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ABSTRACT

A common practice in empirical macroeconomics is to examine alternative recursive or-

derings of the variables in structural vector autoregressive (VAR) models. When the implied

impulse responses look similar, the estimates are considered trustworthy. When they do not,

the estimates are used to bound the true response without directly addressing the identification

challenge. A leading example of this practice is the literature on the effects of uncertainty

shocks on economic activity. We prove by counterexample and show by simulation that this

practice is invalid, whether the data generating process is a structural VAR model or a dy-

namic stochastic general equilibrium model. Simulation evidence suggests that the underlying

identification challenge can be addressed using an instrumental variables estimator.
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1 INTRODUCTION

Structural vector autoregressive (VAR) analysis continues to be widely applied in empirical macro-

economics. In recent decades there has been a proliferation of research on new approaches to the

identification of structural VAR models; yet, many applied researchers continue to use much sim-

pler identification strategies that impose a recursive structure on the structural impact multiplier

matrix. This allows this matrix to be estimated by applying a lower triangular Cholesky decompo-

sition to the reduced-form VAR residual covariance matrix with the diagonal elements normalized

to be positive. Sometimes this approach can be justified on economic grounds, but more often it

creates mutually uncorrelated shocks that have no obvious structural interpretation.

The fact that recursive VAR models in general will not recover the population responses when

the true model is not recursive has been discussed at length in the econometrics literature (see, e.g.,

Braun and Mittnik, 1993; Cooley and Leroy, 1985; Kilian and Lütkepohl, 2017; Leamer, 1985).

However, this fact has done little to diminish the appeal of ad hoc recursive orderings in applied

work, in particular when relating one macroeconomic model variable to another without reference

to an explicit structural model. Even having acknowledged the well-known limitations of recursive

models, many applied users believe that ad hoc recursive orderings may be used to learn about the

quantitative importance of causal effects in the data. A leading example is the literature on the

effects of uncertainty shocks on economic activity. For example, Altig et al. (2020) concedes

that “drawing causal inferences from VARs is challenging—in part because policy, and policy

uncertainty, can respond to current and anticipated future economic conditions”, but argues that

“despite the challenges, [recursively identified] VARs are useful for ... gauging whether uncertainty

innovations foreshadow weaker macroeconomic performance conditional on standard macro and

policy variables.” This view is widely shared in the literature.

A common practice even in top economics journals has been to report impulse response esti-

mates based on alternative orderings of the model variables with the uncertainty measure ordered

first or last. Evidence that the responses are robust to alternative orderings is taken as evidence
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that the shock of interest has been identified and the impulse response estimates are trustworthy.

A closely related argument is that alternative recursive orderings may be used to bound the true

impulse response without directly addressing the identification challenge (e.g., Altig et al., 2020;

Bachmann et al., 2013; Baker et al., 2016; Basu and Bundick, 2017; Bloom, 2009; Caggiano et al.,

2014; Fernández-Villaverde et al., 2015; Leduc and Liu, 2016).

While both of these approaches have been questioned, the validity of these popular arguments

has never been formally examined. For example, regarding the first practice, Bernanke (1986)

pointed out that the usual practice of trying alternative orderings of the variables still restricts at-

tention to recursive models which (roughly speaking) occupy a set of measure zero within the set

of models described by the same reduced-form VAR model. Regarding the second practice, Wat-

son (1994) remarked in a footnote that there is no basis for applied researchers estimating a variety

of recursive models in the belief (or hope) that the set of recursive models somehow “brackets”

the truth. Neither these warnings nor similar statements elsewhere in the VAR literature, how-

ever, have prevented these approaches from being routinely applied by leading practitioners and

being published in leading journals in recent years. Clearly, these warnings have been ineffective,

perhaps because they were not accompanied by formal analysis. In this paper, we prove by coun-

terexample that both arguments are incorrect, calling into question many empirical results reported

in the literature. Our examples are designed to persuade researchers of the dangers of relying on

ad hoc recursive orderings and to dispel common misconceptions found in applied work.

What is new about our analysis is not the insight that recursively identified VAR models are

questionable if their identifying restrictions are not supported by extraneous evidence. Rather we

show analytically based on structural VAR examples and by simulation using data generated from

dynamic stochastic general equilibrium (DSGE) models that the robustness of impulse responses to

alternative ad hoc recursive orderings does not establish that the true response has been identified.

We also prove that alternative orderings cannot be used to bound the true responses, as commonly

argued in applied work.

We are not alone in expressing skepticism about the validity of recursively identified models of
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uncertainty shocks. Several recent studies have proposed alternative VAR approaches to identify-

ing uncertainty shocks that avoid the use of recursive orderings (e.g., Angelini et al., 2019; Benati,

2023; Berger et al., 2020; Brianti, 2023; Caggiano and Castelnuovo, 2023; Caggiano et al., 2021;

Caldara et al., 2016; Carriero et al., 2021; Furlanetto et al., 2019; Ludvigson et al., 2021; Piffer

and Podstawski, 2018). Ludvigson et al. (2021) also illustrate that recursive impact multiplier ma-

trices are inconsistent with the estimate of their model that does not impose a recursive structure.

However, none of these studies formally show why the use of alternative recursive orderings is

misleading nor do they address the common practice of bounding the responses based on alterna-

tive orderings. Since the bounding approach is based on the premise of a nonrecursive population

model, the emergence of nonrecursive identification strategies has done little to discourage the use

of alternative recursive orderings, especially since there is no consensus in the literature on how

to identify nonrecursive models. Moreover, even authors who published studies based on non-

recursive models have continued to rely on recursive identifications in more recent work, which

suggests that these issues require more formal analysis.

The analysis in our paper remains timely and relevant not only because the empirical findings

of earlier studies based on alternative recursive orderings continue to shape the academic discourse

about the role of uncertainty, but because recursively identified VAR models (or equivalently lo-

cal projection models) have remained a common empirical approach in the growing literature on

uncertainty shocks, notwithstanding their critics. In just the last two years, at least a dozen new

studies have used recursive VAR models to identify uncertainty shocks (e.g., Ahir et al., 2022;

Beraja and Wolf, 2021; Born and Pfeifer, 2021; Cacciatore and Ravenna, 2021; Caldara and Ia-

coviello, 2022; Chen and Tillmann, 2021; Gao et al., 2022; Grimme, 2023; Larsen, 2021; Londono

et al., 2021; Śmiech et al., 2021; Theophilopoulou, 2022).

The remainder of the paper is organized as follows. In Section 2 we examine the common

practice of conducting robustness checks based on alternative recursive orderings. This section

also studies the practice of constructing upper and lower bounds on the effects of uncertainty

shocks based on alternatively ordering the uncertainty variable first and last in the model without
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directly addressing the identification challenge. We analytically demonstrate the invalidity of both

approaches using stylized VAR processes. Our analysis is not subject to reduced-form model

misspecification or estimation error, which facilitates the comparison of alternative models.

