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The Challenge 

The internet opens the world to massive “any-to-any” communications.  The 

rapidly dropping cost of information drives the accessibility and adoption of 

computing technologies in areas that were previously infeasible and unthinkable.   

This parallel and convergent phenomenon of massively distributed and 

interconnected computing will quickly push the limits of our current information 

processing paradigm – digital technologies that deal with linear constructs in 

discrete time representations. 

 

What are the limits?  How small can silicon be etched?  How fast can 

microprocessors cycle?  How many connections can digital switches make and 

manage with precision and predictability?  How many packets of digital 

information can be crammed through fiber optic networks?  When will we hit the 

limits of digital information processing at which our connected world implodes? 
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The only technical advancement that can be forecast with any certainty is that the 

limits of digital computing will be reached far ahead of any rational expectations 

we have today.  Technical obsolescence is an ever accelerating factor in our 

environment of irrational, stratospheric values given to high technology stocks in 

today’s capital markets.  Our own drive for value creation and wealth building 

activities forces the innovative and clever implementations of digital technologies 

into a constant treadmill of research, development, application, obsolescence, and 

discard.  Hitting the wall on digital information processing is an inevitable 

phenomenon.  The question is not “if” but “how soon”. 

 

So what do we do?  Are we destined to hit a technical discontinuity as we drop off 

the trailing edge of the digital s-curve?  What is the next paradigm for information 

processing technology? 

 

 

The Conjecture 

Analog computing came and went with the advent of transistors, binary codes, and 

microprocessors. 

 

Digital computing is how we run the world today.  Object oriented technologies 

and programming methods are all the rage.  Thin client applications speed up the 

network computing phenomenon, but only in the context of client-server/objected 

oriented and digital network architectures. 

 

Objected oriented architectures have their inherent limits.  They assume a relatively 

static relationship between the components of a system or process to be modeled 

and automated.  Object oriented structures rely on rigid taxonomies and rules to 

define attributes and relationships.  At their most advanced implementations, object 

orientation leads to a multitude of matrices that classify and categorize static 

definitions of a system and its attributes.  Rules drive the elements within each 

matrix and its cells. 

 

There have been attempts at rules and taxonomies that adapt dynamically, yet even 

these solutions rely on rules of adaptation which are themselves imbedded in tables 

and matrices.  Matrices beget more matrices 

 

Our current information and communications platforms reflect a relatively static 

view of the world based on a digital paradigm. 
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An Alternative 

One word: tensors. 

 

Tensors are a mathematical construct developed in the domain of continuum 

mechanics.  These are the mechanics of solids and fluids which describe the 

physical world in which we live.  Tensor equations model not only static attributes 

of a system but also its dynamic flux and the complex interrelationships between 

its components at all levels of interaction, from the purely mechanical to the 

gravitational, from the electromagnetic to the subatomic, from the micro to the 

macro. 

 

The Definition of Tensors 

Tensors are a generalized mathematical methodology with a higher order of 

abstraction than matrix or linear algebra.  Scalars and vectors are simple, special 

cases of tensors.  Traditional dimensional analysis applies to scalars and we 

generally use tables and static matrices to capture the results.  Vector analysis 

extends the method to capture the magnitude and direction of physical entities in 3-

dimensional space (n-dimensions if dealing with state space constructs).  Tensors 

are the next level of abstraction beyond the dimensional analysis of scalars and the 

vector analysis of state space.  Tensor equations do everything a scalar does 

(capture dimensionality) and everything a vector does (capture magnitude and 

direction).  The additional benefit of tensors is that they also capture the interaction 

and interrelations between components of a system, where system has its broadest 

definition. 
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The Advantage of Tensors 

Based upon these theorems, tensors present some unique advantages as a systems 

methodology. 

 

Tensors are transformable from one frame of reference to another.  Tensors can be 

operated upon.  Tensor equations are transformable.  Tensors follow dynamic 

behaviors. 

 

If a tensor equation can be established in one orthogonal coordinate system that 

spans the state space of interest, then it must hold for all coordinate systems 

obtained by admissable transforms.  A tensor equation can have general validity in 

any frame of reference if and only if every term in the equation has the same tensor 

characteristics and behaviors.  Conversely, if a change in coordinate system 

changes the characteristics of the tensor equation, the original representation is 

invalid. 

 

In other words, tensor equations are valid system representations if allowable 

transformations from one frame of reference to another do not change the 

characteristics of the system.  This is a powerful concept as it tells you when you 

have properly captured and modeled the minimal and essential properties that 

define a system, its components, their attributes, their magnitude and direction in 

the frame of reference, and the components’ interrelationships. 

 

The transformation of tensors from one paradigm to another (from one frame of 

reference to another, from one perspective to another, or from one abstract construct 

to another) yield proper representations of the system, its characteristics, and its 

behaviors.  The tensor equation representation of a system is thus indifferent to the 

reference model used. 

 

Due to the nature of the transformation laws, tensor equations and their related 

theorems are aligned to the laws of physics.  For example, a tensor of rank 0 is 

defined in accordance with the physical idea of a scalar, a tensor of rank 1 is defined 

in accordance with the physical idea of a vector, and so forth. 

 

Tensors are scalable from the subatomic level to the universal plane.  Tensors can 

be used to model systems and the relevant interactions between their components.  

