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ABSTRACT

This appendix describes the methodology for constructing a time series of oil price uncer-
tainty, our data sources, and the solution method for our general equilibrium model. It plots
the time series of the real price of oil underlying our analysis as well as the U.S. oil expendi-
ture share. It presents the responses to a macroeconomic disaster and to positive and negative
macroeconomic disaster probability shocks. It provides the results of several robustness ex-
ercises, including an alternative CES production function, an alternative utility function that
allows households to consume oil, and a higher average oil expenditure share. It concludes by

comparing the CES production technology to the putty-clay technology.
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A MEASURING UNCERTAINTY

Our method of constructing quarterly measures of uncertainty builds on Jurado et al. (2015). We
first summarize the key steps of the estimation process before discussing the data used in the

estimation.

A.1 METHODOLOGY LetY; = (y14,...,¥n,:)" be a vector of data containing N, variables.
Our objective is to estimate the 1-quarter ahead uncertainty about select elements of Y, defined as

U = \/E[(yj,tﬂ — Elyje1|1])? | 1],

where the expectation is taken with respect to the information set /; and j refers to the variable of

interest. There are four steps:

1. Generate forecast errors for y; ;.1 using a forecasting model that includes lags of the variable
y;, estimated factors extracted from a panel of predictor variables, Ft, and a set of additional

predictors contained in a vector W.

2. Fit autoregressive models for the factors in F, and the variables in W, and generate residuals

for each variable.
3. Estimate a stochastic volatility model for each residual.

4. Calculate L[tj .

Factors Let X; = (X;,,...,Xn, ) be a vector of predictors that are available for forecasting.
These data are transformed to be stationary. It is assumed that the transformed variables have an

approximate factor structure,
F' b's
Xi,t = Al Ft + ei,t’

where F; is a rp x 1 vector of latent factors, AF "is a1 x rp vector of loadings for variable
and the idiosyncratic errors are given by efft. The estimated factors, denoted as F,, are estimated
using principal components and the number of factors is selected using the criterion of Bai and Ng

(2002). Each of the factors is assumed to follow an autoregressive process with two lags,
F = ®F(L)Fyy + 0,
' =ofel,  F ~N(0,1),
In(o)* = " + A" In(oy_y)* + 7", 0 ~N(0,1),

where ®(L) is a lag polynomial. As with the other lag order choices made below, our results are

robust to reasonable variation in the lag order.



Additional predictors The ry x 1 vector W, includes the squared values of the first factor in F,
and a set of N factors estimated using principal components on the squared values of the variables

in X;. Each variable in W, is assumed to follow an autoregressive process with two lags,

Wy = "V (L)Wiy + v,
v =0q", & ~N(O,1),
In(o;")* = a" + 8" In(eyly)* + 70", m" ~ N0, 1),
where ®" (L) is a lag polynomial.
Forecasting Model A forecast for y; 4 is produced with the factor-augmented forecasting model,
Yiens = &5 (D)o + 77 (DFs 2] (LW + v},
v/ =ofel, e ~N(0,1)
In(of)? = ¥ + ¥ In(o}_y)* + 70, nf ~N(0,1),
where ¢ (L), v/ (L), and ~," (L) are lag polynomials of orders 2, 1, and 1, respectively. As in

Jurado et al. (2015, footnote 10), a hard threshold is applied to remove any variables from the

forecasting model that do not have incremental predictive power.

Uncertainty Define Z; = (]?‘;, W)’ as a vector that collects the estimated factors and the addi-

tional predictors contained in Wy. Then let Z; = (Z}, ..., Z; )" and Y} = (Yjts - Yjt—qt1)’>

where ¢ = 2. The FAVAR model can be written in companion form as

Zy o 0 Zi VZ
= + = Vi =PV + V)
(Yj,t> (A; (1)3/> (Yj,t—1 128 A AL

The forecast error variance is
Q%(l) = Et[(yj,t+1 - Etyj,t+1)(yj,t+1 - Etyj,t—l-l)/]a
where E,.Y; 141 = <I>;J)-’ Y;+. The forecast error variances can be calculated as
Q?ft(l) = Et[ng,}t+1vyg,}tl+1]'
The uncertainty of y; ;1 1s

where 1 is a selection vector and j refers to the growth rate of real GDP and the growth rate of the

inflation-adjusted U.S. refiners’ acquisition cost of imported crude oil, respectively.



