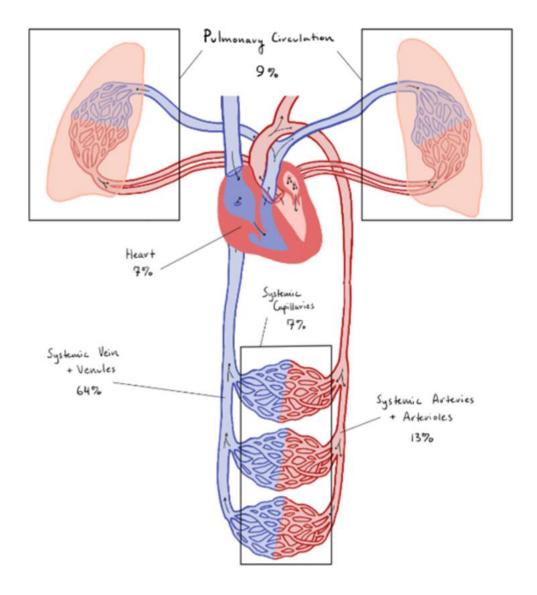

Mechanical Circulatory Support

Richard Yeom MD Assistant Professor of Anesthesiology New York Medical College Westchester Medical Center December 16, 2023

Basic Circulatory Pathway

What is MCS?

Biventricular Support (VA ECMO, TAH)

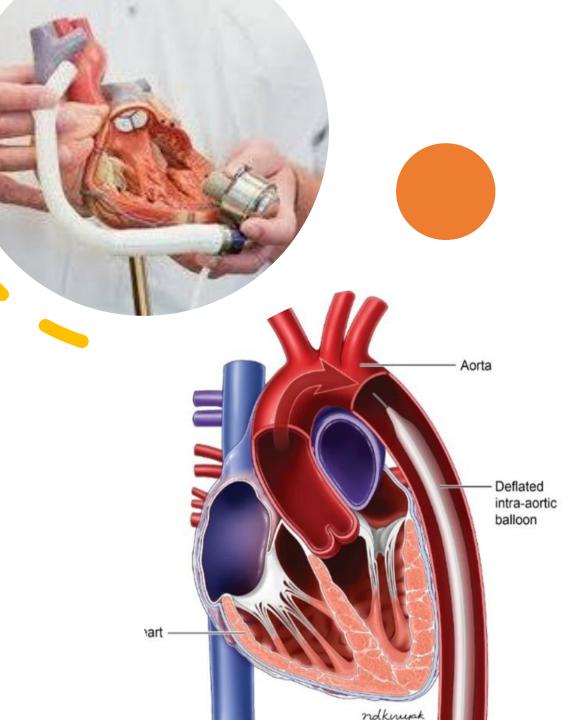

Support for Left sided Heart (IABP, HM3, Impella)

ECpella (VA ECMO + Impella)

Circulatory Pathway

Right Ventricle – Pumps blood to lungs, eventually to left heart Lungs – Gas exchange Left Ventricle – Pumps blood to systemic organs Oxygen delivery and organ perfusion is compromised if

one fails

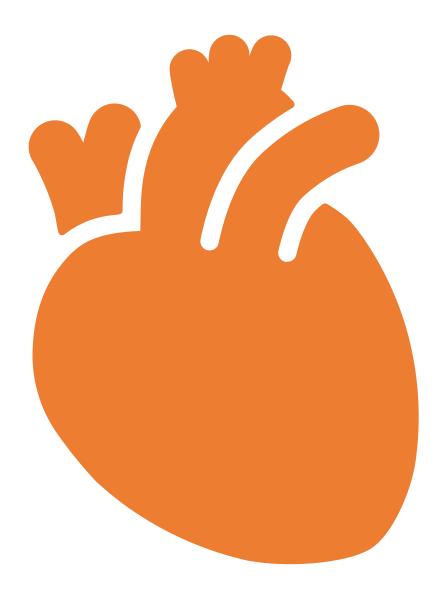


David Nascari and Alan Sved, CC BY-SA 4.0, via Wikimedia Commons

What is MCS?

Augments or replaces the work of RV/Lung/LV to maintain adequate perfusion and oxygen delivery

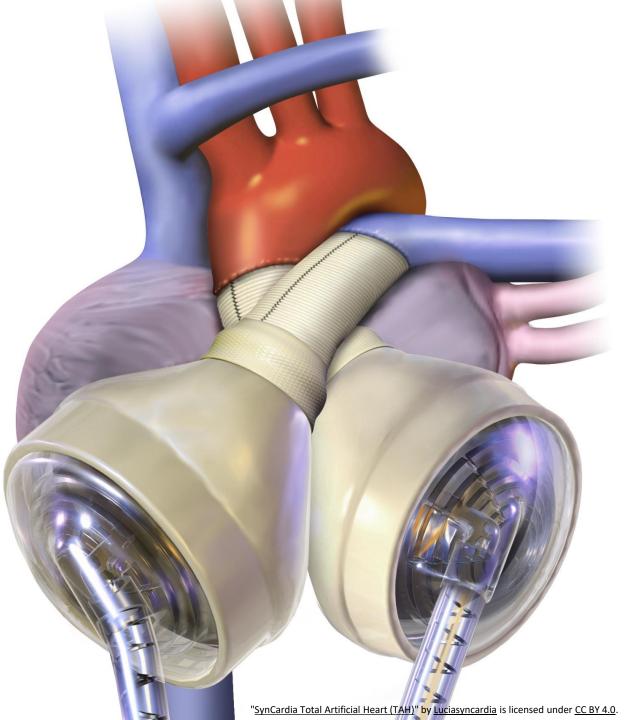
We will be discussing the most widely used options



"Kunstherz Hand" by <u>7asmin</u> is licensed under <u>CC BY-SA 4.0</u>.

