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Nonlinear Pesticide Dissipation in Soil: A New Model Based on Spatial

Variability
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@ In both laboratory and field studies, the dissipation of
pesticides in soil often fails to follow simple first-order
reaction kinetics. Rather than being linear when plotted
as In C versus time, the dissipation data are curved, typ-
ically concave upward. This nonlinear behavior has now
been described successfully through the use of a new
first-order, nonlinear kinetic model. The nonlinear model
is based on the assumption of a spatially variable first-
order rate constant, and it reduces to the linear case when
the rate constant is spatially uniform. Excellent fits to
both laboratory and field data are obtained for all pesti-
cides modeled. Interestingly, the relative variability found
for the rate constant is similar for laboratory and field
studies, suggesting that the length scale of the spatial
variability is very small, possibly on the order of pore-size
dimensions.

Introduction

Soils are heterogeneous (1-6). In spite of this, most
theoretical descriptions of pesticide dissipation kinetics
in soil have relied upon models that assume some degree
of homogeneity (7-16). This fundamental discrepancy may
be responsible for the general failure of these models to
adequately characterize observed dissipation curves
(17-19). We take a new approach in this paper and show,
by explicitly acknowledging the heterogeneity or spatial
variability of soil, that one can derive a simple, nonlinear,
first-order kinetic model of pesticide dissipation giving
excellent fits to observed data.

As used in this paper, the term dissipation refers to the
group of processes that reduces the concentration (e.g.,
percent remaining or pounds/acre) of a pesticide following
its application to a laboratory aliquot of soil or an ex-
periment field plot. As such, it includes a host of biological,
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chemical, and physical phenomena that are in turn de-
pendent on a number of soil, environmental, and cultural
factors. Processes most often associated with dissipation
are microbial degradation, chemical hydrolysis, volatil-
ization, runoff, wind erosion and photolysis (7, 12). Factors
affecting the rates of these processes include microbial
population density, temperature, amount and intensity of
precipitation, solar intensity, soil properties (moisture,
organic matter, texture, sorptive capacity), tillage, and
cropping practices (7, 12). Several of these processes and
factors are either unimportant, controllable, or ignored in
laboratory studies, but all play a role in field studies to
some degree.

All of the factors affecting dissipation rates are spatially
variable to some degree (1-6). For instance, the spatial
variations in temperature across a newly planted cornfield
are generally moderate, but the soil organic matter content
can vary by at least an order of magnitude (1, 20). Cer-
tainly at the microscopic level (where most dissipative
processes occur) there are large variations in water content
and soil sorptive capacity as different size soil pores are
encountered (I). If the applied pesticide were able to
diffuse readily throughout the entire treated field or lab-
oratory beaker, such spatial variability would not be as
critical because the system would behave more like a single,
well-mixed reactor. However, diffusion rates in soil are
notoriously slow for all but the most volatile of pesticides
(21), and the applied material is thereby confined to rather
small regions of soil, which may be very different from
others only a short distance away.

Given the apparent complexity of dissipation, it is rea-
sonable to question whether any single model could ade-
quately characterize its rate in a quantitative manner. In
fact, in a recent U.S. Environmental Protection Agency
(EPA) document (17) it is stated that “it is doubtful that
any single rate equation will ever be found which is ap-
plicable to all or most pesticides in soil”. This caveat does
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dissipation of most pesticides from soils can be considered
as following a first-order reaction at least over a portion
of the degradation curve”. Regulatory agencies such as the
U.S. EPA have dual needs for an accurate kinetic model
of dissipation curves:

(1) Some form of dissipation kinetics must be assumed
in order to model pesticide fate and transport in the en-
vironment, such as in PRZM (a leaching model) (22) or
HSPF (a runoff model) (23).

(2) The kinetic model, if it fits, allows estimates of
“benchmark” dissipation times, such as the periods re-
quired for 50% or 90% of the applied material to dissipate
(generally known as DTy, or DTy, respectively).

