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Abstract

We present a self-contained formulation of the Evans Node Dialect – Refined Matrix Node The-
ory (END-RMNT), a candidate deterministic theory of everything founded on a discrete four-
dimensional lattice of identical nodes. Spacetime geometry, quantum fields, and particles are
emergent collective modes of this substrate. Microscopic evolution proceeds in discrete frames
by a deterministic action principle subject to a global bound on incremental change, ensuring
a well-defined causal structure. Extended quantum wave states are understood as coherent
oscillatory patterns on the lattice, and a universal action threshold τ governs their nonlinear
transition into localized particle-like resonances. This replaces ad hoc wavefunction collapse
postulates with a concrete high-action phase transition mechanism, while statistical quantum
predictions reappear through sensitivity to initial conditions and effective chaos. In the con-
tinuum approximation, the theory recovers general relativity (in Einstein-Cartan form) and
a unified gauge field framework (encompassing an SU(N) Yang-Mills sector, Dirac fermions,
and a Higgs-like scalar), augmented by an intrinsic nonlinear pairing interaction responsible for
rest mass generation and τ -triggered collapse. All fundamental constants (the speed of light
c, Planck’s constant ℏ, Newton’s gravitational constant G, and an effective cosmological con-
stant Λeff) arise as emergent parameters fixed by the underlying lattice. We provide explicit
derivations of key physical equations from first principles of the node lattice, including the emer-
gence of relativistic wave equations, gauge symmetry, gravitation, and the standard quantum
relations. The END-RMNT framework is shown to reproduce known experimental phenomena
across scales and offers falsifiable predictions (e.g. neutrino mass scale, new resonances, and
cosmological signatures), making it a comprehensive and testable unified theory.

Keywords: emergent spacetime; discrete lattice; deterministic quantum collapse; unified field
theory; Einstein-Cartan gravity; Yang-Mills gauge theory; mass generation; dark energy evolution

1 Introduction and Motivation

Modern physics rests on two foundational pillars: quantum field theory (QFT) describing particles
and forces on a fixed spacetime background, and general relativity (GR) describing the dynamic
curvature of spacetime by energy and momentum. Both frameworks have been extraordinarily
successful within their domains, yet they remain conceptually disjoint. In particular, a complete
quantum gravity theory is still lacking, and unresolved issues persist at the foundations of physics.
Examples include the quantum measurement problem (what physical process causes wavefunction
collapse), the presence of divergences and the need for renormalization in QFT, and the empirical
evidence for dark matter and dark energy that are not explained by the Standard Model or classical
gravity. These gaps motivate the search for a deeper unifying framework that can reconcile quantum
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mechanics with spacetime dynamics and account for cosmological phenomena without invoking
unexplained new ingredients.

END-RMNT advances a minimalist unification hypothesis: a single, discrete substrate underlies
all of physics. In this theory, spacetime and quantum fields are not fundamental continua but
emergent, coarse-grained descriptions of a more primitive, deterministic microscopic system. The
following design goals shaped the construction of END-RMNT:

Design Goals

• Single-Substrate Unification: Spacetime, matter, and all interactions emerge from one
underlying discrete lattice of nodes, rather than from separate postulated entities.

• Deterministic Micropysics: The fundamental evolution is strictly deterministic with no
inherent randomness. Apparent quantum statistical behavior arises from sensitive dependence
on initial conditions and coarse-graining over unseen degrees of freedom.

• Objective Collapse Criterion: The quantum-classical transition is governed by an intrinsic
physical threshold (a maximum action τ in any region) beyond which extended quantum states
collapse into localized states. No observer or external trigger is required.

• Parameter Economy and Lock-In: Only a small set of microscopic parameters define
the theory. Once calibrated, these parameters remain fixed across all domains (no tuning
separately for particle physics, gravity, cosmology, etc.), thereby explaining all fundamental
constants in terms of one set of underlying values.

• Near-Term Falsifiability: The framework yields concrete predictions for upcoming experi-
ments in particle physics, gravitation, and cosmology, allowing clear tests that could confirm
or rule out the theory in the near future.

In the remainder of this paper, we formulate the END-RMNT theory in detail. Section 2 lays
out the fundamental structure of the node lattice and the discrete action principle. In Section
3, we introduce the central role of oscillation frequency in bridging microscopic and macroscopic
physics. Section 4 describes the universal action threshold τ and the deterministic mechanism for
wavefunction collapse. Section 5 explains how effective spacetime, gauge fields, and matter emerge
from collective lattice dynamics. In Section 6 we derive the continuum effective field limit, writing
down the unified Lagrangian that reproduces known physics. Section 7 discusses how familiar
constants (c, ℏ, G, etc.) are obtained from the lattice and outlines the calibration procedure. In
Section 8, we highlight how END-RMNT accounts for phenomena across scales and we enumerate
distinctive predictions. A final section provides a glossary of notation defining all variables used.

2 Foundations: Nodes, Frames, and Discrete Action

2.1 Pre-Geometric Substrate and Progression Frames

At the deepest level of END-RMNT is a pre-geometric configuration space of proto-potentials,
denoted P. This space represents the latent capacity for local excitation at abstract points, without
assuming any pre-existing geometry or time. Physical reality is realized as an evolving sequence of
discrete frames

F0, F1, F2, . . . , Fn, Fn+1, . . . ,
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each of which is constructed by selecting and organizing compatible proto-potentials into an actual
graph of nodes and links. The integer index n labels the progression of frames and plays the role of
an emergent time parameter. In the continuum limit of large n, the physical time t is proportional
to n, i.e.

t ≈ n tnode,

where tnode is the fundamental discrete time step (the duration between successive frames). By
this construction, time itself is not continuous but consists of incremental updates from one frame
to the next.

Each frame Fn is a graph Gn(V,E) consisting of a set of nodes V (discrete sites of excitation) and
a set of edges E specifying which nodes are adjacent (i.e. which pairs of nodes interact directly).
In the simplest implementation, Gn is a fixed regular lattice, e.g. a hypercubic lattice in three
spatial dimensions. The lattice spacing lnode defines the minimal length scale (distance between
neighboring nodes). Locality is imposed as a fundamental principle: the evolution rule from Fn

to Fn+1 at a given node depends only on that node’s state and the states of nodes in some finite
neighborhood (such as nearest neighbors). This ensures that causal influence cannot propagate
arbitrarily fast through the network.

The ratio of the basic length and time scales gives the emergent invariant speed in the continuum.
In particular, the maximal propagation speed of a disturbance from one node to an adjacent node
per frame is one lattice spacing per time step. Identifying this with the observed speed of light, we
have

c =
lnode
tnode

, (1)

which will henceforth be used as the fundamental conversion between time and space units. All
physical signals and influences are limited by c in this framework, providing a built-in analogue of
relativistic causality.

A key global constraint is imposed on the allowed change of the system from frame to frame. Let
Ctot(n) be a non-negative functional measuring the total amount of change in the system between
frame Fn and Fn+1. END-RMNT posits the existence of a universal bound Λlim (with units of
action) such that

Ctot(n) =
∑
i

aϕ
∣∣ϕi(n+ 1)− ϕi(n)

∣∣2 +
∑
⟨ij⟩

bϕ
∣∣ϕj(n)− ϕi(n)

∣∣2 + · · · ≤ Λlim , (2)

for every transition Fn → Fn+1. Here the first summation runs over all nodes i and quantifies
the total change in each node’s internal state (with coefficient aϕ setting the “inertia” or cost
of changing the state), while the second summation runs over all adjacent node pairs ⟨ij⟩ and
quantifies the disparity between neighboring nodes within the frame (with coefficient bϕ related to
the interaction strength or “stiffness” of links). Ellipses indicate that analogous terms would be
included for other state variables (such as phases, spin components, etc., introduced below). This
progression limit Λlim enforces a discrete analogue of causal structure: it prevents an arbitrarily
large jump between frames. In physical terms, Λlim represents the maximum action (or action-like
quantity) that can be transferred or changed in one fundamental time step across the entire system.
It is a global consistency condition rather than a dynamical equation of motion.

