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Abstract

Matrix Node Theory (MNT), also referred to as the Evans Node Dialect (END)
in previous work, proposes that spacetime, matter, and the effective field content of
high-energy physics emerge from a discrete node lattice subjected to a fundamen-
tal limit on total change per progression step. Reality is modelled as an ordered
sequence of frames, each frame being a configuration of node states on a graph
G(V,E) with characteristic length scale ℓ0 and progression step δτ . A limit func-
tional Ctot bounds the allowed frame-to-frame change, and the familiar continuum
constants (c, ℏ, G,Λ) arise as collective response parameters of this constraint.

This unified white paper consolidates and systematizes the core architectural
components developed across earlier internal documents. Part I presents the on-
tological foundations: five postulates defining proto-potentials, frame stacks, and
the interpretation of gravity as “asymmetric actuation” of progression under the
fundamental limit. Part II formalizes the mathematical lexicon: the node graph
G(V,E), the local update rule Fi, the limit functional Ctot, and the unified ef-
fective Lagrangian Leff that governs the continuum limit. Part III articulates the
methodology, with emphasis on the One Graph / Parameter Lock Rule: a single
microscopic specification (graph topology, limit scale, and couplings) must simulta-
neously generate all observables, providing a structural defence against fine-tuning
and post hoc parameter fitting. Part IV outlines the quantitative derivation pipeline
for a key dimensionless observable, the lepton mass ratio mµ/me ≈ 206.7, using a
pattern operator P̂ on G and a progression-cost mapping from eigenvalues to effec-
tive masses. The same lattice topology and microscopic parameters are then used,
in principle, to determine the electromagnetic coupling and fine-structure constant
α ≈ 1/137 and to constrain gravitational-wave propagation.

Taken together, these elements define MNT as a unified structural framework
with clear falsifiability criteria: if one locked microscopic model reproduces the lep-
ton hierarchy, the fine-structure constant, and gravitational constraints, the theory
qualifies as a serious contender for a unified description of fundamental physics. If
it fails, it does so in a transparent and diagnostically useful way.
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1.0 Part I: Foundations & Ontology (The “Constitu-

tion”)

1.1 1.1 Postulates and Proto-Potentials

The foundations of Matrix Node Theory are encoded in a small set of postulates that
define the pre-geometric substrate, the emergence of time, and the role of the fundamental
limit. A convenient formulation is as follows.

Postulate 1 (Proto-potential substrate). There exists a pre-geometric configura-
tion space of “proto-potentials” P , representing latent possibilities for local excitations.
At this level there is no metric, no continuum spacetime manifold, and no distinguished
notion of distance or duration. Only relations of potential compatibility and incompati-
bility are defined.

Postulate 2 (Frames and progression). Physical reality is realized as an ordered
sequence of discrete frames

F = {Fn}n∈Z,

where each frame Fn is a concrete selection of compatible possibilities from P , organized
as a node graph G(V,E) with node states ϕi(n) and internal labels (spin, gauge indices,
lexicon labels). The ordering index n defines a progression parameter, and physical time
is identified in the continuum limit as tn = n δτ for some fixed progression step δτ .
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Postulate 3 (Fundamental limit on change). Between successive frames Fn and
Fn+1, the total change in node states and phases is subject to a universal constraint,

Ctot(n) ≤ Λlim, (1)

where Ctot is a non-negative functional of frame-to-frame differences and Λlim is a funda-
mental limit scale. All dynamics of the emergent continuum, including the appearance
of forces and fields, are consequences of how configurations evolve while respecting (1).

Postulate 4 (Node lattice and locality). Within each frame, the realized configu-
ration is a node graph G(V,E), with V the set of nodes and E the set of edges encoding
adjacency relations. A characteristic spacing ℓ0 defines the scale at which the graph can
be coarse-grained to an effective continuum. Dynamics are local: allowed updates at a
node i depend only on the node and its neighbors nbr(i).

Postulate 5 (Emergent laws and observables). Continuum notions such as metric
structure, field strengths, charges, and stress-energy are emergent summary variables
constructed from statistics of node configurations across many frames. The familiar
constants (c, ℏeff, Geff,Λeff) are not fundamental inputs but collective parameters that
arise jointly from the lattice geometry, the limit scale Λlim, and the microscopic couplings
in Ctot.

The primitive objects of the theory are thus:

• the proto-potential space P ,

• the frame stack {Fn},

• the node graph G(V,E) in each frame,

• and the limit functional Ctot.

Everything else is emergent.

1.2 1.2 Frame Stack and Emergent Time

Time appears as the ordering of frames:

Fn → Fn+1, n ∈ Z.

