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Matrix Transformations

● Informally, a function is a rule that accepts inputs and
produces outputs. For instance, f (x) = x2 is a function
that accepts one number x as its input, and outputs
the square of that number: f (2) = 4. In this section,
we interpret matrices as functions.
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Matrix Transformations

● Hereafter, when there is no ambiguity, we may simply
denote a vector like any variable, i.e., without
accenting it by a right arrow, that is simply v instead
of v⃗ .
● Let A be a matrix with m rows and n columns.

Consider the matrix equation b = Ax (we write it this
way instead of Ax = b to be reminded of the notation
y = f (x)). If we vary x , then b will also vary; in this
way, we think of A as a function with independent
variable x and dependent variable b.
● The independent variable (the input) is x , which is a

vector in Rn.
● The dependent variable (the output) is b, which is a

vector in Rm.
● The set of all possible output vectors are the vectors b

such that Ax = b has some solution;
this is the same as the column space of A
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Matrix Transformations

Example (Projection onto the xy-plane)
Let

A =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
.

Describe the function b = Ax geometrically.
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Matrix Transformations

Solution: In the equation Ax = b, the input vector x and the
output vector b are both in R3. First we multiply A by a vector
to see what it does:

A
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

x
y
0

⎞
⎟
⎠

Multiplication by A simply sets the z-coordinate equal to zero:
it projects vertically onto the xy -plane.
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Matrix Transformations

Example (Reflection)
Let

A = (
−1 0
0 1

) .

Describe the function b = Ax geometrically.
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Matrix Transformations

Solution: In the equation Ax = b, the input vector x and the
output vector b are both in R2. First we multiply A by a vector
to see what it does:

A(
x
y
) = (

−1 0
0 1

)(
x
y
) = (

−x
y
) .

Multiplication by A negates the x-coordinate: it reflects over
the y -axis.
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Matrix Transformations

Example (Dilation)
Let

A = (
1.5 0
0 1.5

) .

Describe the function b = Ax geometrically.
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Matrix Transformations

Solution: In the equation Ax = b, the input vector x and the
output vector b are both in R2. First we multiply A by a vector
to see what it does:

A(
x
y
) = (

1.5 0
0 1.5

)(
x
y
) = (

1.5x
1.5y

) = 1.5(
x
y
) .

Multiplication by A is the same as scalar multiplication by 1.5:
it scales or dilates the plane by a factor of 1.5.
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Matrix Transformations

Example (Identity)
Let

A = (
1 0
0 1

) .

Describe the function b = Ax geometrically.
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Matrix Transformations

Solution: In the equation Ax = b, the input vector x and the
output vector b are both in R2. First we multiply A by a vector
to see what it does:

A(
x
y
) = (

1 0
0 1

)(
x
y
) = (

x
y
) .

Multiplication by A does not change the input vector at all: it
is the identity transformation which does nothing.
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Matrix Transformations

Example (Rotation)
Let

A = (
0 −1
1 0

) .

Describe the function b = Ax geometrically.
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Matrix Transformations

Solution: In the equation Ax = b, the input vector x and the
output vector b are both in R2. First we multiply A by a vector
to see what it does:

A(
x
y
) = (

0 −1
1 0

)(
x
y
) = (

−y
x
) .

We substitute a few test points in order to understand the
geometry of the transformation:
Multiplication by A is counterclockwise rotation by 90○.
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Matrix Transformations

Example (Shear)
Let

A = (
1 1
0 1

) .

Describe the function b = Ax geometrically.
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Matrix Transformations

Solution:In the equation Ax = b, the input vector x and the
output vector b are both in R2. First we multiply A by a vector
to see what it does:

A(
x
y
) = (

1 1
0 1

)(
x
y
) = (

x + y
y
) .

Multiplication by A adds the y -coordinate to the x-coordinate;
this is called a shear in the x-direction.
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Transformations

Definition
A transformation from Rn to Rm is a rule T that assigns to each
vector x in Rn a vector T (x) in Rm.
● Rn is called the domain of T .
● Rm is called the codomain of T .
● For x in Rn, the vector T (x) in Rm is the image of x under
T .
● The set of all images {T (x) ∣ x in Rn} is the range of T .