These benchmark dissipation times are finding in-
creasing use in screening procedures for the assessment
of leachability or other undesirable environmental prop-
erties (24, 25). As extensively discussed in the literature
(17-19), the dissipation model of most widespread use
(linear, first-order kinetics) is often inadequate for the
purpose of estimating DTy, and DTy, because the as-
sumption of linearity is generally violated to a wide degree
by the time 90% of the material has dissipated.

The effect of spatial variability on pesticide fate has been
widely discussed in the literatue as it affects sampling
requirements (5), sorption (20), and transport (2). Thus
far, however, no one has described the nonlinear effects
of spatial variability on dissipation kinetics—the subject
of this paper. We will show that acknowledgment of
spatial variability in the dissipation process leads directly
to a simple nonlinear model that gives excellent fits to both
laboratory and field dissipation data. The new model
allows reliable estimates to be made of DTj,, DTy, and
any other aspects of the dissipation curve. Its use in en-
vironmental fate models would undoubtedly lead to im-
proved predictions of fate and transport.

Theory

The new kinetic model is outlined in this section by first
describing the traditional linear, first-order model and then
discussing the various “compartmental” models that have
been used. A shift in paradigm is then accomplished by
considering an infinite-compartment model to be repre-
sentative of spatial variability of the dissipation process.
In the equations that follow, the concentration of the
pesticide (generally expressed as percent remaining or
pounds/acre) is considered a function of time and is de-
noted by C = C(t). The theory pertains only to the dis-
sipation of the parent compound and does not consider
subsequent metabolite formation and decline.

Linear First-Order Model. A first-order reaction
model is commonly used to describe dissipation kinetics
(7-16). The model is defined by the relation

dC/dt = -kC 1)

in which the time derivative of the concentration, dC/dt,
is directly proportional to the concentration. The pro-
portionality coefficient, &, is usually termed the first-order
reaction rate constant. Reaction models of order other
than 1 have sometimes found empirical use due to an
improved fit with experimental data. In particular, Timme
et al. (10) showed that models based on 1.5- and 2-order
kinetics and/or a square root of time transformation often
yield significantly better fits to dissipation data. However,
such models have no sound theoretical basis because all
known dissipation reactions are unimolecular with respect
to the pesticide (at least at the very dilute levels typically
found in the environment). The rare exceptions to this
rule of unimolecularity are certain less important physical
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Best-Fit Linear First-Order Model
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Figure 1. Data of ref 27 showing fiuazifop butyi dissipation in an

aerobic laboratory study. The line was fit by using an ordinary

isast-squares regression of in C onto time.

loss mechanisms such as runoff or erosion, which do not
have a molecular basis.

Other modifications of eq 1 have been achieved by al-
lowing the rate “constant” to be a function of time, as in
so-called “fractal reaction kinetics” (26), or by using a
dependent variable that is both a function of temperature
and time, as with the degree-days approach (12, 13).

Integrating eq 1 and taking logarithms of each side yields
a linear relationship:

InC=1nCy-kt (2)

where C, = C(0) is the initial concentration. Thus, the two
parameters, C, and k, are commonly estimated by using
a simple linear regression of the natural logarithm of the
concentration onto time. Since the standard deviation of
individual concentrations generally increases proportion-
ately with the average concentration, the logarithmic
transformation induces an efficient weighted regression.
This beneficial effect is generally lost at very low concen-
tration levels, near the detection limit, where the relative
variability increases.

An interesting and useful feature of the kinetic model
described by eq 2 is that the time necessary for the con-
centration to decline by 50% is a constant, determined
entirely by the first-order rate constant. This time is
usually called the half-life, ¢,/5, and is related to k by

t1/2 = ln 2/k (3)

Unfortunately, the dissipation data for most pesticides that
we have examined appear nonlinear when plotted as In C
versus time. This is illustrated in Figure 1 (a laboratory
study) (27) and Figure 2 (a field study) (28). This cur-
vature demonstrates that herbicide dissipation is not ad-
equately described by the traditional first-order model
presented above.

