ECLS in COVID-19 PATIENTS

Department of Anesthesiology Critical Care Medicine, Cardiothoracic Anesthesiology

Clare Ridley, M.D. Assistant Professor of Anesthesiology Medical Director, 82 SICU (COVID ECMO)

Washington University in St. Louis School of Medicine

Goals

- Sedation
- Ventilator
- Hypoxemia
- Volume management
- Dialysis

Disclosures

I have no disclosures

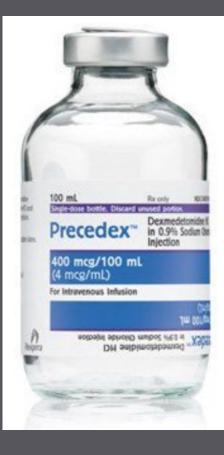
Washington University School of Medicine in St. Louis

- Goal
 - Prevent negative patient-circuit interactions
 - Allow to wake/rehab
- Sedation requirements remarkable
 - Oxygenation requirements
 - Poor enteral tolerance

Washington University School of Medicine in St. Louis

- Drugs are sequestered on ECMO
 - Lipophilic drugs (octanol/water >2)
 - High protein binding (>70%)
- What do we choose and why?
 - Dilaudid/morphine, oxycodone, ketamine

Shekar, J Crit Care 2012


Washington University School of Medicine in St. Louis

Drug	Protein Binding	Octanol/ Water Partition Coefficient	Published Information
Fentanyl	80-87%	4.05	97% drug loss at 24 hrs Has been shown to irreversibly bind to the ECMO circuit
Midazolam	97%	3.89	87% drug loss at 24 hrs
Precedex	94%	3.39	~40% loss in circuit at 60 min
Propofol	97-99%	3.79	70% loss in circuit at 45 min Higher doses needed may predispose patients to PRIS
Morphine*	20-35%	0.9	Minimal to moderate sequestration Neonates given morphine received significantly less supplemental analgesia and had lower rates of withdrawal after therapy compared to fentanyl recipients
Ketamine	47%	2.9	Data published at BJH noted decreases in vasopressor (11 of 26 patients) and sedation-analgesia (9 of 26 patients) requirements within 2 hours of initiation
Diazepam	98%	3	~50% drug loss in circuit at 60 min
Lorazepam	~91%	2.4	~10% drug loss in circuit at 60 min
Hydromorphone	8-19%	1.6-1.8	Published data is lacking
Oxycodone	38% - 45%	1.2	
Methadone	85%	3.93	
Quetiapine	83%	2.1	
Phenobarbitol**	20-45%	1.47	

*active metabolites, accumulation and toxicity concerns with renal dysfunction, histamine release & hypotension ** CYP450 inducer and multiple drug-drug interactions

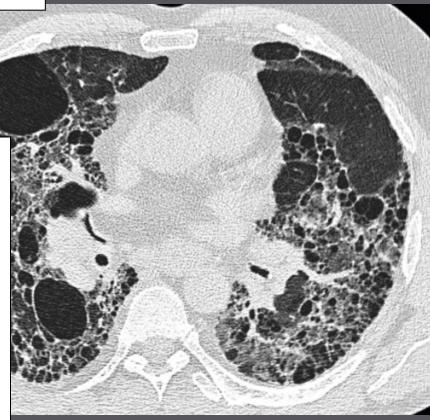
- Other considerations
 - Propofol
 - Oxygenator lifespan
 - Hypertriglyceridemia
 - Dexmedetomidine
 - Helps tachycardia
 - High volume of NS

Washington University School of Medicine in St. Louis

Ventilation

- ELSO:
 - (PPLAT) \leq 25cm H2O
 - RR 4–10
 - PEEP10–15cm H2O
 - Drive pressure < 15cm H2O
 - FiO2 < 50%
 - SpO2 \geq 80-85%

www.elso.org, Brower NEJM 2000, Combes NEJM 2018


Washington University School of Medicine in St. Louis

Hypoxemia Management SpO2>80-85%

- ECMO flows
- Cannula position
- Oxygenator Function
- Treat negative patient-circuit interactions
- Control cardiac output
- Control fever

Volume Management

- Early: Remove extravascular water from lungs
 - Circuit needs volume
- Later stages: Fibrotic lungs
 - Limit to benefits with volume removal

Washington University School of Medicine in St. Louis


CRRT through the ECMO Circuit

- High incidence of renal failure in severe COVID (30%)
- Access is post pump, pre membrane
- Works for flows up to about 4.5 LPM
- Higher flows: Need separate trialysis

Cummings, Lancet 2020

Washington University School of Medicine in St. Louis

ECMO Circuit Add Ins: Positive Side Only

- Centrimag circuits set up for CRRT integration
- Post Pump & Pre-Membrane
- Post-Pump pigtail = "RED"
- Pre-Membrane pigtail = "BLUE"
- Minimize risks/sentinel events

Washington University School of Medicine in St. Louis

Summary

- Sedation with drugs that are less lipophilic (dilaudid, ketamine)
- Ultra lung protective ventilation
- Hypoxemia management
 - SpO2 >80-85% (ELSO)
 - Optimize ECMO
 - Decrease oxygen use, shunt
- Gradual volume removal
 - CRRT through ECMO

References

Abrams D, Schmidt M, Pham T, et al. Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice. Am J Respir Crit Care Med. 2020;201(5):514-525

Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308.

Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2018;378(21): 1965-1975.

Cummings MJ, et al. Lancet. 2020;395(10239):1763. Epub 2020 May 19.

References

Shekar K, Fraser JF, Smith MT, et al.: Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012; 27(6): 741.e9–741.e18.

Shekar K, Roberts JA, Smith MT, et al.: The ECMO PK Project: an incremental research approach to advance understanding of the pharmacokinetic alterations and improve patient outcomes during extracorporeal membrane oxygenation. BMC Anesthesiol. 2013; 13: 7.

Clare Ridley Assistant Professor of Anesthesiology Campus Box 8054 660 South Euclid Ave St. Louis, MO 63110 (314) 323-2084

ridleyc@wustl.edu

©2021

Washington University School of Medicine in St. Louis