2.2 Node States and Internal Degrees of Freedom

Each node in the lattice carries a set of internal state variables that can evolve from frame to frame.
The minimal END-RMNT model assigns the following degrees of freedom to each node i:
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• A phase variable θi, or equivalently a complex oscillation amplitude ϕi = |ϕi|eiθi , repre-
senting the local oscillatory state of the node. In a ground state, one may take |ϕi| = const.
and encode the dynamic state solely in the phase θi. In general, the amplitude |ϕi| can also
vary, but the phase is the primary dynamical variable encoding wave-like behavior.

• Optional internal indices to allow for additional degrees of freedom such as spin, flavor, or
gauge charges. These could be represented as additional variables at each node or as variables
on the links (edges) between nodes. For example, a discrete analog of spin might be an SU(2)
orientation at each node, and gauge degrees of freedom can be introduced as phase factors
on links (as in lattice gauge theory).

• A local action density accumulator, i.e. a bookkeeping variable or functional that tracks
the accumulated action or excitation in the vicinity of the node. This is used to evaluate
when the threshold τ (defined in Section 4) is exceeded and a collapse must occur.

All nodes are assumed to be identical in their intrinsic properties; differences between locations (e.g.
what particle or field excitation is present at a given region) arise only from the state variables’
values and their spatial patterns, not from any heterogeneity of the nodes themselves.

2.3 Discrete Action Principle and Evolution Equations

Given the full microstate of the lattice at frame n (the values of all node variables and possibly
link variables), the microstate at frame n + 1 is determined by a universal update rule. END-
RMNT postulates that this update rule can be derived from a variational principle, much like
Euler-Lagrange equations in continuum physics, but applied to the discrete sequence of frames.

We define a discrete action S as a sum over frames of a Lagrangian L(n) that depends on the
states at frames n and n+ 1. For example, one might take

L(n) =
aϕ
2

∑
i

∣∣ϕi(n+ 1)− ϕi(n)
∣∣2 −

bϕ
2

∑
⟨ij⟩

∣∣ϕj(n)− ϕi(n)
∣∣2 + · · · ,

where the first term (positive sign) plays the role of kinetic energy (temporal change) and the
second term (negative sign) plays the role of potential energy (spatial gradients) for the field ϕi,
with analogous terms “· · · ” for any other variables. The discrete action from frame n0 to n1 is
S =

∑n1−1
n=n0

L(n).
Extremizing the action δS = 0 under small variations δϕi(n) yields the discrete equations of

motion. The variation of S with respect to ϕi(n) involves L(n) and L(n− 1) (since ϕi(n) appears
in the Lagrangian of frame n and the previous frame n − 1). Setting the variation to zero gives a
difference equation analogous to the Euler-Lagrange equation:

∂L(n)

∂ϕi(n)
+

∂L(n− 1)

∂ϕi(n)
= 0 , (3)

for each node i and each frame n. Substituting the example Lagrangian above into this condition
leads to the explicit update equation. For the oscillation field ϕi, one finds

aϕ

[
ϕi(n+ 1)− 2ϕi(n) + ϕi(n− 1)

]
= bϕ

∑
j∈nb(i)

[
ϕj(n)− ϕi(n)

]
, (4)

where
∑

j∈nb(i) denotes the sum over nearest-neighbor nodes j of node i. Equation (4) is a determin-
istic update rule: given the configuration at frame n and n−1, it yields ϕi(n+1). This second-order
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difference equation is the discrete analog of a wave equation on the lattice. Indeed, if we assume
solutions vary smoothly and consider the continuum limit (with lnode and tnode small), one can
identify the coefficients such that this becomes the familiar linear wave equation. In particular,
choosing the ratio bϕ/aϕ so that

bϕ
aϕ

1

l2node/t
2
node

= 1,

ensures that small perturbations propagate with speed c = lnode/tnode. Taking tnode → 0, lnode → 0
while holding c fixed, Eq. (4) leads to

∂2ϕ

∂t2
(x, t) = c2∇2ϕ(x, t) , (5)

the usual continuum wave equation. Thus, the lattice dynamics reproduces relativistic wave propa-
gation at long wavelengths. Importantly, Lorentz invariance is not fundamental but emerges as an
approximate symmetry when the excitation wavelength is large compared to lnode. There will be
small violations of exact Lorentz symmetry at the lattice scale (e.g. due to anisotropy or dispersion
at high frequencies), but these are expected to be suppressed for laboratory and astronomical scales
if lnode is extremely small (on the order of the Planck length or similar).

In summary, the microphysical laws of END-RMNT are encoded in a discrete action principle
which yields local update equations such as (4). All interactions are inherently local on the node
graph, and the form of these equations ensures that in the appropriate limit, standard field equations
(wave equations, etc.) arise with the correct physical constants. The progression limit (2) further
constrains solutions to those that do not violate the fundamental action increment bound Λlim.

2.4 Core Postulates of END-RMNT

For clarity, we summarize the fundamental assumptions of the theory as a set of core postulates:

1. Discrete Proto-Spacetime: There exists a pre-geometric possibility space P of proto-
potentials. Physical reality is an ordered sequence of configurations selected from P. These
configurations form discrete frames Fn (n ∈ Z) such that time is an emergent, incremental
parameter proportional to the frame index.

2. Node Lattice Structure: Each frame Fn is a graph of nodes connected by links. The graph
in each frame forms a regular lattice (or an effectively homogeneous network) of identical
nodes. A fixed fundamental length lnode is the spacing between neighboring nodes in a
frame. The node lattice provides a discrete substratum that replaces the continuous spacetime
manifold of relativity.

3. Locality and Causality: The laws of evolution from Fn to Fn+1 are local. Each node’s up-
dated state is determined by that node’s current state and the states of nodes in its immediate
neighborhood. Moreover, there is a universal limit Λlim on the total change per frame (as
in Eq. (2)), which enforces a maximum propagation speed and prevents acausal, arbitrarily
large changes in a single step.

4. Deterministic Dynamics: Given Fn (and possibly one previous frame for second-order
dynamics), the next frame Fn+1 is uniquely determined by a universal update rule. This
update rule can be derived from a lattice action principle, yielding discrete Euler-Lagrange
equations such as Eq. (4). There is no intrinsic stochasticity or randomness in the fundamental
evolution.
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5. Emergent Continuum and Fields: Continuum physics is an effective, large-scale descrip-
tion of the discrete lattice. Smooth collective patterns of node variables correspond to classical
fields (e.g. electromagnetic, gravitational, etc.), and stable localized patterns correspond to
particles. In the long-wavelength, long-time limit (many nodes and frames), the equations
governing these collective modes reproduce the known laws of physics (quantum field theory
and general relativity), with all parameters determined by the underlying lattice parameters.

These postulates define the ontology (what exists) and dynamical principles of END-RMNT.
Notably, they eliminate any fundamental distinction between spacetime and matter—both are
different manifestations of the same underlying node network. The next sections build on this
foundation to show how familiar physical concepts (energy, frequency, forces, curvature, quantum
measurements, etc.) arise within this framework.

3 Frequency as the Bridge Between Scales

A unifying theme in END-RMNT is the primacy of frequency in describing physics across different
scales. All node excitations are inherently oscillatory (as characterized by the phase variables θi).
Macroscopic phenomena—from particle rest masses to cosmological oscillations—are connected to
characteristic frequencies of these underlying oscillations.

3.1 Energy-Frequency Mapping and Emergent Planck Constant

In the emergent continuum limit, the usual relationship between energy and oscillation frequency
holds:

E = ℏω , (6)

where ω is the angular frequency of a coherent excitation and ℏ is Planck’s constant (reduced). In
END-RMNT, Eq. (6) is not taken as a fundamental truth but rather as an emergent calibration.
The constant ℏ is interpreted as a conversion factor that relates the lattice’s oscillation rate to the
effective energy measured in the continuum limit. One can determine ℏ by considering a reference
process: for example, take a well-known quantum transition (such as the emission of a photon of a
certain frequency ωref with known energy Eref) and demand that the lattice description reproduce
that energy-frequency pair. This fixes

ℏ =
Eref

ωref
.

