Cone-Isolation Contrast Sensitivity The future of color vision testing
 PAUL HARRIS

Nothing to disclose

Ishihara
 Original Pseudo-Isochromatic "PIP" Plates

Waggoner PIP-24 Pseudo-Isochromatic in Print and Digitized

D15 Standard and Desaturated color ordering strategy (abbreviated)

FM-100 (Farnsworth-Munsell)

Color ordering strategy - extended

Oculus Anomaloscope Rayleigh color mixing

Cone-Isolation (CCT-HD)

Digital contrast sensitivity tuned to the specific cone populations

USAF Comparative Precision

Color Vision Diagnostic Precision

the foundations for a new gold standard: CCT cone-isolation contrast sensitivity
Specificity
Sensitivity
Correct Dx

USAF clinical comparison of four color vision diagnostic devices from 50 color normal and 50 color abnormal subjects: digitized PIP (pseudo-isochromatic), Anomaloscope (Rayleigh color-mixing), CAD (color-camouflage), and CCT (cone-isolation contrast sensitivity).

ColorD
 Paul Harris | 63 M
 0.6 m

Video of Cone Isolation Contrast Sensitivity Stimuli

Data from video

Normal | Typical

 color visioncontrast threshold range not tested with CCT (original)

Possible

contrast sensitivity loss or acquired color deficiency

Color Vision Deficient

genetic or acquired

Some Cases

Train engineer's vision problems led to deadly Oklahoma wreck, NTSB rules

BY CHRIS CASTEEL ccasteel@opubco.com • Published: June 18, 2013 12:00 AM CDT • Updated: June 18, 2013 8:07 PM CDT

WASHINGTON - Two years before his failing vision likely contributed to a fatal crash in the Oklahoma Panhandle, freight train engineer Dan Hall told one of his eye doctors that he was having trouble distinguishing the color of train signals.

Hall and his conductor, Brian Stone, were killed, as was John Hall, the engineer on the other train; the two engineers were not related. Juan Zurita, the conductor on the westbound train, leapt off just before impact.

The National Transportation Safety Board investigated the crash for nearly a year and determined Tuesday that the probable causes were Dan Hall's vision problems and Stone's failure to provide the backup assistance required of a conductor.

Subject: TB

$5^{\text {th }}$ generation working for U.P. in family - 18 months from retirement.
DVA uncorrected: OD 20/12 OS 20/12
NVA uncorrected: OD 20/16 OS 20/16
Binocular Balance: +0.50 OU to 20/20
BVA (Manifest): plan OU to 20/12
Peli-Robson CS: OD 3.2\% OS 2.5\% OU 3.2\%
Linear Sine Wave Grating CS:

- 6 cycles per degree OD 0.8% OS 0.8% OU 0.5%
- 12 cycles per degree OD 1.0% OS 0.6% OU 0.6%
- 18 cycles per degree OD 1.6\% OS 1.6\% OU 1.6\%

Subject: TB

Bulls Eye CS

- Mesopic:18 cpd 12.5\% 12 cpd 3.2\% 6 cpd 1.8\% 3 cpd 0.63\% 1.5 cpd 0.63\%
- Photopic: 18 cpd 2\% 12 cpd $0.63 \% 6$ cpd $0.63 \% 3$ cpd $0.5 \% 1.5$ cpd 0.63%

Stereo

- Randot Stereo: 20 seconds of arc
- Random Dot 3: 12.5 seconds of arc
- Distance Stereo - Chart 2020: 20 seconds of arc

Visual Fields

- 24-2 all normal
- 30-2 all normal
- Goldmann all normal

Color Testing

Waggoner PIP-24: 7 of 9 errors

D15 regular and desaturated OD and OS separately, all 4 trials perfectly in order.

D-15 is notoriously insensitive to low to moderate deficiencies

Looks right

COLOR 1				
	$\begin{aligned} & \frac{\text { 娄 }}{3} \\ & \frac{1}{3} \\ & \frac{1}{3} \end{aligned}$	Subject's Response		
		Pass	Fail	
		Demonstration Plate		
1	48	\checkmark		
2	57	V		81
3	38		33	
4	92		95	
5	70		75	
6	95	\checkmark		
7	26	\checkmark		
8	2	\checkmark		
9	74		46	
10	62		19	
11	4		2	
12	28		23	
13	46	∇		
14	7	\checkmark		
15	39		35	=

Farnsworth-Munsell 100 Hue Test

Farnsworth-Munsell 100 Hue Test

Severe Deutan

Normal | Typical

 color vision

Estimated Psi

Cone		Threshold	Error	Trials	Ave Time	Score	Category ${ }^{1}$
	Red L	1.2\%	4.1\%	30	3.3	101	Normal
OD	Green M	6.6\%	1.7\%	30	2.4	28	Severe (Deutan)
	Blue S	10.3\%	2.4\%	30	2.5	119	Normal
	Red L	1.5\%	3.7\%	30	1.8	91	Normal
OS	Green M	5.5\%	4.0\%	30	1.6	36	Severe (Deutan)
	Blue S	11.6\%	1.8\%	30	1.8	114	Normal

A Dental Professor Research in: color for reconstruction

E.P. 29-yo female

Experiencing loss of vision in OS with pain which lasts for several hours.
DVA OD 20/25 OS 20/25 OU 20/20
NVA OD 20/40 OS 20/30 OU 20/25
Binocular Balance: OD +0.50-0.25 165 OS +0.50 20/20 OD, OS, OU PRA: -3.50 NRA: +2.50

VEP's: 5 check sizes, OD, OS, OU all normal with binocular summation and no latency differences and no overall delay.