"Intra-aortic balloon pump" by Nazdezhda D. Kiriyak Jane Lichorowic is licensed under CC BY 4.0.

Biventricular Support


- Total Artificial Heart (TAH)
- Veno-Arterial Extracorporeal Membrane Oxygenation (VA ECMO)

Total Artificial Heart (TAH)

Total Artificial Heart

- First human implantation of Liotta TAH used as BTT in 1969.
- SynCardia TAH
- Indicated for Severe biventricular failure
- Originally Bridge to Transplantation, but can be used as destination
- Can provide long-term support, documented greater than 5 years as bridge device.

Total Artificial Heart

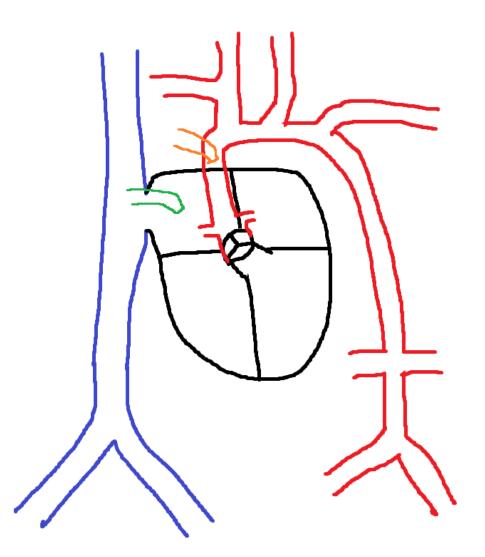
- Two models: Syncardia 50ml (BSA < 1.85) and 70ml (BSA > 1.85)
- Pneumatic diaphragm pump (pulsatile)
- Existing ventricles are completely excised
- Connected to the external driver and patients can be discharged home.
- Heart rate and drive pressure are regulated to maintain partial fill of each ventricle, thus reducing risk of thrombus formation.
- ASA and Warfarin

Total Artificial Heart

- Based on data provided by Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS)...
- 1 year after surgery, 53.3% received transplant, 32.3% died before transplant, 14.4% still alive with device at 12 months.
- 24% of the patients with TAH at 12 months were discharged from hospital.
- Most common cause of death was multi organ failure (36%), neurological dysfunction (17.9%), and withdrawal of support (11.7%).
- In the first 6 months, infection 70%, stroke, 22.7%, and GI hemorrhage 20%.

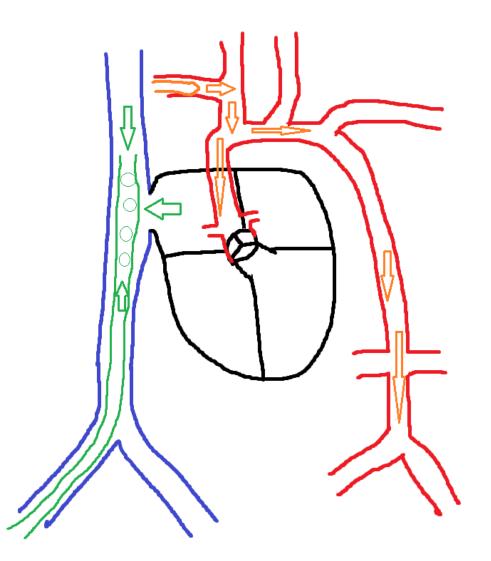
Extracorporeal Membrane Oxygenation (ECMO)

ExtraCorporeal Membrane Oxygenator (ECMO)

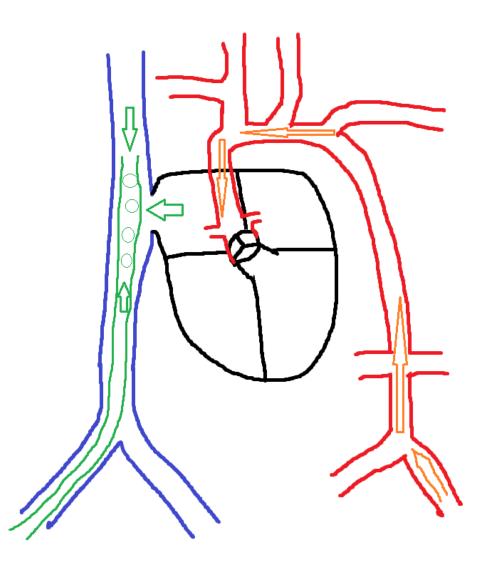

- ECMO pumps blood outside the body to oxygenate and remove CO2 from blood and pumps back into the circulation to replace the work of heart and/or lungs.
- ECMO circuit is smaller than the usual cardiopulmonary bypass. Portable.
- VA: Replaces the work of the Heart +/- lungs
- VV: Replaces the work of the lungs only
- VA ECMO Indications: Cardiogenic shock, Cardiac arrest with CPR in progress
- Bridge to decision, Bridge to recovery, Bridge to transplant, but donor availability limiting
- Relative contraindications: Irreversible organ dysfunction, decreasing quality of life (neurologic damage, malignancy, severe risk of anticoagulation), old age, aortic dissection, lack of exit strategy

VA ECMO cannulation

- Central
 - Aorta, Right atrium/SVC/IVC/Fem V
- Peripheral
 - Fem A, Fem V
 - Axillary A, Fem V


Central VA ECMO Cannulation

- Arterial
 - Aorta
- Venous
 - Right atrium
 - SVC + IVC
 - Femoral Vein

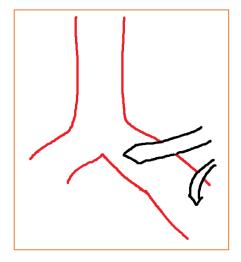

Peripheral VA ECMO Cannulation (Axillary)