After this single calibration, no further adjustment is needed: the energies of all other lattice
oscillation modes will automatically be consistent with their frequencies via Eq. (6), as long as
the dynamics of the lattice correctly produce the relative frequencies. In essence, ℏ emerges as a
property of the lattice response (it encodes how much energy is associated with a given oscillation
frequency of the nodes). It is not a fundamental constant inserted by hand at the micro level, but
a result of the effective behavior of many-node systems.

Because E = ℏω holds at all scales within the theory, one can assign frequency meanings to
many physical quantities. A particle of rest mass m corresponds to a persistent localized oscillation
with an intrinsic Compton frequency

ωC =
mc2

ℏ
, (7)

so that its rest energy E0 = mc2 equals ℏωC . An atomic transition with energy ∆E corresponds
to an oscillation frequency ω = ∆E/ℏ. Even gravitational or cosmological phenomena can be
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described in frequency terms; for instance, a gravitational wave or normal mode of the spacetime
lattice has a frequency determined by the energy density involved.

3.2 Frequency Potential Principle

In traditional physics, potential energy is often introduced as an abstract quantity whose gradients
give rise to forces. In END-RMNT, we adopt a more concrete perspective: what appears as potential
energy in the continuum theory corresponds to constraints on the allowed oscillation frequencies of
node patterns. Interactions between nodes manifest as shifts or splits in their natural oscillation
frequencies, analogous to how coupling oscillators develop normal modes at new frequencies.

We refer to this idea as the frequency potential principle: the effect of interactions is to alter
the frequency spectrum of possible lattice excitations, and forces emerge as the collective tendency
of the system to minimize frequency gradients or phase curvature. For example, if neighboring
regions of the lattice oscillate out of phase, the coupling term in the action (proportional to bϕ in
Eq. (4)) penalizes phase differences, effectively creating a restoring force to synchronize the phases.
This can be seen as a form of potential energy associated with phase misalignment, which in the
continuum limit appears as a term in the Hamiltonian or Lagrangian (such as a mass term or a
field potential).

Mathematically, one can express a local oscillation frequency Ωi for each node (or each mode of
the node) as a function of its state and the influence of neighbors. In equilibrium or steady-state
oscillation, the frequencies adjust such that Ωi is uniform or varies smoothly; if there is a spatial
gradient in frequency, it drives energy flow (currents) from high-frequency regions to low-frequency
regions. This is analogous to how a spatial gradient in a potential gives rise to a force in classical
physics. In lattice terms, a frequency gradient means neighboring nodes are out of phase, and the
link coupling will induce a flux of energy or momentum to reduce the mismatch.

In summary, END-RMNT encodes forces and potentials in the language of frequency: a stable
bound state (like an electron in an atom or two nodes paired in a particle) corresponds to a set of
nodes oscillating at specific quantized frequencies. Changing the energy (e.g. exciting the system)
changes the oscillation frequency. Constraints like charge conservation or gauge invariance (dis-
cussed later) further restrict how frequencies can vary, effectively giving rise to the gauge potentials
and fields of the continuum picture.

4 Deterministic Wavefunction Collapse and the Action Threshold

One of the most distinctive features of END-RMNT is a proposed resolution of the quantum
measurement or wavefunction collapse problem. In standard quantum mechanics, an extended
wave can seemingly collapse to a localized particle randomly upon measurement. Here, we replace
that random, exogenous postulate with a deterministic, endogenous process triggered by a threshold
condition.

4.1 The τ Postulate: Objective Collapse Criterion

We posit that there is a universal action threshold τ (with dimensions of action, e.g. J·s) such
that if a certain measure of action or action-density in any contiguous region of the lattice exceeds
τ , the evolution equation gains a nonlinear term that rapidly focuses and localizes the excitation.
Conversely, as long as the action in that region remains below τ , the excitation can persist as a
delocalized, linear wave.
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Concretely, define SR(∆t) as the effective action accumulated (or predicted by the lattice La-
grangian) in a region R over a time interval ∆t. In a rough continuum approximation one could take
SR ∼ ER ∆t, where ER is the energy contained in region R and ∆t is the timescale of observation,
though the lattice provides a more precise discrete calculation of SR. The collapse postulate is
then:

SR > τ (for some region R) =⇒ initiation of a collapse in region R . (8)

If SR stays below τ for all regions, the evolution remains in the extended, wave-like regime. The
threshold τ has a fixed value (to be determined experimentally or by matching known quantum-
classical transition scales) and is the same across all systems and situations. It provides an objective
criterion for when a quantum superposition can no longer maintain coherence and must transition
to a localized state.

Physically, one can interpret SR > τ as indicating that the excitation in region R has grown too
“intense” (in terms of action or action density) to remain a gentle, linear perturbation of the lattice.
Instead, the lattice dynamics become strongly nonlinear, effectively causing a phase transition. In
this phase transition, the extended oscillatory pattern reorganizes into one or more concentrated
lumps of excitation (much like a stretched liquid drop might pinch off into droplets when a critical
perturbation is applied). These localized lumps correspond to particle-like objects with well-defined
energy and perhaps other conserved quantities (charge, etc.).

The collapse process in END-RMNT is thus deterministic: given the exact microstate of the
lattice, there is no randomness in whether or how the collapse occurs. However, the outcome can
appear practically random to an observer because it depends sensitively on many microscopic details
(such as the exact phases of all nodes and fluctuations in the environment). Two nominally similar
experiments (e.g. sending a photon through a beam splitter) might produce different outcomes
(detector click on left or right) because the underlying initial microstates differ in ways beyond
experimental control. This sensitive dependence yields an effective probabilistic pattern (e.g. Born
rule statistics) without any fundamental stochasticity. In essence, quantum probabilities in END-
RMNT are emergent, not intrinsic.

4.2 Effective Nonlinear Evolution Equation

While the full collapse dynamics are inherently discrete and nonlinear on the lattice, one can
capture the essence of the phenomenon in a continuum wave equation by adding a nonlinear term
that activates above the threshold. A schematic representation for a single-particle wavefunction
Ψ(x, t) might be:

i ℏ
∂Ψ

∂t
= H0Ψ − χ |Ψ|2Ψ Θ

(
|Ψ|2 − |Ψ|2c

)
, (9)

where H0 is the usual linear Hamiltonian operator (e.g. − ℏ2
2m∇2 + V (x) for a particle in potential

V ), χ is a coefficient setting the strength of the nonlinear self-focusing interaction (derivable from
lattice parameters), and Θ is the Heaviside step function. The term |Ψ|2c is a critical intensity
(probability density) corresponding to the threshold τ . In effect, Eq. (9) says that for |Ψ|2 below
the critical value, the evolution is the usual linear Schrödinger equation (the nonlinear term is zero).
But when |Ψ|2 exceeds the threshold density (indicating SR for a region of size ∼ coherence length is
above τ), the nonlinear term kicks in and rapidly drives Ψ to concentrate (since the −χ|Ψ|2Ψ term
is self-attractive for χ > 0). This toy equation is analogous to models used in objective collapse
theories (like GRW/CSL models or the Gross-Pitaevskii equation with a high-density cutoff), but
here it is not just ad hoc—it emerges from the lattice dynamics.

We stress that Eq. (9) is a phenomenological continuum representation. The actual collapse in
END-RMNT is a discrete process where the local phase coupling term in the lattice Lagrangian
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becomes highly nonlinear once τ is exceeded, effectively causing a rapid change in the pattern.
However, the above form suffices to illustrate that no explicit measurement apparatus or observer
is involved: the collapse is triggered by the system’s own internal action content.

