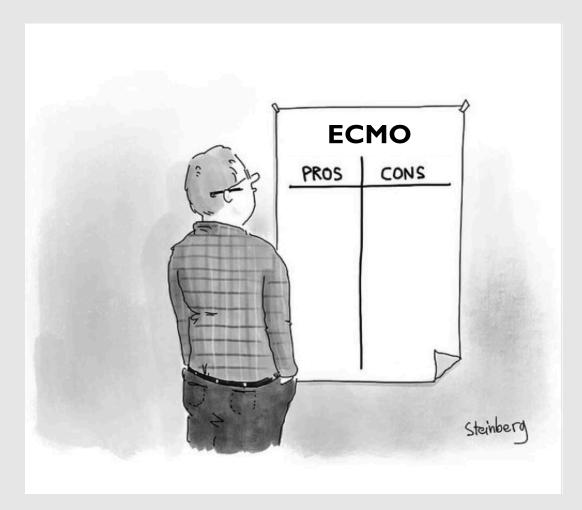
I Can Fix The Lung with the Ventilator?

Pro/Con Debate
St. Louis Shock Symposium

November 20th 2021

Pratik Sinha MB ChB PhD FFICM FRCEM

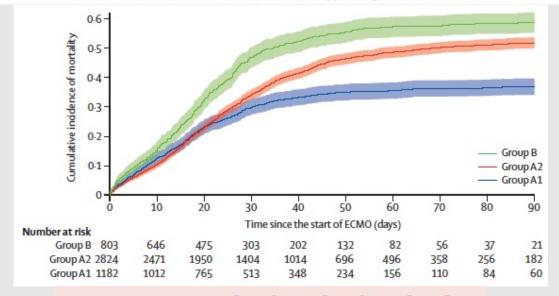

Assistant Professor

Department of Anesthesia

Washington University

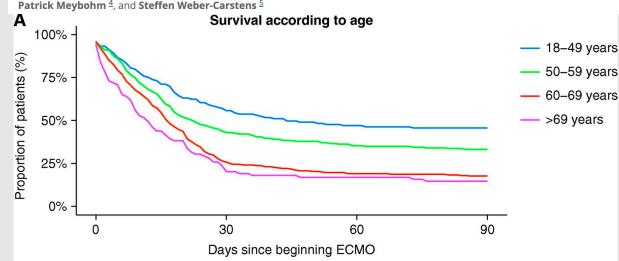
I have no disclosures

I am a big proponent of ECMO in ARDS



Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international Extracorporeal Life Support Organization Registry Lancet 2021; 398: 1230-38

Ryan P Barbaro*, Graeme MacLaren*, Philip S Boonstra, Alain Combes, Cara Agerstrand, Gail Annich, Rodrigo Diaz, Eddy Fan, Katarzyna Hryniewicz, Roberto Lorusso, Matthew L Paden, Christine M Stead, Justyna Swol, Theodore J Iwashyna†, Arthur S Slutsky†, Daniel Brodie†, for the Extracorporeal Life Support Organization

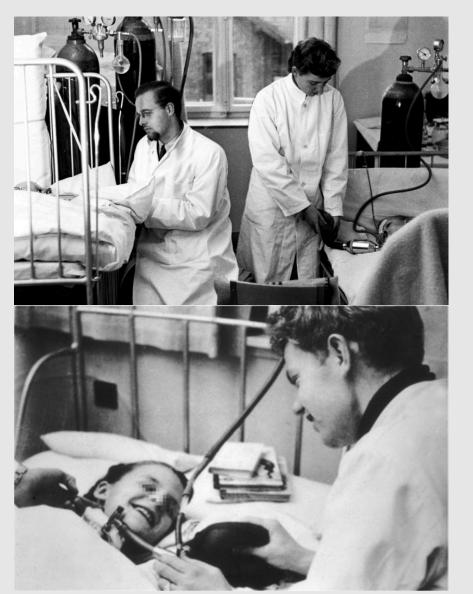

	Group A1	Group A2	Group B
Last known patient status	1182	2824	806
Discharged			
To home or acute rehabilitation	376 (32%)	623 (22%)	190 (24%)
To long-term acute care or unspecified location	128 (11%)	329 (12%)	71 (9%)
To another hospital	212 (18%)	301 (11%)	47 (6%)