- Arterial
 - Axillary Artery
- Venous
 - Femoral Vein

Peripheral VA ECMO Cannulation (Femoral)

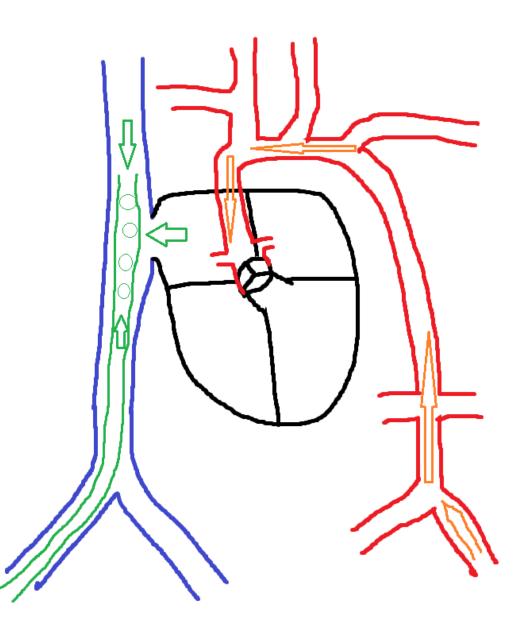
- Arterial
 - Femoral Artery
- Venous
 - Femoral Vein

Physiologic effects of VA ECMO

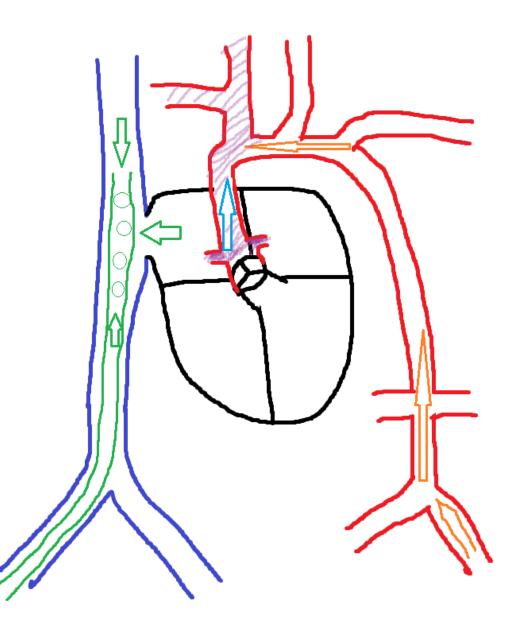

- Patients with heart failure already have high LVEDV and LVEDP
- When VA ECMO is started at this state the following happens:
 - MAP increases (from ECMO flow)
 - Stroke volume decreases (reduction of intracardiac blood flow & increased afterload)
 - Reduction in SV leads to increase in LVEDV, which leads to further increase in LVEDP
 - Although less blood is entering LA/LV, there still is blood entering via Right heart & lungs, thebesian veins, and Aortic regurgitation, if present
 - Leads to higher myocardial oxygen consumption
- Monitoring LV distension is important
- All this negative effect of VA ECMO is balanced by increase in coronary perfusion and increase in oxygen delivery

VA ECMO considerations

- Anticoagulation
 - Activated partial thromboplastin time between 50-60 seconds to prevent circuit thrombosis
- Ventilator
 - Mechanical ventilation is less critical since VA/VV ECMO provides full support, but is important to minimize injury
 - Ultra Lung Protective Ventilation
 - Low tidal volume (3-5ml/kg) with low airway pressure.
 - PEEP 10-15mmHg to maintain alveolar expansion.
 - FiO2 below 40%
- Transfusion
 - Hemoglobin goal of 10 mg/dl


Complications of ECMO

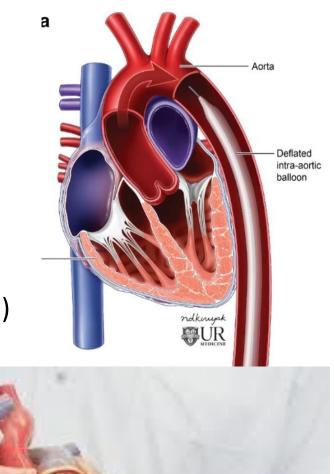
- Bleeding
- Stroke (4%)
- Infection (50% -> mortality rate greater than 60%)
- Limb Ischemia (Femoral A) Use of distal perfuser helpful
- LV thrombus
 - Very low stroke volume with minimal AV opening -> Stagnant blood in LV -> LV thrombus
 - Assess AV opening and pulse pressure using arterial line
- Pulmonary edema
 - Increased afterload -> Increased LVEDP -> Increased LAP -> Increased PCWP -> Pulmonary edema
 - Goal pulmonary artery diastolic pressure < 22 mmHg
 - LV Venting strategies (IABP, Impella, transseptal cannula)

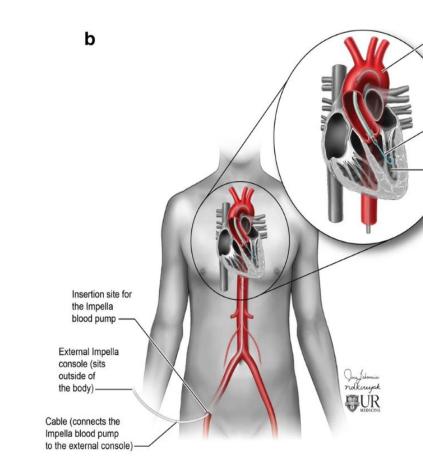

Harlequin Syndrome

- North-South Syndrome
- Peripheral VA ECMO
- Respiratory function is poor and deoxygenated blood from the left ventricle is pumped into the arterial circulation to proximal structures (Coronary arteries and carotid arteries)
- In severe cases, deterred myocardial recovery and cerebral ischemia

