

Mathematics: analysis and approaches HL formula booklet

For use during the course and in the examinations
First examinations 2021

Version 1.0

HIGHER LEVEL

Contents

Topic 1: Number and algebra – HL	2
Topic 2: Functions – HL	3
Topic 3: Geometry and trigonometry – HL	4
Topic 4: Statistics and probability – HL	7
Topic 5: Calculus – HL	9

Topic 1: Number and algebra – HL

	he <i>n</i> th term of an rithmetic sequence	$u_n = u_1 + (n-1)d$
I	he sum of <i>n</i> terms of an rithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d); S_n = \frac{n}{2} (u_1 + u_n)$
	he <i>n</i> th term of a eometric sequence	$u_n = u_1 r^{n-1}$
I	he sum of <i>n</i> terms of a nite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
	he sum of an infinite eometric sequence	$S_{\infty} = \frac{u_1}{1-r}, \mid r \mid < 1$
. 4 Co	compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}, \text{ where } FV \text{ is the future value,}$ $PV \text{ is the present value, } n \text{ is the number of years,}$ $k \text{ is the number of compounding periods per year,}$ $r\% \text{ is the nominal annual rate of interest}$
.5 Ex	xponents and logarithms	$a^x = b \iff x = \log_a b$, where $a > 0, b > 0, a \ne 1$
Ex	xponents and logarithms	$\log_a xy = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_a x^m = m \log_a x$ $\log_a x = \frac{\log_b x}{\log_b a}$
	garithmic functions 	$a^n = e^{n \cdot n \cdot a}$; $\log_a a^n = x = a^{n \cdot a \cdot a}$ where $a, x > 0, a \ne 1$
.9 Bir	inomial theorem $n\in\mathbb{N}$	$(a+b)^{n} = a^{n} + {}^{n}C_{1} a^{n-1}b + \dots + {}^{n}C_{r} a^{n-r}b^{r} + \dots + b^{n}$ ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
log	ogarithmic functions	$a^{x} = e^{x \ln a}$; $\log_{a} a^{x} = x = a^{\log_{a} x}$ where $a, x > 0, a$ $(a+b)^{n} = a^{n} + {^{n}C_{1}} a^{n-1}b + + {^{n}C_{r}} a^{n-r}b^{r} + + a$

1.10	Combinations	${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
	Permutations	${}^{n}\mathbf{P}_{r} = \frac{n!}{(n-r)!}$
	Extension of binomial theorem, $n \in \mathbb{Q}$	$\left(a+b\right)^{n} = a^{n} \left(1 + n\left(\frac{b}{a}\right) + \frac{n(n-1)}{2!}\left(\frac{b}{a}\right)^{2} + \dots\right)$
1.12	Complex numbers	z = a + bi
1.13	Modulus-argument (polar) and exponential (Euler) form	$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\cos\theta$
1.14	De Moivre's theorem	$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta} = r^n \operatorname{cis} n\theta$

Topic 2: Functions – HL

2.1	Equations of a straight line	$y = mx + c$; $ax + by + d = 0$; $y - y_1 = m(x - x_1)$
	Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
2.6	Axis of symmetry of the graph of a quadratic function	$f(x) = ax^2 + bx + c \implies$ axis of symmetry is $x = -\frac{b}{2a}$
2.7	Solutions of a quadratic equation Discriminant	$ax^{2} + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}, a \neq 0$ $\Delta = b^{2} - 4ac$
2.12	Sum and product of the roots of polynomial equations of the form $\sum_{r=0}^{n} a_r x^r = 0$	Sum is $\frac{-a_{n-1}}{a_n}$; product is $\frac{(-1)^n a_0}{a_n}$

Prior learning - HL

Area of a parallelogram

A = bh, where b is the base, h is the height

Area of a triangle

 $A = \frac{1}{2}(bh)$, where b is the base, h is the height

Area of a trapezoid

 $A = \frac{1}{2}(a+b)h$, where a and b are the parallel sides, h is the height

Area of a circle

 $A = \pi r^2$, where r is the radius

Circumference of a circle

 $C = 2\pi r$, where r is the radius

Volume of a cuboid

V = lwh, where l is the length, w is the width, h is the height

Volume of a cylinder

 $V = \pi r^2 h$, where r is the radius, h is the height

Volume of a prism

V = Ah, where A is the area of cross-section, h is the height

Area of the curved surface of a cylinder

 $A = 2\pi rh$, where r is the radius, h is the height

Distance between two

points (x_1, y_1) and (x_2, y_2)