American Journal of Respiratory and Critical Care Medicine

Home > American Journal of Respiratory and Critical Care Medicine > List of Issues > Volume 204, Issue 8

➡ High In-Hospital Mortality Rate in Patients with COVID-19 Receiving Extracorporeal Membrane Oxygenation in Germany: A Critical Analysis

©Christian Karagiannidis 1/2*, Stephan Strassmann 1/2, Michaela Merten 1/2, Thomas Bein 1/2, Wolfram Windisch 1/2, Patrick Meybohm 1/2, and Steffen Weber-Carstens 1/2


Objectives

Cost of mechanical ventilation in severe ARDS

Advances in ventilation management in ARDS

• The future of ARDS ventilation

Ibsen and the Polio Epidemic and the birth of Intensive Care

Group	Period of admission	No. of cases	Died	Died within three days
1	July 24-Aug. 25	31	27 (87%)	19 (70%)
III	Aug. 26-Sept. 8 Sept. 8-Sept. 23	50 50	26 (52 %) 24 (48 %)	7 (27%) 8 (33%)
IV	Sept. 23-Oct. 5	50	19 (38%)	10 (53%)
v	Oct. 6-Oct. 21 Oct. 21-Nov. 6	50 50	13 (26 %) 18 (36 %)	7 (54%) 10 (55%)
7	Cotal II-VI	250	100 (40%)	42 (42%)

NNT = 2

Does Mechanical Ventilation save lives?

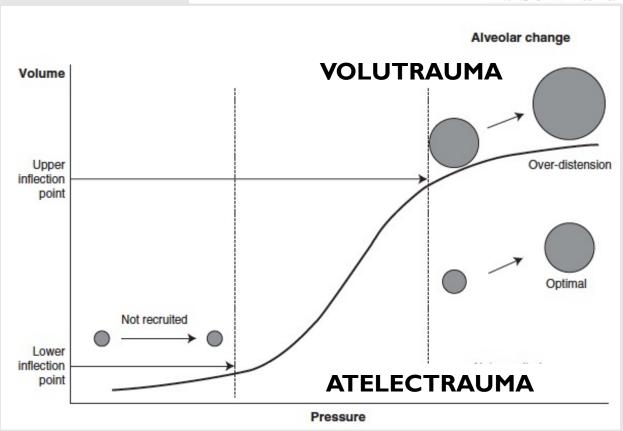
Can I "Fix" the ARDS Lungs with a Ventilator?

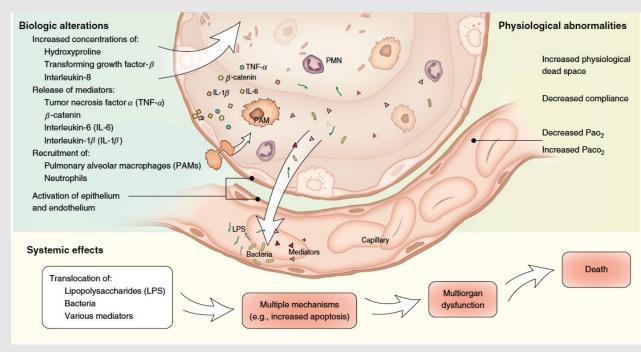
Can I "Fix" the ARDS Lungs with ECMO?