$T-20-\mathrm{p}-16 \times 16-\mathrm{OU}-85 \%-\mathrm{C}-12 / 12 \mathrm{2} 017$ 10:25:36 AM $T=20-\mathrm{P}=16 \times 16-0 \mathrm{D}-854-\mathrm{C}-12 / 12 / 2017$ 10:28:24 AM $\mathrm{T}=20-\mathrm{P}=16 \times 16-05-85 \%-\mathrm{C}-12 / 12 / 2017$ 10:31:05 AM

		$\begin{array}{lll} T=2 \theta-P=16 \times 16-0 U-85 \%- \\ C-12 / 12 / 2017 & 10: 25: 36 \mathrm{AM} \end{array}$	$\begin{aligned} & \hline T=20-\mathrm{P}=16 \times 16-0 \mathrm{D}-85 \%- \\ & \mathrm{C}-12 / 12 / 2017 \mathrm{10:28:24} \mathrm{AM} \\ & \hline \end{aligned}$	$\begin{array}{ll} \begin{array}{l} \mathrm{T}=20-\mathrm{P}=16 \times 16-0 S-85 \%- \\ C-12 / 12 / 2017 \\ 10: 31: 05 \mathrm{AM} \end{array} \end{array}$
Left Cursor	Lat	68.4 ms	77.1 ms	68.4 ms
	Amp	-2.37 uV	-3.10 uV	-3.59 uV
Right Cursor	Lat	104.5 ms	104.5 ms	105.5 ms
	Amp	17.58 uV	9.94 uV	10.22 UV
Delta	Lat	36.1 ms	27.3 ms	37.1 ms
	Anp	19.95 uV	13.05 uV	13.81 uV

Houston we have a problem!

Normal | Typical

color vision
contrast threshold range not tested with CCT (original)

Possible

contrast sensitivity loss or acquired color deficiency

Contrast Responses by Trial

PSI Graph

Cone	L	M	S	L	M	S
Reaction time (secs)	2.9	2.1	3.9	2.3	1.7	3.0
Contrast Threshold \% (Alpha)	2.66	3.69	229.51	5.09	5.27	241.89
Standard Error (Alpha)	0.66	0.93	84.86	1.44	1.48	75.32

Show responses

B.C. 61-yo female

HTN since 1985, high cholesterol
$1^{\text {st }}$ exam at SCO: 10/27/17
DVA with Rx: OD 20/15 OS 20/15 OU 20/15
NVA with Rx: OD 20/20 OS 20/25 OU 20/25
Binocular Balance: OD +0.25-0.50 x 59 OS +0.25 20/20 all
Brought back for DFE 11/16/17

- Scattered punched out lesions OU
- Pigmentary changes throughout
- CD OD .35/.35 OS .65/.65
- 24-2 OD ok - possible arcuate superior OS

Nidek Micro-Perimeter

Normal | Typical

color vision
 with CCT (original)

Possible

contrast sensitivity loss or acquired color deficiency

Color Vision Deficient genetic or acquired

Contrast Responses by Trial

Cone	L	M	S	L	M	S
Reaction time (secs)	3.7	3.1	2.6	2.0	2.4	2.5
Contrast Threshold \% (Alpha)	1.95	1.97	58.35	2.48	3.98	65.78
Standard Error (Alpha)	0.78	0.55	19.54	2.58	1.12	22.62
Show responses	\checkmark Show range					

58-yo male

9/7/17 sent in by outside OD
Type 2 diabetic - elevated A1C in June 7.3\% - on steroid for pneumonia - BP 140/88

DVA with Rx: OD 20/15-3 OS 20/15-1 OU 20/15-2
NVA with Rx: 20/25+ all
ASEG - nothing interesting
PSEG OD shows Drusen scattered but not in OS.
NOTES: OD appears like intermediate AMD. $2^{\text {nd }}$ opinion by another doctor: Could be CACD but very asymmetric. Spectralis shows choroidal irregularity and Drusen affecting the RPE layer.

