Electrostatics and Current Electricity (91 hours 55 minutes)

		Chapter:-1-Coloumbs law and Electric Field	Video:Duration
Video Clips			
1	1	Electro_Ch1_1_Electric Charge	00:23:03
2	2	Electro_Ch1_2_Classification of materials & Methods of charging	00:12:39
3	3	Electro_Ch1_3_Electroscope	00:11:22
4	4	Electro_Ch1_4_Electric Charge-Charging by Induction	00:23:31
5	5	Electro_Ch1_5_Electric charge illustrations	00:33:41
6	6	Electro_Ch1_6_Coulombs law p1	00:29:12
7	7	Electro_Ch1_7_Coulombs law p2	00:26:05
8	8	Electro_Ch1_8_Coulombs law illustrations p1	00:33:57
9	9	Electro_Ch1_9_Coulombs law illustrations p2	00:29:12
10	10	Electro_Ch1_10_Coulombs law illustrations p3	00:26:05
11	11	Electro_Ch1_11_Coulombs law illustrations p4	00:33:57
12	12	Electro_Ch1_12_Coulombs law illustrations p5	00:22:37
13	13	Electro_Ch1_13_Coulombs law illustrations p6	00:27:36
14	14	Electro_Ch1_14_Electric field p1	00:30:51
15	15	Electro_Ch1_15_Electric field p2	00:32:24
16	16	Electro_Ch1_16_Electric field p3	00:26:14
17	17	Electro_Ch1_17_Electric field illustrations	00:36:26
18	18	Electro_Ch1_18_Electric field two-point charge p1	00:20:36
19	19	Electro_Ch1_19_Electric field two-point charge p2	00:31:26
20	20	Electro_Ch1_20_Plotting variation in electric field p1	00:30:14
21	21	Electro_Ch1_21_Plotting variation in electric field p2	00:19:06
22	22	Electro_Ch1_22_Electric Field due to continuous charge distribution p1	00:26:34
23	23	Electro_Ch1_23_Electric Field due to continuous charge distribution p2	00:37:06
24	24	Electro_Ch1_24_Electric Field due to continuous charge distribution p3	00:21:36
25	25	Electro_Ch1_25_Electric field due to continuous charge distribution Illustrations	00:35:01
26	26	Electro_Ch1_26_Electric field due to continuous charge distribution Illustrations	00:31:41
27	27	Electro_Ch1_27_Electric field due to continuous charge distribution Illustrations	00:14:24
28	28	Electro_Ch1_28_Electric field lines of force	00:40:43
29	29	Electro_Ch1_29_Electric field lines of force illustrations	00:30:14
30	30	Electro_Ch1_30_Motion charged Particle due to uniform charged particle	00:36:16
31	31	Electro_Ch1_31_Electric Dipole p1	00:24:14
32	32	Electro_Ch1_32_Electric Dipole p2	00:28:25
33	33	Electro_Ch1_33_Electric Dipole p3	00:33:05
34	34	Electro_Ch1_34_Electric Dipole illustrations	00:11:13

