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KILIAN, PLANTE & RICHTER: RESPONSES TO UNCERTAINTY SHOCKS

A DSGE MODEL DERIVATIONS

Representative Household The representative household solves the Bellman equation

J(bt) = max
ct,nt,bt+1

[
(1− β)u

1−1/ψ
t + β(Et[J(bt+1)

1−γ])
1−1/ψ
1−γ

] 1
1−1/ψ

(1)

subject to

ut = cηt (1− nt)
1−η, (2)

ct + bt+1/rt = wtnt + bt + dt. (3)

The first order conditions are given by

ct : η(1− β)J
1/ψ
t u

1−1/ψ
t /ct = λt,

nt : (1− η)(1− β)J
1/ψ
t u

1−1/ψ
t /(1− nt) = λtwt,

βJ
1/ψ
t (Et[J

1−γ
t+1 ])

γ−1/ψ
1−γ Et[J

−γ
t+1Jb,t+1] = λt/rt.

The envelope condition implies

Jb,t = λt.

Combining these results implies

wt = (1− η)ct/(η(1− nt)), (4)

1 = Et[xt+1rt], (5)

xt+1 = β(ct/ct+1)(ut+1/ut)
1−1/ψ(Jt+1/zt)

1/ψ−γ. (6)

Representative Firm The representative firm solves the Bellman equation

V (kt) = max
nt,kt+1,it

dt + Et[xt+1V (kt+1)]

subject to

dt = yt − wtnt − it,

yt = atk
α
t n

1−α
t , (7)

kt+1 = Θt+1((1− δ)kt + it). (8)

Substituting in all constraints yields

V (kt) = max
nt,it

atk
α
t n

1−α
t − wtnt − it + Et[xt+1V (Θt+1((1− δ)kt + it))].
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The first order conditions are given by

nt : wt = (1− α)atk
α
t n

−α
t ,

it : 1 = Et[xt+1Vk,t+1Θt+1].

The envelope condition implies

kt : Vk,t = αatk
α−1
t n1−α

t + Et[xt+1Vk,t+1Θt+1(1− δ)],

= αatk
α−1
t n1−α

t + 1− δ,

after imposing Et[xt+1Vk,t+1Θt+1] = 1. Combining this result with the first order condition for
investment yields

1 = Et[xt+1Θt+1(r
k
t+1 + 1− δ)], (9)

rkt = αyt/kt. (10)

Competitive Equilibrium The aggregate resource constraint is given by

ct + it = yt. (11)

The equilibrium consists of infinite sequences of quantities {kt, ct, nt, yt, it, ut, Jt, zt}∞t=0, prices
{wt, rkt }∞t=0, and exogenous variables {Θt, at, et, σa,t, σe,t}∞t=0 that satisfy (1)-(11) and the exoge-
nous processes, given an state of the economy {k−1, a−1, σa,−1, e−1, σe,−1} and the sequences of
shocks {εa,t, εav,t, εe,t, εev,t}∞t=0.

B SOLUTION METHOD

The equilibrium system of the DSGE model is summarized by E[g(xt+1,xt, εt+1)|zt, ϑ] = 0,
where g is a vector-valued function, xt is the vector of model variables, εt is the vector of shocks,
zt is the vector of states, and ϑ is the vector of parameters. We discretize the level shocks and
volatility processes using the Markov chain in Rouwenhorst (1995), which Kopecky and Suen
(2010) show outperforms other methods for approximating autoregressive processes. In our model
with a level shock to disaster risk and level and volatility shocks to technology, the bounds on at are
set to ±5% of the deterministic steady state, while kt ranges from −60% to 10% of the determinis-
tic steady state to account for disasters. These bounds ensure that simulations contain at least 99%
of the ergodic distribution. We specify 9 states for et, σa,t, and εa,t+1, and discretize at and kt into
9 and 11 evenly-spaced points, respectively. The product of the points in each dimension, D, is the
total number of nodes in the state space (D = 8,019). The realization of zt on node d is denoted
zt(d). The Rouwenhorst method provides integration nodes, [εe,t+1(m), σa,t+1(m), εa,t+1(m)],
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with weights, ϕ(m), for m ∈ {1, . . . ,M}, where M = 729 given that there are three shocks,
each with 9 states. The setup in the 2-shock models is analogous.

The vector of policy functions and the realization on node d are denoted by pf t and pf t(d),
where pf t ≡ [n(zt), J(zt)]. The following steps outline our policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the log-linear model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’ csolve to find
the pf t(d) that satisfies E[g(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of st+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 ϕ(m)g(xt+1(m),xt(d), εt+1(m)).

When csolve has converged, set pf j(d) = pf t(d).

3. Repeat step 2 until maxdistj < 10−6, where maxdistj ≡ max{|(pf j − pf j−1)/pf j−1|}.
When that criterion is satisfied, the algorithm has converged to an approximate solution.
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