COVID-19 Myocarditis

St. Louis Shock Symposium November 20, 2021

Amanda K. Verma, MD

Assistant Professor of Medicine Director, COVID Cardiology Clinic

Cardiovascular Division Section of Advanced Heart Failure and Cardiac Transplantation

Disclosures

• None

Washington University School of Medicine in St. Louis

Case Example

- 48 yo F with 5 days of sore throat, fevers, myalgia, nausea and vomiting
- Husband with similar symptoms, treated for strep throat and improved
- Developed chest pain and dyspnea
- Rapid SARS-CoV-2 PCR negative at outside hospital
- HR 112, BP 102/52, T 36.4, SpO2 97% on RA

Verma AK, Olagoke, Moreno, Rezaee, Ma, Liu, Javaheri, Lavine, Masood, Lin. SARS-CoV-2-associated myocarditis: A case of direct myocardial injury. In press.

Washington University School of Medicine in St. Louis

Washington University School of Medicine in St. Louis

Washington University School of Medicine in St. Louis

Case Example

- LHC unremarkable
- RHC with cardiac output of 1.4L/min
- Impella CP placed, transferred to Barnes Jewish Hospital
- Rapid decompensation with rising vasopressor requirements
- Bedside VA-ECMO cannulation

A repeat SARS-CoV-2 PCR test was positive

Biopsy proven COVID-19 myocarditis

Washington University School of Medicine in St. Louis

В

Washington University School of Medicine in St. Louis

Cardiovascular complications of COVID-19

- Acute myocardial injury (~20% of hospitalized patients)^{1,2}
 - More likely in patients with underlying cardiovascular disease/comorbidities
 - Elevated troponin associated with higher NT-proBNP, hsCRP, creatinine; lower PaO₂, FiO₂, lymphocyte count, platelet count
 - Worse outcomes: higher rates of mechanical ventilation, ARDS, AKI, death
- Arrhythmias³⁻⁶
 - Atrial > ventricular
 - Higher incidence in ICU
 - Risk factors: elevated inflammatory markers, myocardial injury, intubation, vasopressor requirement, steroids
 - Associated with increased mortality

Washington University School of Medicine in St. Louis

¹ Shi et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. July 2020.

² Kang et al. Cardiovascular manifestations and treatment considerations in COVID-19. Heart. August 2020.

³Dherange et al. Arrhythmias and COVID-19: A Review. JACC Clin Electrophys. Sep 2020.

⁴Guo et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 19 (COVID-19). JAMA Cardiol. July 2020.

⁵Goyal et al. Clinical characteristics of COVID-19 in New York City. NEJM. June 2020.

⁶Musikantow DR et al. Atrial fibrillation in patients hospitalized with COVID-19: incidence, outcomes, and comparison to influenza. JACC EP. Sept 2021.

Cardiovascular complications of COVID-19

- Acute coronary syndrome¹
 - Usually underlying substrate
 - Higher mortality compared to non-COVID patients
 - Imbalance of myocardial oxygen supply/demand, less frequent GDMT, delayed presentation/time to perfusion; issues with hypercoagulability, microthrombi, systemic inflammation

Heart Failure

- Worsening of underlying HF
- Ischemia
- RV failure due to PE
- Stress induced/Takotsubo
- Myocarditis

¹Numasawa Y. Impact of Concomitant Novel Coronavirus Disease 2019 in Patients with ST-Elevation Acute Myocardial Infarction. Circulation Journal. Sept 2021.

COVID-19 Myocarditis

- Per CDC, risk 0.146% with COVID-19 vs 0.009% (~16x)
- Typically associated with respiratory failure
- Mortality rate ~14%
- Early shock state usually on presentation (nonmyocarditis COVID-19 shock typically days to weeks after initial presentation)
- Improvement with corticosteroid administration (methylprednisolone)
 - Usually combined with other immunomodulators tocilizumab

¹Castiello T et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev. March 2021. ²Haussner W et al. COVID-19 associated myocarditis: A systematic review. Am J Emerg Med. Jan 2022. [online Oct 2021] ³Kamarullah W et al. Corticosteroid Therapy in Management of Myocarditis Associated with COVID-19; a Systematic Review of Current Evidence. Arch Acad Emerg Med. April 2021.

