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A MEASURING UNCERTAINTY

Our method of constructing quarterly measures of uncertainty builds on Jurado et al. (2015). We
first summarize the key steps of the estimation process before discussing the data used in the
estimation.

A.1 METHODOLOGY Let Yt = (y1,t, . . . , yNy ,t)
′ be a vector of data containing Ny variables.

Our objective is to estimate the 1-quarter ahead uncertainty about select elements of Yt, defined as

U j
t ≡

√
E[(yj,t+1 − E[yj,t+1|It])2|It],

where the expectation is taken with respect to the information set It and j refers to the variable of
interest. There are four steps:

1. Generate forecast errors for yj,t+1 using a forecasting model that includes lags of the variable
yj , estimated factors extracted from a panel of predictor variables, F̂t, and a set of additional
predictors contained in a vector Wt.

2. Fit autoregressive models for the factors in F̂t and the variables in Wt and generate residuals
for each variable.

3. Estimate a stochastic volatility model for each residual.

4. Calculate U j
t .

Factors Let Xt = (X1,t, . . . , XNx,t)
′ be a vector of predictors that are available for forecasting.

These data are transformed to be stationary. It is assumed that the transformed variables have an
approximate factor structure,

Xi,t = ΛF ′

i Ft + eXi,t,

where Ft is a rF × 1 vector of latent factors, ΛF ′
i is a 1 × rF vector of loadings for variable i

and the idiosyncratic errors are given by eXi,t. The estimated factors, denoted as F̂t, are estimated
using principal components and the number of factors is selected using the criterion of Bai and Ng
(2002). Each of the factors is assumed to follow an autoregressive process with two lags,

Ft = ΦF (L)Ft−1 + vFt ,

vFt = σF
t ϵ

F
t , ϵFt ∼ N(0, 1),

ln(σF
t )

2 = αF + βF ln(σF
t−1)

2 + τFηFt , ηFt ∼ N(0, 1),

where ΦF (L) is a lag polynomial. As with the other lag order choices made below, our results are
robust to reasonable variation in the lag order.
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Additional predictors The rW × 1 vector Wt includes the squared values of the first factor in F̂t

and a set of NG factors estimated using principal components on the squared values of the variables
in Xt. Each variable in Wt is assumed to follow an autoregressive process with two lags,

Wt = ΦW (L)Wt−1 + vWt ,

vWt = σW
t ϵWt , ϵWt ∼ N(0, 1),

ln(σW
t )2 = αW + βW ln(σW

t−1)
2 + τWηWt , ηWt ∼ N(0, 1),

where ΦW (L) is a lag polynomial.

Forecasting Model A forecast for yj,t+1 is produced with the factor-augmented forecasting model,

yj,t+1 = ϕY
j (L)yj,t + γF

j (L)F̂t + γW
j (L)Wt + νY

j,t+1,

νy
t = σy

t ϵ
y
t , ϵyt ∼ N(0, 1)

ln(σy
t )

2 = αy + βy ln(σy
t−1)

2 + τ yηyt , ηyt ∼ N(0, 1),

where ϕY
j (L), γ

F
j (L), and γW

j (L) are lag polynomials of orders 2, 1, and 1, respectively. As in
Jurado et al. (2015, footnote 10), a hard threshold is applied to remove any variables from the
forecasting model that do not have incremental predictive power.

Uncertainty Define Zt ≡ (F̂
′
t,W

′
t)

′ as a vector that collects the estimated factors and the addi-
tional predictors contained in Wt. Then let Zt ≡ (Z′

t, . . . ,Z
′
t−q+1)

′ and Yj,t = (yj,t, . . . , yj,t−q+1)
′,

where q = 2. The FAVAR model can be written in companion form as(
Zt

Yj,t

)
=

(
ΦZ 0

Λ′
j ΦY

j

)(
Zt−1

Yj,t−1

)
+

(
VZ
t

VY
j,t

)
⇐⇒ Yj,t = ΦY

j Yj,t−1 + VY
j,t.

The forecast error variance is

ΩY
j,t(1) ≡ Et[(Yj,t+1 − EtYj,t+1)(Yj,t+1 − EtYj,t+1)

′],

where EtYj,t+1 = ΦY
j Yj,t. The forecast error variances can be calculated as

ΩY
j,t(1) = Et[VY

j,t+1VY ′

j,t+1].