Harlequin Syndrome

- Must have right radial arterial line for arterial blood gas (or pulse ox on right hand)
- Cerebral oximeter may be useful
- Treatment
 - Increase VA ECMO flow
 - Decrease inotropic medication
 - Beta blocker to decrease HR to decrease Left heart output
 - Re-configuration to central VA ECMO or VAV ECMO (Outflow to Fem A and SVC)

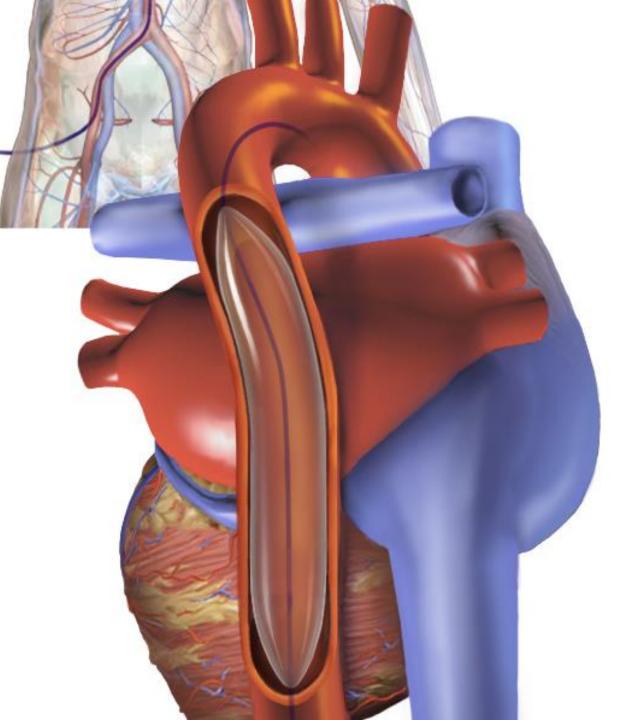



Clinical Pearls

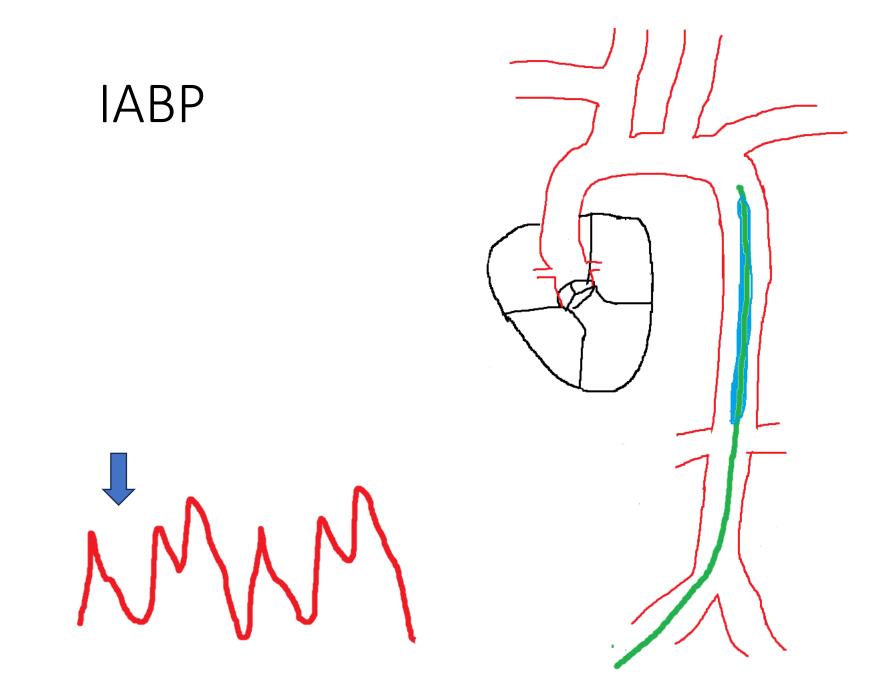
- Confirming intubation May have very low end tidal CO2
- Do not assume the ECMO flow is full flow
 - If low ECMO flow, patient relies heavily on native circulation, so must be ventilated appropriately
- Some medications are highly sequestered by ECMO circuit, so may require higher dose
 - Fentanyl, Propofol, Midazolam