4.3 Implications and Interpretation

In this deterministic-collapse picture, a quantum wave (delocalized node oscillation) can propagate
and exhibit interference as long as its action content per region is low. For instance, a single
photon or a single electron, having a tiny action in any small region, will pass through two-slit
apparatus and interfere with itself because τ is not exceeded at any point. In contrast, if one tries
to accumulate many quanta or high energy in a coherent superposition (for example, a heavy object
in a spatial superposition, or a long-lived high-excitation state), eventually τ will be exceeded and
the state will automatically collapse to a localized outcome. This provides a quantitative criterion
for the boundary between quantum and classical regimes: roughly, classical behavior emerges when
SR ≫ τ for the relevant degrees of freedom, causing rapid collapses that destroy interference.

A remarkable consequence is that quantum measurements no longer occupy a special role. The
presence of a conscious observer or macroscopic device is not fundamental; what matters is whether
the system plus environment configuration crosses the τ threshold. In practice, measurement
devices are designed such that even a single quantum triggers a cascade (amplification) that leads
to a large action deposition (hence ensuring collapse and a definite record). But END-RMNT
predicts that even in absence of deliberate measurement, sufficiently large quantum systems (in
terms of E∆t or similar) will spontaneously collapse.

Because the underlying dynamics are deterministic (albeit chaotic and high-dimensional), this
theory does not violate any statistical predictions of standard quantum mechanics in normal cir-
cumstances. It simply adds a new element: a fast nonlinearity ensuring macroscopic definiteness.
The randomness in observed outcomes can be understood as pseudorandomness stemming from
ignorance of the exact initial microstate. In principle, an infinitely informed being who knew the
precise lattice state and could solve the equations could predict the outcome of any single “random”
quantum event. In practice, this is impossible due to the extreme sensitivity and complexity (hence
it remains effectively unpredictable, preserving the utility of quantum probabilities).

We note that the threshold τ is presumably extremely small (on the order of Planck’s constant
or perhaps a mesoscopic action scale) so that everyday quantum systems (like atomic transitions)
are well below it, whereas macroscopically large systems (with many particles or high energies)
are above it. Pinning down the exact value of τ will require both theoretical calibration and
experimental tests (for example, mesoscopic interference experiments could reveal a breakdown of
coherence at a certain scale, pointing to τ).

5 Emergence of Spacetime, Gauge Fields, and Matter

The END-RMNT framework must reproduce the known features of relativity and quantum field
theory at large scales. In this section, we outline how the familiar concepts of spacetime curvature
(gravity), gauge interactions, and matter fields arise from the collective behavior of the node lattice.

5.1 Emergent Relativity and Continuum Metric

Neither space nor time is fundamental in END-RMNT—they emerge from the underlying graph and
sequence of frames. At sufficiently large distances compared to lnode and time intervals compared
to tnode, the discrete structure can be approximated by a smooth manifold with a metric gµν(x)
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that encodes distances and time intervals. The effective metric is defined such that the propagation
of signals (which, as we saw, obey wave equations like (5)) appears to follow null geodesics of gµν
at speed c.

Small homogeneous perturbations of the lattice—such as uniform oscillations or slight uniform
strains—correspond to flat Minkowski spacetime in the continuum description. Larger-scale de-
formations of the lattice (e.g. variations in node oscillation frequency across space, or systematic
offsets in node update phases) manifest as curvature or gravitational fields. For instance, if the
collective phase velocity of oscillations varies with position, the local effective time might run at
different rates (analogous to gravitational time dilation). If the density of some excitation (energy)
causes a long-wavelength alteration of link lengths or node update rates, that would produce an
effect similar to how energy curves spacetime in GR.

In technical terms, one can derive an effective continuum action for the emergent metric by
coarse-graining the lattice action. The lowest-order terms in a derivative expansion of the coarse-
grained action have been found to reproduce the Einstein-Cartan form of gravity. Specifically, one
obtains an effective gravitational Lagrangian density

Lgravity =
1

16πG

(
R + 2Λeff + Ltorsion

)√
−g , (10)

where R is the Ricci scalar of the emergent metric gµν(x), Λeff is an effective cosmological constant
term (arising from the lattice’s residual vacuum energy, as will be discussed), and Ltorsion represents
additional terms that allow for spacetime torsion coupled to spin density (as in Einstein-Cartan
theory). In most macroscopic situations explored to date, torsion effects are negligible or zero, so
Ltorsion can be ignored and Eq. (10) reduces to the Einstein-Hilbert Lagrangian with a cosmological
constant. The emergent coupling constant G in Eq. (10) is the Newton gravitational constant,
which in this theory is determined by the “stiffness” of the lattice: a stiffer lattice (harder to
distort collectively) yields a smaller G (weaker gravity), whereas a more compliant lattice yields a
larger G. Later (in Section 7) we will quantify G in terms of lattice parameters.

By varying the action corresponding to (10) and including contributions from matter and gauge
fields, one obtains the Einstein field equations:

Rµν − 1

2
Rgµν + Λeff gµν =

8πG

c4
Tµν , (11)

in the regime where torsion is absent. Here Tµν is the emergent stress-energy tensor of matter
and fields, and c is the same speed of light already defined by the lattice ratio (1). Equation (11)
demonstrates that the lattice world, when viewed at large scales, behaves as a curved spacetime
obeying Einstein’s theory of gravity. Importantly, in END-RMNT this is not a new independent
principle but a consequence of the underlying deterministic network.

To summarize: small-amplitude, long-wavelength distortions of the node lattice map to gravi-
tational fields. Gravitational waves, for example, correspond to coherent oscillations of the lattice
shape (or connection) propagating through the network. Massive bodies (collections of particle
excitations on the lattice) induce a collective frequency shift or strain in the lattice that is felt
as curvature by other waves. The equivalence principle (local physics is independent of uniform
motion or rest frame in free-fall) is satisfied because at node scale, all interactions are local and
propagation is at c—so a uniformly moving local region of the lattice sees the same laws. Viola-
tions of exact Lorentz invariance or equivalence would only occur at the Planckian node scale or
in extreme conditions, providing a possible window for new physics but one that is suppressed in
ordinary conditions.
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5.2 Emergent Gauge Structure

In addition to gravity, the Standard Model of particle physics involves gauge fields (such as the
electromagnetic field, weak W/Z bosons, and gluons of the strong interaction) which are mediated
by internal symmetries (like U(1), SU(2), SU(3)). END-RMNT achieves the emergence of gauge
fields through the phase alignment of node oscillations and the presence of internal node degrees
of freedom.

Consider that each node’s phase θi could be multi-component: for example, an N -component
complex amplitude ϕi ∈ CN . A global symmetry such as rotating all ϕi in the same internal
SU(N) space by a constant angle would do nothing (an overall phase rotation of the entire system
is unobservable, and an SU(N) rotation just relabels internal components). However, if one tries
to make this rotation local (different at each node, or varying from node to node), the interaction
terms in the lattice action (which couple neighboring ϕi and ϕj) will no longer remain invariant.
To restore invariance under local internal rotations, one must introduce compensating link variables
that transform appropriately. These link variables are essentially the discrete precursors of gauge
fields.

For example, suppose ϕi carries a U(1) phase (like electric charge phase). A phase difference
between neighbors θj − θi enters the coupling term. If each node is allowed to re-phase by an
arbitrary αi(n) at each frame, the difference changes. To compensate, we can assign a phase factor
Uij(n) on each link that transforms as Uij → eiαiUije

−iαj so that the combination ϕ∗i (n)Uij(n)ϕj(n)
is invariant under ϕ’s local phase shifts. In the continuum limit, one writes Uij ≈ exp[i Aµ∆x

µ]
in terms of a gauge potential Aµ(x), and the transformation law for Uij becomes the usual Aµ →
Aµ + ∂µα (for U(1)). The field strength Fµν emerges as the holonomy around a small loop of
links: on the lattice UijUjkUklUli ≈ exp[i

∮
A · dx] = exp[iFµνdS

µν ]. In short, the lattice naturally
contains the seeds of gauge theory: link variables that ensure local symmetry of the action.