A.2 DATA Our dataset includes most of the financial and macroeconomic variables listed in
the data appendix of Ludvigson et al. (2021) plus U.S. real GDP and the inflation-adjusted U.S.
refiners’ acquisition cost of imported crude oil.

The macroeconomic variables are from the April 2024 vintage of the FRED-MD database with

the following modifications.

* We linearly interpolate the missing values of UM C'S ENT'x that occur through 1977.

* We set the missing value of C P3M z for 4/1/2020 to its value on 3/1/2020.

* We set the missing value of COM PAPF Fx for 4/1/2020, to its value on 3/1/2020.
Monthly data are averaged by quarter and transformed to stationarity using the code in the FRED-
MD database. Both real GDP and the real price of oil are log-differenced. The data set starts in
1974Q1. The sample begins in 1974Q2, because we lose one observation due to differencing.

The financial variables are obtained from FRED-MD, CRSP and the Fama-French database.

Returns are aggregated by summing the monthly values by quarter.

B DATA SOURCES
We use the following time-series provided by Haver Analytics:

1. Consumer Price Index for All Urban Consumers: Not seasonally Adjusted,
Monthly, Index (PCUN@USECON)

2. World Production of Crude Oil Including Lease Condensate
Not Seasonally Adjusted, Thousands of Barrels per Day
(Monthly, AWOACAUF@ENERGY; Quarterly, BWOACAUF@ENERGY)

3. United States: Petroleum Products Expenditures
Annual, Millions of Dollars (ZUSPATCV @ USENERGY)

4. US Crude Oil Imported Acquisition Cost by Refiners
Not Seasonally Adjusted, Quarterly, Dollars per Barrel (CUSIQABF@USENERGY)

5. Civilian Noninstitutional Population: 16 Years & Over
Not Seasonally Adjusted, Quarterly, Thousands (LN16N@USECON)

6. Gross Domestic Product: Implicit Price Deflator
Seasonally Adjusted, Quarterly, 2012=100 (DGDP@USNA)

7. Gross Domestic Product
Seasonally Adjusted, Quarterly, Billions of Dollars (GDP@USECON)

8. Gross Domestic Product
Annual, Millions of Dollars (GDPY @USNA)
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10.

11.

12.

13.

14.
15.
16.
17.
18.

. Personal Consumption Expenditures: Nondurable Goods

Seasonally Adjusted, Quarterly, Billions of Dollars (CN@USECON)

Personal Consumption Expenditures: Services
Seasonally Adjusted, Quarterly, Billions of Dollars (CS@USECON)

Personal Consumption Expenditures: Durable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CD@USECON)

Private Fixed Investment
Seasonally Adjusted, Quarterly, Billions of Dollars (F@USECON)

Total Economy: Labor share
Seasonally Adjusted, Quarterly, Percent (LXEBL@USNA)

Net Stock: Private Fixed Assets, Annual, Billions of Dollars (EPT@CAPSTOCK)
Net Stock: Durable Goods, Annual, Billions of Dollars (EDT @ CAPSTOCK)
Depreciation: Private Fixed Assets, Annual, Billions of Dollars (KPT@CAPSTOCK)
Depreciation: Durable Goods, Annual, Billions of Dollars (KDT @ CAPSTOCK)
CBOE Crude Oil Volatility Index (OVX), Daily, Index (SPOVX@DAILY)

We also use the following data sources:

1.

5.

FRED-MD, Monthly Databases for Macroeconomic Research. The data is available at
https://research.stlouisfed.org/econ/mccracken/fred-databases
(McCracken, 2024). Under Monthly Data, we use the April 2024 vintage.

Fama-French, Database. The data is available at https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html
(Fama and French, 2024).

. WRDS, Stock Market Indexes. The data is available at https://wrds—www.wharton.

upenn.edu (Wharton Research Data Services, 2024).

Geopolitical Risk Index, Historical series (GPRH). The data is available at https://

www.matteoiacoviello.com/gpr.htm (Caldara and Iacoviello, 2024).

Global Oil Inventories Monthly, Millions of Barrels per Day (/nv,;) from Kilian (2022).