Ad hoc recursive VAR orderings fail when real activity and uncertainty are simultaneously de-

termined. The origins of this simultaneity are best illustrated within the context of a fully specified

dynamic economic model. In Section 3, we examine the credibility of recursive VAR models when

the data are generated by calibrated DSGE models of the determination of aggregate uncertainty.

This allows us to quantify the large-sample bias in impulse response estimators from recursively

estimated models in a realistic setting, while controlling for the degree of endogeneity. Not only

are recursive VAR models invalid, regardless of the ordering, when uncertainty is fully endoge-

nous in the data generating process, but the recursive VAR model is also unable to recover the

population response of output to an uncertainty shock when aggregate uncertainty is only partially

endogenous. This is true even in a quasi-recursive setting when 90% of the variation in uncertainty

is exogenous. Thus, our analysis of DSGE models supports and reinforces our earlier conclusion

that recursive VAR models of the effects of uncertainty shocks cannot be trusted and that alter-

native recursive orderings fail to bound the population response in general. We also discuss why

evidence that a VAR model based on a specific recursive ordering can approximately recover pop-

ulation responses from a given DSGE model, as in Basu and Bundick (2017), is not sufficient to

defend the use of that VAR model.

The identification challenge is that measured uncertainty in general responds to both level

and volatility shocks, as do the macroeconomic aggregates. This makes it difficult to distinguish

endogenous and exogenous variation in measured uncertainty for many identification methods,

not only for recursive models. We provide simulation evidence that an instrumental variables (IV)

estimator may overcome these identification challenges, while many other non-recursive estimators

proposed in the literature do not. The concluding remarks are in Section 4.
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2 ROBUSTNESS CHECKS FOR ALTERNATIVE AD HOC RECURSIVE ORDERINGS

There are situations in which a fully recursive model can be economically justified, but such situ-

ations are rare in applied work. More often, researchers rely on a block recursive model structure.

Since the responses of interest are invariant to the identification of the remaining structural shocks,

one may estimate such models without loss of generality based on a Cholesky decomposition,

retaining only the responses to the structural shock of interest. In contrast, in this paper we are

concerned with uses of recursive orderings that lack a compelling economic rationale.1

2.1 THE IDENTIFICATION PROBLEM In general, the response estimates implied by a Cholesky

decomposition will differ depending on the ordering of the variables in the structural VAR model.

This is not surprising since each of these recursive models assumes a different economic struc-

ture. In an n-dimensional VAR process, there are n! alternative Cholesky orderings. Unless the

covariances of the reduced-form residuals are zero, each of these orderings will imply different

impulse response estimates. However, for low enough error correlations the responses will tend to

be similar across alternative orderings.

In a model that is explicitly identified based on economic reasoning, we know a priori that one

of these orderings is correct and the others are not, so the response estimates are unique. This is not

the case when Cholesky decompositions are used in an ad hoc fashion without explicit economic

motivation, as is often the case in applied work. It is the latter situation that this paper addresses.

A classical example is the literature that examines the effect of uncertainty shocks on economic

activity. This question has led to a large literature relying on recursively identified structural VAR

models (e.g., Altig et al., 2020; Bachmann et al., 2013; Baker et al., 2016; Basu and Bundick, 2017;

Bekaert et al., 2013; Bloom, 2009; Caggiano et al., 2014; Caldara and Iacoviello, 2022; Fernández-

Villaverde et al., 2015; Jurado et al., 2015; Leduc and Liu, 2016). The empirical response estimates

in turn have stimulated theoretical work on the transmission of uncertainty shocks.

1It should be noted that the use of recursive VAR models as auxiliary models for indirect inference on the param-
eters of DSGE models does not require the population response to be correctly identified and hence is not subject to
the concerns expressed in this paper.
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Aggregate uncertainty in this literature is typically measured by the volatility of macroeco-

nomic or financial aggregates. As noted by Ludvigson et al. (2021), empirical studies often differ

according to whether aggregate uncertainty is ordered ahead of or after real activity in the VAR

model. It is useful to analyze this situation in a bivariate setting. Allowing for additional variables

ordered in between the first and the last variable does not change the logic of the arguments below.

For example, consider a stylized model of the impact of uncertainty shocks on real GDP growth,

where the reduced-form shocks, ut, are linked to the structural shocks, wt, through the structural

impact multiplier matrix, B−1
0 with elements bij0 = ∂ui,t/∂wj,t, i ∈ {1, 2}, j ∈ {1, 2}.2 There are

two recursive models of this relationship. We can postulate that u∆gdpt

uuncertainty
t

 =

b110 0

b210 b220


 wother

t

wuncertainty
t

 (1)

or, alternatively, that uuncertainty
t

u∆gdpt

 =

b110 0

b210 b220


wuncertainty

t

wother
t

 . (2)

Unlike in properly-identified recursive VAR models, in this setting there is no compelling reason

to prefer one ordering over the other. On the one hand, it has been noted that changes in economic

activity may affect uncertainty about the economy, which suggests ordering uncertainty last. On the

other hand, it seems reasonable to expect uncertainty shocks to affect economic activity within the

current month, which argues for ordering uncertainty first. Neither recursive model is consistent

with both economic arguments, suggesting that at least one, if not both models are misspecified.

Many studies in this literature seek to resolve this concern by reporting impulse response es-

timates based on a recursive model in which a measure of uncertainty is ordered first as well as

estimates based on an alternative recursive model in which this uncertainty measure is ordered

last. If the response estimates are similar across these specifications, this is taken as evidence that

response estimates are robust and hence trustworthy. It is this practice that we discuss next.

2As is standard, E[ut] = E[wt] = 0, Var(ut) = Σ, and Var(wt) is normalized to an identity matrix.
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2.2 ROBUSTNESS TO ALTERNATIVE ORDERINGS DOES NOT MEAN THE TRUE RESPONSE IS

IDENTIFIED In general, a finding that the impulse responses to uncertainty shocks are invariant

to the ordering would not be expected. The responses will be identical only when the reduced-form

error correlation is zero. Even in that case, however, examining alternative recursive orderings is

not sufficient. It is entirely possible and indeed plausible that the underlying population model is a

simultaneous equations model that allows uncertainty to respond endogenously to economic activ-

ity conditional on past data. In fact, the recent literature provides many arguments why uncertainty

is simultaneously determined with economic activity rather than determined recursively.