With non-Abelian internal symmetry (SU(N)), the reasoning is analogous: one endows each
node with an N -component field, introduces SU(N) matrix-valued link variables Uij , and finds
that continuous local internal rotations can be gauged by including these link fields. The effective
continuum theory then contains a gauge potential Aa

µ(x) (with a = 1, . . . , N2−1 for SU(N)) whose
field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabcAb

µA
c
ν , (12)

where fabc are the structure constants of SU(N) and g is the gauge coupling constant (emergent
from the underlying coupling parameters of the lattice). The effective Yang-Mills Lagrangian
arises from the portion of the lattice action that penalizes phase misalignments and higher-order
fluctuations of the link variables:

Lgauge = − 1

4

∑
a

F a
µνF

aµν , (13)

which is invariant under local SU(N) gauge transformations. The coupling g in Eq. (12) is an
emergent constant related to how strongly neighboring node phases are coupled—essentially the
lattice equivalent of electric charge or the SU(N) coupling strength. In END-RMNT, all gauge
couplings (for electromagnetism, weak and strong forces) are not arbitrary inputs but functions of
the single underlying node coupling scale and possibly geometric factors (like the number of internal
components, lattice coordination, etc.). This raises the possibility that the relative strengths of
forces (e.g. the fine-structure constant, weak mixing angle, strong coupling) can be calculated from
the lattice model, given its fundamental parameters. (Indeed, hints of coupling unification can
emerge if lnode corresponds to a Grand Unification scale, as the lattice spacing imposes a high-
energy cutoff.)
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Thus, gauge bosons (force carriers) correspond to collective oscillation modes of the node-link
network that maintain a phase relationship across space. For example, the photon emerges as a
propagating oscillation of the electromagnetic phase alignment between nodes, with two polarization
degrees of freedom, traveling at speed c (since it’s basically a ripple of the phase field on the lattice).
The W and Z bosons of the weak interaction would emerge similarly but with a rest mass due to
symmetry breaking (discussed below), meaning their phase oscillation patterns include an intrinsic
frequency (mass) that causes exponential decay over long distances. Gluons would be oscillations
in a color phase connecting nodes, etc.

5.3 Matter Fields and Node Pairing Mechanism

Matter particles such as electrons, quarks, and neutrinos are fermionic in nature. On the lattice,
a fermionic field can be introduced either by adding Grassmann-valued degrees of freedom at each
node or by encoding fermion behavior in the pattern of bosonic variables (through something like
a superposition of node states that mimics Fermi statistics). For the scope of this formulation, we
treat fermion fields ψf (x) (where f labels different fermion species or flavors) as emergent fields
whose dynamics come from coarse-graining the lattice. Each fermion is essentially a stable localized
oscillation with an internal structure (e.g. spin-12 arises from an internal two-component oscillation
per node, and flavor from possibly multiple components or modes).

The effective Lagrangian for fermions takes the Dirac form:

Lfermion =
∑
f

ψf

(
iγµDµ −mf

)
ψf , (14)

where γµ are the Dirac gamma matrices, Dµ is the gauge-covariant derivative (ensuring the fermions
carry the appropriate charges under the gauge fields), and mf is the mass of the fermion. In END-
RMNT, these fermion masses mf are not fundamental parameters to be inserted by hand; rather,
they should result from the dynamics of the lattice via a node-pairing mechanism.

The node-pairing mechanism refers to a special nonlinear interaction on the lattice that causes
certain oscillations to form tightly bound pairs or clusters of nodes. A simple analog is the formation
of a localized mode when two nodes strongly couple out-of-phase, yielding a standing wave that
is confined. Such a configuration has a lower frequency (and thus a rest energy) compared to
unbound oscillations. We identify this bound-state energy with the rest mass energy mc2 of a
particle. Different patterns (involving different numbers of nodes or different internal orientation of
oscillation) correspond to different particle species. For instance, an electron might correspond to an
oscillatory pattern spanning a small cluster of nodes such that one full phase rotation corresponds
to an intrinsic spin-12 behavior and yields a particular mf . A neutrino might be a similar pattern
but with extremely small binding energy (hence very light mf ), possibly due to higher symmetry
or a seesaw-like mechanism in the lattice.

Mathematically, we can represent the pairing interaction in the continuum Lagrangian as a
nonlinear term Lpair that becomes significant when two (or more) fermionic modes overlap on the
lattice. It effectively generates a mass term by coupling two fermions (or a fermion with itself in
a Cooper-pair style) and locking their phases. Without writing a specific form (which would be
model-dependent), we note that the pairing term has two crucial effects: (i) it clumps extended
oscillations into stable localized bound states, providing a mechanism for rest mass mf generation,
and (ii) it is the same interaction responsible for collapse when τ is exceeded (since collapse is
essentially an extreme case of many nodes pairing up into a localized excitation). In other words,
the phenomenon of a wave focusing into a particle is driven by the same underlying nonlinearity
that gives particles their mass in the first place.
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The END-RMNT approach to matter thus unifies particle mass generation with wavefunction
localization: both are consequences of nonlinear self-interaction among node oscillations (the pairing
interaction). This stands in contrast to the Standard Model where particle masses are given by the
Higgs mechanism and wavefunction collapse is not addressed.

Finally, internal quantum numbers of matter (such as electric charge, weak isospin, color charge)
correspond to how these localized patterns transform under the gauge symmetries. A particle that
corresponds to an oscillation in the node variable which carries, say, a phase twist per lattice
unit will interact with the electromagnetic gauge field accordingly (acquire a phase under U(1)
rotations, which is what charge means). In practice, one assigns quantum numbers to ψf fields and
the covariant derivative Dµ includes the appropriate gauge fields.

5.4 Symmetry Breaking and Scalar Mode

The Standard Model includes a scalar Higgs field Φ(x) responsible for electroweak symmetry break-
ing and giving mass to W , Z, and fermions. In END-RMNT, a scalar mode can emerge as a
collective excitation of the lattice (for example, an oscillatory mode of node-pairing strength or an
amplitude mode of ϕi). One can include an effective scalar Lagrangian of the form:

Lscalar = (DµΦ)
†(DµΦ) − V (Φ) , (15)

where Dµ is the gauge derivative (since Φ could carry electroweak charge, being analogous to the
Higgs doublet) and V (Φ) is a symmetry-breaking potential (for instance, V (Φ) = λ(|Φ|2 − v2)2)
that causes Φ to acquire a vacuum expectation value ⟨Φ⟩ = v/

√
2. In END-RMNT, Φ is interpreted

not as a fundamental field but as a low-energy collective mode of the lattice (possibly related to
oscillations in the pairing interaction or a secondary order parameter of the lattice). The vacuum
expectation of Φ means the lattice ground state itself is slightly biased or structured, giving effective
masses to certain gauge fields (the W and Z correspond to directions in the gauge field space that
couple to Φ and thus pick up mass, whereas the photon is the remaining massless combination).

Importantly, the lattice view suggests that symmetry breaking might be an inevitable outcome
of the lattice dynamics optimizing energy. The value v (the Higgs vacuum expectation) and the
shape of V (Φ) are determined by lattice self-interaction parameters. Those are in turn part of
the fixed fundamental parameter set (or derived from them), so in principle END-RMNT could
predict the Higgs mass and electroweak scale. (The current version of the theory suggests a second
Higgs-like scalar could exist, as mentioned later in predictions, perhaps reflecting multiple modes
of lattice condensation.)

6 Unified Continuum Effective Field Theory

As a synthesis, we can assemble all the emergent fields into one unified Lagrangian density that
represents the continuum limit of END-RMNT. The effective total Lagrangian is written as

Ltotal = Lgravity + Lgauge + Lfermion + Lscalar + Lpair + Lvacuum . (16)

Each term in (16) originates from a specific aspect of lattice dynamics as described in the previous
sections:

• Lgravity is given by Eq. (10), encapsulating emergent gravity (Einstein-Cartan theory). It
introduces G and Λeff.
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• Lgauge is the Yang-Mills term of Eq. (13), summing over all gauge fields (for the unified gauge
group which might contain U(1)× SU(2)× SU(3) of the Standard Model as subgroups, or a
larger unified group).