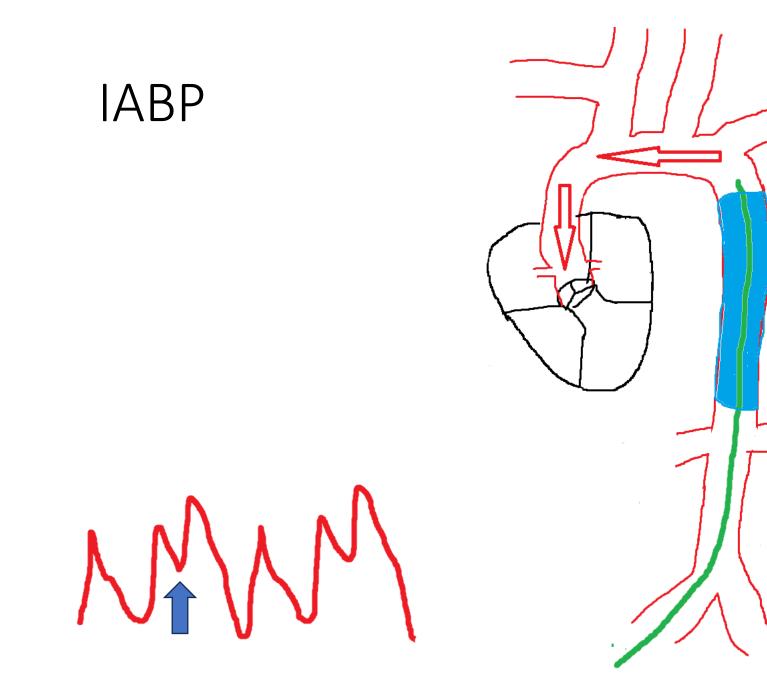
Left Heart Support

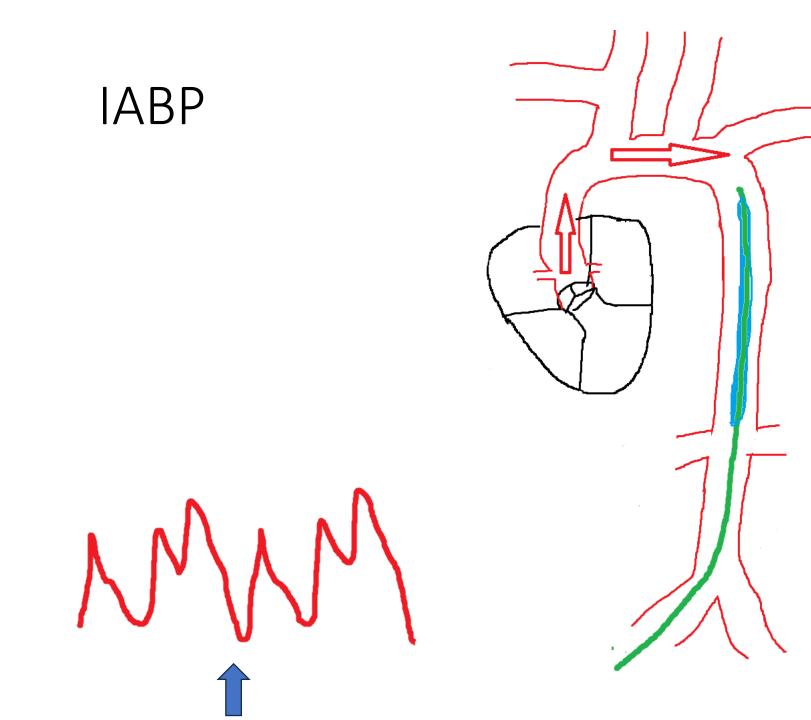
- Intra-aortic balloon pump (IABP)
- Left Ventricular Assist Device (LVAD)
- Impella
- VA ECMO



"Intra-aortic balloon pump" by Nazdezhda D. Kiriyak Jane Lichorowic is licensed under <u>CC BY 4.0</u>.

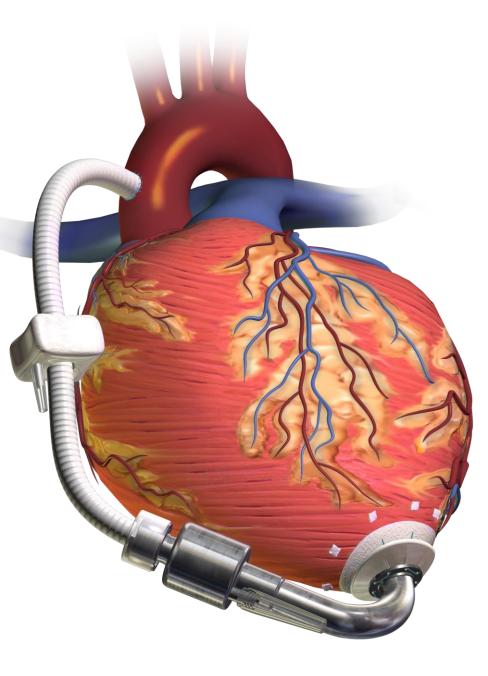

Intra-Aortic Balloon Pump (IABP)


Intra-aortic Balloon Pump


- 1st IABP placement in 1968 by Dr. Kantrowitz
- Percutaneous IABP introduced in 1979
- Counterpulsation
 - Inflation in diastole
 - Increased coronary perfusion
 - Deflation in early systole
 - Decreased LV afterload
 - Decreased Cardiac work
 - Decreased LVEDP
 - Decreased myocardial oxygen consumption
 - Increased cardiac output

"File:Intraaortic Balloon.png" by BruceBlaus is licensed under CC BY-SA 4.0.

Indications/Contraindications of IABP


• Indications

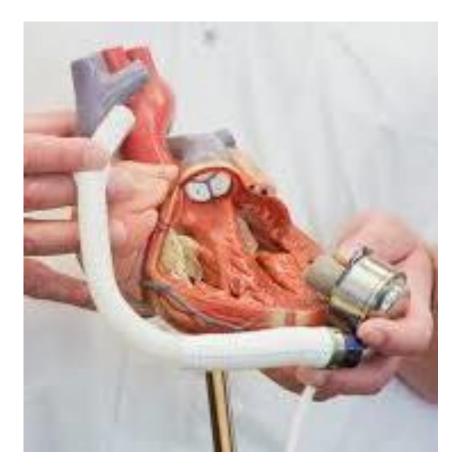
- Acute myocardial infarction (unstable angina, ruptured papillary muscle, until definitive therapy)
- Cardiogenic shock
- Prior to high-risk CABG or PCI
- Inability to separate from CPB
- Bridge to transplant/decision
- Contraindications
 - Absolute
 - Aortic regurgitation
 - Aortic dissection
 - No exit strategy
 - Aortic stents
 - Relative
 - Sepsis
 - Abdominal aortic aneurysm
 - Severe peripheral vascular disease

Complications of IABP

- Limb ischemia
- Local vascular injury
- Thromboembolism
- Aortic dissection
- Balloon rupture leading to helium embolization
- Thrombocytopenia & hemolysis
- Mesentery ischemia
- Malperfusion of organs secondary to malpositioning