For some choices of the model parameters, a simultaneous equations model may imply zero

correlation in the reduced-form errors, yet the responses in the population model need not look

anything like the responses from recursively identified models. Uncorrelated reduced-form errors

may arise when the off-diagonal elements of the structural impact multiplier matrix are of different

signs. For example, consider the population model u∆gdpt

uuncertainty
t

 =

 1 0.5

−0.75 1.5


 wother

t

wuncertainty
t

 ,

Σ = B−1
0 (B−1

0 )′ =

1.25 0

0 2.8125

 , chol(Σ) =

1.118 0

0 1.6771

 ,
(3)

which has uncorrelated reduced-form errors. In this model, positive shocks to uncertainty increase

economic growth on impact, consistent with “growth options” theories, whereas positive shocks to

economic activity reduce macroeconomic uncertainty in line with Ludvigson et al. (2021).3

Model 3 is a counterexample to the notion that, when Σ is diagonal, B−1
0 must also be diago-

nal. The population impact response of real GDP growth to a structural uncertainty shock in this

model is 0.5. Imposing a recursive ordering with real GDP growth ordered first implies an impact

response of real GDP growth to the uncertainty shock that is 0. After re-ordering the two variables

such that uncertainty is ordered first, the Cholesky estimate yields the same impact response of 0

3Bloom (2014) provides a survey of the channels through which uncertainty shocks are transmitted.
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to an uncertainty shock. An applied user thus would be tempted to conclude that the robust finding

of a zero response for both orderings means that the population response must be zero, when in

reality the population response is 0.5. In short, the response being robust within the universe of

recursive orderings does not mean it is valid when allowing the true model to be nonrecursive.

A reduced-form error correlation of zero does not require output to respond positively to un-

certainty shocks, but may arise more generally when the off-diagonal elements of B−1
0 are of the

opposite sign. In other words, this example relies on one structural shock driving output and

uncertainty in the same direction and the other shock driving them in the opposite direction. If

the uncertainty shock lowered real GDP and the other shock lowered uncertainty, in contrast, the

reduced-form error correlation would typically be far from zero, and likewise, if both off-diagonal

elements were positive.

What invalidates the robustness argument is not that we somehow know that Model 3 actually

is the data generating process. Rather the concern is that there are nonrecursive data generating

processes with reduced-form error correlations of zero. As a result, even if the response estimates

are robust to alternative recursive orderings, we can never know whether we have identified the

population response. Thus, empirical evidence that alternative recursive orderings generate similar

responses does not lend credence to the identification.

What makes the limiting case of a zero correlation in Model 3 of practical interest is that the

lack of identification in this extreme situation carries over to processes with reduced-form error

correlations that are only close to zero, as may be easily verified. One may object that a data

generating process with nearly uncorrelated reduced-form errors is perhaps not realistic. This point

is not self-evident. Clearly, researchers arguing that their impulse response estimates are similar

under alternative recursive orderings must be dealing with a situation in which the correlations of

the reduced-form errors are at least close to zero or the responses would not be similar, suggesting

that Model 3 is empirically relevant.

While one could envision alternative data generating processes for which these error correla-

tions are nontrivial, the responses implied by such processes would not be invariant to alternative
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recursive orderings, so trying to establish robustness becomes moot. For example, when the un-

certainty shock affects real GDP growth, but the uncertainty variable does not respond to the other

shock contemporaneously, as implicitly assumed in many studies, the reduced-form error correla-

tion will tend to be far from zero, so the ordering of the variables matters and the model would fail

the robustness check. This has led some researchers to provide an alternative justification for the

use of alternative recursive orderings that we turn to next.

2.3 ALTERNATIVE RECURSIVE ORDERINGS DO NOT BOUND THE POPULATION RESPONSE

When the reduced-form error correlations are far from zero, the orthogonalized responses based

on Models 1 and 2 will change substantially with the ordering of the variables, rendering moot the

strategy of establishing robustness to alternative orderings. This fact has not dissuaded practition-

ers from reporting response estimates based on alternative orderings.

A common argument in the literature is that, when VAR studies order uncertainty before output,

the authors are not necessarily claiming that uncertainty is exogenous; Rather they are conditioning

on this hypothesis for illustrative purposes. The belief is that this assumption yields an upper

bound on the effect of uncertainty shocks (see, e.g., Caggiano et al., 2014). Similarly, by ordering

uncertainty last, this argument goes, we give all other shocks a chance to explain the data first and

hence end up with a lower bound on the effect of uncertainty shocks. For example, Gao et al. (2022)

writes that “to bracket the effect of. . . volatility shocks on fundamentals, we consider two different

schemes: in the first approach, we let [the] implied ... variance be the first among ... the variables in

the VAR, while in the second approach, it is ordered last. Thus, ... volatility innovations from the

VAR are treated as most exogenous to the system under the first ordering and as least exogenous

under the second ordering. By comparing the impulse responses under these two specifications,

we can assess the range of possible responses to ... volatility shocks in the data.”

Similarly, Jurado et al. (2015) consider alternative recursive orderings. Their reasoning is that

“as uncertainty is placed last in the VAR, the effects of uncertainty shocks on the other variables in

the system are measured after we have removed all the variation in uncertainty that is attributable to

shocks to the other endogenous variables in the system. That the effects of uncertainty shocks are
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still non-trivial is consistent with the view that uncertainty has important implications for economic

activity.” This suggests that they view the estimates from models that order uncertainty above

the macroeconomic aggregates as an upper bound and the estimate from models with uncertainty

ordered last as the lower bound.

The maintained assumption when bounding the responses is that the population model is nonre-

cursive but unknown. As shown next, it is not possible in general to bound the population response

with alternative orderings. Likewise, forecast error variance decompositions cannot be bounded,

since they are constructed from the impulse responses. For example, consider the population model u∆gdpt

uuncertainty
t

 =

 1 0.5

−0.9 1


 wother

t

wuncertainty
t

 ,

Σ = B−1
0 (B−1

0 )′ =

1.25 −0.4

−0.4 1.81

 , chol(Σ) =

 1.118 0

−0.3578 1.2969

 .
(4)

In this case, the impact response of real GDP growth is 0 compared to the population response of

0.5. Reversing the order of the variables yieldsuuncertainty
t

u∆gdpt

 =

 1 −0.9

0.5 1


wuncertainty

t

wother
t

 ,

Σ = B−1
0 (B−1

0 )′ =

1.81 −0.4

−0.4 1.25

 , chol(Σ) =

 1.3454 0

−0.2973 1.0778

 .
(4′)

The impact response of real GDP growth is now −0.2973. The conventional wisdom would suggest

that the true response must be between −0.2973 and 0, but the population response is 0.5 in this

model, which is of the opposite sign of the range of values bounded by the recursive estimates.4

In fact, a similarly erroneous conclusion would have been reached in Model 3, which would have

suggested that the population response is bounded from above and below by 0 when it is 0.5.

These examples involve reduced-form errors with negative or zero correlations. As an example

4Similarly, the share of the one-step ahead forecast error variance of ∆gdp explained by wuncertainty
t is 0.0707 when

uncertainty is ordered first and 0 when it is ordered last, which does not bound the population value of 0.2.
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of a model with a positive reduced-form error correlation, consider u∆gdpt

uuncertainty
t

 =

 1 0.5

−0.1 1


 wother

t

wuncertainty
t

 ,

Σ = B−1
0 (B−1

0 )′ =

1.25 0.4

0.4 1.01

 , chol(Σ) =

 1.118 0

0.3578 0.9391

 .
(5)

In this case, the impact response of real GDP growth is 0 compared to the population response of

0.5. Reversing the order of the variables implies an impact response of 0.398, implying bounds

that exclude the population response.

