Anticoagulation Management in COVID Extracorporeal Life Support (ECLS)

Bethany Tellor Pennington, PharmD, BCPS Assistant Professor, Washington University School of Medicine November 21, 2021

November 20–21, 2021 The Ritz-Carlton Hotel, St. Louis, Missouri

I have no relevant financial relationships to disclose.

Hemostatic Balance

Bleeding

- Platelet dysfunction
- Von Willebrand factor dysfunction
- Fibrinolysis
- Consumption of coagulation factors

- Protein accumulation
- Platelet activation
- Contact pathway (XII) activation

ELSO Guidance

UFH 50-100 unit/kg bolus at the time of cannulation followed by:

7.5-20 units/kg/h

*encompasses pediatrics & adults

"Every ECLS program will have to come up with an approach to monitoring the anticoagulant effect of UNFH that works best for their patients in their individual center"

Paucity of data regarding:

Ideal monitoring parameter

Ideal goal/range of anticoagulation

Guidance for the use of alternative agents

Incorporation of clinical factors (patient and device) that may impact coagulation

Concurrent antiplatelets

ST. LOUIS

SHOCK

2014 The Extracorporeal Life Support Organization (ELSO), Ann Arbor, MI, USA

Variable Practice Patterns

- Pediatric: 120 ECMO centers internationally
 - UFH was used at all centers; only 8% indicated use of alternative agents
 - Monitoring: ACT (97%), anti-xa (65%), TEG (43%), AT(82%)
- Adults: 54 ECMO centers internationally
 - 47/54 (87%) used UFH primarily
 - Monitoring: ACT (42%), aPTT (42%), anti-xa (10.4%), TEG (8.3%), AT (37%)
- Review of 20 additional adult centers:
 - Continuous heparin, anticoagulant-free approaches, heparin alternatives
 - aPTT & ACT

Bembea MM, et al. Pediatr Crit Care Med. 2013;14(2):e77–84. EsPer et al. Vox Sang. 2017;112(5):443-452. Kato et al. Eur J Haematol. 2021;106:19–31.

Heparin Monitoring

ACT	aPTT	Anti-Xa	TEG & ROTEM
Global	Coagulopathy monitoring and anticoagulation mana Advantages of a heparin anti-Xa-based titration stra	Global	
Measures time to clot formation. Incorporates the effects of RBCs and platelets.	N= 31 aPTT & Anti-Xa discordance = 49.5% of cases 42% aPTT in range vs. 60% anti-xa in range Fewer UFH titrations, and a trend toward lower UFH doses		Measures the integrity of the coagulation cascade from the time of fibrin formation to clot lysis. Includes the contribution of platelets.
<u>May prolong ACT:</u> Hypothermia, Hemodilution Hypofibrinogenemia Thrombocytopenia Coagulation factor deficiencies	<u>May prolong aPTT:</u> Lupus anticoagulant Factor XII deficiencies Consumptive coagulopathy, Hemolysis, Warfarin <u>May blunt aPTT response:</u> AT deficiency, Increased Factor VIII Increased fibrinogen	May underestimate anti-Xa: Hyperlipidemia Hyperbilirubinemia High plasma-free hemoglobin Hemolysis	Doest not detect platelet dysfunction, effects of vWF, factor XIII is not adequately displayed

Alternative Agents

	Bivalirudin & Argatroban	Enoxaparin	Warfarin	Antithrombin	Tranexamic Acid
PROs	 More predictable PK Greater reduction of thrombin generation, as compared to UFH Does not cause HIT Widely used in ECMO patients Short half life 	 Administration schedule SQ injection 	 Once daily administration Potentially less bleeding 	 Potentiates heparin effectiveness 	 Focus on fibrinolysis pathway
CONs	 No reversal agent Areas of stasis may lead to further thrombosis INR elevations 	 Renal dysfunction Longer half life 	 Longer Half life Liver dysfunction Drug & nutritional interactions 	 Contradicting literature in ECMO Ideal range unknown Bleed risk 	 Not as familiar Not routinely utilized Less information on optimal dose TEG monitoring
V 1/1					2HULK

SYMPOSIUM

COVID

Pulmonary embolism: ~ 24.0%

Myocardial injury: ~ 20.0%

Deep veein thrombosis: ~ 46.1%

Stroke: ~ 1.6%

SSS 2021 J Am Heart Assoc. 2021;10:e019650

Troy G Seelhammer ¹,

Editorial > J Cardiothorac Vasc Anesth. 2020 Dec;34(12):3193-3196. doi: 10.1053/j.jvca.2020.09.132. Epub 2020 Oct 2.

COVID-19 and ECMO: An Unhappy Marriage of Endothelial Dysfunction and Hemostatic Derangements

Troy G Seelhammer ¹, Daniel Plack ², Amos Lal ³, Christoph G S Nabzdyk ²

Prevention, Diagnosis, and Treatment of VTE in Patients With Coronavirus Disease 2019 CHEST Guideline and Expert Panel Report

Coronavirus Disease 2019 (COVID-19) Treatment Guidelines

2019

American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19

2020

Standard prophylaxis dosing to the complete omission of heparin

ST. LOUIS

SHOCK

2021

VOL. 385 NO. 9

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 26, 2021

Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19

The REMAP-CAP, ACTIV-4a, and ATTACC Investigators*

Organ support = requiring high-flow nasal oxygen, invasive or noninvasive MV, vasopressors or ECMO

ST. LOUIS

SHOCK

Outcome	Therapeutic Anticoagulation (n=536)	Usual Care Prophylaxis (n=567)	AOR, 95% CI	Probability of Futility		
Organ support free days up to day 21	1 (-1 to 16)	4 (-1 to 16)	0.83 (0.67 to 1.03)	99.9 %		
Survival to hospital discharge	62.7%	64.5%	0.84 (0.64 to 1.11)	99.6%		
Major bleeding	20/529 (3.8%)	13/562 (2.3%)	1.48 (0.75 to 3.04)			
OR adjusted for sex, trial site, enrollment time interval						

COVID ECMO

COVID-19 ECMO Working Group: A multicenter (17 centers), retrospective cohort study

- N= 292 adults, March 1, 2020 September 30, 2020
- Heparin 71%, argatroban 32%, bivalirudin 10%
- Bleeding requiring transfusions 74%
- Hemorrhagic stroke 6%
- DVT 15%
- Ischemic stroke 1%

Saeed o, et al. J Thorac Cardiovasc Surg. 2021 May 18 Saeed o, et al. JTCVS Open. 2021 Sep 21.

Questions Still Remain

- The *optimal* anticoagulation agent, monitoring parameter and anticoagulation goal for ECMO are undetermined
- Combined monitoring approach should be considered
- Importance of center specific guidelines & education
- Area of Research

Anticoagulation Management in COVID Extracorporeal Life Support (ECLS)

Bethany Tellor Pennington, PharmD, BCPS Assistant Professor, Washington University School of Medicine November 21, 2021

November 20–21, 2021 The Ritz-Carlton Hotel, St. Louis, Missouri