Washington University School of Medicine in St. Louis

Shock

Management of COVID-19-Related Respiratory Failure Via Artificial Cardiopulmonary Support Strategies

Isolated Respiratory Failure	Cardiopulmonary—RV Support	Cardiopulmonary—LV or BiV Support		
V-V ECMO Peripheral cannulation	Single cannula-based RVAD (e.g. Protek Duo) with gas exchanger	V-A ECMO in highly selected cases with clear evidence of LV dysfunction		
Consider bi-femoral strategy to limit exposure near the endotracheal tube	 V-V ECMO plus catheter-mounted RVAD (e.g. Impella RP) If volumetric flow rates low, in highly selected cases, consider surgical RVAD plus gas exchanger In selected case, V-A ECMO (See Right Column; some issues typically not relevant when used for RV dysfunction) 	Similar high threshold for catheter-mounted, percutaneously cannulated paracorporeal, and surgical LVAD support, with or without gas exchanger ("modular" V-A ECMO if gas exchanger) Need to be able to achieve high volumetric flow rates Relative advantages of peripheral cannulation are less, but yet easier LV distension complicating V-A ECMO: LV venting (catheter- mounted LVAD such as Impella is easiest) Differential hypoxemia complicating V-A ECMO: hybrid V-V/ V-A ECMO with (or Impella addition may help with mixing)		

BiV, biventricular; COVID-19, coronavirus disease 2019; ECMO, extracorporeal membrane oxygenation; LV, left ventricle; LVAD, left ventricular assist device; RV, right ventricle; RVAD, right ventricular assist device.

Rajagopal K et al. Advanced Pulmonary and Cardiac Support of COVID-19 Patients: Emerging Recommendations from ASAIO – A "Living Working Document." ASAIO J. May 2020.

Washington University School of Medicine in St. Louis

Post-COVID myocarditis

JAMA Cardiology | Original Investigation

Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19)

Valentina O. Puntmann, MD, PhD; M. Ludovica Carerj, MD; Imke Wieters, MD; Masia Fahim; Christophe Arendt, MD; Jedrzej Hoffmann, MD; Anastasia Shchendrygina, MD, PhD; Felicitas Escher, MD; Mariuca Vasa-Nicotera, MD; Andreas M. Zeiher, MD; Maria Vehreschild, MD; Eike Nagel, MD

ORIGINAL RESEARCH

Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging

Lu Huang, MD, PhD,^{a,*} Peijun Zhao, MD,^{a,*} Dazhong Tang, MS,^a Tong Zhu, MD,^a Rui Han, MD,^b Chenao Zhan, MD, PhD,^a Weiyong Liu, MD, PhD,^c Hesong

RESEARCH LETTER

Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection

Washington University School of Medicine in St.Louis

Myocarditis after COVID-19 vaccination

A Patient 1, Endomyocardial Biopsy

B Patient 2, Autopsy

Verma AK, Lavine KJ, Lin C-Y. Myocarditis after COVID-19 mRNA Vaccination. NEJM. September 2021.

Washington University School of Medicine in St. Louis

Vaccination and adverse cardiac events

- mRNA vaccination predominant
- Data from CDC
 - As of 8/18/2021 2574 reports
 - Myopericarditis 1903
 - Pericarditis alone 671

Manufacturer	Reports after dose 1	Reports after dose 2	Reports after unknown dose	
Pfizer-BioNTech (n=1,282)	169	922	191	
Moderna (n=557)	133	339	85	
Janssen (n=49)	33	1	15	
Not reported (n=15)	2	9	4	
Total (N=1,903)	337	1,271	295	

Doses administered (6/11/2021)	Approx 296 million		
Myocarditis	 1226 cases reported Median age 26 (12-94) Median time to symptoms 3 days (0-179) 58% <30 years of age 76% males 76% occurring after 2nd dose 		

Frequency and risk of myocarditis in the U.S. (2020-2021)

- Risk of myocarditis from vaccination: 0.0004%
- Risk of myocarditis from infection: 0.146%
- Risk of myocarditis in patients without COVID-19: 0.009%

Benefits >>>> Risks

Vaccine	e Benefits: COVID-19 outcomes prevented			Harms: adverse events [†]		
Sex/Age group, yrs	Cases	Hospitalizations	ICU admissions	Deaths	GBS	TTS
Janssen (Johnson & John	son) COVID-19 vac	cine§				
Females						
18–29	8,900	700	50	5	1	4–5
30–49	10,100	900	140	20	6–7	8-10
50-64	12,100	1,600	350	120	7–8	3-4
≥65	29,000	5,900	1,250	840	8–10	0
Males						
18–29	6,600	300	60	3	2	2-3
30–49	7,600	650	150	25	7–8	1–2
50-64	10,100	1,800	480	140	14–17	1–2
≥65	36,600	11,800	3,300	2,300	7–8	0
mRNA (Pfizer-BioNTech or Moderna) COVID-19 vaccine [®]				Myocarditis		
Females						
18–29	12,800	750	50	5	3–4	
30–49	14,600	950	140	20	1-2	
50-64	17,500	1,700	375	125	1	
≥65	32,000	6,200	1,300	900	<1	
Males						
18–29	9,600	300	60	3	22–27	
30-49	11,000	700	160	25	5–6	
50–64	14,700	1,900	500	150	1	
≥65	52,700	12,500	3,500	2,400	1	

L

Rosenblum HG et al. Use of COVID-19 Vaccines after Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices—United States, July 2021. Morbidity and Mortality Weekly Report.

Washington University School of Medicine in St. Louis

Questions?

Email: amanda.verma@wustl.edu

Washington University School of Medicine in St. Louis