The point of these examples is to rigorously demonstrate that there is no reason to expect

any of the recursive estimates to recover the population response when the population model is not

recursive. Nor is there a reason for recursive estimates to bound the population response in general.

This is true whether the reduced-form errors are positively correlated, uncorrelated, or negatively

correlated. It is also true whether alternative recursive orderings produce the same response or not.

2.4 SUFFICIENT CONDITION FOR THE BOUNDING EXERCISE TO WORK A natural question is

how pervasive the failure of the bounding approach is. In this section, we discuss under what con-

ditions bounding fails and when it is expected to work. Recall that the structural impact multiplier

matrix and the associated variance-covariance matrix are given by

B−1
0 =

b110 b120

b210 b220

 , Σ = B−1
0 (B−1

0 )′ =

(b110 )2 + (b120 )2 b110 b
21
0 + b120 b

22
0

b110 b
21
0 + b120 b

22
0 (b210 )2 + (b220 )2

 .
Suppose, without loss of generality, that uncertainty is ordered first in the vector of model variables

so b210 is the true response of GDP growth to an uncertainty shock. A lower triangular Cholesky

decomposition of the variance-covariance matrix implies

Σ =

c1 0

c2 c3


︸ ︷︷ ︸

chol(Σ)

c1 c2

0 c3


︸ ︷︷ ︸
chol(Σ)′

=

 c21 c1c2

c1c2 c22 + c23

 .
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Figure 1: Parameter regions in which alternative orderings bound the population response

Notes: Shaded regions show parameter combinations in the bivariate VAR model for which the
bounding exercise succeeds.
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Therefore, the bounds on the population response of GDP growth to an uncertainty shock from

alternative recursive orderings are given by [0, c2], where

c2 =
b110 b

21
0 + b120 b

22
0√

(b110 )2 + (b120 )2
.

If b210 > 0, then c2 > b210 is sufficient for the population response to be bounded. Similarly, if

b210 < 0, the sufficient condition is that c2 < b210 .

For illustrative purposes, assume that b110 = b220 = 1, as in the earlier examples. Then

c2 =
b210 + b120√
1 + (b120 )2

.

As illustrated in the middle panel of Figure 1, there are large regions of the parameter space where

the bounding condition fails.

It may seem that the bounding condition could be checked before implementing the bounding

approach. This is not the case. The bounding condition is nonlinear in the population parameters

and hence difficult to characterize even in small-dimensional models. It is also impossible to verify

in practice, as it depends on the unknown population parameter values. The problem is not only that

we are unable to estimate these parameters consistently without further identifying assumptions,

but that there would be no need for bounding the responses if we knew the population parameters

with any degree of accuracy. Qualitatively similar results hold when the diagonal elements of B−1
0

differ from unity (see Figure 1). Thus, our earlier counterexamples are by no means atypical. The

sufficiency conditions are even more complicated as the dimension of the VAR model increases.

3 EXAMINING AD HOC RECURSIVE IDENTIFICATION THROUGH DSGE MODELS

The stylized examples discussed in Section 2 are simple enough to facilitate closed-form solutions,

and they are not subject to estimation error or model misspecification. They clearly demonstrate

the problems with relying on ad hoc recursive orderings. In this section, we employ a DSGE model

of the determination of aggregate uncertainty to further examine the conditions under which one

would expect ad hoc recursive VAR models to fail.
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Complementing our analytical results with simulation-based results is crucial for four reasons.

First, it is essential to formally demonstrate that under reasonable model specifications uncertainty

is indeed endogenous, given that it is treated as exogenous in many applications. Second, the

analytical examples are static. While the result that the identification fails extends to dynamic

simultaneous equations models, the extent of the asymptotic bias will depend on the dynamics of

the underlying data generating process. Third, a natural conjecture is that the accuracy of recursive

models with uncertainty ordered first would improve when the degree of endogeneity is small. We

show that the recursive estimator fails even when exogenous uncertainty shocks account for 90%

of the variability of measured uncertainty. Finally, we use the DSGE model to examine the merits

of alternative non-recursive identification approaches when uncertainty is endogenous.

3.1 DSGE MODEL There are many mechanisms that render uncertainty at least partially en-

dogenous, including concavity in decision rules (e.g., Atkinson et al., 2022; Ilut et al., 2018; Straub

and Ulbricht, 2019); ambiguity aversion (e.g., Bianchi et al., 2018; Ilut and Schneider, 2014);

search and matching frictions (Bernstein et al., 2024), information frictions (e.g., Bachmann and

Moscarini, 2012; Benhabib et al., 2016; Fajgelbaum et al., 2017; Saijo, 2017; Straub and Ulbricht,

2023; Van Nieuwerburgh and Veldkamp, 2006); a zero lower bound on the nominal interest rate

(Plante et al., 2018); and portfolio diversification (Decker et al., 2016). For expository purposes,

we use a textbook real business cycle model augmented to include disaster risk (Gourio, 2012;

Shen, 2015) and recursive preferences (Epstein and Zin, 1989). Disaster risk introduces a source of

downside risk, while recursive preferences separate risk aversion from the intertemporal elasticity

of substitution. These features generate endogenous fluctuations in macroeconomic uncertainty.

The representative household solves the Bellman equation

J(bt) = max
ct,nt,bt+1

[
(1− β)u

1−1/ψ
t + β(Et[J(bt+1)

1−γ])
1−1/ψ
1−γ

] 1
1−1/ψ

subject to

ut = cηt (1− nt)
1−η,

ct + bt+1/rt = wtnt + bt + dt,
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where β ∈ (0, 1) is the discount factor, γ ≥ 0 determines risk aversion, ψ ≥ 0 is the intertemporal

elasticity of substitution, ut is the utility function, ct is consumption, nt is labor hours, bt is a risk-

free bond with return rt, wt is the wage rate, and dt are lump-sum dividends from firm ownership.

The term zt ≡ (Et[J
1−γ
t+1 ])

1
1−γ is the risk-adjusted expectation operator. The Frisch labor supply

elasticity, which is used in the calibration of the model, is given by ηλ = 1−n
n

1−(1−1/ψ)η
1/ψ

.

The representative firm solves the Bellman equation

V (kt) = max
nt,it,kt+1

dt + Et[xt+1V (kt+1)]

subject to

dt = yt − wtnt − it,

yt = atk
α
t n

1−α
t ,

kt+1 = Θt+1((1− δ)kt + it),

where xt+1 is the pricing kernel derived from the household’s optimality conditions, yt is output, it

is investment, kt is the capital stock that depreciates at rate δ, and at is technology, which follows

ln at = ρa ln at−1 + σa,t−1εa,t, −1 < ρa < 1, εa,t ∼ N(0, 1),

lnσa,t = (1− ρav) ln σ̄a + ρav lnσa,t−1 + σavεav,t, −1 < ρav < 1, εav,t ∼ N(0, 1).

