESSING IN MATLAB

• Any calculations that are not dependent on the results of
other calculations can be performed in parallel (e.g.,
solving for policy values at each node in the state space)

• Requires the Parallel Computing Toolbox (PCT)

• MATLAB 2014a or later: no limit on the number of workers
MATLAB 2011a-2013b: maximum of 12 workers
MATLAB 2009a-2010b: maximum of 8 workers

• All available processors are initialized with the function
matlabpool (parpool in MATLAB 2013b and later)

• MATLAB Distributed Computing Server (MDCS) allows
parallelization across nodes

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

PARALLEL PROCESSING IN MATLAB

The PCT requires the following alterations to the code:
• Replace for loops with parfor loops where applicable.

This tells MATLAB to distribute each step in the loop
across the specified number of processors

• If a nested for loop is used to update policy functions
across dimensions, reduce it to one loop by changing to a
single index (as opposed to specifying coordinates)

• Remove all global variables and instead use
structures/parameter lists and variable arrays as direct
inputs into functions called within the parfor loop

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

PARALLEL PROCESSING IN FORTRAN
OpenMP is a simple way to parallelize a do-loop in Fortran

!$omp parallel default(shared) private(g,s,pf)
!$omp do collapse(2)
do i2 = 1,Oz_pts

do i1 = 1,Ok_pts
g(1,1) = pf_n(i1,i2)
s(1,1) = Gk_grid(i1)
s(2,1) = Gz_grid(i2)
call csolve(g,s,...,pf)
pf_n_up(i1,i2) = pf(1,1)

end do
end do
!$omp end do
!$omp end parallel

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

A NEW KEYNESIAN MODEL FOR ESTIMATION
The representative household chooses {ct, nt, bt}∞t=0 to
maximize expected lifetime utility given by

E0

∞∑

t=0

β̃t[log(ct − hcat−1)− χn1+η
t /(1 + η)],

where β̃0 ≡ 1 and β̃t =
∏t

j=1 βj for t > 0 subject to

ct + bt = wtnt + it−1bt−1/πt + dt

Optimality implies

wt = χnη
t (ct − hcat−1),

1 = itEt[qt,t+1/πt+1],

where qt,t+1 ≡ βt+1(ct − hcat−1)/(ct+1 − hcat) is the pricing kernel.
RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

NEW KEYNESIAN MODEL

• Firm optimality condition:

ϕ
(πt

π̄
− 1

) πt

π̄
= 1− θ + θ

wt

zt
+ ϕEt

[

qt,t+1

(πt+1

π̄
− 1

) πt+1

π̄

yt+1

yt

]

• Production Function

yt = ztnt

• Monetary policy rule

it = max{̄ı, i∗t}
i∗t = (i∗t−1)

ρi (̄ı(πt/π̄)
φπ(ct/(ḡct−1))

φc)1−ρi exp(νt),

where i∗ is the notional interest rate.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

NEW KEYNESIAN MODEL

• Resource constraint:

ct = [1− ϕ(πt/π̄ − 1)2/2]yt

• Discount factor (β) follows an AR(1) process

βt = β̄(βt−1/β̄)
ρβ exp(εt)

• Technology (z) follows a random walk:

zt = zt−1gt

gt = ḡ(gt−1/ḡ)
ρg exp(υt)

• Exogenous state variables: βt, gt, νt
• Endogenous state variables: ct−1, i∗t−1

• Policy functions: ct, πt

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

NUMERICAL ERROR

-8 -6 -4 -2 0
Errors (log10)

0

2

4

6

8

Fr
eq

ue
nc

y
(%

)

Euler Equation

-8 -6 -4 -2 0
Errors (log10)

0

2

4

6

8

10

12

Fr
eq

ue
nc

y
(%

)

Phillips Curve

Mean: −4.25

Max: −2.60

Integral: −4.27

Mean: −3.10

Max: −1.73

Integral: −3.10

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

ESTIMATION PROCEDURE
• Use quarterly data on per capita real GDP, the GDP price

deflator, and the Fed Funds Rate from 1986Q1 to 2015Q4

• Use a Metropolis-Hastings algorithm with a particle filter to
evaluate the likelihood of the posterior distribution

• Observation equation:

log
(

RGDPt/CNPt

RGDPt−1/CNPt−1

)

log(DEFt/DEFt−1)
log(1 + FFRt)/4

 =

log(gtc̃t/c̃t−1)
log(πt)
log(it)

+

ξ1t
ξ2t
ξ3t

 ,

where ξ ∼ N(0,Σ) is a vector of measurement errors.