 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Coordinates of the midpoint of a line segment with endpoints

 (x_1, y_1) and (x_2, y_2)

 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

3.1 Distance between two points (x_1, y_1, z_1) and

 (x_2, y_2, z_2)

 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

Coordinates of the Coordinates of the midpoint of a line segment $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$

with endpoints (x_1, y_1, z_1) and (x_2, y_2, z_2)

Volume of a right-pyramid

 $V = \frac{1}{3}Ah$, where A is the area of the base, h is the height

4

	Volume of a right cone	$V = \frac{1}{3}\pi r^2 h$, where r is the radius, h is the height
	Area of the curved surface of a cone	$A=\pi r l$, where r is the radius, l is the slant height
	Volume of a sphere	$V = \frac{4}{3}\pi r^3$, where r is the radius
	Surface area of a sphere	$A=4\pi r^2$, where r is the radius
3.2	Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab\cos C$; $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
	Area of a triangle	$A = \frac{1}{2}ab\sin C$
3.4	Length of an arc	$l=r\theta$, where r is the radius, θ is the angle measured in radians
	Area of a sector	$A\!=\!\frac{1}{2}r^2\theta$, where r is the radius, θ is the angle measured in radians
3.5	Identity for $\tan \theta$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
3.6	Pythagorean identity	$\cos^2\theta + \sin^2\theta = 1$
	Double angle identities	$\sin 2\theta = 2\sin\theta\cos\theta$
		$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$
3.9	Reciprocal trigonometric identities	$\sec \theta = \frac{1}{\cos \theta}$
		$\csc\theta = \frac{1}{\sin\theta}$
	Pythagorean identities	$1 + \tan^2 \theta = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$

3.10	Compound angle identities	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
		$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
		$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
	Double angle identity for tan	$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$
3.12	Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$, where $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$
3.13	Scalar product	$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$, where $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$
		$v \cdot w = v w \cos \theta$, where θ is the angle between v and w
	Angle between two vectors	$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ \mathbf{v} \mathbf{w} }$
3.14	Vector equation of a line	$r = a + \lambda b$
	Parametric form of the equation of a line	$x = x_0 + \lambda l, \ y = y_0 + \lambda m, \ z = z_0 + \lambda n$
	Cartesian equations of a line	$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$
3.16	Vector product	$\mathbf{v} \times \mathbf{w} = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ $ \mathbf{v} \times \mathbf{w} = \mathbf{v} \mathbf{w} \sin \theta \text{ , where } \theta \text{ is the angle between } \mathbf{v} \text{ and } \mathbf{w}$
	Area of a parallelogram	$A = v \times w $ where v and w form two adjacent sides of a parallelogram
3.17	Vector equation of a plane	$r = a + \lambda b + \mu c$
	Equation of a plane (using the normal vector)	$r \cdot n = a \cdot n$
	Cartesian equation of a plane	ax + by + cz = d

Topic 4: Statistics and probability — HL

4.2	Interquartile range	$IQR = Q_3 - Q_1$
4.3	Mean, \overline{x} , of a set of data	$\overline{x} = \frac{\sum\limits_{i=1}^{k} f_i x_i}{n}$, where $n = \sum\limits_{i=1}^{k} f_i$
4.5	Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$
	Complementary events	P(A) + P(A') = 1
4.6	Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
	Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
	Independent events	$P(A \cap B) = P(A) P(B)$
4.7	Expected value of a discrete random variable \boldsymbol{X}	$E(X) = \sum_{i=1}^{k} x_i P(X = x_i)$
4.8	Binomial distribution $X \sim B(n, p)$	
	Mean	E(X) = np
	Variance	Var(X) = np(1-p)
4.12	Standardized normal variable	$z = \frac{x - \mu}{\sigma}$
4.13	Bayes' theorem	$P(B A) = \frac{P(B) P(A B)}{P(B) P(A B) + P(B') P(A B')}$
		$P(B_i A) = \frac{P(B_i) P(A B_i)}{P(B_1) P(A B_1) + P(B_2) P(A B_2) + P(B_3) P(A B_3)}$