Following Gourio (2012) and Shen (2015), Θt is a capital quality shock that is determined by

Θt = I(et ≥ e∗) + θI(et < e∗),

where I(·) is an indicator function that equals one when the condition is true and zero otherwise.

When et ≥ e∗, there is no capital quality loss, so Θt = 1. When et < e∗, a disaster causes capital

quality loss, so Θt = θ < 1. The likelihood of a disaster, et, evolves according to

ln et = ρe ln et−1 + σe,t−1εe,t, −1 < ρe < 1, εe,t ∼ N(0, 1),

lnσe,t = (1− ρev) ln σ̄e + ρev lnσe,t−1 + σevεev,t, −1 < ρev < 1, εev,t ∼ N(0, 1).
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Table 1: DSGE model calibration at quarterly frequency

(a) Fixed parameters

Parameters Value Parameters Value

Discount Factor (β) 0.995 Size of Disaster (θ) 0.95
Cost Share of Capital (α) 0.333 Disaster Risk Threshold (e∗) 0.97
Capital Depreciation Rate (δ) 0.025 Disaster Risk AC (ρe) 0.90
Risk Aversion (γ) 80 Technology Shock Mean (ā) 1
Intertemporal Elasticity (ψ) 1 Technology Shock SD (σ̄a) 0.007
Frisch Labor Supply Elasticity (ηλ) 2 Technology AC (ρa) 0.90

(b) Specification-specific parameters

Model 1 Model 2
(εe, εa, εev) (εe, εa, εav)

Parameters Baseline Quasi-Recursive Baseline Quasi-Recursive

Disaster Risk Shock SD (σ̄e) 0.0065 0.0045 0.0065 0.0065
Disaster Risk Vol. Shock AC (ρev) 0.90 0.90 − −
Disaster Risk Vol. Shock SD (σev) 0.175 0.365 − −
Technology Vol. Shock AC (ρav) − − 0.90 0.90
Technology Vol. Shock SD (σav) − − 0.0275 0.08

The online appendix derives the first-order conditions and defines the competitive equilibrium.

We follow Plante et al. (2018) and Bernstein et al. (2024) and define macroeconomic uncer-

tainty as the conditional volatility of log output growth, which is given by

Ut =
√
Et[(ln(yt+1/yt)− Et[ln(yt+1/yt)])2].

This definition is equivalent to the uncertainty surrounding the level of log output because yt is

known at time t and cancels from the definition of Ut. Uncertainty can endogenously fluctuate due

to the propagation of the level shocks and exogenously fluctuate due to the volatility shocks.

Table 1 summarizes the parameter values. All of the deep parameters are set to common values

in the literature. We normalize the disaster risk threshold, e∗, to 0.97. The size of the disaster, θ, is

set to 0.95, so 5% of the capital stock is lost when the disaster state occurs. We set the persistence

and standard deviation of technology to match the autocorrelation of utilization-adjusted total fac-
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tor productivity in the data.5 We consider two alternative specifications of the DSGE model. Both

include the disaster risk and technology levels shocks, but one includes a volatility shock to disas-

ter risk (Model 1) while the other include a volatility shock to technology (Model 2). Within each

model, we consider two specifications: in the baseline setting the direct effect of the uncertainty

shock explains 50% of the variation in uncertainty, whereas in the quasi-recursive setting that per-

centage increases to 90%.6 We set the shock standard deviations to achieve these targets, while

matching the standard deviations of detrended output as closely as possible.

We solve the nonlinear model using the policy function iteration algorithm described in Richter

et al. (2014), based on the theoretical work in Coleman (1991). Conditional on satisfying the equi-

librium system, the algorithm minimizes the Euler equation errors on each node in the state space

and computes the maximum change in the policy functions. It then iterates until the maximum

change is below a specified tolerance. The online appendix describes the method in more detail.

3.2 SIMULATION RESULTS UNDER RECURSIVE ORDERINGS One of the assumptions in both

recursive and nonrecursive VAR models of the transmission of uncertainty shocks is that there ex-

ists a second-moment (or volatility) shock in the underlying data generating process. However, one

possible scenario is that uncertainty is fully endogenous in the data generating process, in which

case fluctuations in uncertainty are entirely explained by the first moment shocks. In this case, re-

cursive VAR models are invalid regardless of the ordering, because the uncertainty shock the VAR

model seeks to identify does not exist. This concern also applies to VAR models based on nonstan-

dard identification approaches in which uncertainty is allowed to be determined simultaneously

with real activity (e.g., Carriero et al., 2021; Ludvigson et al., 2021).

Next suppose that there exists an exogenous uncertainty shock in the data generating process,

along with level shocks driving uncertainty, as would be expected in practice. For each model

5We use the Hamilton (2018) filter with 4 lags and a delay of 8 quarters to detrend the data. Hodrick (2020) shows
that this method is more accurate than a Hodrick and Prescott (1997) filter when log series are difference stationary.

6We use a total variance decomposition, based on the law of total variance, that accounts for both nonlinearities
in the model and multiplicative interactions between level and volatility shocks. The decomposition distinguishes
between the direct and indirect contributions of each shock to the variance of a particular variable in the model. See
Bernstein et al. (2024) for additional details on how the decomposition works, including examples.
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specification, we generate time series of log-level data of length T = 1,000,000. For such large T ,

this approach provides a close approximation to the asymptotic limit of the VAR impulse response

functions. Using the simulated data, we estimate a VAR(4) model with intercept, where yt =

(yt, it,Ut)′, since there are three structural shocks in the DSGE model. Given our focus, output and

uncertainty are crucial to include in the VAR model. We choose investment as the third variable

since it is an important driver of business cycles, but our results are robust to alternative choices.

Figure 2a plots the responses of output to a 1 standard deviation positive uncertainty shock in

the baseline calibration under alternative recursive orderings. In Model 1, the population response

indicates that an uncertainty shock causes a 31 basis point drop in output on impact. The impact re-

sponse in the recursive VAR is over-estimated when uncertainty is ordered first but under-estimated

when uncertainty is ordered last. The reason is that the VAR shocks are linear combinations of the

level and volatility shocks in the DSGE model.

One might conclude from this example that the responses from the two recursive VARs may

still be used to bound the impact of uncertainty on output, but this result is not guaranteed. In

Model 2, the population response shows that a positive uncertainty shock causes a small increase

in output. However, the responses from both recursive VARs indicate a decline in output. The

decline is particularly large when uncertainty is ordered first, in which case output falls on impact

by 46 basis points. These results show that recursively identified VARs based on simulated data

from calibrated macro models with time-varying endogenous uncertainty do not robustly bound

the effects of uncertainty shocks, mirroring the conclusion in Section 2.