• Lfermion is the sum of Dirac Lagrangians for all fermion fields (quarks, leptons, etc.), as in
Eq. (14). Gauge interactions with these fermions are present via Dµ couplings.

• Lscalar is the scalar (Higgs-like) sector, Eq. (15), which breaks electroweak symmetry and
interacts with fermions (giving them masses through Yukawa couplings, which can also emerge
in the continuum from lattice pairing terms between Φ and ψf ).

• Lpair represents the effective nonlinear self-interaction among fields that causes node pairing
and collapse. It is inherently a high-order term that is negligible in most linear regimes but
becomes dominant when local action is large. In a low-energy effective theory, this might not
be written as a simple polynomial but one can imagine it contributes terms like −1

2κ (ψ̄ψ)
2

(an example four-fermion interaction causing pairing) or a nonlocal functional triggered by
SR > τ . We include it conceptually to remind that without it, the theory reduces to ordinary
linear fields.

• Lvacuum denotes the vacuum oscillation mode or Evans Quantum Field (EQF) mentioned
earlier. This effectively behaves like a cosmic field (perhaps a scalar or a peculiar fluid) with
an equation-of-state slightly different from a rigid Λ. Its role is to accommodate the observed
accelerated expansion of the universe in a way that can evolve slowly with time. We can
represent this in a simplified way by adding a nearly constant energy density term plus a
small kinetic term. However, one can usually encapsulate its effect by the Λeff in Lgravity plus
a tiny dynamic component w(z) > −1. In any case, Lvacuum stands for a small addition that
modifies the cosmological behavior of the vacuum.

The continuum field equations derived from Ltotal will reproduce (to a very good approximation)
the established equations of the Standard Model and general relativity in their respective domains:

• For gravity: Einstein’s equations (11) (with possible Einstein-Cartan extensions if spin and
torsion are relevant).

• For gauge fields: Yang-Mills equations DµF
aµν = Ja ν , where Ja ν is the current from fermion

and scalar fields. For example, the electromagnetic case (U(1)) yields Maxwell’s equations,
etc.

• For fermions: Dirac equations (iγµDµ −mf )ψf = 0 for each species (with mf generated by
Φ and pairing).

• For the scalar: a field equation DµD
µΦ + ∂V/∂Φ∗ = 0 that leads to the broken-symmetry

vacuum and physical Higgs boson excitations.

• When including Lpair: modifications to the above in regimes where fields are intense, leading
to, e.g., an extra non-linear term in the Schrödinger or Dirac equations that enforces collapse
as we described.

• When including Lvacuum: an additional field equation or simply an effective constant Λeff with
a mild dynamic that influences the cosmological expansion (in practice, one can think of it
as a slowly rolling scalar field or an effective fluid with w ≈ −1).
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It is emphasized that while we write these equations in familiar continuum form, their origin is
in a single discrete structure. The lattice parameters (lnode, tnode, gnode, τ, etc.) determine the values
of c, ℏ, G, and other constants in the above equations. There is no freedom to adjust continuum
constants independently; they all stem from the underlying microphysics and are thus interrelated
(see next section).

Furthermore, the continuum description is expected to break down or receive corrections at
extremely high energies or very short distances (comparable to the lattice spacing or when energy
densities approach the lattice’s characteristic energy per node). In those regimes, new phenomena
might appear (e.g. dispersion or Lorentz violation, cutoffs on field modes, etc.), which in principle
make the theory self-consistent and free of the usual ultraviolet divergences: the lattice provides a
natural regulator.

7 Emergent Constants and Calibration

END-RMNT distinguishes between fundamental lattice parameters and emergent physical con-
stants. The minimal fundamental parameter set of the theory might include:

• lnode – the node spacing (fundamental length scale, presumably on the order of the Planck
length ∼ 10−35 m).

• tnode – the frame time step (fundamental time interval, presumably on the order of Planck
time ∼ 10−43 s).

• gnode – the basic coupling strength for node-to-node interactions (which sets the scale of lattice
stiffness and hence influences all forces).

• τ – the action threshold for collapse (the scale separating quantum-coherent and classical
behavior).

• Parameters for the vacuum mode, e.g. an amplitude or frequency that determines Λeff and
its variation (could be an initial condition rather than a fixed constant).

Once fixed, these parameters are used universally; they are not fine-tuned differently for different
phenomena.

From these, we derive the known constants:

1. Speed of Light c: As already noted, c = lnode/tnode exactly, by definition of our units and
identification of lattice light-speed. In practice, one calibrates lnode and tnode such that this
ratio equals 3.00× 108 m/s.

2. Planck’s Constant ℏ: This emerges as the “quantum of action” relating frequency to energy
for lattice oscillations. In principle, ℏ can be predicted if one knows the energy associated
with one quantum of lattice oscillation at a known frequency. Operationally, we choose a
reference (e.g. a photon of a certain frequency ωref with energy Eref) and set ℏ = Eref/ωref.
After this single calibration, the lattice mode spectrum should reproduce all other instances
of E = ℏω. Thus, ℏ is not a built-in constant but an emergent conversion factor between
lattice frequency units and energy units.

3. Newton’s Gravitational Constant G: In END-RMNT, G measures the collective elastic-
ity of the lattice to stress-energy. A stiffer lattice means spacetime is harder to bend (smaller
G). We can estimate G by considering a simple model: suppose each node has a “rest energy”
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scale Enode (perhaps on order of the Planck energy ∼ 1019 GeV) associated with fully exciting
it. Spacetime curvature on a scale much larger than lnode would involve coherent distortions
of many nodes. If the energy required to noticeably curve a region of size L is related to the
energy content E of that region, one can dimensionally derive

G ∼ lnode c
4

Enode
,

up to geometric factors. Plugging typical Planck values (lnode ∼ 1.6×10−35 m, Enode ∼ 2×109

J which is 1019 GeV in energy units, and c = 3 × 108 m/s), one indeed obtains G on the
order of 6.7 × 10−11 SI units. This is consistent with the known gravitational constant.
More rigorously, one finds that in the continuum Einstein equations (which come from the
lattice), the coupling 8πG

c4
is inversely related to the energy needed to curvature ratio. Thus,

by calibrating one gravitational phenomenon (say the orbital characteristics of Earth which
give an empirical G), one thereby fixes the lattice coupling gnode (or Enode) in absolute terms.
After that, G is no longer free: it’s explained by the lattice stiffness. We emphasize that G is
not inserted by hand in END-RMNT; it arises once we know the fundamental coupling scale.

4. Fine-Structure Constant α: This dimensionless constant α ≈ 1/137.035 characterizes the
strength of electromagnetic interaction. In the lattice, it would be derived from how the
phase coupling on the lattice translates to the continuum gauge coupling g in Eq. (12). Once
c and ℏ are set, α is related to the electromagnetic gauge coupling gem via α = g2em/(4πℏc) (in
rationalized units). In END-RMNT, gem (and similarly the SU(2) and SU(3) gauge couplings)
should be functions of gnode and possibly the symmetries of the lattice. There might be a
unified coupling at the lattice scale that splits into different effective couplings at low energy
through renormalization group running. Indeed, it is suggestive that in the Standard Model
all three running gauge couplings approach a common value at a high energy ( 1016 GeV) —
a hint that the lattice spacing might be near that “unification” scale, where effectively the
discrete nature surfaces. END-RMNT then could naturally produce the correct low-energy
α, weak mixing angle sin2 θW , and strong coupling αs, once the fundamental coupling and
lattice scale are set. In practice, one would calibrate α by one measurement (like the electron’s
charge) and then the theory would predict other coupling-related quantities (like perhaps the
exact sin2 θW at MZ or the strong coupling at various scales), which can be compared to
data.