We apply the following data transformations:

1.
2.
3.

Per Capita Real Output: Y; = 10° x GDP,/((DGDPFP;/100)(1000 x LN16N,)).
Per Capita Real Consumption: C; = 10°(CN,+C'S;)/((DGDPFP;/100)(1000x LN16N,)).
Per Capita Real Investment: [, = 10°(F, + CD,)/((DGDP,/100)(1000 x LN16N,)).
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Depreciation Rate: § = (1 + 7 ST KPT, + KDT,)/(EPT,_y + EDT,_;))"/* — 1.
Capital Services Share: { =1 — Zt , LXEBL/100.

Real Price of Oil: p? = CUSIQABF,/(DGDP,/100).

Expenditure Share of Oil: ZUSPATCYV,/GDPY;.

Oil Consumption: o, = Days per Month x AWOACAUF,/1000 — (INV, — INV,_).

L e 2 A

Inventory-Qil Consumption Share: /NV;/ Z;:t_Q o fort =3,6,...,3T.
10. CPI Inflation Rate: 7" = 100 x (PCUN,/PCUN,_; — 1).

11. Asset Returns: We use two time series from the Fama-French data library:

* Net nominal risk-free rate, monthly, percent (RF')

* Net nominal excess market return, monthly, percent (M KTmRFE)

Define the market return as RM, = M KTmRF, + RF;. The gross quarterly analogues of

the Fama-French series and CPI inflation are given by

t t t
?= [ @+ RF;/100), RM? = ] (1 + RM;/100), = = ] (1 + = /100)
j=t—2 j=t—2 j=t—2
fort = 3,6,...,37, so the quarterly real risk-free rate and equity premium are

ry =100 x (RE2 /72 — 1), r6* =100 x (RMZ /7% — 1) — 1.

Data moments are computed with quarterly data. The average oil expenditure share is based on

annual data.

C SOLUTION METHOD

The equilibrium system of the DSGE model is summarized by F[g(X¢11,X¢,€r41)]2:,9] = 0,
where g is a vector-valued function, x; is the vector of model variables, ¢; is the vector of shocks,
2y = [ky, s¢, 07, 08, Inpf  In p§| €] is the vector of states, and 9 is the vector of parameters.

We discretize the continuous shocks, {e,, €40, € o ep} using the Markov chain in Rouwenhorst
(1995). The bounds of the six continuous state variables are chosen so they cover at least 99% of
the ergodic distribution, reducing the need for extrapolation. Specifically, the bounds on capital, k;,
range from —15% to +10%, the bounds on storage, s;, range from —50% to +80%, and the bounds
on the error correction term, €, range from —30% to +15% of the deterministic steady state. The
bounds on the probability of a growth disaster, p{, are set to [0.00005, 0.8], while the bounds on
the probability of an oil production disaster, pf, are set to [0.0000025, 0.8]. Both are converted to
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logs. We discretize k;, s;, and ¢; each into 7 points, and Inp{ and In p{ into 15 points given the
nonlinearity in the transmission of the probability shocks. All of the grids for the continuous states
are evenly spaced. There are also binary indicators for whether the economy is in a growth disaster
or an oil production disaster, creating 4 outcomes. The product of the points in each dimension,
D, is the total number of nodes in the state space (D = 308,700).

The realization of z, on node d is denoted z;(d). The Rouwenhorst method provides inte-
gration nodes for the continuous shocks, [e4,¢11(1), €go41(m), €5 41 (m), €5, 1 (m)]. The transi-
tion matrices for the discrete states determine the integration weights for their future realizations,
[v{, 1 (m),v5,,(m)]. The weight for a particular realization of the continuous and discrete shocks is
¢(m), where m € {1,..., M} and M is the product of the number of realizations of each shock.
The two disaster probability shocks, &5 and Eps have the same number of realizations as the cor-
responding state variable (15). Each growth shock, ¢, and €4,, has 7 possible realizations. Each
discrete state has two possible outcomes. Thus, M = 44,100 possible shock realizations.