We assign a progression step δτ and define tn = nδτ . The continuum limit t ∈ R emerges
when we consider coarse-grained observables averaged over many frames, in which discrete
jumps are effectively smoothed.

In this view, “causality” is a constraint propagation property of the allowed transitions
consistent with (1). Local updates cannot instantaneously reconfigure distant regions
without consuming progression capacity in intermediate frames.
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1.3 1.3 Gravity as Asymmetric Actuation

Within MNT, gravity is not introduced as a fundamental geometric field. Instead, it is
interpreted as a structural consequence of asymmetric actuation of the progression under
the limit:

Concentrations of energy–momentum locally consume a larger share of the
available change budget Ctot, forcing surrounding regions to adjust their pro-
gression in a way that mimics spacetime curvature and free-fall trajectories.

More explicitly:

• In regions with higher energy density, more of the limit Λlim is consumed by local
updates, leaving less capacity for other configurations to change. This can be encoded
as a modulation of an effective progression rate.

• Coarse-grained, these modulations can be summarized by an emergent metric gµν
in which geodesics describe the paths of minimally constrained progression for test
patterns.

• The effective gravitational constant Geff is then a collective parameter linking energy
density to the required progression adjustments expressed as curvature.

This interpretation of gravity as “progression adjustment” under a limit provides a
conceptual bridge between the discrete frame-stack and the continuum Einstein equations,
which are recovered in an appropriate coarse-grained limit of the underlying dynamics.

2.0 Part II: Mathematical Formalism (The “Lexi-

con”)

2.1 2.1 Node Graph and Update Rule

Each frame Fn contains a node graph G = (V,E) with:

• V the set of nodes, indexed by i = 1, . . . , N ,

• E the set of edges, each edge (i, j) ∈ E representing adjacency between nodes i and
j.

Each node carries dynamical degrees of freedom ϕi(n) (matter-like variables) and phases
θi(n) (gauge-like variables), along with EQEF/latent variables as needed.

The local update rule is:

ϕi(n+ 1) = Fi
(
{ϕj(n)}j∈nbr(i), {θj(n)}j∈nbr(i), parameters

)
, (2)

with an analogous evolution for θi(n), and with the constraint that the resulting config-
uration (ϕ(n+ 1), θ(n+ 1)) satisfies the limit condition (1).

The precise form of Fi is chosen so that, after coarse-graining, the emergent dynamics
reproduce a relativistic field theory with the desired symmetries. The update rule is
local and consistent with graph automorphisms that approximate continuum Lorentz
invariance in the long-wavelength limit.
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2.2 2.2 Limit Functional and Emergent Speed of Light

The limit functional is specified as:

Ctot(n) = Cmatter(n) + Cgauge(n) + CEQEF(n) + . . . , (3)

Cmatter(n) =
∑
i∈V

αϕ(ϕi(n+ 1)− ϕi(n)

δτ

)2

+ βϕ
∑

j∈nbr(i)

(
ϕi(n)− ϕj(n)

)2 , (4)

Cgauge(n) =
∑
⟨ij⟩

[
κθ

(
θi(n+ 1)− θi(n)

δτ

)2

+ κA
(
θi(n)− θj(n)

)2]
. (5)

The constants (αϕ, βϕ, κθ, κA) are microscopic couplings and Λlim is the fundamental limit
scale.

The emergent invariant speed of propagation c is determined by the ratio of the spatial
and temporal discretization scales:

c =
ℓ0
δτ
, (6)

in the regime where the discrete Laplacian and time-step operator approximate a Lorentz-
invariant wave operator at long wavelengths.

2.3 2.3 Unified Effective Lagrangian

Upon coarse-graining the graph over scales L ≫ ℓ0 and many frames, the discrete dy-
namics and limit functional can be summarized by a unified effective Lagrangian density
Leff:

Leff = Lgrav + Lgauge + Lmatter + Llatent + Lcorr. (7)

A canonical choice is:

Lgrav =
1

16πGeff

(
R +O(R2/M2

∗ )
)
, (8)

Lgauge = −1

4

∑
a

1

g2a
F a
µνF

aµν , (9)

Lmatter =
∑

fermions f

ψ̄f (iγ
µDµ −mf )ψf +

∑
scalars s

(DµHs)
†(DµHs)− V (Hs, {ΣA}). (10)

Here R is the Ricci scalar,M∗ is an effective suppression scale for higher-curvature correc-
tions, F a

µν are gauge field strengths, and V is the scalar potential for Higgs-like and latent
fields. The effective constants (Geff, ga,mf , . . . ) are all functions of the MNT microscopic
parameters.