		Solved Example	
35	1	Electro_Ch1_1_Solved Example Coulombs law and Electric field	00:07:20
36	2	Electro_Ch1_2_Solved Example Electric field and S.H.M	00:15:21
37	3	Electro_Ch1_3_Solved Example Coulombs Law and S.H.M	00:11:33
38	4	Electro_Ch1_4_Solved Example Electric field and S.H.M	00:12:02
39	5	Electro_Ch1_5_Solved Example Coulombs law,Rotational dynamics and S.H.M	00:16:02
40	6	Electro_Ch1_6_Solved Example Coulombs law and center of mass	00:13:04
41	7	Electro_Ch1_7_Solved Example Electric field and impluse momentum theorem	00:16:25
	8	Electro_Ch1_8_Solved Example Electric field ,work energy theorem and circular	
42		motion	00:11:33
43	9	Electro_Ch1_9_Solved Example Coulombs Law and Friction force	00:12:09
44	10	Electro_Ch1_10_Solved Example Electric field and S.H.M	00:12:09
45	11	Electro_Ch1_11_Solved Example Coulombs Law and S.H.M	00:13:44
46	12	Electro_Ch1_12_Solved Example Electric Dipole and Rotational dynamics	00:19:05
47	13	Electro_Ch1_13_Solved Example Coulombs Law and S.H.M	00:16:17
48	14	Electro_Ch1_14_Solved Example Electric dipole and S.H.M	00:15:29
			18:42:59
		<u>Chapter:-2-Electric flux and Gauss theorem</u>	
49	1	Electro_Ch2_1_Electric flux	00:31:02
50	2	Electro_Ch2_2_Electric flux Illustrations p1	00:31:02
51	3	Electro_Ch2_3_Electric flux illustrations p2	
52	4	Electro_Ch2_4_Electric flux illustrations p1	00:34:07 00:34:24
53	5	Electro_Ch2_5_Electric flux illustrations p2	00:34:24
54	6	Electro_Ch2_6_Understanding Gauss Theorem	00:32:42
55	7	Electro Ch2 7 Gauss Theorem Illustrations	00:32:42
56	8	Electro_Ch2_8_ Gauss Theorem Illustrations	00:28:20
30		Electro_Ch2_9_ Applications of Gauss's Theorem for finding induced charge on a	00.26.20
57	9	Conductor	00:15:04
58	10	Electro_Ch2_10_ Applications of Gauss's Theorem for finding Electric field	00:28:47
59	11	Electro_Ch2_11_ Electric field of a charged conducting sphere	00:23:01
60	12	Electro_Ch2_12_ Electric field due to infinite line charge	00:25:01
61	13	Electro_Ch2_13_ Electric field due to long uniformly charged cylinder	00:19:01
62	14	Electro_Ch2_14_ Electric field due to infinite uniformly charged plane	00:23:59
63	15	Electro_Ch2_15_ Electric field due to infinite nonconducting thin sheet of charge	00:34:18
64	16	Electro_Ch2_16_ Electric field due to infinite nonconducting thin sheet of charge illustrations p1	00:20:20
	17	Electro_Ch2_17_ Electric field due to infinite nonconducting thin sheet of charge	
65	1	illustrations p2 Electro_Ch2_18_ Electric field due to infinite nonconducting thin sheet of charge	00:15:59
66	18	illustrations p3	00:32:36

67	19	Electro_Ch2_19_Concept of Solid Angle	00:16:02
68	20	Electro_Ch2_20_Solid Angle Illustrations	00:18:23
69	21	Electro_Ch2_21_ Electrostatics Pressure	
		Solved Example	
70	22	Electro_Ch2_1_Soved Example Calculation of flux	00:23:14
71	23	Electro_Ch2_2_Soved Example Gauss Theorem	00:09:22
	24	Electro_Ch2_3_Soved Example Application of superposition for Calculation of	
72	27	Electric field	00:11:15
73	25	Electro_Ch2_4_Soved Example Concept of Flux	00:11:25
74	26	Electro_Ch2_5_Soved Example Electric Field of uniformly Charged Sphere	00:07:59
75	27	Electro_Ch2_6_Soved Example Gauss Theorem	00:11:21
76	28	Electro_Ch2_7_Soved Example System of parallel conduction plates	00:24:52
77	29	Electro_Ch2_8_Soved Example Electrostatics Stress	00:07:45
78	30	Electro_Ch2_9_Soved Example Electrostatics Stress and Surface tension	00:09:40
79	31	Electro_Ch2_10_Soved Example Gauss Theorem	00:10:12
80	32	Electro_Ch2_11_Soved Example Gauss Theorem	00:06:35
			10:34:39

		Chapter:-3-Electric Potential	
81	1	Electro_Ch3_1_Work Done to move a charged particle in Electric Field	00:26:23
82	2	Electro_Ch3_2_Defining Electric Potential p1	00:20:26
83	3	Electro_Ch3_3_Defining Electric Potential p2	00:29:31
84	4	Electro_Ch3_4_Electric potential discussion p1	00:16:39
85	5	Electro_Ch3_5_Electric potential discussion p2	00:28:50
86	6	Electro_Ch3_6_Equipotential surface and Potential difference between two-point p1	00:28:03
87	7	Electro_Ch3_7_Equipotential surface and Potential difference between two-point Illustrations p2	00:21:39
88	8	Electro_Ch3_8_Equipotential surface and Potential difference between two-point Illustrations p3	00:22:40
89	9	Electro_Ch3_9_ Potential difference between two-point p1	00:38:12
90	10	Electro_Ch3_10_ Potential difference between two-point p2	00:30:43
91	11	Electro_Ch3_11_ Electric potential difference and electric field discussion p1	00:35:12
92	12	Electro_Ch3_12_ Electric potential difference and electric field discussion p2	00:28:22
93	13	Electro_Ch3_13_ Electrostatics Potential Energy p1	00:30:07
94	14	Electro_Ch3_14_ Electrostatics Potential Energy p2	00:25:17
95	15	Electro_Ch3_15_ Electrostatics Potential Energy and conservation of mechanical energy p1	00:30:00