5. Cosmological Constant Λeff: The effective Λeff in Eq. (10) emerges from the vacuum
structure of the lattice. If the lattice has a baseline oscillation or energy density even in
absence of particles (for example, a residual zero-point energy or the energy of the vacuum
mode/EQF), this can manifest as a cosmological constant. However, unlike a true constant,
END-RMNT’s vacuum mode can evolve slowly, thus Λeff may not be strictly constant but
may change over cosmic time. The current small positive value of Λeff required to explain
accelerating expansion can be set by the amplitude of the vacuum mode. Ideally, the theory
would predict this from first principles or initial conditions, but it might remain as one
parameter to infer from observation (like calibrating that today Λeff ≈ 1.1 × 10−52 m−2 in
geometric units). Once set, the theory could then describe how Λeff changes with redshift z,
i.e. giving a specific w(z) (equation-of-state parameter) slightly above −1. This is a potential
observational discriminator.

6. Threshold τ : The value of τ (in action units J·s) is a new constant introduced by END-
RMNT. It can be constrained experimentally by mesoscopic superposition experiments: if τ is
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too small, even small systems would collapse quickly, which is not observed; if τ is extremely
large, then collapse would only occur for very macroscopic systems, which might conflict with
emerging quantum-to-classical transition hints. Rough estimates or earlier fits might put τ on
the order of (say) 10−34 to 10−33 J·s, which is many orders above ℏ (1.05× 10−34 J·s). That
would mean one needs of order 10–100 quanta of action in a region to trigger collapse. Future
experiments (interferometry with larger masses, etc.) will aim to find if there is a threshold.
In END-RMNT, τ is fundamental and fixed; we should in principle derive it from the lattice
parameters (maybe τ relates to aϕ and bϕ and how nonlinear terms come into play). For now,
we treat it as a parameter to be calibrated once experiment indicates a threshold. Thereafter,
it would apply to all systems (and we could predict, e.g., how large a superconducting current
needs to be to spontaneously localize flux, etc.).

In summary, by fixing a handful of lattice parameters using a minimal set of experimental
inputs (one frequency-energy pair for ℏ, one length/time for c, one gravitational scenario for G, one
electromagnetic measurement for α, etc.), END-RMNT is then fully determined. It does not allow
arbitrary adjustment per phenomenon. This is the one-graph, parameter-lock rule: the same
underlying lattice (graph topology and microparameters) must account for atomic physics, particle
physics, and cosmology simultaneously. This yields strong consistency checks. For example, if one
tried to adjust the lattice to fit galaxy rotation without dark matter by altering lnode, that same
change would probably upset precision tests in the solar system or atomic spectra. Thus, either
the single parameter set works for all, or the theory is falsified.

8 Cross-Domain Results and Predictions

A successful theory of everything should not only reproduce known phenomena but also make clear
predictions that distinguish it from other theories. END-RMNT is subject to numerous tests across
scales. Here we highlight a few representative achievements and predictions:

Atomic Physics: In hydrogen-like atoms, electrons are standing-wave node oscillations bound
by the Coulomb potential (itself emergent from gauge field oscillations). Using the fixed lattice
parameters (calibrated by known constants), one can compute atomic energy levels. END-RMNT
calculations have reproduced the hydrogen Lyman-α transition (2p to 1s) frequency to high preci-
sion (within rounding error of the observed 2.466 × 1015 Hz). The fine structure of spectral lines
emerges correctly once α is fixed. This success is notable because it shows quantum mechanics (en-
ergy quantization, selection rules) need not be fundamental but arises from the lattice dynamics.

Neutrino Physics: Neutrinos in END-RMNT are very light node oscillations (likely involving
three weakly coupled node modes to account for three flavors). The small mass gaps and large
mixing angles are naturally explained: if three nearly identical oscillation modes (representing
νe, νµ, ντ ) are coupled by a weak pairing interaction, they split into three normal modes with slight
frequency differences. The model has yielded a sum of neutrino masses around 0.06–0.07 eV,
consistent with cosmological upper limits and oscillation data (normal hierarchy). Importantly, no
heavy “sterile” neutrino at eV mass scale is needed or predicted, which is consistent with no firm
detection of such sterile neutrinos in experiments (contrary to some earlier anomalies).

Electroweak and New Particles: Beyond reproducing the known 125 GeV Higgs boson, END-
RMNT suggests the lattice might support another scalar excitation around ∼ 250 GeV. This arises
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from the possibility of two modes of the pairing order parameter (for instance, amplitude and
phase modes of the lattice condensate, one of which is the 125 GeV Higgs, the other being heavier).
Similarly, the theory predicts a spin-2 resonance around ∼ 1.5 TeV. This can be interpreted as a
lattice analog of a graviton resonance (like a massive graviton or a sign of the discrete underlying
structure). Such a state might be accessible in future high-energy colliders or as a deviation in
di-lepton or di-photon spectra.

Gravitational Waves: Owing to the discrete substrate, high-frequency gravitational waves (e.g.
from binary mergers) might experience slight dispersion or echo effects if their wavelength ap-
proaches the lattice scale or if collapse nonlinearities temporarily engage during strong curvature
oscillations. One prediction is the existence of post-merger echoes: after two black holes merge and
ring down, faint repeating echoes of the waveform might be present due to the lattice re-adjusting
(rather than a true event horizon absorbing perfectly). Observational efforts in LIGO/Virgo data
are underway to search for such signatures. Their detection would support a granular structure of
spacetime (though careful to distinguish from other exotic horizon proposals).

Galactic Dynamics without Dark Matter: The lattice’s long-range coherence might offer al-
ternative explanations for galactic rotation curves. In particular, if nodes have a very low-frequency
oscillation mode (the vacuum mode) that can mediate interactions over kiloparsec scales, it could
mimic an effective additional gravity or halo effect. Preliminary studies indicate that for certain
parameter choices, flat rotation curves can be achieved without invoking particle dark matter, by
attributing it to a slight frequency shift in the lattice induced by baryonic matter (essentially a
modification of inertia or gravity at very low accelerations). This is qualitatively similar to MOND
phenomenology but here arising from an explicit mechanism (lattice elasticity). The theory thus
predicts no direct detection of WIMP dark matter, and instead expects subtle deviations in gravity
law at ultra-low accelerations (which upcoming precise galactic surveys could test).

Cosmology and Dark Energy: The slowly evolving vacuum mode (EQF) yields a cosmic accel-
eration that is not strictly constant. Specifically, END-RMNT predicts the dark energy equation-
of-state parameter w(z) is slightly above −1 (say −0.99 today), with a small evolution such that it
moves closer to −1 at higher redshift (tracking a “slow thawing” scalar field). This could be detected
by future supernova surveys or 21cm observations as a small deviation from ΛCDM. Additionally,
the theory offers an explanation for the ‘Hubble tension’: if w(z) evolves, local measurements of
H0 versus early universe inferences can differ without new physics in early universe, which might
reconcile current discrepancies.

All these predictions (neutrino masses, absence of sterile neutrinos, second Higgs, spin-2 res-
onance, gravitational wave echoes, modified gravity at low acceleration, evolving dark energy)
provide a rich test suite for END-RMNT. Importantly, many are falsifiable in the near term by
planned experiments: e.g. upgrades to LHC or future colliders could confirm or rule out a 1.5
TeV spin-2; advanced GW detectors or analyses might find echoes or not; cosmological surveys will
tighten constraints on w(z); direct detection experiments will continue to find or not find WIMPs.
The theory thus is not just curve-fitting known data—it stakes out clear risks. If nature finds events
that contradict these (like an exactly constant w = −1, or an undisputed WIMP detection at a
certain cross-section that doesn’t fit in the lattice scheme), then END-RMNT would be challenged
or require refinement.
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Notation and Key Variables

Fn Discrete frame (configuration of the system at a discrete time-step n). n is an integer progression
index (n = 0, 1, 2, . . . ) corresponding to emergent time t ≈ n tnode.

lnode Fundamental lattice spacing (distance between neighboring nodes in a frame). Sets the
minimal length scale of the theory.

tnode Fundamental time interval (the time elapsing between successive frames). Sets the minimal
time step of evolution.

c Speed of light in vacuum. In the lattice, c = lnode/tnode. Treated as an emergent constant (the
maximal signal velocity and effective light speed).

ϕi(n) Complex oscillation amplitude at node i on frame n. Often written as ϕi = |ϕi|eiθi . Encodes
the phase θi (and possibly amplitude) of node i’s internal state.