The limit functional enters this continuum description through:

• the emergent Geff, derived from the response of the lattice to localized energy pertur-
bations;

• the gauge couplings ga, derived from the stiffness of phase differences in Cgauge;

• the vacuum energy density and Λeff, derived from the unused portion of Λlim in typical
configurations.
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3.0 Part III: Methodology (The “Rules”)

3.1 3.1 The One Graph / Parameter Lock Rule

A central methodological principle of MNT is the One Graph / Parameter Lock Rule. It
can be stated as follows:

There exists a single microscopic specification

MMPs = (G, ℓ0, δτ,Λlim, ϵnode, {couplings})

such that all emergent observables of interest—lepton mass ratios, gauge cou-
plings, gravitational constants, black-hole entropy—are functions of this one
set of parameters. The graph topology G and fundamental limit Λlim cannot
be changed or sector-tuned between observables.

In more operational terms:

• one must choose a single class of graph topologies G with well-defined statistical
properties (e.g. an E8-inspired lattice patch or a quasi-random regular graph ensemble)
and fix it;

• once G, ℓ0, δτ , Λlim, and the couplings in Ctot are fixed to match coarse scales, the
same model must be used to derive all dimensionless observables;

• it is not permitted to select “Graph A” to fit lepton masses, then switch to “Graph B”
to fit the fine-structure constant, and “Graph C” for gravity. That would amount to
multiple distinct effective theories.

This parameter lock is the structural defense against fine-tuning: it forces the theory
to succeed or fail as a single coherent entity. Any genuine success in matching multiple
observables with the same microscopic specification is thus highly non-trivial.

3.2 3.2 Non-Circularity and Dimensionless Targets

A second methodological pillar is non-circularity. Derived quantities must not be fed
back as input parameters for the same sector. In practice:

• dimensionless ratios such as mµ/me, mτ/mµ, and α are targeted because they are
independent of human units;

• Standard Model masses and couplings are not allowed as free inputs; instead, they
must emerge from the pattern spectrum and the limit functional;

• structural relations (e.g. M2
Z/M

2
W = cos2 θW ) may be used as consistency checks but

do not constitute predictive power on their own.

Within this framework, the “hero calculations” are specific, dimensionless predictions
derived from lattice eigenvalues and microscopic couplings, subject to the parameter lock.
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4.0 Part IV: Quantitative Evidence (The “Hero Cal-

culation”)

4.1 4.1 Objective: The Lepton Mass Ratio

The primary quantitative target in this unified white paper is the dimensionless lepton
mass ratio:

Rµe ≡
mµ

me

≈ 206.7.

It serves as a clean test of predictive power because:

• it is unitless and independent of human choices of length or time;

• it involves non-trivial structure across generations;

• it is precisely measured and therefore highly constraining.

4.2 4.2 Pattern Operator on the Node Graph

Particles are modelled as stable patterns on the node graph G, i.e., as eigenmodes of a
Hermitian pattern operator P̂ : H → H acting on the space of node amplitudes H ∼= CN :

(P̂ψ)i =
∑

j∈nbr(i)

wij ψj + ui ψi, (11)

where wij = w∗
ji are edge weights and ui ∈ R are local potentials derived from the

microscopic couplings and the limit functional.
A particularly transparent choice uses the graph Laplacian L̂:

L̂ij =


di if i = j,

−1 if (i, j) ∈ E,

0 otherwise,

(12)

and sets
P̂ = γ0I+ γ1L̂, (13)

with (γ0, γ1) determined by the same couplings that enter the limit functional Ctot. The
eigenproblem is:

P̂ψ(a) = Λaψ
(a), (14)

with eigenvalues
Λa = γ0 + γ1λ

(L)
a , (15)

where λ
(L)
a are Laplacian eigenvalues.

4.3 4.3 Stable Patterns and Progression Cost

A candidate lepton pattern ψ(a) is a mode that:

• recurs with high probability across many frames under the update rule Fi,

• consumes a statistically stable fraction of the progression limit Λlim per frame,
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• is robust under small perturbations, corresponding to a long-lived excitation.