Left Ventricular Assist Device (LVAD)

Left Ventricular Assist Device


- Replaces/Assists the work of left ventricle
- Removes blood from LV and pumps the blood into the aorta
- Only supports the left ventricle
- Modern day LVADs are portable

LVAD history

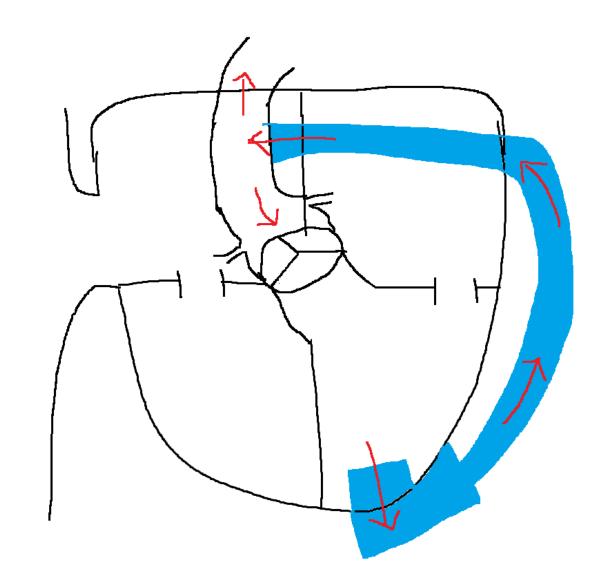
- 1953 1st open-heart surgery using cardiopulmonary bypass (for ASD repair) by Dr. Gibbon
- 1963 1st artificial ventricle in patient with cardiogenic shock s/p AVR (intrathoracic pump implanted in left chest that connected LA to thoracic aorta. Patient died 4 days later.)
- 1966 1st pneumatic powered, paracorporeal left ventricular assist device (LVAD). Flow rate of 1200mL/min. DC 10 days later. Patient survived. Dr. DeBakey
- 1967 1st heart transplant (Since then, no longer bridge to recovery. Now bridge to transplant)
- 1984 1st electric pulsatile Novacor LVAD introduced. (Pulsatile pump designed to mimic the function of the heart)
- 2001 REMATCH Trial. LVAD vs maximal medical therapy. 1st year survival 52% vs 25%. LVAD now approved for Destination Therapy.
- 2008 HM II approved by the FDA (Axial pump)
- 2017 HM III approved by the FDA (Centrifugal pump)

HeartMate 3

- Approved in 2017 by the FDA
- Most commonly implanted LVAD (20,000 implanted worldwide)
- Indications
 - Destination Therapy
 - Bridge to Transplant
 - Bridge to Candidacy
- Magnetic levitation technology that minimizes the shear stress and stasis
- Centrifugal pumps (HM3) vs axial pump (HM2)
 - Reduced hemolysis and platelet activation.
- Expected lifespan of 5-10 years

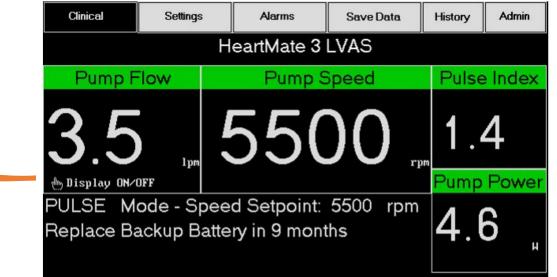
LVAD Key Trials

- MOMENTUM 3 (HM3 vs HM2)
 - 2 year event free survival 74.7% vs 60.6%
 - 5 year survival rate 58% vs 44% (2019)
 - Statistically significant reduction in stroke, suspected pump thrombosis, pump replacement, & GI bleeding at 2 years and 5 years
 - HM3 was declared "superior" to the HM2
 - Led to removal of HM2 from the US market
- ELEVATE Registry
 - Follows HM3 patients in Europe, Australia, and the Middle East
 - 5 year survival rate 63% (published Nov 2023)


LVAD Intraoperative consideration

Pre-Procedure

- Shunt
 - Patent foramen ovale
 - Atrial septal defect
 - Ventricular septal defect
- Thrombus
 - Left atrial appendage thrombus
 - Left ventricular apical thrombus
- Aortic Regurgitation
- **R**V dysfunction
- Mitral Stenosis


Post-Procedure

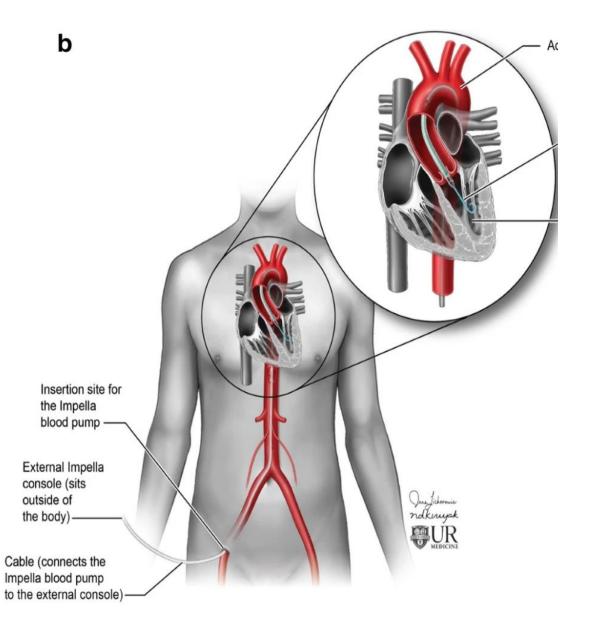
- STAR
- Ventricular septum position
- Velocity through inflow and outflow cannula