Aims of Ventilatory Management in ARDS

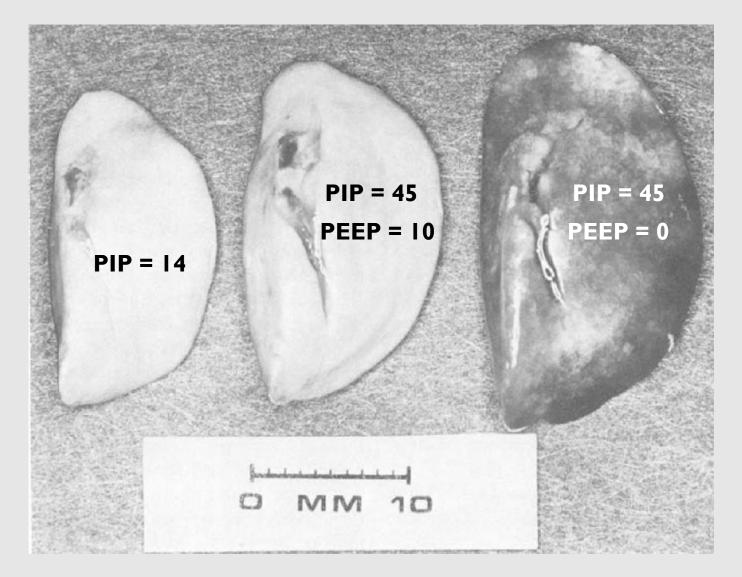
- Provide the optimal physiological conditions using the least aggressive interventions to allow the greatest recovery [patient-centric goals]
 - Scope of statement: Acute- prevent death; Chronic- return to full function

Treat the cause


Mindful- what is the cost of intervention?


Cost of Mechanical Ventilation

REVIEW ARTICLE


Positive pressure ventilation: what is the real cost?

N. Soni* and P. Williams

VILI

Other Cots of Positive Pressure Ventilation?

• Barotrauma

- Cardiovascular
 - Reduced venous return
 - Increased SVR
 - Right heart failure
- VAP
 - Reduced lymphatic drainage
- O₂ Toxicity

Can I Minimise Damage to the ARDS Lungs with a Ventilator?

Pro/Con Debate

St. Louis Shock Symposium

November 20th 2021

Pratik Sinha MB ChB PhD FFICM FRCEM

Assistant Professor

Department of Anesthesia

Washington University

Advances in ventilation management in ARDS

NARRATIVE REVIEW

Current and evolving standards of care for patients with ARDS

Mario Menk^{1,2}, Elisa Estenssoro^{3,4}, Sarina K. Sahetya⁵, Ary Serpa Neto^{6,7,8}, Pratik Sinha⁹, Arthur S. Slutsky¹⁰, Charlotte Summers¹¹, Takeshi Yoshida¹², Thomas Bein¹³ and Niall D. Ferguson^{14,15*}