Compartment Models. A simple extension of the
first-order kinetic model, which yields curvature in the In
C versus ¢ plot, is the so-called “two-compartment” model.
Various forms of the two-compartment model have been
proposed in the literature (15, 18, 29). Three of these are
illustrated schematically in Figure 3. Hamaker and Goring
proposed (15) a five-parameter model comprised of two
compartments between which compound moves freely but
dissipation occurs only while the pesticide is in the first.
Conceptually, the two compartments represent dissolved
and sorbed phases within soil, with dissipation only pos-
sible while the pesticide is in solution. Hill and Schaalje
proposed (29) a similar system, except that the second
compartment is initially empty, no movement occurs back
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Best-Fit Linear First Order Model
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Figure 2. Data of ref 28 showing suifometuron dissipation in a field

study at Raleigh, NC. The iine was fit by an ordinary least-squares

regression of in C onto time.

° 5 ’

& & &
Dissipation Digsipation i Dissipatic i

5 Parameters 4 Parameters

4 Parameters
C0m0

Figure 3. Schematic representation of three two-compartment models
that have been proposed for the description of pesticide dissipation
in soli.

from the second to the first, and dissipation is assumed
to occur in both compartments, although at different rates.
The physical interpretation in this case is that the first
compartment represents a surface soil layer in which
dissipation is more rapid and the second compartment
represents a deeper soil layer described by slower dissi-
pation kinetics. Kazuo Nose proposed (I18) yet another
modification to the two-compartment model in which
dissipation occurs in both but no movement between
compartments is allowed. In this case, the compartments
represent two classes of spatially segregated sites within
the soil matrix. All three of these two-compartment
models have a relatively large number of parameters (four
or five). Often, a dissipation study contains only five or
fewer time points, rendering it impossible to evaluate the
fit of the model. A reduction in the number of parameters,
and a simplification in the model, may be achieved by a
theoretical extension to the independent compartmental
concept.

As part of his paper describing the use of a two-com-
partment model, Nose suggested (18) that any number of
independent compartments could be assembled to yield
a dissipation model that could be expressed as a sum of
exponentials:

n n
Cc@t) = %C,-(t) = .ZiC,-e""" 4)

= =
At each point in time, C(¢) is just the sum of the separate
concentrations, C;(t), over all n individual compartments.
Simple first-order dissipation (eq 1) holds within each
compartment. The two-compartment model actually used
by Nose to fit his data is a special case (n = 2) of this more

general form.

To proceed to the next section, we note that rather than
considering each of the n individual compartments sepa-
rately, we can combine all those, if any, that have the same
rate constant. Denote by m (m < n) the number of these
unique values of k; Let p; denote the fraction of the initial
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Figure 4. Typicai shapes of the I" distribution for three different sets
of parameters. Each distribution shown has a mean of 1.

concentration that is allocated to compartments with rate
constant k;. That is

pj = X Ci(0)/C(0) (5)
ki=k;

where the sum in the numerator is over all compartments
with k; = k;. Then eq 4 can be rewritten as

C(t) = ZiCie‘ki' = Xiijoe‘ki = .leiu(ki’ t)y (6)
= J= =

In other words, C(¢) is just the mean of all the contribu-
tions from a population of m simple first-order dissipation
processes, u(k;j, t).

From Many Compartments to Continuous Spatial
Variability. As the number of compartments gets larger
and larger, the summation of eq 6 can be replaced by the
integral

ce = f “pR)ulk, t) dk = I "pR)Ce™ dk (7)

where p(k) replaces p;. This simple extension to the
multicompartment model (eq 6) implies that there is a
continuum of spatially segregated compartments, each
undergoing a simple first-order dissipation process de-
termined by k. A probability density function (or pdf),
p(k), has been used to describe the relative allocation of
the initial concentration, C,, to the continuous array of
possible k’s. As was the case with only m discrete values
of k, in eq 6, C(t) is still simply the mean of u(k, t). The
only logical constraint on p(k) is that it be positive only
for positive values of k (otherwise a compartment would
be producing, rather than dissipating, the pesticide). While
any pdf satisfying this constraint can be employed, a
common distribution for such nonnegative random varia-
bles is the gamma (), (30), whose pdf is given by