The vector of policy functions and the realization on node d are denoted by pf, and pf,(d),

where pf, = [n(z;),0(z:), J(2:), p°(z:), 7(2:)]. The following steps outline our algorithm:

1. Use the Sims (2002) gensys algorithm to solve the log-linear model without any disasters
or time-varying probabilities. Then map the solution for the policy functions to the dis-
cretized state space, copying the solution on the dimensions that were excluded from the

linear model. This provides an initial conjecture, pf,,, for the nonlinear algorithm.

2. Oniteration j € {1,2,...} and each node d € {1,..., D}, use Sims’ csolve code to find
the pf,(d) that satisfies Eg(-)|z;(d), V] ~ 0. Guess pf,(d) = pf,_,(d). Then
(a) Solve for all variables dated at time ¢, given pf,(d) and z(d).

(b) Linearly interpolate the policy functions, pf;_,, at the updated state variables, z;,(m),
to obtain pf,, (m) on every integration node, m € {1,..., M}.

(¢) Given {pf,,(m)}_,, solve for the other elements of s;;1(m) and compute
Elg(xt11,%¢(d), e141)|24(d), V] ~ 2%21 P(m)g(Xe+1(m), xi(d), €41 (m)).

When csolve has converged, set pf;(d) = pf,(d).

3. Repeat step 2 until maxdist; < 107°, where maxdist; = max{|(pf; — pf, ,)/pf; ,|}.

When that criterion is satisfied, the algorithm has converged to an approximate solution.

Ergodic Probabilities Since the probability of entering an oil production or macroeconomic dis-
aster is time varying, there is no closed-form solution for the ergodic probabilities of these dis-
asters. We therefore compute 7¢ and 7¢ by simulating v and v¢ for 1 million periods and then

computing the fraction of periods where vy = 1 and the fraction of periods where v = 1.
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D DETRENDED EQUILIBRIUM OF THE BASELINE MODEL

We detrend the model by defining ¥; = x;/a,. The equilibrium system of equations is given by

Wy = (1= &)Ge /e

o (Ot/OO)l 1/o0
DL = O Gy T Tho) =7+ foo) =77 o1

Bzt =1
—Cv 1 _
ri=e v o ( +(1

t—1

ol

22 (1 Ke) Y )))
pf = ai(@/kt)l/y

k o (kf/k )1 1/o
1t = &0 = Q) G Tre) = Ve a@ o) 17 Fe

Ey [$t+17”t+1] =1

S
Ty =

Pt - (1 —w+ 75 )p?
xwily = (1= x)c
2y = (B/9]) (/1) (@1 /@) (T ) 20) P
Uy = cW X
2= (Bul(gryr Jepn) MO
Jo=(a-pa "+ ﬁﬁ*”}ﬁ%a

i ~ N e e\ &/ (1=1/0)
g = yont ¢ (1= @) (ke /ko)' /7 + (@ /00) /%)
gt+1];t+1 = e—Cgvf+1(1 -0+ a; + Jﬁ(’it/%t)lil/y)ift

- 2
Gi+15141 = (1 —w)§, + 0 — o, —

250

0; =ei/e
i =10t
ng+ 40 =1

Ingo: =Inko+K1Ing + Kolner1 4+ 0gocg0,t

Ine, =Ing, —Ingos +1ne
Ing =Ing+ o, — (g(v] — )
Ine; =1Inée — ((vf — 7Y)
Pr(vf., = 1jof = 1) = ¢,

Pr(vfy, =1[v/ = 0) = p{
Pr(viy, =1lof =1) = ¢°,

Pr(viy, = 1v} = 0) = p}
(1=pf)Inp? + pfInp] | +ole)

In p;

Inpf = (1= pp) Inp® + ppInpf_; +opep
Ey[zpiar] =1
1 = Ey[wiariyq])
r = g.(pf + Jf)/ﬁf—l

ds = G — iy — Wgng — ﬁ(g%Et—l[gtiCt] - %Et[gt-i-lfft-&-l})



E OIL MARKET DATA

Figure 1: Real U.S. refiners’ acquisition cost of crude oil imports, 1974Q4-2023Q4

2017 Dollars Per Barrel
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Figure 2: U.S. petroleum oil expenditure share, 1974-2023
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F ADDITIONAL DISASTER RISK RESULTS

F.1 DISASTER REALIZATION Figure 3 shows how the economy responds to a macroeconomic
disaster realization. The output and investment responses are broadly in line with the results re-

ported in Gourio (2012). The oil price drops by nearly 70% on impact and oil inventories decline.
Figure 3: Responses to a macroeconomic disaster realization