Intensive Care Med

https://doi.org/10.1007/s00134-020-06299-6

Lung Protective Ventilation

n = 432

n = 439

6.2

11.8

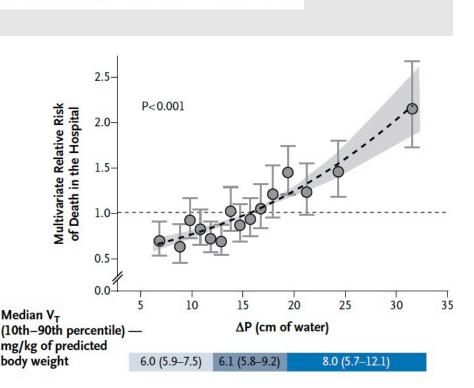
mL/KG

mL/KG

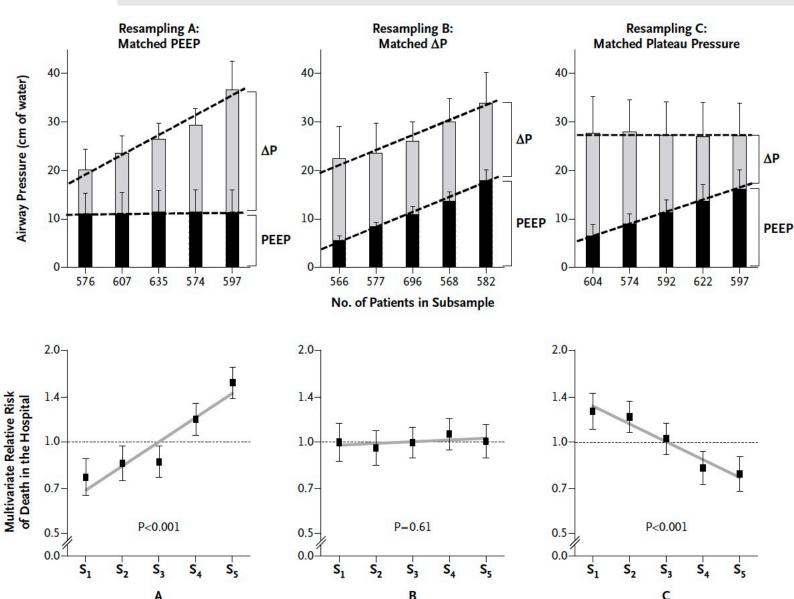
VOLUME 342	MAY 4, 2000	NUMBER 18
	© Copyright, 2000, by the Massachusetts Medical Society	
	Journal of Medicine	
	The New England	

VENTILATION WITH LOWER TIDAL VOLUMES AS COMPARED WITH TRADITIONAL TIDAL VOLUMES FOR ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME

THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK*


	,		
Variable	GROUP RECEIVING LOWER TIDAL VOLUMES	GROUP RECEIVING TRADITIONAL TIDAL VOLUMES	P Value
Death before discharge home and breathing without assistance (%)	31.0	39.8	0.007
Breathing without assistance by day 28 (%)	65.7	55.0	< 0.001
No. of ventilator-free days, days 1 to 28	12±11	10±11	0.007
Barotrauma, days 1 to 28 (%)	10	11	0.43
No. of days without failure of nonpulmonary organs or systems, days 1 to 28	15±11	12±11	0.006

Low Tidal Volume is the Standard of Practice in ARDS


Driving Pressure and Survival in the Acute Respiratory Distress Syndro

Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthu Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talm Alain Mercat, M.D., Jean-Christophe M. Richard Carlos R.R. Carvalho, M.D., and Roy G. Brower,

N ENGL J MED 372;8 NEJM.ORG FEBRUARY 19, 2015

DP should be maintained around 15-18 cmH₂O

Also Rans

 PEEP titration- No current evidence for specific strategy

- High frequency oscillation- out
- Open lung ventilation- out

APRV- No RCT evidence

Negative Trials:

- High PEEP vs Low PEEP (ALVEOLI NEMJ 2006)
- Open Lung Ventilation (ART JAMA 2017)
- Oesophageal Pressure-Guided ventilation (EPVENT-2 JAMA 2019)
- High-Frequency oscillation
 (OSCAR and OSCILLATE NEMJ 2013)

Adjuvant Approaches

Prone-Positioning: PROSEVA

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 6, 2013

VOL. 368 NO. 23

Prone Positioning in Severe Acute Respiratory Distress Syndrome

Claude Guérin, M.D., Ph.D., Jean Reignier, M.D., Ph.D., Jean-Christophe Richard, M.D., Ph.D., Pascal Beuret, M.D.,
Arnaud Gacouin, M.D., Thierry Boulain, M.D., Emmanuelle Mercier, M.D., Michel Badet, M.D.,
Alain Mercat, M.D., Ph.D., Olivier Baudin, M.D., Marc Clavel, M.D., Delphine Chatellier, M.D., Samir Jaber, M.D., Ph.D.,
Sylvène Rosselli, M.D., Jordi Mancebo, M.D., Ph.D., Michel Sirodot, M.D., Gilles Hilbert, M.D., Ph.D.,
Christian Bengler, M.D., Jack Richecoeur, M.D., Marc Gainnier, M.D., Ph.D., Frédérique Bayle, M.D.,
Gael Bourdin, M.D., Véronique Leray, M.D., Raphaele Girard, M.D., Loredana Baboi, Ph.D., and Louis Ayzac, M.D.,
for the PROSEVA Study Group*