This raises the question of whether a recursive model with uncertainty ordered first would be

more reliable when the degree of endogeneity is small. We do not consider the limiting case of

the exogenous uncertainty shock explaining 100% of the variability of uncertainty. In general,

level shocks in a nonlinear DSGE model will generate some time-varying endogenous uncertainty.

Thus, achieving 100% exogeneity requires the level shocks in the DSGE model to be turned off. In

that case, the DSGE model described in Section 3.1 no longer has a structural VAR representation,

because there is only one structural shock in the model, so estimating a VAR model would not
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Figure 2: Output responses to a 1 standard deviation positive uncertainty shock

(a) Baseline Calibration: 50% of uncertainty variation exogenous
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(b) Quasi-Recursive Calibration: 90% of uncertainty variation exogenous
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make econometric sense. However, we can make the degree of that endogeneity small. Figure 2b

shows the impulse response functions in the quasi-recursive case when 90% of the variability in

uncertainty is exogenous. Regardless of the choice of model, the recursive estimate does not come

close to the population response. This example illustrates that the recursive estimator remains a

poor approximation, even when the exogenous uncertainty shock plays a dominant role in driving
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aggregate uncertainty.7

The DSGE models our examples are based on focus on macroeconomic uncertainty. It may

seem that the point we are making would be less relevant when focusing on the effects of financial

uncertainty (e.g., Carriero and Volpicella, 2024; Ludvigson et al., 2021). It is plausible that finan-

cial uncertainty would be less endogenous than macroeconomic uncertainty, which may suggest

that ordering financial uncertainty first in a recursive model would provide a good approximation.

However, even financial uncertainty is clearly endogenous with respect to the macroeconomy. For

example, banking crises are more likely to occur during economic downturns. We could have

specified a DSGE model with financial uncertainty to make this point. Given that we have already

shown that the recursive model with uncertainty ordered first remains inaccurate, even when macro

uncertainty is largely exogenous, one would expect similar results for financial uncertainty.8

3.3 ALTERNATIVES TO RECURSIVE ORDERINGS Our analysis highlights the importance of

employing nonrecursive models of the transmission of uncertainty shocks that are consistent with

a broad class of alternative data generating processes, including processes that allow uncertainty

to be at least partially endogenous with respect to the macroeconomy. Examples of this strategy

include Angelini et al. (2019), Benati (2023), Berger et al. (2020), Brianti (2023), Caggiano et al.

(2021), Caggiano and Castelnuovo (2023), Caldara et al. (2016), Carriero et al. (2021), Furlanetto

et al. (2019), Ludvigson et al. (2021), and Piffer and Podstawski (2018).

Some of these nonrecursive models have their own limitations, however. For example, as noted

by Caggiano et al. (2021), it is difficult to identify uncertainty shocks based on sign restrictions

on the impulse responses, since uncertainty and financial shocks often have the same qualitative

effects on prices and quantities. Likewise, the penalty function method used in Caldara et al. (2016)

to identify the effects of uncertainty shocks is problematic. As shown in Arias et al. (2018), this

7It should be noted that a nonlinear DSGE model does not in general have a linear VAR representation. Thus, even
if the identification problem could be resolved, one would expect the structural VAR shocks to be contaminated by
reduced-form model approximation error. This fact does not explain the failure of the recursive models in Figure 2.
As shown in Section 3.3, the reduced-form approximation error must be small, because an alternative non-recursive
estimator based on a linear reduced-form VAR model comes close to recovering the population responses.

8In related work, Berger et al. (2020) show that financial uncertainty, as measured by the VIX, is affected by both
level and volatility shocks, invalidating any attempt to identify the uncertainty shock using a recursive ordering.
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approach tends to imply unintended sign restrictions on the impulse responses not supported by

extraneous evidence.

The performance of other nonrecursive identification aproaches, such as max share estimators

and IV estimators, is less understood. Our goal in this section is to examine the extent to which

these approaches improve upon ad hoc recursive orderings when uncertainty is partially endoge-

nous with respect to the macroeconomy. We provide evidence that max share estimators are not

suitable in these settings, but IV estimators are a promising alternative.

Max share estimators One alternative to recursive models of uncertainty shocks has been the use

of max share estimators (e.g., Carriero and Volpicella, 2024).9 Discussing this approach requires

some additional notation for the VAR model. As before, we define the structural impact multiplier

matrix asB−1
0 withB−1

0 (B−1
0 )′ = Σ. Let P denote the lower triangular Cholesky decomposition of

Σ with the diagonal elements normalized to be positive, and let Q be a K ×K orthogonal matrix.

Since Q′Q = QQ′ = IK and hence (PQ)(PQ)′ = PP ′ = Σ, we can express the set of possible

solutions for B−1
0 as PQ. Identification involves pinning down some or all columns of Q.

Let the reduced-form moving average representation of the VAR model be given by yt =

Φ(L)ut, where Φ(L) = IK +Φ1L+Φ2L
2 + · · · , IK is a K-dimensional identity matrix, and L is

a lag operator. Then the h-step ahead forecast error is given by

yt+h − Et−1yt+h =
h∑
τ=0

ΦτPQwt+h−τ ,

where Φτ is the reduced-form matrix for the moving average coefficients, which may be con-

structed following Kilian and Lütkepohl (2017) with Φ0 = IK . As a result, the share of the

forecast error variance of variable i that is attributed to shock j at horizon h is given by

Ωi,j(h) =

∑h
τ=0Φi,τPγjγ

′
jP

′Φ′
i,τ∑h

τ=0Φi,τΣΦ′
i,τ

,

where Φi,τ is the ith row of the lag polynomial at lag τ and γj is the jth column of Q. A unique

9Max share estimators were popularized by Uhlig (2003, 2004), Barsky and Sims (2011), and Francis et al. (2014),
and have been applied in a variety of settings.
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estimate of the impact effect of structural shock j may be obtained by choosing the values of γj

to maximize Ωi,j(h). Assume without loss of generality that uncertainty is ordered first, output

second, and some other variable third. Then the first column of the Q matrix, denoted by γ1, is

associated with the identified “uncertainty” shock and the value of γ1 is determined by

γ1 = argmax Ω1,1(h), Ω1,1(h) ≡
∑h

τ=0Φ1,τPγ1γ
′
1P

′Φ′
1,τ∑h

τ=0Φ1,τΣΦ′
1,τ

. (6)

The standard max share estimator, defined in (6), only identifies one shock. Carriero and Volpi-

cella (2024) generalize the max share approach by introducing an estimator that can simultaneously

identify up to K structural shocks. Their objective function is given by

Q∗
1:K = argmax

K∑
i=1

Ωi,i(hi), Ωi,i(hi) ≡
∑hi

τ=0 Φi,τPγiγ
′
iP

′Φ′
i,τ∑hi

τ=0Φi,τΣΦ′
i,τ

, (7)

which is subject to a series of inequality constraints,

Ωi,i(hi) ≥ Ωj,i(hi), j = 1, . . . , K, ∀i ̸= j,

and the constraint that QQ′ = I . In other words, each shock i is identified so that its contribution

to the variance of variable i is greater than its contribution to the variance of each of the other K

variables in the VAR model. For example, the uncertainty shock must explain a greater share of

the variance of uncertainty than it does for the variance of the other variables.