The uncertainty of yj,t+1 is

U j
t =

√
1
′
jΩ

Y
j,t(1)1j,

where 1 is a selection vector and j refers to the growth rate of real GDP and the growth rate of the
inflation-adjusted U.S. refiners’ acquisition cost of imported crude oil, respectively.
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A.2 DATA Our dataset includes most of the financial and macroeconomic variables listed in
the data appendix of Ludvigson et al. (2021) plus U.S. real GDP and the inflation-adjusted U.S.
refiners’ acquisition cost of imported crude oil.

The macroeconomic variables are from the April 2024 vintage of the FRED-MD database with
the following modifications.

• We linearly interpolate the missing values of UMCSENTx that occur through 1977.

• We set the missing value of CP3Mx for 4/1/2020 to its value on 3/1/2020.

• We set the missing value of COMPAPFFx for 4/1/2020, to its value on 3/1/2020.

Monthly data are averaged by quarter and transformed to stationarity using the code in the FRED-
MD database. Both real GDP and the real price of oil are log-differenced. The data set starts in
1974Q1. The sample begins in 1974Q2, because we lose one observation due to differencing.

The financial variables are obtained from FRED-MD, CRSP and the Fama-French database.
Returns are aggregated by summing the monthly values by quarter.

B DATA SOURCES

We use the following time-series provided by Haver Analytics:

1. Consumer Price Index for All Urban Consumers: Not seasonally Adjusted,
Monthly, Index (PCUN@USECON)

2. World Production of Crude Oil Including Lease Condensate
Not Seasonally Adjusted, Thousands of Barrels per Day
(Monthly, AWOACAUF@ENERGY; Quarterly, BWOACAUF@ENERGY)

3. United States: Petroleum Products Expenditures
Annual, Millions of Dollars (ZUSPATCV@USENERGY)

4. US Crude Oil Imported Acquisition Cost by Refiners
Not Seasonally Adjusted, Quarterly, Dollars per Barrel (CUSIQABF@USENERGY)

5. Civilian Noninstitutional Population: 16 Years & Over
Not Seasonally Adjusted, Quarterly, Thousands (LN16N@USECON)

6. Gross Domestic Product: Implicit Price Deflator
Seasonally Adjusted, Quarterly, 2012=100 (DGDP@USNA)

7. Gross Domestic Product
Seasonally Adjusted, Quarterly, Billions of Dollars (GDP@USECON)

8. Gross Domestic Product
Annual, Millions of Dollars (GDPY@USNA)
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9. Personal Consumption Expenditures: Nondurable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CN@USECON)

10. Personal Consumption Expenditures: Services
Seasonally Adjusted, Quarterly, Billions of Dollars (CS@USECON)

11. Personal Consumption Expenditures: Durable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CD@USECON)

12. Private Fixed Investment
Seasonally Adjusted, Quarterly, Billions of Dollars (F@USECON)

13. Total Economy: Labor share
Seasonally Adjusted, Quarterly, Percent (LXEBL@USNA)

14. Net Stock: Private Fixed Assets, Annual, Billions of Dollars (EPT@CAPSTOCK)

15. Net Stock: Durable Goods, Annual, Billions of Dollars (EDT@CAPSTOCK)

16. Depreciation: Private Fixed Assets, Annual, Billions of Dollars (KPT@CAPSTOCK)

17. Depreciation: Durable Goods, Annual, Billions of Dollars (KDT@CAPSTOCK)

18. CBOE Crude Oil Volatility Index (OVX), Daily, Index (SPOVX@DAILY)

We also use the following data sources:

1. FRED-MD, Monthly Databases for Macroeconomic Research. The data is available at
https://research.stlouisfed.org/econ/mccracken/fred-databases

(McCracken, 2024). Under Monthly Data, we use the April 2024 vintage.

2. Fama-French, Database. The data is available at https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html

(Fama and French, 2024).

3. WRDS, Stock Market Indexes. The data is available at https://wrds-www.wharton.
upenn.edu (Wharton Research Data Services, 2024).

4. Geopolitical Risk Index, Historical series (GPRH). The data is available at https://
www.matteoiacoviello.com/gpr.htm (Caldara and Iacoviello, 2024).

5. Global Oil Inventories Monthly, Millions of Barrels per Day (Invt) from Kilian (2022).

We apply the following data transformations:

1. Per Capita Real Output: Yt = 109 ×GDPt/((DGDPt/100)(1000× LN16Nt)).

2. Per Capita Real Consumption: Ct = 109(CNt+CSt)/((DGDPt/100)(1000×LN16Nt)).

3. Per Capita Real Investment: It = 109(Ft + CDt)/((DGDPt/100)(1000× LN16Nt)).
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4. Depreciation Rate: δ = (1 + 1
T/4

∑T/4
t=1(KPTt +KDTt)/(EPTt−1 + EDTt−1))

1/4 − 1.