• We adapt the particle filter to incorporate the information
contained in the current observation, which helps the
model better match outliers in the data (e.g., 2008Q4).

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

METROPOLIS-HASTINGS ALGORITHM
For all i ∈ {0, . . . , Nd}, perform the following steps:

1. Draw a candidate vector of parameters, θ̂candi , where

θ̂candi ∼
{

N(θ0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

2. Compute prior density: log ℓpriori =
∑Np

j=1 log p(θ̂
cand
i,j |µj, σ

2
j)

3. Given θ̂candi , solve the model. If the algorithm converges,
use the particle filter to obtain log ℓmodel

i , otherwise repeat 1.
4. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =

(θ̂candi , log ℓcandi) if i = 0,

(θ̂candi , log ℓcandi) if log ℓcandi − log ℓi−1 > û,

(θ̂i−1, log ℓi−1) otherwise,

where û ∼ U[0, 1] and log ℓcandi = log ℓpriori + log ℓmodel
i .

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

ADAPTED PARTICLE FILTER

1. Initialize the filter by drawing from the ergodic distribution

2. For all particles p ∈ {1, . . . , Np} apply the following steps:
2.1 Draw et,p ∼ N(ēt, I), where ēt maximizes p(ξt|zt)p(zt|zt−1)

2.2 Obtain zt,p and the vector of variables, wt,p, given zt−1,p

2.3 Calculate, ξt,p = x̂
model
t,p − x̂

data
t . The weight on particle p is

ωt,p =
p(ξt|zt,p)p(zt,p|zt−1,p)

g(zt,p|zt−1,p, x̂data
t)

∝
exp(−ξ′t,pH

−1ξt,p/2) exp(−e
′
t,pet,p/2)

exp(−(et,p − ēt)′(et,p − ēt)/2)

The model’s likelihood at t is ℓmodel
t =

∑Np

p=1 ωt,p/Np.

2.4 Normalize the weights, Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use
systematic resampling with replacement from the particles.

3. Apply step 2 for t ∈ {1, . . . , T}. log ℓmodel =
∑T

t=1 log ℓ
model
t .

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

PARTICLE ADAPTION

1. Given zt−1 and a guess for ēt, obtain zt and wt,p

2. Calculate x̂
model
t =

[

log(gtỹ
gdp
t /ỹgdpt−1), log(πt), log(it)

]

.

3. Calculate ξt = x̂
model
t − x̂

data
t , which is multivariate normal:

p(ξt|zt) = (2π)−3/2|H|−1/2 exp(−ξ′tH
−1ξt/2)

p(zt|zt−1) = (2π)−3/2 exp(−ē
′

tēt/2)

H ≡ diag(σ2
me,ŷ, σ

2
me,π, σ

2
me,i) is the ME covariance matrix.

4. Solve for the optimal ēt to maximize

p(ξt|zt)p(zt|zt−1) ∝ exp(−ξ′tH
−1ξt/2) exp(−ē

′

tēt/2)

We converted MATLAB’s fminsearch routine to Fortran.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

SYSTEMATIC RESAMPLING
• Resampling is the key step in the particle filter.

• Resampling is used to avoid the problem of degeneracy : a
situation when all but a few of the weights are near zero
because the variance of the weights increases over time.

• With resampling, one draws (with replacement) a set of
particles from the approximation to the filtering distribution

• Since resampling is done with replacement, a particle with
a large weight is likely to be drawn multiple times and
particles with small weights are not likely to be drawn at all.