Prone-positioning is the Standard of Practice in moderate-severe ARDS

PaO₂/FiO₂≤ 150 mmHg

41% vs 24%

Table 3. Primary and Secondary Outcomes According to Study Group.*						
Outcome	Supine Group (N=229)	Prone Group (N=237)	Hazard Ratio or Odds Ratio with the Prone Position (95% CI)	P Value		
Mortality — no. (% [95% CI])						
At day 28						
Not adjusted	75 (32.8 [26.4–38.6])	38 (16.0 [11.3–20.7])	0.39 (0.25-0.63)	< 0.001		
Adjusted for SOFA score†			0.42 (0.26-0.66)	< 0.001		
At day 90						
Not adjusted	94 (41.0 [34.6–47.4])	56 (23.6 [18.2–29.0])	0.44 (0.29-0.67)	<0.001		
Adjusted for SOFA score†			0.48 (0.32-0.72)	< 0.001		
Successful extubation at day 90 — no./total no. (% [95% C	145/223 l]) (65.0 [58.7–71.3])	186/231 (80.5 [75.4–85.6])	0.45 (0.29–0.70)	<0.001		
Ventilation-free days						
At day 28	10±10	14±9		<0.001		
At day 90	43±38	57±34		<0.001		

NM Blockade: ACURSYS

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 16, 2010

VOL. 363 NO. 12

Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome

Laurent Papazian, M.D., Ph.D., Jean-Marie Forel, M.D., Arnaud Gacouin, M.D., Christine Penot-Ragon, Pharm.D., Gilles Perrin, M.D., Anderson Loundou, Ph.D., Samir Jaber, M.D., Ph.D., Jean-Michel Arnal, M.D., Didier Perez, M.D., Jean-Marie Seghboyan, M.D., Jean-Michel Constantin, M.D., Ph.D., Pierre Courant, M.D., Jean-Yves Lefrant, M.D., Ph.D., Claude Guérin, M.D., Ph.D., Gwenaël Prat, M.D., Sophie Morange, M.D., and Antoine Roch, M.D., Ph.D., for the ACURASYS Study Investigators*

PaO₂/FiO₂≤ 150 mmHg

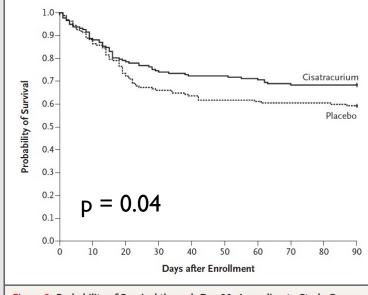


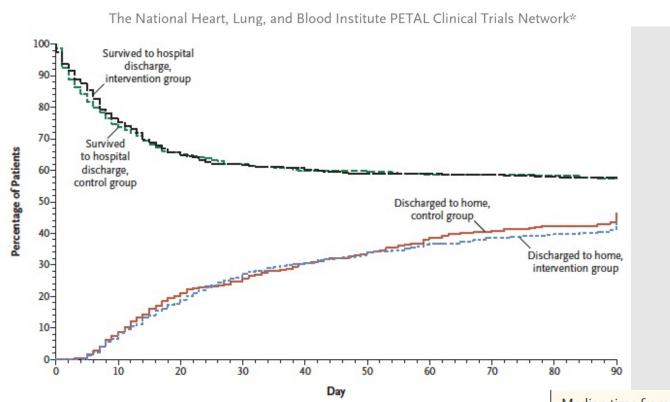
Figure 2. Probability of Survival through Day 90, According to Study Group.