kelek/8
k) =
f(k) T

As illustrated in Figure 4, this distribution can take on
a variety of shapes ranging from near-normal (Gaussian)
for large o to highly positively skewed for smaller a. The
parameter o is dimensionless and the parameter 8 has
units of the rate constant, typically days™. The moments
of the distribution are simple functions of the two param-
eters:

a>0,8>0,k>0 8

w=af 9)
for the mean, and

o = af? = uB (10)
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Figure 5. Data of ref 27 showing fluazifop butyl dissipation in an
aerobic laboratory study. The new noniinear model described in this
work was fit to the data by the methods described hereln.
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Figure 8. Data of ref 28 showing sulfometuron dissipation in a field
study at Raleigh, NC. The new nonlinear model described in this work
was fit to the data by the methods described herein.

for the variance.

If the rate constants in eq 7 are assumed to follow the
T’ distribution, then the following simple form for the
concentration results:

C=Cy(1+6t)™ : (11)

This equation is the smooth curve appearing in Figures
5 and 6, in which the data of Figures 1 and 2 are replotted
in order to exemplify the much-improved fit over the
traditional linear model. In practice, and by analogy with
the methods typically used to fit data to the linear,
first-order model, the logarithm of each side of eq 11 is
taken (the alternative form is found by making the sub-
stitution, p = af):

InC=InCy-aln (1 +8t) (12a)
In (1 + 8¢)
InC=InC,- “_B_— (12b)

This transformation of the data would give a straight line
if In C were plotted versus In (¢ + a constant). The linear
nature of such plots has been noted previously, with similar
transformations having been used in the literature (14, 19).
However, they have always been used only as an empiri-
cism, without any theoretical justification ever given for
this particular form. As g approaches zero in eq 12b, this
model reduces to the simple, linear, first-order model de-
scribed by eq 2, with # = u = af. In such a case, the T’
distribution becomes degenerate, i.e., all the compartments

have k equal to . This gives a satisfying physical rationale
for the reason behind the linearity that is sometimes is
observed in In C versus time plots: the spatial variability
is reduced nearly to zero in such cases.

Of course, what is usually of most interest is to estimate
how long it takes for a specified fraction or percentage of
the applied material to dissipate. In the case of linear
kinetics, the half-life, ¢, /2» Was sufficient for this purpose.
With nonlinear dissipation kinetics, however, the time for
residues to decline by 50% is no longer constant. By first
defining x to be the fraction of applied chemical that has
dissipated, a general dissipation time, DT, can be de-
fined as the time necessary for the concentration to reach
100(1 - x) %, of the applied amount. This general dissi-
pation time is a function of the two parameters in the T’
distribution describing the spatial variability of the k’s:

DTy, = [(1 - 2)V/*-1}/8 (13)

Because this is still a first-order (though nonlinear) model,
the dissipation times are independent of the initial con-
centration or application rate, just as in the linear, first-
order model. For DTy, and DTy, the 50% and 90%
dissipation times, respectively, we have

DTy, = [0.5W/ - 1]/8 (14)
and
DTy = [0.17°W/) — 1} /8 (15)

Estimation of Parameters. Any nonlinear regression
program can be used to fit the parameters from the new
model (eq 11) from experimental dissipation data. We use
the SAS procedure, PROC NLIN (31), to estimate the pa-
rameters as they appear in eq 12a. We use the log-
transformed version (eq 12a) rather than eq 11 in order
to achieve the beneficial weighting and in order to spot
deviations from the simple first-order model (eq 2). NLIN
fits nonlinear regression models by least squares. The
default GAUSS—~NEWTON iterative method within NLIN was
used since the derivatives of the parameters o, 8, and C,
can be easily derived (see the Appendix). PROC NLIN also
allows the user to restrict all three parameters to positive
values as required by eq 8. As with any nonlinear iterative
solution, we have occasionally encountered numerical
difficulties with certain sets of particularly “noisy” dissi-
pation data, but convergence has been achieved quite
readily in the vast majority of cases attempted.