96	16	Electro_Ch3_16_ Electrostatics Potential Energy and conservation of mechanical energy p2	00:18:46
97	17	Electro_Ch3_17_ Electric potential due to continuous charge	00:38:32
98	18	Electro Ch3_18_ Electric potential due to continuous charge illustrations	00:38:32
99	19	Electro_Ch3_19_ Electric potential due to continuous charge illustrations	00:21:17
100	20	Electro_Ch3_20_Self energy of a charged particle	00:30:09
101	21	Electro Ch3_21_Electric field and potential due to an induced charge	00:25:15
102	22	Electro Ch3 22 Earthing of a Conductor	00:24:47
103	23	Electro Ch3 23 Charge distribution in parallel plates	00:24:49
104	24	Electro Ch3 24 Charge distribution in parallel plates illustrations	00:25:04
105	25	Electro_Ch3_25_Charge distribution in parallel plates illustrations	00:18:42
106	26	Electro_Ch3_26_Circular motion in electric field p1	00:25:56
107	27	Electro Ch3 27 Circular motion in electric field p2	00:20:14
108	28	Electro Ch3 28 Electric dipole potential and potential energy	00:29:36
109	29	Electro Ch3 29 Electric dipole potential and potential energy illustrations	00:21:37
110	30	Electro Ch3_30 Force on a dipole in a non-uniform electric field	00:20:12
		Solved Examples	
111	31	Electro_Ch3_1_Electric field potential and dielectric strength	00:13:45
112	32	Electro_Ch3_2_Electric field and potential	00:08:10
113	33	Electro_Ch3_3_Electric field and potential	00:08:19
114	34	Electro_Ch3_4_Electric potential and spherical shell	00:13:46
115	35	Electro_Ch3_5_Electric potential and spherical shell, radius of curvature	00:16:00
116	36	Electro_Ch3_6_Force on a electric dipole & potential energy	00:17:19
117	37	Electro_Ch3_7_Electric potential and spherical shell	00:13:18
118	38	Electro_Ch3_8_Electric potential and potential energy	00:14:43
119	39	Electro_Ch3_9_Electric potential	00:07:16
120	40	Electro_Ch3_10_Electric potential and gauss theorem	00:08:18
121	41	Electro_Ch3_11_Electric potential energy and conservation of energy of angular momentum	00:13:18
122	42	Electro_Ch3_12_Equipotential surface	00:11:20
123	43	Electro_Ch3_13_Conical pendulum and electric field	00:15:52
124	44	1.Electric Field and Potential Concept	00:09:26
125	45	2.Electric Field and Potential Concept	00:18:06
126	46	3.Electric Potential-Finding Induced Charge in Case of Connected Spheres	00:13:43
127	47	4.Electric Potential -Conservative and Non-Conservative	00:10:00
128	48	5. Electric Field and Potential -dipole placed in an Electric field	00:33:53
			17:04:26