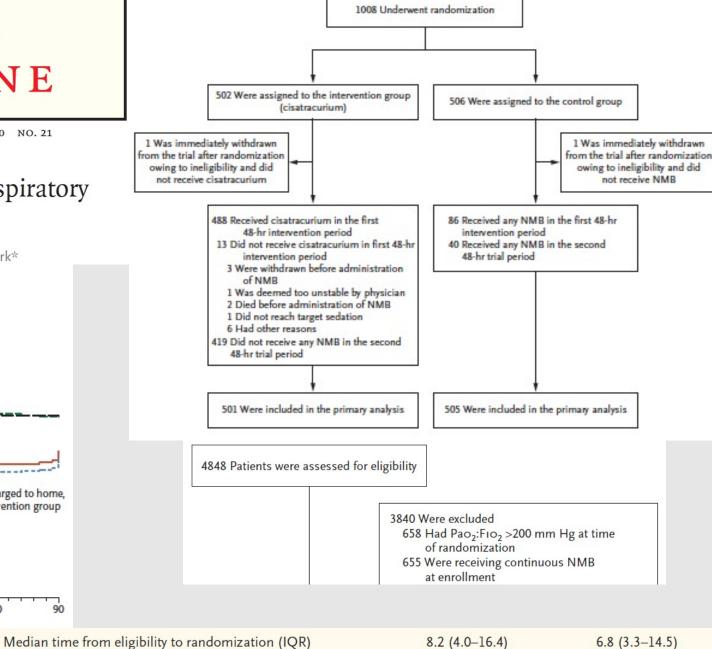
Table 3. Secondary Outcomes, According to Study Group.*						
Outcome Death — no. (% [95% CI])	Cisatracurium (N=177)	Placebo (N=162)	Relative Risk with Cisatracurium (95% CI)	P Value		
At 28 days	42 (23.7 [18.1–30.5])	54 (33.3 [26.5–40.9])	0.71 (0.51–1.00)	0.05		
In the ICU	52 (29.4 [23.2–36.5])	63 (38.9 [31.7–46.6])	0.76 (0.56–1.02)	0.06		
In the hospital	57 (32.2 [25.8–39.4])	67 (41.4 [34.1–49.1])	0.78 (0.59–1.03)	0.08		
No. of ventilator-free days†						
From day 1 to day 28	10.6±9.7	8.5±9.4		0.04		
From day 1 to day 90	53.1±35.8	44.6±37.5		0.03		

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 23, 2019


VOL. 380 NO. 21


— hr

Neuromuscular blockade use between meeting inclusion

criteria and randomization — no./total no. (%)

Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome

55/484 (11.4)

50/484 (10.3)

Conservative vs Liberal Fluid Therapy

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Comparison of Two Fluid-Management Strategies in Acute Lung Injury

The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network*

+ 7L -0. IL (Day 7) (Day 7) Conservative Liberal P Value Outcome Strategy Strategy Death at 60 days (%) 25.5 28.4 0.30 Ventilator-free days 14.6±0.5 12.1±0.5 < 0.001 from day 1 to day 28† ICU-free days† Days 1 to 7 0.6 ± 0.1 < 0.001 0.9 ± 0.1

13.4 + 0.4

n = 503

n = 497

11.2+0.4

< 0.001

Some Evidence to Suggest Conservative Fluid Management May be Beneficial

Days 1 to 28

Also Rans

• Recruitment Maneuvers- No evidence

- Inhaled vasodilators- Make the PaO₂ look better
 - Think about why and what is the cost?
- Corticosteroids- some evidence but more needed

Summary of Supportive Care

AMERICAN THORACIC SOCIETY DOCUMENTS

An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Eddy Fan, Lorenzo Del Sorbo, Ewan C. Goligher, Carol L. Hodgson, Laveena Munshi, Allan J. Walkey, Neill K. J. Adhikari, Marcelo B. P. Amato, Richard Branson, Roy G. Brower, Niall D. Ferguson, Ognjen Gajic, Luciano Gattinoni, Dean Hess, Jordi Mancebo, Maureen O. Meade, Daniel F. McAuley, Antonio Pesenti, V. Marco Ranieri, Gordon D. Rubenfeld, Eileen Rubin, Maureen Seckel, Arthur S. Slutsky, Daniel Talmor, B. Taylor Thompson, Hannah Wunsch, Elizabeth Uleryk, Jan Brozek, and Laurent J. Brochard; on behalf of the American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine

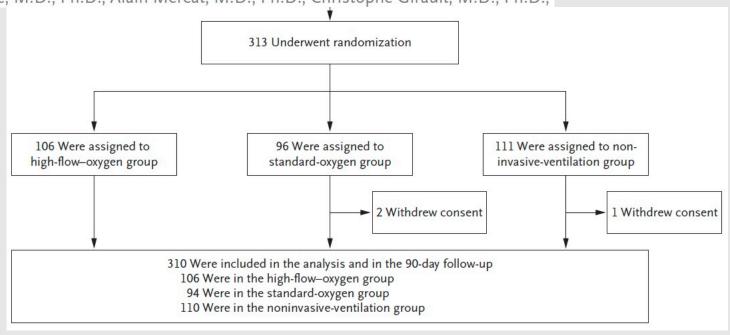
Intervention	Recommendation	My Practice
Low Tidal Volume Ventilation		
Prone-Positioning		
High-Frequency Ventilation		
Higher PEEP vs Lower PEEP		
Recruitment Maneuvers		
ЕСМО		
Neuromuscular Blockade		

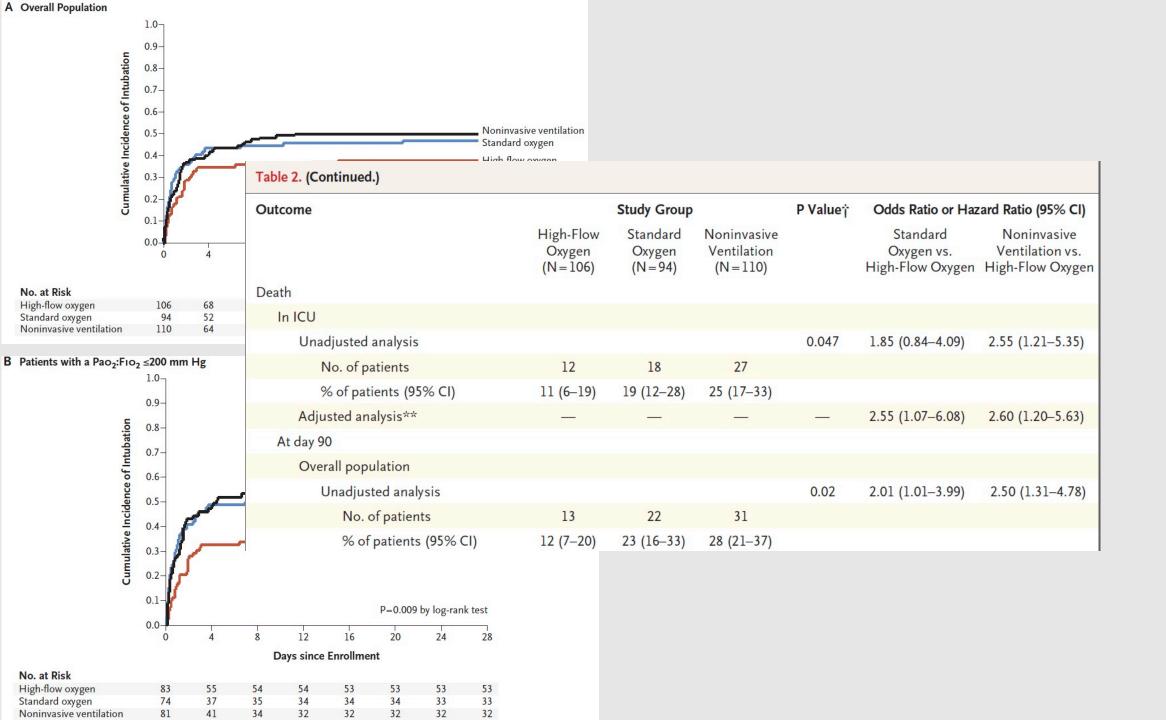
The Future of Ventilation

Avoid Ventilation

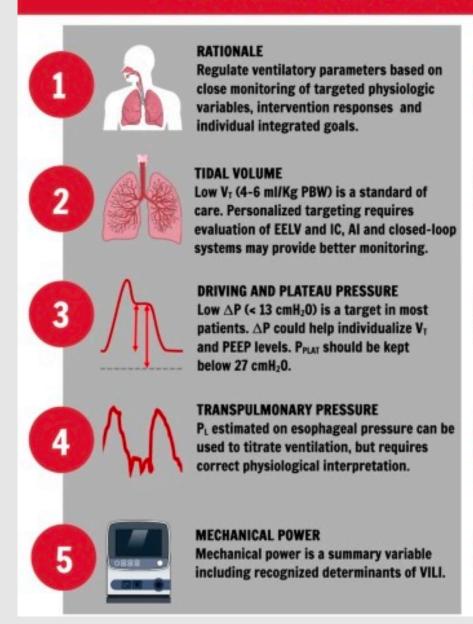
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


JUNE 4, 2015


VOL. 372 NO. 23

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure


Jean-Pierre Frat, M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D., Christophe Girault, M.D., Ph.D.,

Consecutive patients who were 18 years of age or older were enrolled if they met all four of the following criteria: a respiratory rate of more than 25 breaths per minute, a ratio of the partial pressure of arterial oxygen (PaO₂) to the FIO₂ of 300 mm Hg or less while the patient was breathing oxygen at a flow rate of 10 liters per minute or more for at least 15 minutes, a partial pressure of arterial carbon dioxide (PaCO₂) not higher than 45 mm Hg, and an absence of clinical history of underlying chronic respiratory failure. FIO₂ was measured

Personalized Mechanical Ventilation in ARDS

ALVEOLAR RECRUITMENT

The identification of recruitable patients and estimation of recruitment are essential to individualize recruitment strategies.

GAS-EXCHANGE

Gas-exchange including oxygenation is commonly targeted to set ventilation. However, dead space, ventilatory ratio and oxygen transport should be considered.