For normalized eigenmodes ∥ψ(a)∥ = 1, the average frame-to-frame cost in the matter
sector is:

C
(a)
matter ≈ αϕ

(
mac

2

ℏeff

)2

+ βϕλ
(L)
a + . . . , (16)

where ma is the effective mass of the pattern. The total fraction of the limit used by
pattern a is:

ηa ≡
⟨Ctot⟩ψ(a)

Λlim

, (17)

which, for massive leptons, is dominated by the rest-energy term and can be approximated
as:

ηa ≈ Fη(Λa), (18)

for some monotonic function Fη determined by the limit functional and the update rule.
Solving for ma yields:

ma ≈
ℏeff
c2

√
ηaΛlim

αϕ
∝

√
Fη(Λa). (19)

Therefore, the lepton mass ratio becomes:

mµ

me

=

√
Fη(Λµ)

Fη(Λe)
, (20)

where Λe and Λµ are the eigenvalues associated with the electron- and muon-like patterns,
respectively.

4.4 4.4 Prediction Pipeline and Parameter Lock

Given the locked MMPs, the practical pipeline for the hero calculation is:

1. Fix G and Ctot. Choose the graph topology G once and for all, along with ℓ0, δτ ,
Λlim, and the couplings (αϕ, βϕ, κθ, κA).

2. Construct P̂. Define P̂ in terms of L̂ and the microscopic couplings, consistent with
earlier sections.

3. Diagonalize P̂. Compute eigenvalues Λa and eigenvectors ψ(a) numerically on large
finite graphs, using boundary conditions compatible with the intended coarse contin-
uum limit.

4. Identify lepton patterns. Select three eigenmodes as candidates for e, µ, τ , based
on their spectral positions and stability properties.

5. Evaluate Fη. For each candidate mode, use Ctot (via analytic approximations or
Monte Carlo progression simulations) to estimate ηa = Fη(Λa).

6. Compute mµ/me. Insert ηe and ηµ into (20) and compare with 206.7.

All steps use the same microscopic model. Any agreement with the experimental ratio
within a percent-level margin would be highly non-trivial; any systematic failure is a clear
falsification of the particular microscopic choice.
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4.5 4.5 Extension: Fine-Structure Constant from the Same Graph

As an immediate extension of the hero calculation, the fine-structure constant α can be
structurally related to the same microscopic model. From the gauge sector of Ctot, the
electromagnetic coupling emerges as:

g2EM ∼ Λlim

κA

(
δτ

ℓ0

)2
1

Nlinks

, (21)

where Nlinks is determined purely by the graph G. The fine-structure constant is then:

α =
g2EM
4π

∼ 1

4π

Λlim

κA

(
δτ

ℓ0

)2
1

Nlinks

. (22)

No new free parameters are introduced: all quantities have already been fixed by the
locked MMPs. Thus, in principle, the same lattice that produces the lepton mass ratio
must also produce (after appropriate running) α ≈ 1/137, providing a second stringent
test of unification.

5.0 Conclusion & Outlook

This unified white paper assembles the foundational ontology, formal lexicon, method-
ological rules, and quantitative pipeline of Matrix Node Theory into a single coherent
document suitable for community review. The key claims can be summarized as follows:

• Ontological clarity. MNT adopts a discrete, frame-based ontology with a funda-
mental limit on change, providing a conceptually clean origin for time, spacetime, and
gravity as progression adjustment.

• Unified lexicon. The node graph G(V,E), limit functional Ctot, and unified La-
grangian Leff furnish a single mathematical language connecting pre-geometric dy-
namics to continuum effective field theory.

• Parameter lock. The One Graph / Parameter Lock Rule forces all observables
to emerge from a single microscopic model, providing a structural defense against
fine-tuning and post hoc parametrization.

• Hero calculation framework. A precise derivational scheme is given for the lepton
mass ratio mµ/me, based on pattern eigenvalues of P̂ and a mapping from progression
cost to effective mass. The same model, without modification, is capable in principle
of predicting the fine-structure constant and gravitational-wave propagation.

Compared with continuum-first approaches such as string theory, which often rely
on vast ensembles of vacua and flexible compactification choices, MNT makes a different
trade-off: it localizes all freedom in a single discrete microscopic structure and then allows
that structure to succeed or fail globally. This is both its strength and its vulnerability:

• If a locked graph and limit functional can be found that match lepton hierarchies, α,
Geff, and black-hole entropy, the result is extremely robust and difficult to dismiss as
coincidence.
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• If no such model exists, MNT is falsified in a sharp and informative way, guiding the
search for alternative architectures.

The immediate next steps are clear:

1. commit to a concrete graph topology and microscopic parameter set;

2. perform the full numerical hero calculation for mµ/me and α;

3. compute lattice-induced corrections to gravitational wave speed and compare with
LIGO/Virgo bounds;

4. extend horizon node counting to recover black-hole entropy.

This document is intended to serve as the authoritative “Unified White Paper” for
the MNT framework, consolidating earlier internal files into a single, stable reference for
Zenodo deposition and external theoretical and phenomenological review.
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