Output (%) Oil Inventories (%)

0 0
5t
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F.2 PRODUCTION FUNCTION The specification of the production function in our baseline
model follows the seminal work of Kim and Loungani (1992) and Backus and Crucini (2000).
Some more recent studies, such as Bagkaya et al. (2013), Hassler et al. (2021), Olovsson (2019),
and Ready (2018), use the following specification

/e _1/0\1/(1-1/0)
ye = Yo (1 — ) (ve/vo)' 7 + aor/09) %)

Y

where v; = (atnt)l_f k:f is value added and o is the elasticity of substitution between oil and the

capital-labor bundle, rather than just capital. Under this specification, the factor prices are given by

wy = (1= a)(L = &) (yo/ne) (ye/yo) " (ve /v0) 17,
py = a(Yo/00) (Ye/y0) "7 (01/00) 77,
ry = (1= a)&(yo/ke) (e /yo) " (ve/vo) /7.



Figure 4: Responses to a 20pp oil production disaster probability shock
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.

Figure 5: Responses to 5pp macroeconomic disaster probability shock
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.
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We recalibrate the model to match the data moments. All of the parameters are unchanged, except
that we set o = 0.063 in order to match the cost share of oil.! Figures 4 and 5 illustrate that our

substantive conclusions are robust to this alternative functional form of the production function.

Figure 6: Responses to positive and negative macroeconomic disaster probability shocks

Output (%) Oil Inventories (%) Output Uncertainty (index)
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.

F.3 SIGN OF THE DISASTER PROBABILITY SHOCK In the paper, we show how the sign of
an oil disaster probability shock affects the responses. Figure 6 shows the responses to a +5pp
macroeconomic disaster probability shock. The simulations are initialized at a 15% disaster prob-
ability to permit a positive and negative shock. Consistent with the responses to an oil disaster prob-
ability shock, we find that increases and decreases in the price of oil do not have the same effects
on uncertainty. A decrease in the probability of a macroeconomic disaster increases the price of oil
and reduces oil price uncertainty on impact, while an increase in this probability lowers the oil price

and raises oil price uncertainty. This result is inconsistent with a VAR model with GARCH errors.

"We set o to 0.063 so that the average oil expenditure share across simulations matches the share in the data.
Similarly, the steady-state inventory share of oil consumption (5/0) is set to 1.18 to match the average share in the
data. We set the steady-state labor cost share (w7 /%), which determines £, to 0.5957, in line with the baseline model.
The elasticity of substitution, o, is pinned down by the standard deviation of the price of oil and remains unchanged.
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Figure 7: Responses to a 20pp oil production disaster probability shock
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.

F.4 HIGHER OIL EXPENDITURE SHARE The average oil expenditure share in our baseline
model is 4.5%, but there was a brief period in the early 1980s when the share reached 8% (see
Figure 2). To examine the sensitivity of our results, we also consider a variation of the baseline
model with an average oil expenditure share of 8%. As shown in Figure 7, even allowing for such
an unrealistically high average expenditure share implies only a slightly larger response of real
activity to an oil production disaster probability shock. There is little effect on the price of oil and
oil inventories. Overall, these results show that our baseline results are robust to changes in the

average oil expenditure share.

F.5 HOUSEHOLD OIL CONSUMPTION In our baseline model, all of the oil consumption takes
place in the production sector. An alternative assumption would be to follow Bodenstein et al.
(2008, 2011) in introducing oil consumption by households. In that case, the household’s maxi-

mization problem becomes

Jp = max ((1 _ ﬁ)u;—l/w + 5(Et[a]t1_:17])1;77 )1%@

Ct,0h, 1,057 4 1,141

12



subject to
up =l y(an(l —ny))' ™,
1o 1/ \On/(on—1
Car = Cao ((1 — o) (ce/co)’ Yon 4 ag, (o /ono) Y ") o=y

Ct + Dions + pysgq + b /e = weng + (pf + df)sy + b,

)

where ¢; is goods consumption, o, is oil consumption, ¢, is aggregate consumption, and oy, is
the elasticity of substitution between goods and oil consumption. Just like in the production sector,
we introduce scalars c,g, ¢y, and opg so that «y, is equal to the household oil expenditure share.