5. Capital Services Share: ξ = 1− 1
T

∑T
t=1 LXEBL/100.

6. Real Price of Oil: pot = CUSIQABFt/(DGDPt/100).

7. Expenditure Share of Oil: ZUSPATCVt/GDPYt.

8. Oil Consumption: ot = Days per Month × AWOACAUFt/1000− (INVt − INVt−1).

9. Inventory-Oil Consumption Share: INVt/
∑t

j=t−2 ot for t = 3, 6, . . . , 3T .

10. CPI Inflation Rate: πcpi
t = 100× (PCUNt/PCUNt−1 − 1).

11. Asset Returns: We use two time series from the Fama-French data library:

• Net nominal risk-free rate, monthly, percent (RF )

• Net nominal excess market return, monthly, percent (MKTmRF )

Define the market return as

RMt ≡ MKTmRFt +RFt.

The gross quarterly analogues of the Fama-French series and CPI inflation are given by

RFQ
t ≡

t∏
j=t−2

(1 +RFj/100), RMQ
t ≡

t∏
j=t−2

(1 +RMj/100), π
Q
t ≡

t∏
j=t−2

(1 + πcpi
j /100)

for t = 3, 6, . . . , 3T , so the quarterly real risk-free rate and equity premium are

rt = 100× (RFQ
t /πQ

t − 1), rext = 100× (RMQ
t /π

Q
t − 1)− rt.

All empirical targets are computed using quarterly data, except the expenditure share of oil which
is based on annual data.

C SOLUTION METHOD

The equilibrium system of the DSGE model is summarized by E[g(xt+1,xt, εt+1)|zt, ϑ] = 0,
where g is a vector-valued function, xt is the vector of model variables, εt is the vector of shocks,
zt = [ln et, kt, st, v

g
t , v

e
t , ln p

g
t , ln p

e
t , ϵt−1] is the vector of states, and ϑ is the vector of parameters.

We discretize the continuous shocks, {εg, εe, εgp, εep} using the Markov chain in Rouwenhorst
(1995). The bounds of the six continuous state variables are chosen so there is minimal extrapola-
tion over 99% of the ergodic distribution. Specifically, the bounds on capital, kt, range from −20%

to +10%, the bounds on storage, st, range from −50% to +70%, and the bounds on the error
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correction term, ϵt−1, range from −35% to +15% of the deterministic steady state. The bounds
on transitory component of oil production range from −15% to +10% of the deterministic steady
state in levels, and are then converted to logs. The bounds on the probability of a growth disaster,
pgt , are set to [0.00001, 0.8], while the bounds on the probability of an oil disaster, pet , are set to
[0.00001, 1]. Both are converted to logs, consistent with the specifications of the processes. We
discretize ln et, kt, and ϵt−1 into 6 points, st into 7 points, and ln pgt and ln pgt into 13 points. All of
the grids for the continuous states are evenly-spaced. There are also binary indicators for whether
the economy is in a growth disaster or an oil disaster, forming 4 distinct outcomes. The product of
the points in each dimension, D, is the total number of nodes in the state space (D = 1,022,112).

The realization of zt on node d is denoted zt(d). The Rouwenhorst method provides inte-
gration nodes for the continuous shocks, [εg,t+1(m), εe,t+1(m), εgp,t+1(m), εep,t+1(m)]. The transi-
tion matrices for the discrete states determine the integration weights for their future realizations,
[vgt+1(m), vet+1(m)]. The weight for a particular realization of the continuous and discrete shocks is
ϕ(m), where m ∈ {1, . . . ,M} and M is the product of the number of realizations of each shock.
The oil production shock and the two probability shocks have the same number of realizations as
the corresponding state variable. The growth shock, εg, has 6 states. Each discrete state has two
possible outcomes. In total, there are M = 24,336 possible shock realizations.

The vector of policy functions and the realization on node d are denoted by pf t and pf t(d),
where pf t ≡ [n(zt), o(zt), J(zt), p

e(zt), r(zt)]. The following steps outline our algorithm:

1. Use the Sims (2002) gensys algorithm to solve the log-linear model without any disasters
or time-varying probabilities. Then map the solution for the policy functions to the dis-
cretized state space, copying the solution on the dimensions that were excluded from the
linear model. This provides an initial conjecture, pf0, for the nonlinear algorithm.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’ csolve to find
the pf t(d) that satisfies E[g(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of st+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 ϕ(m)g(xt+1(m),xt(d), εt+1(m)).