Multi focal ERG
 OD
 OS

mfERG Ring Analysis

$\mathrm{Nl}(\mathrm{nV} / \operatorname{deg} 2)$
-36.76
4.57
-3.03
-1.89
-1.37
-0.22
-1.88
$\mathrm{Pl}(\mathrm{nV} / \mathrm{deg} 2)$
52.04
10.65
6.34
3.35
2.56
2.45
2.57
Diff(nV/deg 2$)$
88.81
6.08
9.37
5.24
3.93
2.67
4.46

N1 (nV/deg2)
\square
\square
\square
\square
\square
\square
\square $\begin{aligned} & -20.42 \\ & -6.37 \\ & -2.14 \\ & -0.14 \\ & -2.42 \\ & -1.23 \\ & -2.61\end{aligned}$

\square
\square

\& -6.37

\& -2.14

\& -0.14

\& -2.42

\& -1.23

\& -2.61\end{aligned}\)

\square
\square

\& -6.37

\& -2.14

\& -0.14

\& -2.42

\& -1.23

\& -2.61\end{aligned}\)

\square
\square

\& -6.37

\& -2.14

\& -0.14

\& -2.42

\& -1.23

\& -2.61\end{aligned}\)

\square
\square

\& -6.37

\& -2.14

\& -0.14

\& -2.42

\& -1.23

\& -2.61\end{aligned}\)

\square
\square

\& -6.37

\& -2.14

\& -0.14

\& -2.42

\& -1.23

\& -2.61\end{aligned}\)

\square
\square

\& -6.37

\& -2.14

\& -0.14

\& -2.42

\& -1.23

\& -2.61\end{aligned}\)
Pl $(\mathrm{nV} / \mathrm{deg} 2)$
28.00
4.82
4.00
4.11
2.10
1.36
2.40

Diff(nV/degz)
48.42
11.18
6.14
4.25
4.52
2.59

ColorDx CCT-HD Results

CCT-HD Data

Historical Methods: Lower Sensitivity and Specificity

100s of Substances and Pharmaceutical Agents Can Cause Color Vision Defects

The
opportunity is to augment clinical data with a new test of vision function assessing cone function.

acetohexamide adrenal cortex injection	ethambutol ethionamide	mescaline	rrantidine escinnamine
alcohol	famotidine	methazolamide	reserpine
amobarbital	fludrocortisone	methohexital	quinine
aspirin	uphenazine	methylphenobarbital	radioactive iodid rantidine
atropine	glaucoma	metlylprednisolone metoclopramide	rescinnamine
beclomethasone	glibenclamide	metoclopramide metronidazole	reserpine rifampicin
betamethasonebroxyquinolone butalbital	glimepiride	multiple sclerosis	rimexolone
carbamazepine	glipizide	nalidixic acid	rosiglitazone
carbon dioxide	griseofulvin	naproxen	secbutalbarbital
cataracts	hashish	nitrofurantoin nizatidine	sildenafil (Viagra)
chloroquine	herbal medicines	norepinephrine	sulfacetamide
chlorpromazine	homatropine	organophosphates	sulfafurazole
chlorpropamide cimetidine	hydrocortisone	oxazepam	sulfamethizole
cisplatin	hydroxychloroquine	penicillamine	sulfamet\|1oxazole
cortisone	ibuprofen	pentobarbital perphenazine	sulfasalazine
deferoxamine denileukin diftitox	indometacin	phenelzine	sulfathiazole tadalafil
dexamethasone	influenza virus vaccine	phenobarbital	tamoxifen
diabetes	iodide and iodine solutions \&	phenytoin physostigmine	thiabendazole
dicyclomine	compounds	pilocarpine	thietllylperazine thioacetazone
diiodohydroxyquinoline	isocarboxazid isoniazid	pioglitazone	tllioridazine
dimethyl sulfoxide	isotretinoin	piperazine	tioguanine
disulfiram dronabinol	lidocaine	prednisolone	tobramycin
epinephrine	linezol	prednisone	tolbutamide
ergometrine	idlorazepam	primidone	tolterodine
ergotamine tartrate	LSD	prochlorperazine	tranexamic acid
erythromycin		promethazine	tranylcypromine
estradiol	marijuana	propantheline	triamcinolone
estrogen \&	medrysone	psilocybin	vardenafil
	mepacrine	pyridostigmine	vigabatrin vincristine
progestogen	mercaptopurine	quinidine	voriconazole
combo products		quinine radioactive iodides	waliarin
			zidovudine
Source: Fraunfelder, Please reference	er, Chambers. Clinical Ocular Toxicology cular Toxicology for categorization of col added to highlight common substances	ders Elsevier, 2008: 320. Availab ion defects by certain, probable, neglected in relationship to acq	se at: Elsevier and Amazon onditional/unclassified. ion defects.

How about some vanilla color deficiencies?

'Cut-off criteria are physician-selected from custom, or user input score method ranges and corresponding assigned categories.

${ }^{1}$ Cut-off criteria are physician-selected from custom, or user input score method ranges and corresponding assigned categories.

Billing and Diagnosis Codes

Extended Color Testing: 92283
approximately \$65

- Deutan H53.53
- Protan H53.54
-Tritan H53.55

Questions \& Answers

Paul Harris, OD
Professor, Southern College of Optometry
1245 Madison Avenue
Memphis, TN 38104
901-722-3273