LUNG IMAGING

Computed tomography remains the gold standard. Lung ultrasound and electrical impedance tomography are promising bedside tools.

PHENOTYPES

Patient stratification according to biological phenotypes is promising, but translation into clinical practice requires further research.

LIMITS OF PHYSIOLOGICAL GAIN

When applying physiological manipulations, clinicians should consider the uncertainty surrounding their effect on patient-centered outcomes

Mortality at Day 90 (ALVEOLI) Differential Treatment Response to PEEP Strategy was observed in ARDS phenotypes

Model AUC: 0.94

	Hypoinflammatory Phenotype			Hyperinflammatory Phenotype			P-Value		
Model	Overall	Low PEEP	High PEEP	Overall	Low PEEP	High PEEP	interaction term (Tx and Phenotype)		
Clinical- Classifier Model	20%	15%	24%	45%	53%	39%	0.006		

Differential Response to PEEP were Observed in ARDS in Phenotypes (In-Hospital Mortality in LUNG SAFE; N = 2813)

PEEP Group	Hypoinflammatory	Hyperinflammatory	P value
Low PEEP (N = 943)	31%	64%	
High PEEP (N = 992)	34%	55%	0.016

Summary

• Evidence-based approaches have allowed gentler ventilatory strategies for mechanical ventilation

Outcomes are improving

More bespoke approaches should be trialled in patients with ARDS

Can We Minimise Damage to the ARDS Lungs with a Ventilator?

Thank You

Twitter: @progdoctalk

Email: p.sinha@wustl.edu

Department of Anesthesiol