		Charten A Caracitar and Caracitaras	
		<u>Chapter:-4-Capacitor and Capacitance</u>	
120	1	Floring Ch4 1 Canaditanes and Canaditans	00.24.55
129	1	Electro_Ch4_1_Capacitance and Capacitors	00:24:55
130	3	Electro_Ch4_2_Parallel plate capacitors p1	00:25:40
131		Electro_Ch4_3_Parallel plate capacitors p2	00:30:22
132	4	Electro_Ch4_4_Spherical and Cylindrical Capacitors	00:16:26
133	5	Electro_Ch4_5_Energy Stored in charged Conductor	00:14:02
134	6	Electro_Ch4_6_Energy Stored in Charged Capacitor p1	00:19:19
135	7	Electro_Ch4_7_Energy Stored in Charged Capacitor p2	00:33:01
136	8	Electro_Ch4_8_Energy density in Electric Field	00:20:39
137	9	Electro_Ch4_9_Joining Two Charged Conductors p1	00:14:18
138	10	Electro_Ch4_10_Joining Two Charged Conductors p2	00:29:23
139	11	Electro_Ch4_11_Distribution of Charges on Connecting Two Charged Capacitors	00:25:34
140	12	Electro_Ch4_12_Dielectric and its Properties p1	00:13:36
141	13	Electro_Ch4_13_Dielectric and its Properties p2	00:17:45
142	14	Electro_Ch4_14_Dielectric and its Properties p3	00:17:38
143	15	Electro_Ch4_15_Capacity of Parallel Plate Capacitor with Dielectric p1	00:15:38
144	16	Electro_Ch4_16_Capacity of Parallel Plate Capacitor with Dielectric p2	00:21:08
145	17	Electro_Ch4_17_Effect of Dielectric on Different Parameters p1	00:10:50
146	18	Electro_Ch4_18_Effect of Dielectric on Different Parameters p2	00:36:07
147	19	Electro_Ch4_19_Effect of Dielectric on Different Parameters p3	00:19:33
148	20	Electro_Ch4_20_Combination of Capacitors p1	00:17:49
149	21	Electro_Ch4_21_Combination of Capacitors p2	00:17:05
150	22	Electro_Ch4_22_Combination of Capacitors p3	00:13:31
151	23	Electro_Ch4_23_Analysing Simple Capacitor Circuits Successive Reduction Method p1	00:35:31
152	24	Electro_Ch4_24_Analysing Simple Capacitor Circuits Successive Reduction Method p2	00:22:21
153	25	Electro_Ch4_25_Analysing Simple Capacitor Circuits Successive Reduction Method p3	00:29:34
154	26	Electro_Ch4_26_Infinite Chain of Capacitors	00:23:34
155	27	Electro_Ch4_27_Kirchhoffs Rule for Capacitors p1	00:21:14
156	28	Electro_Ch4_28_Kirchhoffs Rule for Capacitors p2	00:25:27
157	29	Electro_Ch4_29_Kirchhoffs Rule for Capacitors p3	00:26:04
158	30	Electro Ch4 30 Circuits Based on Wheatstone Bridge	00:13:00
158	31	Electro_Ch4_30_Circuits based on wheatstone Bridge Electro_Ch4_31_Nodal Analysis of Capacitive Circuit p1	00:22:39
160	32	Electro_Ch4_32_Nodal Analysis of Capacitive Circuit p2	00:27:33
161	33	Electro_Ch4_33_Problem Involving Plates p1	00:36:03
162	34	Electro_Ch4_34_Problem Involving Plates p2	00:36.03
163	35	Electro_Ch4_35_Force on Dielectric Slab p1	00:23:12
164	36	Electro_Ch4_36_Force on Dielectric Slab p2	
104	30	Electro_Ch4_30_r orce on Dielectric slab p2	00:26:07
		Solved Examples	

			17:41:45
180	52	Electro_Ch4_16_Analyzing plates combination	00:16:13
179	51	Electro_Ch4_15_Work done in inserting dielectric slab	00:12:01
178	50	Electro_Ch4_14_Finding final charges in connected conductors with battery	00:08:10
177	49	Electro_Ch4_13_Redistribution of charge	00:08:11
176	48	Electro_Ch4_12_Finding Flow of Charge in Different Section of Circuits by Kirchhoff's law	00:16:35
175	47	Electro_Ch4_11_Application of Kirchhoff's Law	00:09:08
174	46	Electro_Ch4_10_Finding Equivalent capacitance by Kirchhoff's Law	00:18:01
173	45	Electro_Ch4_9_Energy stored in capacitor and effect of dielectric	00:25:50
172	44	Electro_Ch4_8_Finding Flow of Charge in Different Section of Circuits Work done by Battery	00:21:34
171	43	Electro_Ch4_7_Finding Equivalent capacity with Dielectric Slab	00:10:58
170	42	Electro_Ch4_6_Finding Flow of Charge in Different Section of Circuits	00:11:09
169	41	Electro_Ch4_5_Energy Stored in Capacitor and Redistribution of charge	00:12:18
168	40	Electro_Ch4_4_Energy Stored in Capacitor and Effect of Dielectric	00:17:40
167	39	Electro_Ch4_3_Analyzing combinations of plates	00:17:59
166	38	Electro_Ch4_2_Energy stored in capacitor and effect field between plates	00:15:02
165	37	Electro_Ch4_1_Energy stored in capacitor and effect of dielectric	00:08:30