The notation T ∶ Rn Ð→ Rm means “T is a transformation from Rn

to Rm ”
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Matrix Transformations

● Now we specialize the general notions and vocabulary from
the previous frame to the functions defined by matrices
that we considered in the first frame.

Definition
Let A be an m × n matrix. The matrix transformation associated to
A is the transformation

T ∶ Rn
Ð→ Rm defined by T (x) = Ax .

This is the transformation that takes a vector x in Rn to the vector
Ax in Rm.

● If A has n columns, then it only makes sense to multiply A
by vectors with n entries. This is why the domain of
T (x) = Ax is Rn.
● If A has n rows, then Ax has m entries for any vector x in
Rn; this is why the codomain of T (x) = Ax is Rm.
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Matrix Transformations

The definition of a matrix transformation T tells us how to
evaluate T on any given vector: we multiply the input vector
by a matrix. For instance, let

A = (
1 2 3
4 5 6

)

and let T (x) = Ax be the associated matrix transformation.
Then

T
⎛
⎜
⎝

−1
−2
−3

⎞
⎟
⎠
= A
⎛
⎜
⎝

−1
−2
−3

⎞
⎟
⎠
= (

1 2 3
4 5 6

)
⎛
⎜
⎝

−1
−2
−3

⎞
⎟
⎠
= (
−14
−32

) .
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Matrix Transformations

● Suppose that A has columns v1, v2, . . . , vn. If we multiply A
by a general vector x , we get

Ax =
⎛
⎜
⎝

∣ ∣ ∣

v1 v2 ⋯ vn
∣ ∣ ∣

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎝

x1
x2
⋮

xn

⎞
⎟
⎟
⎟
⎠

= x1v1 + x2v2 +⋯ + xnvn.

This is just a general linear combination of v1, v2, . . . , vn.
Therefore, the outputs of T (x) = Ax are exactly the linear
combinations of the columns of A :

The range of T is the column space of A.
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Matrix Transformations

Let A be an m × n matrix, and let T (x) = Ax be the associated
matrix transformation.
● The domain of T is Rn, where n is the number of columns

of A.
● The codomain of T is Rm, where m is the number of rows

of A.
● The range of T is the column space of A.
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Matrix Transformations

Example
Let

A = (
1 −1 2
−2 2 −4

)

and define T (x) = Ax . The domain of T is R3, and the codomain
is R2. The range of T is the column space; since all three columns
are collinear, the range is a line in R2.
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Matrix Transformations

Example
Let

A =
⎛
⎜
⎝

1 0
0 1
1 0

⎞
⎟
⎠

and define T (x) = Ax . The domain of T is R2, and the codomain
is R3. The range of T is the column space; since A has two
columns which are not collinear, the range is a plane in R3.
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Matrix Transformations

Example (Projection onto the xy-plane)
Let

A =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠

and let T (x) = Ax . What are the domain, the codomain, and the
range of T ?
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Matrix Transformations

Solution: Geometrically, the transformation T projects a vector
directly "down" onto the xy -plane in R3.
The inputs and outputs have three entries, so the domain and
codomain are both R3. The possible outputs all lie on the
xy -plane, and every point on the xy plane is an output of T
(with itself as the input), so the range of T is the xy -plane.

Be careful not to confuse the codomain with the range here.
The range is a plane, but it is a plane in R3, so the codomain
is still R3. The outputs of T all have three entries; the last
entry is simply always zero.
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One-to-one Transformations

Definition (One-to-one transformations)
A transformation T ∶ Rn → Rm is one-to-one if, for every vector b in
Rm, the equation T (x) = b has at most one solution x in Rn.

Remark: Another word for one-to-one is injective.
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One-to-one Transformations

Here are some equivalent ways of saying that T is one-to-one:
● For every vector b in Rm, the equation T (x) = b has zero or

one solution x in Rn.
● Different inputs of T have different outputs.
● If T (u) = T (v) then u = v .