As indicated above, a small value for 8 is indicative of
nearly linear (more spatially uniform) behavior. The hy-
pothesis of simple linear first-order behavior in the dis-
sipation data is easily obtained by testing if the parameter
B is equal to zero. A commonly used approximate F test
for this hypothesis is described in ref 32. Denote by RSS;,
and RSSy the residual sums of squares for a fit to the
linear model (eq 2) and the nonlinear model (eq 12a),
respectively. Define the test statistic F as

_ RSS. - RSSy
~  RSSy

If F is greater than the appropriate percentile from an ¥
distribution with 1 and n —'3 degrees of freedom, then 8
is significantly greater than zero. That is, the new kinetic
model provides a significantly improved fit to the dissi-
pation data.

(n-3) (16)

Application to Experimental Data

A literature search was conducted to gather several sets
of dissipation data in order to test the utility of the new
kinetic model. A total of 45 data sets were examined. The
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Table I. Summary of Fits Obtained While Fitting the New Kinetic Model to Various Sets of Dissipation Data Taken from

the Literature (Dissipation Times Are Given in Days)

A A /\
ref compound DTy SE DTy
43 aldicarb 10.43 5.18 67.26
43 aldicarb 33.24 6.43 110.43
38 asulam 12.97 2.59 43.08
38 asulam 1.56 391 17.39
44 atrazine 19.20 2.89 133.21
44 atrazine 25.72 2.88 193.01
34 avermectin 21.58 2.97 107.22
34 avermectin 16.68 2.01 83.86
34 avermectin 61.33 14.03 278.21
34 avermectin 23.19 5.39 183.42
34 avermectin 30.81 15.03 281.62
39 chlorimuron ethyl 17.12 2.90 122.53
39 chlorimuron ethyl 1.88 1.22 14.99
42 fenvalerate 74.50 12,43 565.21
42 fenvalerate 130.86 5.84 434.72
27 fluazifop butyl 15.40 0.82 51.15
27 fluazifop butyl 0.72 0.10 3.62
27 fluazifop butyl 0.32 0.02 2.50
27 fluazifop butyl 0.54 0.13 3.06
27 fluazifop butyl 3.02 0.10 10.57
33 flufosinate 2.55 1.23 21.84
33 glufosinate 9.05 4.55 45.62
33 glufosinate 2.06 0.76 15.56
37 linuron 57.10 19.83 368.57
37 linuron 49.83 30.83 2135.11
37 linuron 69.10 20.27 1981.38
36 metalaxyl 46.58 1.89 186.05
36 metalaxyl 12.96 8.31 468.12
35 metolachlor 52.69 7.27 313.00
35 metolachlor 47.60 2.26 158.13
40 metolachlor 13.64 6.64 101.77
40 metolachlor 17.09 amn 122.85
44 metolachlor 12.00 1.95 86.52
44 metolachlor 16.84 2.39 86.20
35 propachlor 10.43 1.83 55.89
35 propachlor 22.44 2.79 74.55
35 propachlor 10.14 0.76 33.67
28 sulfometuron 4.04 8.14 34.89
28 sulfometuron 6.20 2.42 43.17
28 sulfometuron 93.93 32.44 393.57
28 sulfometuron 37.92 29.58 563.75
28 sulfometuron 79.72 31.26 496.25
41 terbufos 11.16 2.15 40.76
44 terbuthylazine 10.44 5.83 105.44
44 terbuthylazine 28.21 7.09 671.50