		Chapter-5- Electric Current and Circuits	
181	1	Electro_Ch5_1_Electric Current and Resistance	00:19:07
182	2	Electro_Ch5_2_Electric Current and Resistance illustrations	00:35:23
183	3	Electro_Ch5_3_Current Density	00:27:47
184	4	Electro_Ch5_4_Color coding of Resistance	00:14:12
185	5	Electro_Ch5_5_Drift Velocity	00:24:10
186	6	Electro_Ch5_6_Drift Velocity Illustrations	00:32:00
187	7	Electro_Ch5_7_Effects of Temperature	00:24:18
188	8	Electro_Ch5_8_Electromotive Force and Internal Resistance of a battery	00:34:02
189	9	Electro_Ch5_9_Combination of Resistance	00:30:43
190	10	Electro_Ch5_10_ Combination of resistances and method of successive Reduction	00:18:17
191	11	Electro_Ch5_11_Short and open circuits equipotential points P1	00:22:30
192	12	Electro_Ch5_12_Short and open circuits equipotential points P2	00:19:17
193	13	Electro_Ch5_13_Finding equivalent resistance using symmetry method illustrations P1	00:21:58
194	14	Electro_Ch5_14_Finding equivalent resistance using symmetry method illustrations P2	00:20:02
195	15	Electro_Ch5_15_Finding equivalent resistance using symmetry method illustrations P3	00:22:45
196	16	Electro_Ch5_16_Kirchhoff's law for electrical networks	00:32:34
197	17	Electro_Ch5_17_Applications of Kirchhoff's law	00:20:51

198	18	Electro_Ch5_18_Applications of Kirchhoff's law	00:20:51
	19	Electro_Ch5_19_Kirchhoff's Law of Electrical Network p1	00:17:20
199	20	Electro_Ch5_20_Kirchhoff's Law of Electrical Network p2	00:20:55
200	21	Electro_Ch5_21_Circuits Based on Balanced Wheatstone Bridge	00:32:28
201	22	Electro_Ch5_22_Combination of cells	00:30:07
202	23	Electro_Ch5_23_Combination of cells parallel grouping	00:16:49
203	24	Electro_Ch5_24_Combination of cells parallel grouping illustrations	00:18:42
204	25	Electro_Ch5_25_Combination of cells Mixed Grouping	00:16:30
205	26	Electro_Ch5_26_Nodal method of analyzing circuits p1	00:16:46
206	27	Electro_Ch5_27_Nodal method of analyzing circuits p2	00:34:29
207	28	Electro_Ch5_28_Nodal method of analyzing circuits p3	00:22:09
208	29	Electro_Ch5_29_Charging and Discharging of a capacitors	00:35:27
209	30	Electro_Ch5_30_Charging and Discharging of a capacitor illustrations	00:34:58
210	31	Electro_Ch5_31_Charging and Discharging of a capacitor illustrations	00:29:12
211	32	Electro_Ch5_32_Energy dissipated while charging and discharging	00:34:31
212	33	Electro_Ch5_33_Charging a capacitor having initial charge	00:25:14
213	34	Electro_Ch5_34_Equivalent time constant method for analyzing R C circuits	00:36:45
		Solved Examples	
214	34	Electro_Ch5_1_Microscope form of ohm's law	00:11:54
215	35	Electro_Ch5_2_Kirchhoffs law	00:07:38
216	36	Electro_Ch5_3_Finding equivalent resistance by symmetry method	00:10:39
217	37	Electro_Ch5_4_Balanced Wheatstone bridge	00:05:34
218	38	Electro_Ch5_5_Nodal method analyzing circuit	00:08:52
219	39	Electro_Ch5_6_Mixed combination of cells	00:09:53
220	40	Electro_Ch5_7_Finding Equivalent resistance using different methods	00:22:15
221	41	Electro_Ch5_8_Analysing capacitor resistance at steady state	00:12:34
222	42	Electro_Ch5_9_Analysing capacitor resistance at steady state	00:13:08
223	43	Electro_Ch5_10_Analysing capacitor resistance circuit at steady state	00:17:45
224	44	Electro_Ch5_11_Maximum safe voltage	00:13:52
	45	Electro_Ch5_12_Analysing capacitor resistance at steady state and transition	
225		state	00:15:53
226	46	Electro_Ch5_13_Capacitors partially conducting medium between	00:23:51
227	47	Electro_Ch5_14_Analysing transition state of RC circuit	00:10:12
228	48	Electro_Ch5_15_infinite battery	00:13:00
229	49	Electro_Ch5_16_Calculating effective resistance	00:13:41
230	50	Electro_Ch5_17_Infinite resistance networks	00:06:53
231	51	Electro_Ch5_18_Infinite resistance networks	00:04:37
232	52	Electro_Ch5_19_Infinite resistance networks	00:08:48
233	53	Electro_Ch5_20_Infinite resistance networks	00:07:44
			18:21:52