LVAD Dashboard

- Speed (RPM): Fixed range of 3,000 9,000
 - Higher the speed, higher the flow
- Flow (L/min): Estimate that is derived from a calculation of fixed speed, power, and patient's hematocrit value
 - Increased BP will DECREASE flow through the pump
- Power (watt): Direct measurement of pump motor voltage and current.
 - Increased power could indicate thrombus or AI
 - Gradual power decrease may indicate obstruction of flow
- Pulsatility Index (unitless): Flow pulses averaged over 15-second intervals
 - During systole, LV contracts, increasing ventricular pressure that causes increase in pump flow (Pump pulse)
 - Decrease in PI may indicate a decrease in circulating blood volume

Common LVAD Alarms

- High Flow
 - Likely 2/2 vasodilatory state
 - Diagnose and treat. Possible Sepsis. Consider vasopressor
- Low Flow
 - Suction event: Hypovolemia
 - Fluid bolus, transfusion, treat arrhythmia, decrease RPM transiently
- High Power
 - Pump thrombosis
 - Anticoagulation, pump exchange
- Low Power
 - Pump failure/disconnection
 - Check connections
- Low Pulse Index
 - Suction event: Hypovolemia
 - Fluid bolus, transfusion, treat arrhythmia


LVAD Complications

- Gastrointestinal Bleeding (9-24%)
 - Non-pulsatile flow increases the risk of GI AVM formation
 - Acquired vWS due to increased destruction of high-molecular weight von Willebrand monomers
 - Patients are on anticoagulation
- Pump Thrombosis
 - 10-13% on HM2, 1.5% on HM3
- Stroke (10%)
 - MAP > 90mmHg linked to hemorrhagic stroke
 - Ischemic stroke may result from emboli formed in the LA, LV, or pump thrombosis
- RV Failure (15-34%)
- Infection (25-58%)

- LV assist device that continuously pumps blood from LV into the aorta.
- Replaces/supplements the work of LV
- Reduces LVEDV and LVEDP
- Introduced in 2002. First FDA approval in 2008 (Impella 2.5)
- Most recent model is Impella 5.5 (approved in 2019)
- Placed into femoral or axillary artery

- Indications
 - High-Risk Non-emergent PCI
 - Hemodynamic support during VT ablation
 - Bridge to permanent LVAD placement
- Contraindications
 - LV Thrombus
 - Mod to Severe Al
 - Severe peripheral vascular disease (placement)
- Complications
 - Vascular injury
 - Limb ischemia
 - Stroke
 - Myocardial infarction

Impella Models

Impella 2.5

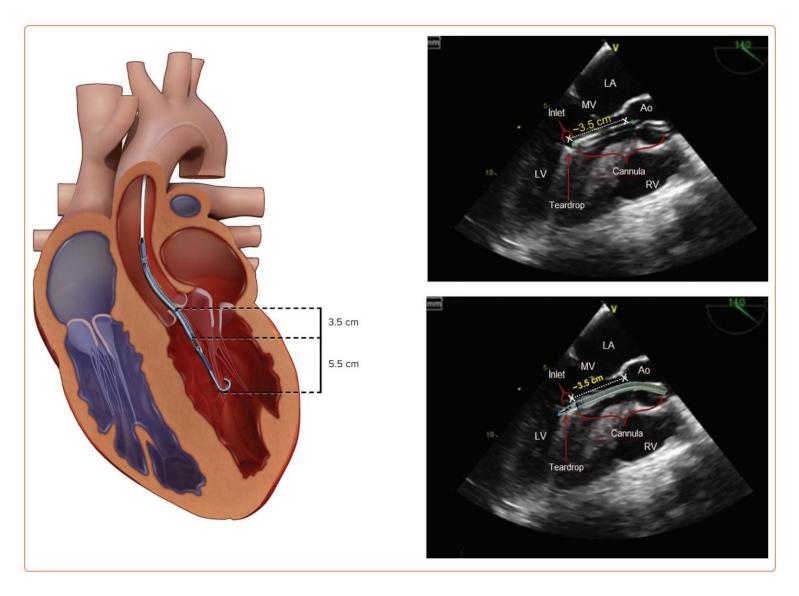
- Maximum flow rate 2.5L/min
- Percutaneous 12-Fr sheath in Femoral artery
- FDA approval up to 5 days

Impella CP

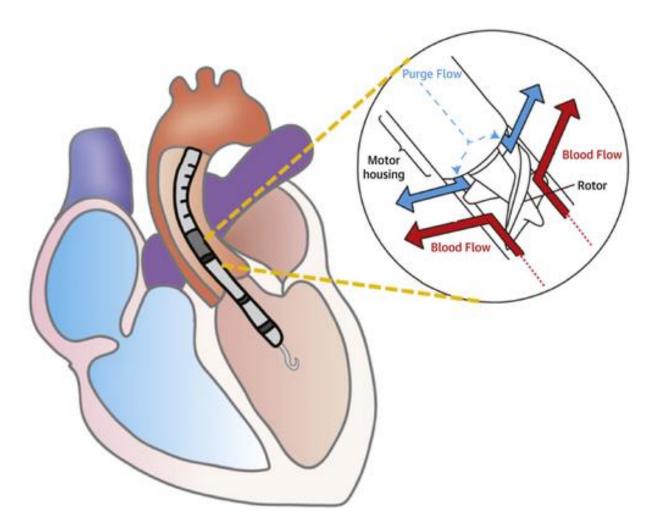
- up to 4.3 L/min
- Percutaneous insertion of 14-Fr sheath in the femoral artery
- FDA approval up to 5 days

Impella 5.0

- 5.0 L/min
- Surgical cut-down insertion of 21-Fr sheath.
- Axillary artery preferred to allow for ambulation
- FDA approval up to 10 days