A "
SE i, (&, B)° lab/field soil
25.68 0.0856 (1.4221, 0.0602) field (1) sand
21.37 0.0209 field (2) silt
8.61 0.0535 lab (1) clay
38.18 0.6885 (0.8476, 0.8123) lab (2) clay
10.93 0.0477 (1.2974, 0.0368) field (1) sand
13.83 0.0366 (1.1883, 0.0308) field (2) sand
7.95 0.0377 (2.2207, 0.0170) lab (1) silt
5.79 0.0490 (2.1644, 0.0226) lab (2) silt
33.57 0.0128 (2.8110, 0.0046) lab (3) sand
26.32 0.0413 (1.1258, 0.0367) lab (4) clay
92.42 0.0326 (0.9869, 0.0331) lab (5) clay
10.90 0.0541 (1.2515, 0.0432) lab (1) sand
7.68 0.5093 (1.1195, 0.4549) lab (2) silt
61.61 0.0126 (1.1970, 0.0105) lab (1) sand
19.39 0.0053 lab (2) clay
2.74 0.0450 lab (1) silt
0.41 1.1252 (2.1897, 0.5138) lab (2) silt
0.11 2.9895 (1.1365, 2.6305) 1ab (3) silt
0.56 1.5889 (1.7088, 0.9299) lab (4) silt
0.23 0.2349 (15.5168, 0.0151) lab (5) silt
7.58 0.3851 (1.0456, 0.3683) lab (1) clay
12.80 0.0903 (2.1530, 0.0419) lab (2) silt
4.33 0.4579 (1.1800, 0.3881) lab (3) sand
89.78 0.0157 (1.4195, 0.0110) field (1) sand
1959.90 0.0326 (0.4578, 0.0712) field (2) sand
1552.48 0.0208 (0.5265, 0.0395) field (3) sand
15.04 0.0165 (3.7158, 0.0044) field (FL) sand
267.83 0.1189 (0.4845, 0.2454) field (MD) silt
131.22 0.0165 (1.5969, 0.0103) field (2) sand
7.49 0.0146 field (3) sand
28.53 0.0689 (1.1957, 0.0576) field (1) sand
14.76 0.0543 (1.2456, 0.0436) field (2) sand
8.33 0.0774 (1.2406, 0.0624) field (1) sand
6.74 0.0488 (2.0822, 0.0235) field (2) sand
5.21 0.0802 (1.8993, 0.0422) field (1) sand
9.26 0.0309 field (2) sand
2.52 0.0684 field (3) sand
55.55 0.2438 (1.0379, 0.2349) field (DE) silt

13.32 0.1478 (1.2930, 0.1143) field (NC) sand
76.79 0.0081 (3.6999, 0.0022) field (OR) silt
304.16 0.0310 (0.7102, 0.0436) field (SK) clay
110.88 0.0111 (1.4914, 0.0074) field (CO) silt

5.98 0.0646 (8.7692, 0.0074) field silt
37.33 0.0995 (0.9115, 0.1091) field (1) sand
227.81 0.0481 (0.5671, 0.0849) field (2) sand

2The absence of estimates for o and 8 indicates that 8 was not significantly greater than 0 and the simple linear model was used to

estimate dissipation times.

new nonlinear, first-order model was found to be no better
than the linear model in only seven (16%) of the cases. In
all other instances, a significantly improved fit was
achieved through the use of eq 12. All 45 analyses are
summarized in Table L. .

The parameter estimates of « and 8, & and B, are plotted
in Figure 7, using different symbols for laboratory and field
studies. It is clear from this plot that 8 varies over many
more orders of magnitude than & The value for & is often
near 1, and this value should probably be assumed in cases
where only a few of data points are available and predic-
tions of future behavior need to be made. Somewhat
surprisingly, the parameter estimates for the laboratory
data fall in the same range as those for the field data. This
indicates that (assuming our model is valid) the spatial
variability responsible for the observed behavior must have
a very small length scale, possibly on the order of pore-size
dimensions. Others have shown (45) that EDB, a pesticide
of relatively small molecular volume, can become physically
entrapped in soil pores and thereby resist further dissi-
pation. Similarly, paraquat has been reported (46) to form
tight charge-transfer complexes with clay layers, leading
to unexpected persistence.
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Figure 7. Scatter diagram of the parameter estimates giving best fits
to the various sets of dissipation data examined in this work.