To operationalize these estimators, we need to select target horizons. For the standard max

share estimator, we target uncertainty and set h = 0. For the generalized max share estimator,

we follow Carriero and Volpicella (2024) and set hi = 0 for each shock. In both cases, we use

investment as the third variable in the VAR, as in the recursive model, but our qualitative results

are robust to alternative choices.

Table 2 shows that the standard max share estimator is no more accurate than the recursive

model whether uncertainty is ordered first or last. Intuitively, this estimator is bound to fail when

uncertainty is endogenous because the identified shock is contaminated with level shocks. The

generalized max share estimator of Carriero and Volpicella (2024) is more accurate than the stan-
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Table 2: RMSE of the response of output to an uncertainty shock for alternative estimators

Model 1 Model 2
(εe, εa, εev) (εe, εa, εav)

VAR Estimator Baseline Quasi-Recursive Baseline Quasi-Recursive

Cholesky: U First 7.1 5.0 8.7 6.2
Cholesky: U Last 4.6 − 2.5 −
Standard Max Share 7.1 5.0 8.7 6.2
Generalized Max Share 0.7 2.4 5.1 3.6
Internal Instrument 0.7 2.1 0.1 0.1

Notes: VAR(4) with T = 1,000,000. RMSE is a sum over 40 quarters.

dard max share estimator, but not necessarily more accurate than the recursive estimators. The

problem is again that in our population model, as in all models of endogenous uncertainty, the

level shocks are important contributors to the variability of uncertainty. As a result, there is no

single shock driving uncertainty, causing the procedure to conflate uncertainty and level shocks.

We also show the performance of the max share estimators in the quasi-recursive case. We

continue to find that the standard max share estimator is no more accurate than the recursive esti-

mator. The performance of the generalized max share estimator is case specific, with a higher root

mean squared error (RMSE) than in the baseline calibration for Model 1, but a lower RMSE for

Model 2. Overall, our results suggest that max share estimators do not work well in general.

Instrumental variable methods An alternative is to use instruments to identify uncertainty

shocks, as pioneered in Carriero et al. (2015). A natural baseline is to treat the exogenous un-

certainty in the DSGE model (lnσe,t in Model 1 and lnσa,t in Model 2) as an instrument for the

observed uncertainty (Ut). If the IV strategy does not work in this setting, it will not work more

generally. After showing that this IV approach accommodates the endogeneity of observed uncer-

tainty, we then contaminate this instrument with varying degrees of additive Gaussian measurement

error and show that similar results hold more generally.

To implement this estimator, we augment the original VAR model with the instrumental vari-

able, resulting in a block recursive VAR model with the instrument ordered first, uncertainty sec-

ond, and output last. The IV estimator can be constructed from a Cholesky decomposition. This
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approach is equivalent to using lnσa,t or lnσe,t as an internal instrument. As shown in Plagborg-

Møller and Wolf (2021), the advantage of this strategy is that it yields valid impulse response

estimates even if the shock of interest is non-invertible. In contrast, the proxy VAR approach of

using lnσa,t or lnσe,t as an external instrument is invalid in that case.

The bottom row of Table 2 reports the RMSE of the IV estimator. When there is no measure-

ment error, the IV estimator generates dramatic improvements in accuracy in both models. In the

baseline calibration, the RMSE of the IV estimator is 0.1 and 0.7 compared to 7.1 and 8.7 for

the Cholesky model with uncertainty ordered first and 2.5 and 4.6 for the Cholesky model with

uncertainty ordered last. The IV estimator also generates improvements under the quasi-recursive

calibration, particularly in Model 2.

In practice, uncertainty can only be measured with error. We examine this situation by replacing

the instrument lnσi,t with lnσni,t ≡ lnσi,t + σnϵn,t for i ∈ {a, e}, where ϵn,t ∼ N(0, 1). We

find that the IV estimator continues to be more accurate than the recursive estimators, even when

50% of the variability in the instrument is measurement error. This evidence suggests that the

internal IV estimator is a promising alternative to recursive estimators, when suitable instruments

are available.10

3.4 USING DSGE MODELS TO DEFEND PARTICULAR RECURSIVE ORDERINGS We made

the case that recursive VAR models are unable to recover the population response even asymptot-

ically when uncertainty is partially endogenous. This result does not hold universally, however.

There are alternative DSGE models for which recursively identified VAR models can approxi-

mately recover the population response. For example, Basu and Bundick (2017) show that a VAR

model with uncertainty ordered first can approximately recover the population response in their

DSGE model.11 Bernstein et al. (2024) provide an example in which uncertainty is ordered last.

10An alternative approach would have been to use the innovation to exogenous uncertainty (εe,t or εa,t) as an
instrument rather than the exogenous uncertainty variable. With and without measurement error, using the shock as
an IV also systematically outperforms the recursive model with endogenous uncertainty ordered first or last, but it is
systematically less accurate than the IV estimator based on log levels.

11Typically, generating nontrivial real effects from a volatility shock requires meaningful nonlinearity, breaking the
recursive structure. A counterexample is Basu and Bundick (2017), who adopt a standard New Keynesian model with
uncertainty modeled as a volatility shock to Epstein and Zin (1991) preferences. The variation in uncertainty in their
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It may seem that evidence that a particular recursive ordering yields responses that are similar

to the population responses would be enough to defend the recursive approach. This is not the

case. There is no doubt that it is possible to write down a DSGE model in which uncertainty

shocks are the main driver of the uncertainty variable on impact, allowing recursive models with

the uncertainty measure ordered first to approximately recover the population responses. Likewise,

it is possible to write down a model in which uncertainty is almost entirely endogenous, in which

case a VAR model with uncertainty ordered last may come close to recovering the population

response. This does not mean these specific recursive VAR models are justified when working

with actual data, however, since any DSGE model is merely one among many possible DSGE

models and need not be a good approximation to the actual data generating process.

To make the case for a particular recursive ordering one would have to show not only that

there exists some empirically plausible DSGE model for which the proposed recursive ordering

provides a good approximation, but also that this ordering provides a good approximation for all

other empirically plausible DSGE models. Such a result is unlikely to hold, given the numerous

economically plausible mechanisms that render uncertainty at least partially endogenous.

3.5 RECURSIVE IDENTIFICATION IN OTHER CONTEXTS Our analysis does not imply that there

is no role for recursive models in applied work more generally. There are several settings in which

a specific recursive ordering may be justified, depending on the economic context (see Kilian and

Lütkepohl, 2017). For example, as already illustrated, block recursive models arise naturally when

incorporating exogenous instruments as internal instruments in a VAR model (see Plagborg-Møller

and Wolf, 2021). A common source of such instruments in empirical work has been shifts in market

price expectations around policy shifts (e.g., Gertler and Karadi, 2015; Kilian, 2023).