4.14

Variance σ^2

$$\sigma^{2} = \frac{\sum_{i=1}^{k} f_{i} (x_{i} - \mu)^{2}}{n} = \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n} - \mu^{2}$$

Standard deviation σ

$$\sigma = \sqrt{\frac{\sum_{i=1}^{k} f_i (x_i - \mu)^2}{n}}$$

Linear transformation of a single random variable

$$E(aX + b) = aE(X) + b$$
$$Var(aX + b) = a^{2} Var(X)$$

Expected value of a continuous random variable X

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

Variance

$$Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$$

Variance of a discrete random variable X

$$Var(X) = \sum (x - \mu)^2 P(X = x) = \sum x^2 P(X = x) - \mu^2$$

Variance of a continuous random variable \boldsymbol{X}

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

Topic 5: Calculus – HL

5.12	Derivative of $f(x)$ from first principles	$y = f(x) \implies \frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$
5.3	Derivative of x^n	$f(x) = x^n \implies f'(x) = nx^{n-1}$
5.6	Derivative of sin x	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of cos x	$f(x) = \cos x \implies f'(x) = -\sin x$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u)$, where $u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	Product rule	$y = uv \implies \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$
5.15	Standard derivatives tan x	$f(x) = \tan x \implies f'(x) = \sec^2 x$
	$\sec x$	$f(x) = \sec x \implies f'(x) = \sec x \tan x$
	cosec x	$f(x) = \csc x \implies f'(x) = -\csc x \cot x$
	$\cot x$	$f(x) = \cot x \implies f'(x) = -\csc^2 x$
	a^x	$f(x) = a^x \implies f'(x) = a^x (\ln a)$
	$\log_a x$	$f(x) = \log_a x \implies f'(x) = \frac{1}{x \ln a}$
	arcsin x	$f(x) = \arcsin x \implies f'(x) = \frac{1}{\sqrt{1 - x^2}}$
	arccos x	$f(x) = \arccos x \implies f'(x) = -\frac{1}{\sqrt{1 - x^2}}$
	arctan x	$f(x) = \arctan x \implies f'(x) = \frac{1}{1+x^2}$

5.9	Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$
	Distance travelled from t_1 to t_2	distance = $\int_{t_1}^{t_2} v(t) dt$
	Displacement from t_1 to t_2	$displacement = \int_{t_1}^{t_2} v(t) \mathrm{d}t$
5.5	Integral of x^n	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$
	Area between a curve $y = f(x)$ and the x -axis, where $f(x) > 0$	$A = \int_{a}^{b} y \mathrm{d}x$
5.10	Standard integrals	$\int \frac{1}{x} \mathrm{d}x = \ln x + C$
		$\int \sin x \mathrm{d}x = -\cos x + C$
		$\int \cos x \mathrm{d}x = \sin x + C$
		$\int e^x dx = e^x + C$
5.15	Standard integrals	$\int a^x \mathrm{d}x = \frac{1}{\ln a} a^x + C$
		$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$
		$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C, x < a$
5.16	Integration by parts	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx \text{ or } \int u dv = uv - \int v du$

5.11	Area of region enclosed by a curve and <i>x</i> -axis	$A = \int_{a}^{b} y \mathrm{d}x$
5.17	Area of region enclosed by a curve and <i>y</i> -axis	$A = \int_{a}^{b} x \mathrm{d}y$
	Volume of revolution about the <i>x</i> or <i>y</i> -axes	$V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$
5.18	Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n)$; $x_{n+1} = x_n + h$, where h is a constant (step length)
	Integrating factor for $y' + P(x)y = Q(x)$	$e^{\int P(x)dx}$
5.19	Maclaurin series	$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots$
	Maclaurin series for special functions	$e^x = 1 + x + \frac{x^2}{2!} + \dots$
		$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$
		$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$
		$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$
		$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$