• Resampling effectively deals with the degeneracy problem
by getting rid of the particles with very small weights.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

SYSTEMATIC RESAMPLING: EXAMPLE

cdf = cumsum(weights);
Udraws = (rand(nweights,1) +

(0:(nweights-1))’)/nweights;

ipart = 1;
idx = zeros(nweights,1);
for idraw = 1:nweights

while Udraws(idraw) > cdf(ipart)
% Reject particle
ipart = ipart + 1;

end
% Resample particle
idx(idraw) = ipart;

end

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

PROGRAMMING AND PARALLELIZATION

• Entire algorithm is programmed in Fortran using Open MPI

• Solve the model by parallelizing the nodes in the state
space across all available processors

• Improve filter accuracy by calculating the posterior
likelihood on each processor and evaluate whether to
accept or reject a draw based on the median likelihood

• With 64 processors, on average it takes 1 second to solve
the nonlinear model and 3.3 seconds to filter the data

• In total, we obtain 135,000 draws (10,000 for the mode
search, 25,000 for the initial MH step, and 100,000 for the
final MH step), so the total run time is about 1 week.

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

MESSAGE PASSING INTERFACE (MPI)
• Initialize and finalize MPI only once:
call mpi_init(ierr)
call mpi_comm_rank(mpi_comm_world,myid,ierr)
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
...
call mpi_finalize(rc)

• Processes do not communicate unless ordered:
call mpi_bcast(var,n,type,0,mpi_comm_world,ierr)

• Need a way to merge the calculations on each process:
call mpi_allreduce(var_temp,var,n,type,&

operation,mpi_comm_world,ierr)

• Processes may not finish at the same time:
call mpi_barrier(mpi_comm_world,ierr)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

PARALLEL PROCESSING WITH OPENMPI
On a given node, apply the following:

do inode = myid + 1,Gnodes,nprocs
g(1,1) = pf_n(i1,i2)
s(1,1) = Gk_grid(i1)
s(2,1) = Gz_grid(i2)
call csolve(g,s,...,pf)
pf_n_up(i1,i2) = pf(1,1)

end do
! Impose temporal order
call mpi_barrier(MPI_COMM_WORLD,ierr)
! Combine argzero across processors
call mpi_allreduce(pfn_up_temp,pfn_up,Gnodes,&

mpi_double_precision, &
mpi_sum,mpi_comm_world,ierr)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

CLUSTER COMMANDS

• Open source software:
◮ PuTTY (http://www.putty.org/):

Allows users to communicate with the cluster
◮ WinSCP (https://winscp.net/eng/download.php):

Allows users to transfer files to the cluster

• Scheduler commands for SLURM:
◮ squeue: displays all submitted jobs
◮ sinfo: display cluster usage by queue type
◮ scancel: cancels a running job
◮ sbatch runscript: submits job to queue

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

http://www.putty.org/
https://winscp.net/eng/download.php

EXAMPLE: RUN SCRIPT

#!/bin/bash
#SBATCH --job-name=name
#SBATCH --out=OUT
#SBATCH --partition=compute
#SBATCH --time=hh:mm:ss
#SBATCH --ntasks=processors
#SBATCH --distribution=block:block
#SBATCH --nodes=number of nodes
#SBATCH --ntasks-per-node=16
#SBATCH --mail-type=ALL
#SBATCH --mail-user=email1,email2
mpirun ./a.out

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

ADDITIONAL RESOURCES

• For more info on the solution method see Richter,
Throckmorton & Walker (Computational Economics, 2014)

• All of our code is available at:
http://alexrichterecon.com

• Examples include:
◮ Textbook real business cycle model
◮ Real business cycle models with real frictions
◮ Textbook New Keynesian model
◮ NK model with a zero lower bound constraint
◮ NK model with Epstein-Zin preferences
◮ NK model with monetary and fiscal policy switching

• For more info on nonlinear estimation see Plante, Richter
& Throckmorton (Economic Journal, 2017)

RICHTER AND THROCKMORTON: AN INTRODUCTION TO NONLINEAR SOLUTION AND ESTIMATION TECHNIQUES

http://alexrichterecon.com