Block recursive structures also arise when one of the VAR model variables can be shown to be

predetermined with respect to macroeconomic aggregates. For example, Kilian and Vega (2011)

provide empirical evidence based on the responses of daily oil and gasoline prices to U.S. macroe-

model is almost entirely exogenous, which motivates their approach of ordering uncertainty first in a recursive VAR.
However, this result is highly dependent on how the preference shock enters the utility function and is not robust to
small changes in the parameterization or the preference specification (see de Groot et al., 2018).
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conomic news that these prices are predetermined with respect to the macroeconomy in that they

do not respond to macroeconomic news within twenty business days of the news. This supports

the common practice of ordering energy prices first in monthly VAR models of the transmission of

energy price shocks to the macroeconomy.

Similarly, Davis and Kilian (2011) rely on the fact that monthly excise gasoline taxes do not

respond instantaneously to the state of the economy because lawmakers move at a slow pace. This

institutional knowledge helps defend a block recursive VAR model of the link from excise gasoline

taxes to gasoline consumption.

Another common identifying assumption in empirical work is that there is no feedback from

a small open economy to the rest of the world. This market structure has been used, for example,

to motivate treating U.S. interest rates in VAR models as predetermined with respect to macroeco-

nomic aggregates in small open economies such as Canada (e.g., Cushman and Zha, 1997).

In contrast, Inoue et al. (2009) exploit differences in the timing of data releases to motivate

treating inflation expectations in the Survey of Professional Forecasters as predetermined with

respect to macroeconomic data released later in the month. A similar argument is invoked by Sims

(1998) who suggests that monetary policymakers react immediately only to variables that they can

observe without a delay. The latter argument has also been used in the literature on uncertainty

shocks. For example, Leduc and Liu (2016) and Istrefi and Mouabbi (2018) argue that at the

time that household or professional survey expectations about economic outcomes are formed, the

current realizations of the macroeconomic aggregates are unknown, suggesting a natural recursive

identification structure for identifying uncertainty shocks.

There are some concerns with survey-based identification strategies, however. First, most sur-

veys do not elicit responses about agents’ uncertainty about economic outcomes. The way uncer-

tainty is typically measured in these studies is to look at the dispersion of forecasts across agents.

In general, this dispersion does not correspond to the subjective uncertainty of any given agent,

so this approach does not really address the same question as our paper. Second, even if a survey

reported subjective uncertainty, the fact that agents do not observe current macroeconomic data is
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not enough for the identification to work. We also must assume that agents do not have access

to forward-looking information correlated with the eventual macroeconomic outcomes. Examples

include daily commodity prices that could help predict inflation or daily stock prices that could

help predict real output, speeches by Federal Reserve officials foreshadowing the path of interest

rates, or simply the news about a pending financial or banking crisis.

Finally, in some cases, it is possible to appeal to theoretical results to justify a block recursive

ordering. For example, Anderson et al. (2018) show that oil production does not respond to oil

price shocks in the short run. The unresponsiveness of oil production in the short run implicitly

reflects high adjustment costs. This motivates setting the impact response of oil production to oil

demand shocks in a monthly VAR model of the global oil market to zero, resulting in a block re-

cursive VAR structure with global oil production ordered first. This ordering may also be defended

based on conventional estimates of the one-month price elasticity of U.S. oil supply, which are

essentially zero (see Kilian, 2022). In related work, Kilian (2009) exploits this fact together with

the institutional features of the shipping data used in constructing his index of global real economic

activity to derive a fully recursive model of the global oil market (for further discussion see Kilian

and Zhou, 2018).

These examples illustrate that there are VAR applications in which a specific recursive structure

is justified. Adopting such a structure requires an economic justification, however, that obviates the

need to consider alternative recursive models. Thus, the existence of this literature does not detract

from our point that there is no justification for the common practice of assessing the robustness of

response estimates to alternative orderings (or using alternative recursive orderings to bound the

true responses), when no credible justification for a specific recursive ordering is available.

3.6 RELATED APPLICATIONS OF ALTERNATIVE RECURSIVE ORDERINGS While we discussed

alternative recursive orderings in the context of one of the leading applications of recursively iden-

tified models in the literature, our analysis transcends this illustrative example and applies more

generally to other VAR applications as well. The key feature that all these applications have in

common is that the variables of interest are simultaneously determined.
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One example is the literature on modeling the link between bond yields (and, more generally,

financial conditions) and real activity (e.g., Gilchrist et al., 2009). Similar models have been widely

used to inform policy debates. For instance, an influential study by Goldman Sachs uses a Cholesky

decomposition to identify structural shocks to their financial conditions index (see Abecasis, 2023;

Hatzius and Stehn, 2018). The authors note that they “estimate all six possible orderings and av-

erage the results [...] as it is difficult to take a strong view on the ordering of the variables in the

model.” Another example is the relationship between wage inflation and price inflation, which has

recently received much attention from policymakers, as the economy recovered from the COVID-

19 pandemic (e.g., Chin and Lin, 2023; Peneva and Rudd, 2017). A third example is the literature

on semi-structural VAR models of monetary policy. One prominent example of this approach is

Eichenbaum and Evans (1995, p. 981) who report responses based on alternative recursive order-

ings of the policy instrument and macroeconomic aggregates. Similar issues arise when modeling

the link between the policy rate and forward-looking indicators, such as commodity prices or stock

prices (e.g., Hanson, 2004; Sims, 1992). Finally, alternative recursive orderings are also used in

behavioral finance. For example, Cesa-Bianchi and Miranda-Agrippino (2024) explore alternative

recursive orderings between firm earnings forecasts, forecast errors, and forecast revisions. Not

only are all recursive models inappropriate in these contexts, but our analysis highlights that ex-

ploring the sensitivity of the response estimates to alternative orderings is misleading because it

ignores the inherent simultaneity of the data.

4 CONCLUSION

The common practice of reporting estimates from alternative recursive identification schemes and

verifying the robustness of the conclusions is misleading. Robustness within the class of recursive

models does not ensure the validity of the responses when the population model is non-recursive.

Nor is the practice of bounding response estimates based on alternative orderings justified. For

example, there is no support for the belief that recursive VARs are useful for gauging whether

uncertainty innovations foreshadow weaker or stronger macroeconomic performance conditional
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on other variables. Analogous identification issues also arise in empirical analysis based on local

projections. While we focused on the link between real GDP and uncertainty, similar problems

arise more generally when modeling variables that are simultaneously determined, such as the

relationship between wage inflation and price inflation or between financial conditions and real

output. Simulation evidence suggests that the underlying identification challenge can be addressed

using an instrumental variables estimator.
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