Here are some equivalent ways of saying that T is not
one-to-one:
● There exists some vector b in Rm such that the equation
T (x) = b has more than one solution x in Rn.
● There are two different inputs of T with the same output.
● There exist vectors u, v such that u ≠ v but T (u) = T (v).
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One-to-one Transformations

Theorem (One-to-one matrix transformations)
Let A be an m × n matrix, and let T (x) = Ax be the associated
matrix transformation. The following statements are equivalent:

1 T is one-to-one.
2 For every b in Rm, the equation T (x) = b has at most one

solution.
3 For every b in Rm, the equation Ax = b has a unique solution

or is inconsistent.
4 Ax = 0 has only the trivial solution.
5 The columns of A are linearly independent.
6 A has a pivot in every column.
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One-to-one Transformations

Example
Let A be the matrix

A =
⎛
⎜
⎝

1 0
0 1
1 0

⎞
⎟
⎠

and define T ∶ R2 → R3 by T (x) = Ax . Is T one-to-one?
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One-to-one Transformations

Solution: The reduced row echelon form of A is

⎛
⎜
⎝

1 0
0 1
0 0

⎞
⎟
⎠
.

Hence A has a pivot in every column, so T is one-to-one.
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One-to-one Transformations

Example
Let

A =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠

and define T ∶ R3 → R3 by T (x) = Ax . Is T one-to-one? If not,
find two different vectors u, v such that T (u) = T (v).
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One-to-one Transformations

Solution: The matrix A is already in reduced row echelon form.
It does not have a pivot in every column, so T is not
one-to-one. Therefore, we know from the theorem that Ax = 0
has nontrivial solutions. If v is a nontrivial (i.e., nonzero)
solution of Av = 0, then T (v) = Av = 0 = A0 = T (0), so 0 and v
are different vectors with the same output. For instance,

T
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
= 0 = T

⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
.

Geometrically, T is projection onto the xy -plane. Any two
vectors that lie on the same vertical line will have the same
projection. For b on the xy -plane, the solution set of T (x) = b
is the entire vertical line containing b. In particular, T (x) = b
has infinitely many solutions.
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One-to-one Transformations

Example
Let A be the matrix

A = (
1 1 0
0 1 1

) ,

and define T ∶ R3 → R2 by T (x) = Ax . Is T one-to-one? If not,
find two different vectors u, v such that T (u) = T (v).

Sorbonne University Abu Dhabi Introduction to Linear Algebra 8 / 15



One-to-one Transformations

Solution: The reduced row echelon form of A is

(
1 0 −1
0 1 1

) .

There is not a pivot in every column, so T is not one-to-one.
Therefore, we know from the theorem that Ax = 0 has nontrivial
solutions. If v is a nontrivial (i.e., nonzero) solution of Av = 0,
then T (v) = Av = 0 = A0 = T (0), so 0 and v are different vectors
with the same output. In order to find a nontrivial solution, we
find the parametric form of the solutions of Ax = 0 using the
reduced matrix above:

{
x − z = 0
y + z = 0

Ô⇒ {
x = z
y = −z

The free variable is z . Taking z = 1 gives the nontrivial solution

T
⎛
⎜
⎝

1
−1
1

⎞
⎟
⎠
= (

1 1 0
0 1 1

)
⎛
⎜
⎝

1
−1
1

⎞
⎟
⎠
= 0 = T

⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
.
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One-to-one Transformations

Wide matrices do not have one-to-one transformations.
If T ∶ Rn → Rm is a one-to-one matrix transformation, what

can we say about the relative sizes of n and m ?

Sorbonne University Abu Dhabi Introduction to Linear Algebra 8 / 15



One-to-one Transformations

1 The matrix associated to T has n columns and m rows.
Each row and each column can only contain one pivot,
so in order for A to have a pivot in every column, it
must have at least as many rows as columns: n ≤ m.