Impella 5.5

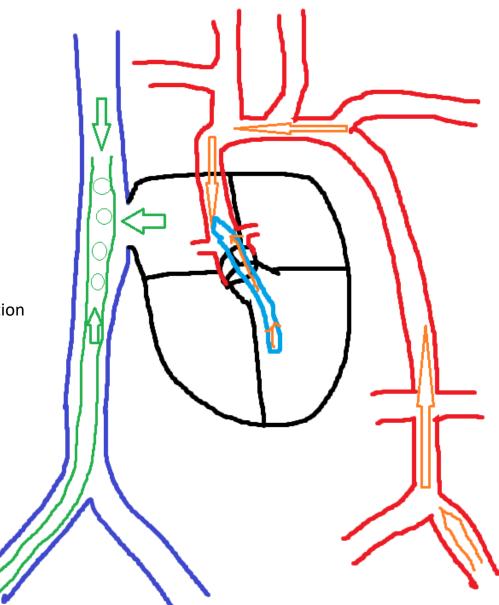
- up to 6.0L/min
- Surgical cut-down insertion with a 21-Fr sheath
- Axillary artery or directly to the ascending aorta
- FDA approval up to 30 days



Impella positioning

- Positioning on TEE
- 2.5/CP
 - 3.5cm to inlet
 - 5.5cm to pigtail
- Impella 5.5
 - 5cm to inlet

- Anticoagulation
 - Purge solution contains heparin
 - Purge enhances device protection against deposition of coagulated blood
 - Systemic heparin is usually necessary
- P-level
 - Determines the flow
 - P-1 to P-9 (Impella 5.5)
 - In cardiac arrest, reduce to P-2 to prevent suction event



Vandenbriele, C, Arachchillage, D, Frederiks, P. et al. Anticoagulation for Percutaneous Ventricular Assist Device-Supported Cardiogenic Shock: JACC Review Topic of the Week. J Am Coll Cardiol. 2022 May, 79 (19) 1949–1962. https://doi.org/10.1016/j.jacc.2022.02.052. Open Access Article under the CC BY-NC-ND License.

ECpella

- VA ECMO + Impella
- Problem with VA ECMO
 - With retrograde flow, AI gets worse and LV is distended
 - Commonly used in the past if AI was severe with VA ECMO
 - Even with no significant AI
 - Higher LVEDP & LV Distension lead to higher oxygen consumption
 - Impella would allow for decompression of LV
- Desired effect
 - Decompression of LV
 - Decreases oxygen consumption
 - Decreased LV afterload
 - Decreases oxygen consumption
 - Coronary perfusion with decreased oxygen consumption
 - leads to LV recovery over time
- Easier transition to wean from Ecpella to Impella

Reference

- 1) Glazier JJ, Kaki A. The Impella Device: Historical Background, Clinical Applications and Future Directions. Int J Angiol. 2019 Jun;28(2):118-123. doi: 10.1055/s-0038-1676369. Epub 2018 Dec 20. PMID: 31384109; PMCID: PMC6679960.
- 2) Zein R, Patel C, Mercado-Alamo A, Schreiber T, Kaki A. A Review of the Impella Devices. Interv Cardiol. 2022 Apr 8;17:e05. doi: 10.15420/icr.2021.11. PMID: 35474971; PMCID: PMC9026144.
- 3) Karimov JH, Starling RC, Fukamachi K, eds. Mechanical Support for Heart Failure : Current Solutions and New Technologies. 1st ed. 2020. Springer; 2020. doi:10.1007/978-3-030-47809-4
- 4) Choi MS, Sung K, Cho YH. Clinical Pearls of Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock. Korean Circ J. 2019 Aug;49(8):657-677. doi: 10.4070/kcj.2019.0188. PMID: 31364329; PMCID: PMC6675698.
- 5) Crow, Jessica*; Lindsley, John*; Cho, Sung-Min⁺; Wang, Jing[‡]; Lantry, James H. III[‡]; Kim, Bo S.§; Tahsili-Fahadan, Pouya⁺,[‡],¶. Analgosedation in Critically III Adults Receiving Extracorporeal Membrane Oxygenation Support. ASAIO Journal 68(12):p 1419-1427, December 2022. | DOI: 10.1097/MAT.00000000001758
- 6) Murli Krishna, Kai Zacharowski, Principles of intra-aortic balloon pump counterpulsation, Continuing Education in Anaesthesia Critical Care & Pain, Volume 9, Issue 1, February 2009, Pages 24–28, <u>https://doi.org/10.1093/bjaceaccp/mkn051</u>
- 7) Mehra MR, Goldstein DJ, Cleveland JC, Cowger JA, Hall S, Salerno CT, Naka Y, Horstmanshof D, Chuang J, Wang A, Uriel N. Five-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA. 2022 Sep 27;328(12):1233-1242. doi: 10.1001/jama.2022.16197. PMID: 36074476; PMCID: PMC9459909.
- 8) Jan D Schmitto, Steven Shaw, Jens Garbade, Finn Gustafsson, Michiel Morshuis, Daniel Zimpfer, Jacob Lavee, Yuriy Pya, Michael Berchtold-Herz, AiJia Wang, Carlo Gazzola, Evgenij Potapov, Diyar Saeed, on behalf of the ELEVATE Registry Investigators, Fully magnetically centrifugal left ventricular assist device and long-term outcomes: the ELEVATE registry, European Heart Journal, 2023;, ehad658, <u>https://doi.org/10.1093/eurheartj/ehad658</u>
- 9) Vandenbriele, C, Arachchillage, D, Frederiks, P. et al. Anticoagulation for Percutaneous Ventricular Assist Device-Supported Cardiogenic Shock: JACC Review Topic of the Week. J Am Coll Cardiol. 2022 May, 79 (19) 1949–1962.