		Chapter-6- Electrical measuring Instruments	
234	1	Electro _Ch6 1_Galvanometer and Ammeter	00:33:25
235	2	Electro_Ch6_2_Voltmeter	00:17:13
236	3	Electro_Ch6_3_Ammeter and Voltmeter Illustrations p1	00:27:46
237	4	Electro_Ch6_4_Ammeter and Voltmeter Illustrations p2	00:26:28
238	5	Electro Ch6 _5_Ammeter and Voltmeter Illustrations p3	00:15:06
239	6	Electro Ch6 _6_Potentiometer	00:28:17
240	7	Electro_Ch6 _7_Potentiometer Illustrations p1	00:34:57
241	8	Electro_Ch6 _8_Potentiometer Illustrations p2	00:25:45
242	9	Electro_Ch6 _9_Meter Bridge or Wire Slide Bridge	00:24:59
243			
244		Solved Examples	
245	10	Electro_Ch6_1_Solved Example Potentiometer	00:15:01
246	11	Electro_Ch6_2_Solved Example Potentiometer	00:06:38
247	12	Electro_Ch6_3_Solved Example Principal of Wheatstone Bridge	00:05:51
248	13	Electro_Ch6_4_Solved Example Potentiometer	00:10:38
249	14	Electro_Ch6_5_Solved Example Potentiometer	00:06:10
250	15	Electro_Ch6_6_Solved Example Ammeter and Voltmeter	00:08:53
251	16	Electro_Ch6_7_Solved Example Ammeter and Voltmeter	00:12:26
252	17	Electro_Ch6_8_Solved Example Ammeter and Voltmeter and Fuse wire	00:11:22
253	18	Electro_Ch6_9_Solved Example Ammeter and Voltmeter	00:08:52
254	19	Electro_Ch6_10_Solved Example Potentiometer	00:10:10
255	20	Electro_Ch6_11_Solved Example Ammeter and Voltmeter	00:08:41
256	21	Electro_Ch6_12_Solved Example Principal of Wheatstone Bridge & Error Analysis	00:08:04
			5:46:42

		Chapter-7- Heating effect of current	
257	1	Electro_Ch7_1_Heat Produced by an Electric Circuit	00:22:43
258	2	Electro_Ch7_2_Heat Produced by an Electric Circuit Illustrations	00:19:18
259	3	Electro_Ch7_3_ Maximum Power Transfer Theorem	00:13:35
260	4	Electro_Ch7_4_Electrical Appliance connected in Electrical Network	00:24:39
261	5	Electro_Ch7_5_Electrical Appliance connected in Electrical Network Illustrations p1	00:21:48
262	6	Electro_Ch7_6_Electrical Appliance connected in Electrical Network Illustrations p2	00:21:49
		Solved Examples	

263	7	Electro_Ch7_1_Application for maximum power transfer theorem	00:10:22
	2	Electro_Ch7_2_Finding current in different electric appliances of given power	
264	2	rating, in electric circuit	00:04:41
265	3	Electro_Ch7_3_Finding power supplied by batteries in an electric circuit	00:11:01
	4	Electro_Ch7_4_Finding power dissipated in different electric appliances in an	
266	4	electric circuit	00:07:09
	5	Electro_Ch7_5_ Electro_Ch7_5_Finding unknown resistance in an electric circuit	
267	J	if power dissipated in a part of the circuit is given	00:06:47
	6	Electro_Ch7_6_Finding the heat produce in a part of the circuit if the heat	
268	U	produce in some other part of the circuit is given	00:06:10
	7	Electro_Ch7_7_Finding ratio of the heat generated in the four arms of a given	
269	,	balanced Wheatstone bridge	00:05:43
	8	Electro_Ch7_8_Analyzing the heat produce in a coil if a given charge flow in a	
270	0	wire	00:13:06
271	9	Electro_Ch7_9_Analyzing the heat produce in a capacitor resistance circuit	00:08:09
272	10	Electro_Ch7_10_Analyzing the power consumed in a circuit	00:10:11
273	11	Electro_Ch7_11_Analyzing the heat produce in Resistance	00:07:42
274	12	Electro_Ch7_12_Analyzing the power generated in a circuit	00:08:16
			3:43:09

Total time- 91 hours 55 minutes