2 This says that, for instance, R3 is "too big" to admit a
one-to-one linear transformation into R2.

Note that there exist tall matrices that are not one-to-one: for
example,

⎛
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 0
0 0 0

⎞
⎟
⎟
⎟
⎠

does not have a pivot in every column.
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Onto Transformations

Definition (Onto transformations)
A transformation T ∶ Rn → Rm is onto if, for every vector b in Rm,
the equation T (x) = b has at least one solution x in Rn.

Remark: Another word for onto is surjective.
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Onto Transformations

Here are some equivalent ways of saying that T is onto:
● The range of T is equal to the codomain of T .
● Every vector in the codomain is the output of some input

vector.
Here are some equivalent ways of saying that T is not onto:
● The range of T is smaller than the codomain of T .
● There exists a vector b in Rm such that the equation
T (x) = b does not have a solution.
● There is a vector in the codomain that is not the output of

any input vector.
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Onto Transformations

Theorem (Onto matrix transformations)
Let A be an m × n matrix, and let T (x) = Ax be the associated
matrix transformation. The following statements are equivalent:

1 T is onto.
2 T (x) = b has at least one solution for every b in Rm.
3 Ax = b is consistent for every b in Rm.
4 The columns of A span Rm.
5 A has a pivot in every row.
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Onto Transformations

Example
Let A be the matrix

A = (
1 1 0
0 1 1

) ,

and define T ∶ R3 → R2 by T (x) = Ax . Is T onto?
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Onto Transformations

Solution: The reduced row echelon form of A is

(
1 0 −1
0 1 1

) .

Hence A has a pivot in every row, so T is onto.
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Onto Transformations

Example
Let A be the matrix

A =
⎛
⎜
⎝

1 0
0 1
1 0

⎞
⎟
⎠

and define T ∶ R2 → R3 by T (x) = Ax . Is T onto? If not, find a
vector b in R3 such that T (x) = b has no solution.
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Onto Transformations

Solution: The reduced row echelon form of A is

⎛
⎜
⎝

1 0
0 1
0 0

⎞
⎟
⎠

Hence A does not have a pivot in every row, so T is not onto.
In fact, since

T (
x
y
) =
⎛
⎜
⎝

1 0
0 1
1 0

⎞
⎟
⎠
(

x
y
) =
⎛
⎜
⎝

x
y
x

⎞
⎟
⎠
,

we see that for every output vector of T , the third entry is
equal to the first. Therefore,

b = (1,2,3)

is not in the range of T .
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Onto Transformations

Tall matrices do not have onto transformations.
If T ∶ Rn → Rm is an onto matrix transformation, what can

we say about the relative sizes of n and m ?
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Onto Transformations

1 The matrix associated to T has n columns and m
rows. Each row and each column can only contain one
pivot, so in order for A to have a pivot in every row, it
must have at least as many columns as rows: m ≤ n.

2 This says that, for instance, R2 is "too small" to admit
an onto linear transformation to R3.

Note that there exist wide matrices that are not onto: for
example,

(
1 −1 2
−2 2 −4

)

does not have a pivot in every row.
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Comparison

Let A be an m × n matrix, and T ∶ Rn → Rm is the matrix
transformation T (x) = Ax .

T is one-to-one T is onto

T (x) = b has at most one solution T (x) = b has at least one solution
for every b for every b

The columns of A are linearly The columns of A span Rm.
independent

A has a pivot in every column. A has a pivot in every row.
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Comparison

One-to-one is the same as onto for square matrices.
● a square matrix has a pivot in every row if and only if it

has a pivot in every column.
● Therefore, a matrix transformation T from Rn to itself is

one-to-one if and only if it is onto: in this case, the two
notions are equivalent.
● Conversely, by this note and this note, if a matrix

transformation T ∶ Rm → Rn is both one-to-one and onto,
then m = n.

Note that in general, a transformation T is both one-to-one and
onto if and only if T (x) = b has exactly one solution for all b in
Rm.
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Eigenvalues and Eigenvectors

Definition
Let A be an n × n matrix.