The first-order conditions are given by

1 = Eyfaiary 4],
1 = Eyfziqary),
(1 — an)xwi(1 = 1) (CoCa/car) V7 = (1 — x)e/ ",

P = 1?2% (Ct/Oh,t)l/Uh(Cg/oho)lfl/ah7

where

i = (P + diy)/pis
Ty = B(ut/ut—l)l_l/w(Ca,t/ca,t—l)l/ah_l(Ct—l/Ct)l/Uh(Jt/Zt_l)l/w_77
2= (Bl T DV,

The oil storage firm now chooses how much to supply to the household and the final goods firm,
but the first-order condition is unchanged. The problem for the final goods firm is unchanged.

We set 05, = 0 = 0.105 and the share of oil consumed by households 05, /(6,+0) to 0.5 to match
the share in U.S. data, which is equal to personal consumption expenditures on gas and other energy
goods (CNEA@USNA) divided by petroleum products expenditures (ZUSPATCV @USENERGY).
The implied weight on oil in the production function is o = 0.0667, while the implied weight on
oil in the aggregate consumption function is o, = 0.0407. All other parameters are unchanged.

Figure 7 shows the responses to an oil production disaster probability shock. Intuitively, there is
a smaller decline in investment because firms now only represent half of total oil consumption and
are therefore less exposed to the risk of a large shortfall in oil production. However, there is a larger
decline in goods consumption, given the complementarity with oil consumption in the household’s
aggregate consumption function. These two competing effects on output roughly cancel out, so the
response the response of output is effectively unchanged from our baseline model. We also find
little effect on the price of oil and oil inventories. These results show that the distinction between

oil consumption by households and by firms has little effect on our baseline results.

13



G COMPARISON WITH THE PUTTY-CLAY MODEL

In the Atkeson and Kehoe (1999) model, the real price of oil, p?, is exogenous. We postulate that

p; follows an autoregressive process with a stochastic volatility shock:

Inp} =(1—p,) Inp°+ pyInpr1 + 0pr_16ps, 0 < pp <1, €0 ~ N(0,1),

hl Up,t - (1 - psv) ln 6-1) + Psv hl Up,t—l + Jsvgsv,ta O < Psv < 17 551},75 ~ N(Oa ]-))

where €, ; affects the variance of the oil price and hence uncertainty about the price of oil.

In the production sector, there is a continuum of capital goods characterized by oil intensity
v. Firms produce output using capital, oil, and labor inputs. Since different capital goods require
a fixed oil intensity, existing capital goods use oil in the fixed proportion 1/v. Thus, there is
no substitutability between capital and oil in the short run. However, firms are able to invest in
capital with a different energy intensity. Given the infinite number of capital goods, the model
is intractable. However, if all types of existing capital are fully utilized, the state space can be
represented by two aggregate state variables and each period there is positive investment in at most
one type of capital with energy intensity v;. Assuming this condition is satisfied and the production
function is Cobb-Douglas in capital and oil, the firm’s optimization problem can be written as

f_ . 0 f
V= max oy — iy —pjoi1 — wing + By 1 Vi
Nt,5t,Ks,¢,0,0t

subject to

ye = (ame)' CkS, 4,
ks,t = (1 - 5)ks,t71 + Z.tv;:bila
o = (1 —0)os_1 + i/ vy,

where 7, is labor that receives real wage rate wy, ¢; is physical investment, k, ; is aggregate capital
services that depreciate at rate ¢, o, is aggregate oil use, y; is aggregate output, ¢ is the cost share

of oil, and ¢ is the cost share of capital services. Labor productivity, a;, evolves according to
Ina; = (1—p)Ina+ paInaiy + 0a-104, 0 < pa <1, €440 ~ N(0,1).
The firm’s optimality conditions imply

wy = (1 = &)ye/ma,
Mot = Eir[ri (Tj;_l + (1= 9) e 1),
Aot = Ei[rea(=piiy + (1= 0)Aoit1)];

where A, = v /¢, Aoy = (¢ — 1)v,/6, and 7F = €y, /Koy s1.
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The household’s problem is unchanged from the paper. However, following Atkeson and Kehoe