The possibility that pore-scale phenomena cause the
nonlinearity was investigated further by examining the
effect of soil texture on the parameter estimates. Although
there were some weak trends present, with the predomi-



nantly clayey soils tending to have lower & values (and
therefore more curvature in the dissipation function), the
variability in the data set prevented any fine distinctions
from being made. It does seem reasonable that diversity
in pore sizes, particularly the very small pores present in
clays, may give rise to more curvature in the dissipation
kinetics. Under this hypothesis the sandy soils, on the
other hand, should tend to give more linear dissipation
curves, and there were some weak indications of this in the
examined data.

Conclusions

We have shown that acknowledgment of spatial varia-
bility in the dissipation process leads to a nonlinear,
first-order kinetic model giving excellent fits to a wide
range of pesticide dissipation data, whether derived from
laboratory or from field studies. The new technique allows
reliable estimates to be made of DTy, DTy, and any other
aspects of the dissipation curve. Its use in environmental
fate models would undoubtedly lead to improved predic-
tions of fate and transport. A physical explanation for the
curvature in the dissipation behavior is that certain regions
in the soil exhibit relatively rapid dissipation, causing an
initially steep slope, but these areas become exhausted of
pesticide, leaving behind a residue that dissipates some-
what less rapidly.

The length scale of the spatial variability in the dissi-
pation process must be very small, because data derived
from very small laboratory aliquots of soils suggest vari-
ability of the same degree as determined with field data.
Clays appear to give more curvature in the dissipation plot
than sands, further suggesting a microscopic, pore-scale
source of the spatial variability. Further experimental
work controlling the other parameters in the dissipation
process while varying only heterogeneity on various length
scales would be necessary in order to further explore this
relationship. Hopefully, our proposed justification for the
observed nonlinearity in pesticide dissipation kinetics will
stimulate more research into the various phenomena that
would cause dissipation rates to vary spatially in soil.

A further complication not considered in this paper is
the formation of metabolites from the parent chemical and
their subsequent degradation. The assumption of spatially
variable rate constants for these various processes forces
us to consider the multivariate distributions of dissipation
rates, quickly leading to intractable mathematics and a
large number of parameters. We are currently investi-
gating simplifications that would result in practical ways
to model such a system.

Appendix I. Statistical Details

Nonlinear regression techniques are needed to estimate,
from a given set of data, best-fit values for the parameters
appearing in eqs 12a and 13. Most nonlinear regression
software requires that partial derivatives of the function
with respect to the parameters be calculated. Defining the
dependent variable in eq 12a as

Y=Y(¢)=1lnC@t) L1
and the intercept as

8=In Co (1.2)
then the required partial derivatives are
)4
i 1 (L3)
Y -In(1+8t)=Y, (L4)
da

Yy ~at

— ==Y, .

B A+ ° (€5)
The estimated variance of the predicted concentration (or,
more properly, In C) can be expressed in terms of these
partial derivatives and the estimated variances and co-
variances of the parameter estimates:

vir Y=vard + Y,2vara + szvﬁré+
2Y,Y3 cov (& B) + 2Y, cov (&, 8) + 2Y; cov (B, 0)
(L6)

The estimated variance of the dissipation time estimates,
DT, and hence the confidence intervals for DT, are
derived in a manner similar to that used for the concen-
tration itself. The partial derivatives are once again re-
quired:

DT 1-x)Y&In(1-
w0l _ (1-%) - n{1-x) _ Ay A7)
da  |ap pa?
8D Tyop, 1-(1-x)Va
1oo| - ( - ) - A 18)
B | B?

and the estimated variance of the general dissipation time
is

var ﬁTlOOx =
Ax,? vir &+ Axp® var B + 2Ax,Axp cov (&, B) (L9)

Approximate 95% confidence intervals for any parameter
or functions of parameters, w = w(e, 8, §), can be computed
as

&+ t*, g5, (1.10)

where & is the estimate of w, and & is its estimated standard
error (the square root of the estimated variance). The
coefficient t* is the 5% two-tailed percentile from the
Student’s t distribution with n — 3 degrees of freedom.
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