1 An eigenvector of A is a nonzero vector v in Rn such that
Av = λv , for some scalar λ

2 An eigenvalue of A is a scalar λ such that the equation
Av = λv has a nontrivial solution.

If Av = λv for v ≠ 0, we say that λ is the eigenvalue for v , and that
v is an eigenvector for λ.
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Eigenvalues and Eigenvectors

Remarks:
● The German prefix "eigen" roughly translates to "self" or

"own". An eigenvector of A is a vector that is taken to a
multiple of itself by the matrix transformation T (x) = Ax ,
which perhaps explains the terminology. On the other
hand, "eigen" is often translated as "characteristic"; we may
think of an eigenvector as describing an intrinsic, or
characteristic, property of A.
● Eigenvalues and eigenvectors are only for square matrices.
● Eigenvectors are by definition nonzero. Eigenvalues may be

equal to zero. In fact, we do not consider the zero vector to
be an eigenvector: since A0 = 0 = λ0 for every scalar λ, the
associated eigenvalue would be undefined.
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Eigenvalues and Eigenvectors

Example
Consider the matrix

A = (
2 2
−4 8

) and vectors v = (
1
1
) w = (

2
1
) .

Which are eigenvectors? What are their eigenvalues?
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Eigenvalues and Eigenvectors

Solution:
● We have

Av = (
2 2
−4 8

)(
1
1
) = (

4
4
) = 4v .

Hence, v is an eigenvector of A, with eigenvalue λ = 4.
● On the other hand,

Aw = (
2 2
−4 8

)(
2
1
) = (

6
0
) .

which is not a scalar multiple of w . Hence, w is not an
eigenvector of A.

Use this link to view the online demo

Sorbonne University Abu Dhabi Introduction to Linear Algebra 12 / 15
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Eigenvalues and Eigenvectors

Example
Consider the matrix

A =
⎛
⎜
⎝

0 6 8
1
2 0 0
0 1

2 0

⎞
⎟
⎠

and vectors v =
⎛
⎜
⎝

16
4
1

⎞
⎟
⎠

w =
⎛
⎜
⎝

2
2
2

⎞
⎟
⎠
.

Which are eigenvectors? What are their eigenvalues?
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Eigenvalues and Eigenvectors

Solution:
● We have

Av =
⎛
⎜
⎝

0 6 8
1
2 0 0
0 1

2 0

⎞
⎟
⎠

⎛
⎜
⎝

16
4
1

⎞
⎟
⎠
=
⎛
⎜
⎝

32
8
2

⎞
⎟
⎠
= 2v .

Hence, v is an eigenvector of A, with eigenvalue λ = 2.
● On the other hand,

Aw =
⎛
⎜
⎝

0 6 8
1
2 0 0
0 1

2 0

⎞
⎟
⎠

⎛
⎜
⎝

2
2
2

⎞
⎟
⎠
=
⎛
⎜
⎝

28
1
1

⎞
⎟
⎠
,

which is not a scalar multiple of w . Hence, w is not an
eigenvector of A.
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Eigenvalues and Eigenvectors

Example
Let

A = (
1 3
2 6

) v = (
−3
1
) .

Is v an eigenvector of A ? If so, what is its eigenvalue?
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Eigenvalues and Eigenvectors

Solution: The product is

Av = (
1 3
2 6

)(
−3
1
) = (

0
0
) = 0v .

Hence, v is an eigenvector with eigenvalue zero.
As noted above, an eigenvalue is allowed to be zero, but an
eigenvector is not.

Use this link to view the online demo
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Eigenvalues and Eigenvectors

Fact:Eigenvectors with distinct eigenvalues are
linearly independent
● Let v1, v2, . . . , vk be eigenvectors of a matrix A, and

suppose that the corresponding eigenvalues λ1, λ2, . . . , λk

are distinct (all different from each other).
● Then {v1, v2, . . . , vk} is linearly independent.

Sorbonne University Abu Dhabi Introduction to Linear Algebra 12 / 15



Eigenspaces

● Let A be an n × n matrix, and let λ be a scalar. The
eigenvectors with eigenvalue λ, if any, are the nonzero
solutions of the equation Av = λv . We can rewrite this
equation as follows:

Av = λv

⇐⇒Av − λv = 0
⇐⇒Av − λInv = 0
⇐⇒ (A − λIn) v = 0.