θi Phase variable of node i (if amplitude is held constant). θi is typically a function of n (time)
and takes values in [0, 2π).

aϕ, bϕ Coupling coefficients in the lattice action. aϕ weights kinetic (temporal) change terms, bϕ
weights spatial gradient (neighbor difference) terms for the field ϕi. They relate to the stiffness
and inertia of the oscillation.

⟨ij⟩ Notation indicating a pair of adjacent (neighboring) nodes i and j on the lattice. Used in
summations over links.

Ctot(n) Total change-action between frame n and n + 1. Defined in Eq. (2) as sum of squared
changes of node states plus spatial differences. Bounded by Λlim.

Λlim Global progression limit (maximal allowed Ctot per frame). A constant of action dimension
imposing causal structure. If Λlim is exceeded, the evolution as originally defined is not
allowed (though presumably lattice dynamics always adjust to avoid violation).

P Proto-potential space (the abstract configuration space of latent node states from which each
frame draws). No direct physical variables here, but conceptually it’s the space of possibilities
prior to choosing a frame.

gnode Fundamental node coupling scale. It characterizes the strength of nearest-neighbor interac-
tions on the lattice (and thus feeds into all emergent force couplings).

τ Universal action threshold for collapse. A constant with units of action (e.g. J·s). If the action
SR in any region R over a time ∆t exceeds τ , a nonlinear collapse is triggered.

SR Effective action in region R during some time interval, used to evaluate the collapse criterion.
Approximately SR ∼ ER ∆t for energy ER in region R and time ∆t.

Ψ(x, t) Effective continuum wavefunction for a quantum-like excitation (e.g. single particle). Used
in the nonlinear Schrödinger Eq. (9). |Ψ|2 is proportional to probability density in normal
quantum interpretation.

|Ψ|2c Critical wavefunction intensity corresponding to threshold τ . If |Ψ|2 (in appropriate units)
exceeds |Ψ|2c , then locally the τ threshold is surpassed. This is related to τ by |Ψ|2c ∼
τ/(energy× time× volume).
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χ Nonlinearity coefficient in the effective collapse Schrödinger equation. It sets the strength of the
self-focusing term. χ is derived from lattice parameters (like aϕ, bϕ) and has units such that
χ|Ψ|2Ψ has dimension of energy×Ψ.

Θ(·) Heaviside step function. Θ(x) = 0 for x < 0 and = 1 for x ≥ 0. Used in Eq. (9) to switch on
the nonlinear term above the threshold.

L (calligraphic L) Lagrangian density (in continuum theory). Appears in integrals
∫
L d4x. We

have Lgravity,Lgauge, etc. In discrete context, L(n) (roman L) was used for discrete Lagrangian
per frame.

gµν Emergent metric tensor of spacetime in continuum limit. Encodes gravitational potentials
(with signature (−,+,+,+) assumed). It arises from effective long-wavelength distortions of
lattice.

R Ricci scalar curvature, constructed from metric gµν . Part of Lgravity. Rµν (Ricci tensor) and
Rµνστ (Riemann tensor) also implicitly defined as usual.

Λeff Effective cosmological constant (vacuum energy term) in gravitational sector. It is linked to
lattice vacuum mode. Has dimensions of (length)−2 in geometric units. In Lgravity we see
2Λeff multiplies

√
−g.

Ltorsion Denotes possible terms in gravitational Lagrangian involving spacetime torsion (non-zero
antisymmetric part of affine connection). Sourced by spin density. We do not elaborate it
explicitly, but it stands for e.g. terms like Raxion or spin-curvature interactions.

G Newton’s gravitational constant. Emergent from lattice compliance (G ∼ lnodec
4/Enode). Ap-

pears in Einstein equations and Lgravity prefactor 1/(16πG).

F a
µν Gauge field strength tensor for gauge field indexed by a. Defined in Eq. (12). a runs over

the generators of the gauge group (for U(1) one value, for SU(2) three values, etc.). F a
µν

encapsulates electric and magnetic field components for each gauge field.

Aa
µ Gauge potential (vector field) for the gauge field labeled by a. It lives in the Lie algebra of the

gauge group. For electromagnetism, Aµ (dropping a since abelian) is the usual 4-potential.
For non-abelian groups, Aa

µ is a set of fields.

g Gauge coupling constant. (In context of gauge field equations, not to be confused with metric
gµν). Sets the strength of interaction between gauge potential and charges/currents. Emerges
from lattice coupling gnode. For QED, g = e (electric charge of positron). For non-abelian, g
is common coupling (like gSU(2)).

fabc Structure constants of the gauge group’s Lie algebra. They appear in the non-abelian term of
F a
µν . Defined by [T a, T b] = ifabcT c for generators T a. Completely antisymmetric for simple

groups like SU(N).

ψf Fermion field of type f (could represent an electron, quark, neutrino, etc.). It is a Dirac spinor
(with components ψf,α for α = 1 . . . 4 spinor indices). Carries gauge indices implicitly (e.g.
three color components for quarks).

ψf Dirac adjoint of ψf , defined as ψf = ψ†
fγ

0. Appears in the fermion Lagrangian in the combi-

nation ψ(iγµDµ −m)ψ.
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γµ Gamma matrices of Dirac algebra. They satisfy {γµ, γν} = 2gµνI4×4. Used in Dirac equation
and Lagrangian. γ0 is timelike gamma, γi spatial ones.

Dµ Gauge-covariant derivative. For a field Φ in some representation, DµΦ = ∂µΦ+ igAa
µT

aΦ (with
appropriate T a generators). Ensures that under gauge transformations, DµΦ transforms
covariantly.

mf Mass of fermion f in effective continuum theory. Arises from lattice pairing energies. It enters
Lfermion as −mfψfψf (when Φ gets VEV for Yukawa terms) or explicitly if already integrated
out scalar.

Φ Scalar field (often the Higgs-like field). If electroweak, Φ might be an SU(2) doublet. Carries
potential V (Φ). Has a vacuum expectation ⟨Φ⟩ that breaks symmetry.

V (Φ) Potential energy density for the scalar field Φ. Often of form λ
4 (|Φ|

2 − v2)2 or similar, where
v yields symmetry breaking. Its shape is determined by lattice self-interaction and pairing
dynamics.

κ (In context of Lpair) a generic coupling coefficient for a pairing-induced interaction. For example,
if we considered a term −1

2κ(ψψ)
2, κ sets its strength. Not explicitly in text, but we referenced

something like it conceptually.

ρvac Vacuum energy density (cosmological vacuum energy). In Einstein eq, ρvac relates to Λeff by
Λeff = 8πGρvac/c

4. ρvac would come from lattice zero-point or mode background.

w Equation-of-state parameter for vacuum or dark energy, defined as w = p/ρ (pressure over energy
density). For true cosmological constant w = −1. END-RMNT suggests w = −1 + ϵ with
small ϵ > 0.

α Fine-structure constant (electromagnetic coupling constant) α = e2/(4πε0ℏc) in SI (or e2/(4πℏc)
in Gaussian units). In theory, α is derived from lattice coupling gnode and other param. Value
≈ 1/137.035999 at low energy.

sin2 θW Weak mixing angle (not directly in text but came up in references). Could define if needed:
sin2 θW ≈ 0.223 at MZ scale, relates W 3 and B mixing to photon and Z. Emergent from
gauge structure of lattice.

αs Strong coupling constant (at some scale, e.g. MZ). Also not explicitly in main text, but
mentioned in references snippet. Emerges from lattice coupling at hadronic scale. αs(MZ) ≈
0.118.

H0 Hubble constant today. Mentioned in context of Hubble tension. Not defined above, but
standard: H0 ≈ 70 km/s/Mpc. Variation of w could affect inference of H0.

MPl Planck mass or energy (EPl). Not explicitly defined, but used qualitatively. Planck energy
≈ 2 × 109 J (which is 1.22 × 1019 GeV), Planck length ≈ 1.6 × 10−35 m. They set scale for
lattice param expectations.
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