When csolve has converged, set pf j(d) = pf t(d).

3. Repeat step 2 until maxdistj < 10−4, where maxdistj ≡ max{|(pf j − pf j−1)/pf j−1|}.
When that criterion is satisfied, the algorithm has converged to an approximate solution.
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D DETRENDED EQUILIBRIUM

We detrend the model by defining x̃t = xt/at. The equilibrium system is given by

w̃t = (1− ξ)ỹt/nt

pot = ξα
(õt/o0)

1−1/σ

(1−α)(k̃t/k0)1−1/σ+α(õt/o0)
1−1/σ

ỹt
õt

Et[xt+1r
i
t+1] = 1

rit = e−ζvt 1
pkt−1

(rkt + (1− δ + a1 + a2
ν−1

(ı̃t/k̃t)
1−1/ν)pkt )

pkt = 1
a2

(ı̃t/k̃t)
1/ν

rkt = ξ(1− α)
(k̃t/k0)

1−1/σ

(1−α)(k̃t/k0)1−1/σ+α(õt/o0)
1−1/σ

ỹt
k̃t

Et[xt+1r
s
t+1] = 1

rst = 1
pot−1

(1− ω + πs̃−3
t )pot

χw̃tℓt = (1− χ)c̃t

xt = (β/gγt )(ũt/ũt−1)
1−1/ψ(c̃t−1/c̃t)(J̃t/z̃t−1)

1/ψ−γ

ũt = c̃χt ℓ
1−χ
t

z̃t = (Et[(gt+1Jt+1)
1−γ ])1/(1−γ)

J̃t =
(
(1− β)ũ

1−1/ψ
t + βz̃

1−1/ψ
t

) 1
1−1/ψ

ỹt = y0n
1−ξ
t

(
(1− α)(k̃t/k0)

1−1/σ + α(õt/o0)
1−1/σ

)ξ/(1−1/σ)

gt+1k̃t+1 = e
−ζgvgt+1 (1− δ + a1 + a2

1−1/ν
(ı̃t/k̃t)

1−1/ν)k̃t

gt+1s̃t+1 = (1− ω)s̃t + õst − õt − π
2
s̃−2
t

õst = et/ϵt

c̃t + ı̃t = ỹt

nt + ℓt = 1

go,t = κ0g
κ1
t ϵκ2

t−1

ϵt = (gt/go,t)ϵt−1

ln gt = ln ḡ + σgεg,t − ζg(v
g
t − π̄g1)

ln et = (1− ρe) ln ē+ ρe ln et−1 + σeεe,t − ζe(v
e
t − π̄e1)

Pr(vgt+1 = 1|vgt = 1) = q̄g , P r(vgt+1 = 1|vgt = 0) = pgt

Pr(vet+1 = 1|vet = 1) = q̄e, P r(vgt+1 = 1|vgt = 0) = pet

ln pgt = (1− ρgp) ln p̄g + ρgp ln pgt−1 + σgpε
g
p,t

ln pet = (1− ρep) ln p̄e + ρep ln pet−1 + σepε
e
p,t

Et[xt+1rt] = 1

1 = Et[xt+1r
e
t+1]

ret = gt(p̃
e
t + d̃et )/p̃

e
t−1

d̃et = ξỹt − ı̃t − ϑf (Et−1k̃t − 1
rt
Et[gt+1k̃t+1])− ϑs(Et−1s̃t − 1

rt
Et[gt+1s̃t+1])

E RESPONSES TO DISASTER REALIZATIONS

Figures 1 and 2 show how the economy responds to an oil production and growth disaster realiza-
tion, respectively. The disaster occurs in the initial period and then follows its expected path.
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Figure 1: Responses to an oil production disaster realization
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Figure 2: Responses to a growth disaster realization
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F RESPONSES TO POSITIVE AND NEGATIVE DISASTER PROBABILITY SHOCKS

Figure 3 compares the responses to positive and negative disaster probability shocks. The simu-
lations are initialized at a 10% disaster probability. The corresponding state vector is equal to the
average of periods in the ergodic distribution that are within 1 percentage point of the initial dis-
aster probability. We then consider ±5 percentage point shocks. Notably, a decrease in the prob-
ability of an oil production disaster reduces oil price uncertainty, in contrast with a VAR model
with GARCH errors that assumes both positive and negative oil price shocks increase oil price
uncertainty. A similar result holds for a growth disaster probability shock, as shown in Figure 4.
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Figure 3: Responses to positive and negative oil production disaster probability shocks
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Figure 4: Responses to positive and negative growth disaster probability shocks
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