● Therefore, the eigenvectors of A with eigenvalue λ, if
any, are the nontrivial solutions of the matrix equation
(A − λIn) v = 0, i.e., the nonzero vectors in
Nul (A − λIn).
● If the equation (A − λIn) v = 0 has no nontrivial

solutions, then λ is not an eigenvalue of A.
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Eigenspaces

● In other words,
λ is an eigenvalue of A

if and only if
(A − λIn) v = 0 has non trivial solutions

if and only if
det (A − λIn) = 0
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Eigenspaces

Definition
Let A be an n × n matrix, and let λ be an eigenvalue of A. The λ-
eigenspace of A is the solution set of vectors such that

(A − λIn) v = 0

i.e., the subspace Nul (A − λIn).
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The Characteristic Polynomial

Definition
Let A be an n × n matrix. The characteristic polynomial of A is the
function f (λ) given by

f (λ) = det (A − λIn) .
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The Characteristic Polynomial

Example
Find the characteristic polynomial of the matrix

A = (
5 2
2 1

) .
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The Characteristic Polynomial

Solution: We have

f (λ) = det (A − λI2) = det((
5 2
2 1

) − (
λ 0
0 λ

))

= det(
5 − λ 2

2 1 − λ
)

= (5 − λ)(1 − λ) − 2 ⋅ 2 = λ2
− 6λ + 1.

Sorbonne University Abu Dhabi Introduction to Linear Algebra 15 / 15



The Characteristic Polynomial

Example
Find the characteristic polynomial of the matrix

A =
⎛
⎜
⎝

0 6 8
1
2 0 0
0 1

2 0

⎞
⎟
⎠
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The Characteristic Polynomial

Solution: We compute the determinant by expanding cofactors
along the third column:

f (λ) = det (A − λI3) = det
⎛
⎜
⎝

−λ 6 8
1
2 −λ 0
0 1

2 −λ

⎞
⎟
⎠

= 8(
1
4
− 0 ⋅ −λ) − λ(λ2

− 6 ⋅
1
2
)

= −λ3
+ 3λ + 2.
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The Characteristic Polynomial

Theorem (Eigenvalues are roots of the
characteristic polynomial)
Let A be an n×n matrix, and let f (λ) = det (A − λIn) be its charac-
teristic polynomial. Then a number λ0 is an eigenvalue of A if and
only if f (λ0) = 0.
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The Characteristic Polynomial

Proof. The matrix equation (A− λ0In) x = 0 has a nontrivial
solution if and only if det (A − λ0In) = 0. Therefore,

λ0 is an eigenvalue of A⇐⇒ Ax = λ0x has a nontrivial solution
⇐⇒ (A − λ0In) x = 0 has a nontrivial solution
⇐⇒ A − λ0In is not invertible
⇐⇒ det (A − λ0In) = 0
⇐⇒ f (λ0) = 0
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The Characteristic Polynomial

Example
Find the eigenvalues and eigenvectors of the matrix

A = (
5 2
2 1

) .
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The Characteristic Polynomial

Solution: In the above example we computed the characteristic
polynomial of A to be f (λ) = λ2 − 6λ + 1. We can solve the
equation λ2 − 6λ + 1 = 0 using the quadratic formula:

λ =
6 ±
√

36 − 4
2

= 3 ± 2
√

2.

Therefore, the eigenvalues are 3 + 2
√

2 and 3 − 2
√

2.
To compute the eigenvectors, we solve the homogeneous system
of equations (A − λI2) x = 0 for each eigenvalue λ. When
λ = 3 + 2

√
2, we have
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The Characteristic Polynomial

Solution:

A − (3 +
√

2)I2 = (
2 − 2
√

2 2
2 −2 − 2

√
2
)

R1=R1×(2+2
√

2)
Ð→ (

−4 4 + 4
√

2
2 −2 − 2

√
2
)

R2=R2+R1/2
Ð→ (

−4 4 + 4
√

2
0 0

)

R1=R1/−4
Ð→ (

1 −1 −
√

2
0 0

)