(1999), there is no labor productivity growth and no oil storage, so the resource constraint becomes

- O
Ct + 1 = Y — PyOt—_1-

We compare the Atkeson-Kehoe (AK) putty-clay model to a model that replaces the putty-clay
technology by a CES production function that aggregates capital and oil as in our baseline model.
In particular, the firm’s optimization problem in this CES model is given by

. (o]
Vi = max y; — iy — ploy — winy + By Vigd]
it,kt,nt,0t

subject to
Y = yo(atnt)lig ((1 . Oé)(ktfl/ko)lil/a + a(ot/OO)l—l/g>§/(1—1/a)
ke = (1 —=08)ki1 + i — ¢/ k1) k1),

where o is the elasticity of substitution between capital and oil. The optimality conditions imply

Wy = (1 - §>yt/nt7

o _ (0t/00)' "1/ y
pt - fOé (1706)(]%_1/kot)l—l/oJra(ot/OO)l—l/c 0_27

i
Eylziarq] =1,
where

Ti-s-l = (Tfﬂ + (1 =04+ %(Z.tJrl/kt)lil/V)pf-H)/pfa

k_ (ke—1/ko)t /e Yt
i =¢&(1-a) (1—a)(kt_l/iiw1*1/U+a<ot/oo)1*1/o R
ko 1 _ 1 i \1/v
Py = 1-¢'(it/kt—1) — u2<kzi1) )

Calibration Table 1 summarizes the parameter values used for both the AK and CES models.
Table 2 compares the data and simulated moments. In the AK model, we set ¢ = 0.89 to match
the oil expenditure share in the data. In the CES model, o € {0.1,0.2,0.3}. For each o, we set the
investment adjustment cost parameter, v, to achieve the same standard deviation of investment. The
moments are almost identical across the four model specifications, providing a credible framework

to compare responses to oil price uncertainty shocks.

Results Figure 8 shows responses to a 2 standard deviation oil price uncertainty shock. The
less substitutable capital and oil are, the better the responses from the CES model approximate
those from the AK model. In particular, for 0 = 0.1, which corresponds to the value in our
baseline model, the responses are close. This indicates that our model captures the mechanisms in
Bernanke (1983) and Atkeson and Kehoe (1999), while remaining tractable in general equilibrium

even when the oil price is endogenous.
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Table 1: Common model parameters

Parameter Value Target
Discount Factor (3) 0.997 E(r)
Risk Aversion (7y) 10 Gao et al. (2022), Croce (2014)
Intertemporal Elasticity of Substitution (/) 2 Gao et al. (2022), Croce (2014)
Frisch Labor Supply Elasticity (7") 2 Peterman (2016), Basu-Bundick (2017)
Capital Depreciation Rate (§) 0.025 Depreciation on fixed assets, durables
Capital Services Share of Production (&) 0.4 Avg. labor share of income
Technology Persistence (p,) 0.9 AC(9)
Technology Shock SD (o) 0.012 SD(y)
Oil Price Persistence (ppo) 0.9 AC(p°)
Oil Price Shock SD (op0) 0.13 SD(p°)
Oil price volatility shock persistence (ps,) 0.95 AC (Upo)
Oil price volatility shock SD (o) 0.115 SD(Upo)

Table 2: Data and simulated moments

AK CES

Moment Data ¢ =0.89 o =0.30 o =10.20 o =0.10
E(p°o/y) 0.043 0.043 0.043 0.043 0.043
SD(g) 2.9 2.6 2.8 2.7 2.6
SD(i) 8.7 9.0 8.9 8.9 8.9
SD(p°) 38.1 314 31.4 31.4 31.4
SD(Uy) 29.5 29.6 29.6 29.6 29.6
AC(7) 0.90 0.90 0.90 0.90 0.90
AC(p°) 0.88 0.87 0.87 0.87 0.87
AC (Upeo) 0.92 0.92 0.92 0.92 0.92

Notes: A tilde denotes a variable that was detrended in the data using a Hamilton (2018) filter with 4 lags
and a delay of 8 quarters. SD (U ) is normalized by SD(Ap®). Standard deviations are percents. The data
sample begins in 1980Q1 instead of 1975Q1 due to lost observations from detrending the data.

Figure 8: Responses to an oil price uncertainty shock
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