The parametric form of the general solution is x = (1 +
√

2)y , so

the (3 + 2
√

2) eigenspace is the line spanned by ( 1 +
√

2
1

). We

compute in the same way that the (3 − 2
√

2)-eigenspace is the

line spanned by ( 1 −
√

2
1

).
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The Characteristic Polynomial

Definition
The trace of a square matrix A is the number Tr(A) obtained by
summing the diagonal entries of A :

Tr

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 ⋯ a1,n−1 a1n
a21 a22 ⋯ a2,n−1 a2n
⋮ ⋮ ⋱ ⋮ ⋮

an−1,1 an−1,2 ⋯ an−1,n−1 an−1,n
an1 an2 ⋯ an,n−1 ann

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= a11 + a22 +⋯ + ann.
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The Characteristic Polynomial

Theorem
Let A be an n×n matrix, and let f (λ) = det (A − λIn) be its character-
istic polynomial. Then f (λ) is a polynomial of degree n. Moreover,
f (λ) has the form

f (λ) = (−1)nλn
+ (−1)n−1 Tr(A)λn−1

+⋯ + det(A)

In other words, the coefficient of λn−1 is ±Tr(A), and the con-
stant term is det(A) (the other coefficients are just numbers without
names).
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The Characteristic Polynomial

Proof.
First we notice that

f (0) = det (A − 0In) = det(A),

so that the constant term is always det(A).
We will prove the rest of the theorem only for 2× 2 matrices; We

can write a 2 × 2 matrix as A = (
a b
c d

); then

f (λ) = det (A − λI2) = det(
a − λ b
c d − λ

) = (a − λ)(d − λ) − bc

= λ2
− (a + d)λ + (ad − bc) = λ2

−Tr(A)λ + det(A)
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The Characteristic Polynomial

Recipe: The characteristic polynomial of a 2 × 2 matrix.
When n = 2, the previous theorem tells us all of the coeffi-
cients of the characteristic polynomial:

f (λ) = λ2
−Tr(A)λ + det(A)

This is generally the fastest way to compute the character-
istic polynomial of a 2 × 2 matrix
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The Characteristic Polynomial

Example
Find the characteristic polynomial of the matrix

A = (
5 2
2 1

)
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The Characteristic Polynomial

Solution: We have

f (λ) = λ2
−Tr(A)λ+det(A) = λ2

−(5+1)λ+(5 ⋅1−2 ⋅2) = λ2
−6λ+1,

as in the above example.
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The Characteristic Polynomial

Remark: By the above theorem, the characteristic polynomial
of an n × n matrix is a polynomial of degree n. Since a
polynomial of degree n has at most n roots, this gives a proof of
the fact that an n × n matrix has at most n eigenvalues.
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The Characteristic Polynomial

Eigenvalues of a triangular matrix It is easy to compute the
determinant of an upper- or lower-triangular matrix; this makes
it easy to find its eigenvalues as well.

Corollary
If A is an upper- or lower-triangular matrix, then the eigenvalues of
A are its diagonal entries.
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The Characteristic Polynomial

Proof.
Suppose for simplicity that A is a 3 × 3 upper-triangular matrix:

A =
⎛
⎜
⎝

a11 a12 a13
0 a22 a23
0 0 a33

⎞
⎟
⎠

Its characteristic polynomial is

f (λ) = det (A − λI3) = det
⎛
⎜
⎝

a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ

⎞
⎟
⎠

This is also an upper-triangular matrix, so the determinant is the prod-
uct of the diagonal entries:

f (λ) = (a11 − λ) (a22 − λ) (a33 − λ) .

The zeros of this polynomial are exactly a11, a22, a33.
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The Characteristic Polynomial

Example
Find the eigenvalues of the matrix

A =

⎛
⎜
⎜
⎜
⎝

1 7 2 4
0 1 3 11
0 0 π 101
0 0 0 0

⎞
⎟
⎟
⎟
⎠

Solution: The eigenvalues are the diagonal entries 1, π,0. (The
eigenvalue 1 occurs twice, so it is said to be of multiplicity 2)
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