Traditionally, in continuum mechanics context, tensors represent stress.  This stress 

can be the stress between subatomic particles in an atom (strong and weak forces), 

the stress between two atoms in a crystal lattice structure (chemical bonds), the 

stress between two steel beams in a cantilever bridge (mechanical stress and strain), 

the stress between planetary bodies (gravitational forces), or the stress between 

humans (emotion). 
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Clearly, tensors have widespread and powerful applications in the material and 

abstract worlds of mechanical, electromagnetic, and human interactions.  Tensors 

describe the world so they necessarily combine analog and digital paradigms.  You 

cannot fully describe the world without integrating both. 

 

Tensors are non-linear. Linearity is a special case of non-linearity. Tensors interact 

in real time.  A discrete, or digital, time representation is a special case of real time.  

Tensors are powerful abstract constructs in that they represent both linear and non-

linear characteristics as well as discrete and continuous time system properties. 
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The Answer 

My conjecture is that tensor analysis and tensor equations represent a methodology 

that could help bridge the gap between the analog world in which we live and the 

digital paradigm in which we currently process and fulfill our information, data, 

and communication needs. 

 

Do I have answers to how exactly tensor analysis of systems and the subsequent 

tensor models will be implemented in the information processing world?  No. 

 

However, I do know that tensors go way beyond matrices, object oriented methods, 

and potentially, could help us go beyond the digital paradigm of our current 

technologies. 

 

There is also the question of where in the information processing world to begin to 

apply tensor approaches.  Applications?  Middleware?  Operating systems?  

Systems management?  Network management?  All of the above?  None of the 

above?  There are no answers yet.   
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Theoretical and explorative research is required to discover these answers.  Who 

knows?  Even looking for solutions in our current architectural confines 

presupposes solutions are embedded in the digitally-built machines of today. To 

begin looking through a digital set of lenses is mind-limiting and perhaps a 

dangerous path.  Further thinking and stretching is required to even begin to know 

we are asking the right questions.  

 

The Conclusion (The Beginning) 

I believe a new abstract paradigm will be required to breakthrough the limits of 

digital technologies.  Whether analog computing makes a come back (with the 

obvious precedents of further advances in solid state physics and materials science), 

tensors find an adequate digital implementation, or a hybrid, integrated analog-

digital technology emerges is currently irrelevant. 

 

What does matter is that we take on the challenge of continuously searching and 

experimenting with new paradigms of information processing that can surpass the 

limits of the digital world before our globally distributed and connected systems 

self-destruct from the speed, complexity, throughput, and processing demands 

placed on them by the weight of large numbers. 

 

The answer is in the search for the answer. 
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Note: 
 

The Analytical Definition of Tensors 

Let n be the number of orthogonal dimensions in the state space system to be 

modeled.  n , then, also represents the span of the system. 

 

Let r be the rank of the tensor field in question. 

 

The number of components in this system is nr. 

 

A tensor is said to be an orthogonal tensor if it is defined in a system of coordinates 

that are orthogonal. 

 

For example, in rectangular, Cartesian coordinates, n = 3, with the typical three 

dimensions: (x, y, z) or (x1, x2, x3).  In this case, a tensor in the Cartesian coordinate 

system is an orthogonal tensor. 

 

If the system (or entity) in question can be described by a single component, it 

follows that its tensor field is of rank zero (n0 = 1).  Tensor fields of rank 0 in 

Cartesian coordinates are called scalars if they follow the following transformation 

law:  

  

 (x1, x2, x3) = (x1, x2, x3) 

 

where  represents the single component of the system with variables x1, x2, and 

x3. (x1, x2, x3) denotes the scalar transformed into an alternate frame of reference. 

 

If the system (or entity) in question must be described by three (3) components, it 

follows that its tensor field is of rank one (n1 = 3). Tensor fields of rank 1 in 

Cartesian coordinates are called vectors if they follow the following transformation 

law: 

 

 k (x1, x2, x3) = i (x1, x2, x3) ik 

 i (x1, x2, x3) = k (x1, x2, x3) ki 

 

where i represents the three components of the system with variables x1, x2, and 

x3.  k (x1, x2, x3) ki denotes the vector, I, transformed into an alternate frame of 

reference by ik. 

 

Tensors of rank two, in Cartesian coordinates, thus are entities that follow the 

following transformation law: 

 

 ij (x1, x2, x3) = mn (x1, x2, x3) im jn 

 ij (x1, x2, x3) = mn (x1, x2, x3) mi nj 
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The extension of tensors into a generalized form with n-dimensions and r-rank 

follows as: 

 

 1 2 3…r (x1, x2, x3, … xn) = 1 2 3…r (x1, x2, x3, … xn) 11 22 33 … rr 

 1 2 3…r (x1, x2, x3, … xn) = 1 2 3…r (x1, x2, x3, … xn) 11 22 33 … rr 

 

Here, we go beyond Cartesian space, beyond the three orthogonal dimensions that 

define physical space.  We step into state space constructs of n-dimensions.  The 

only restriction is that the n-dimensions be orthogonal and span the state space of 

interest.  The n-dimensions represent the minimal state space dimensions of our 

system of interest. 

 

Therefore, tensors describe the minimal and essential properties and characteristics 

of a system of components. 

 

A Note About Matrices 

Matrices are not tensors.  Matrices capture information and attributes of particular 

entities but simply as categorizations and classifications of attributes in table 

format.  They are an aggregation of scalar properties and lend themselves to 

digitization quite well.  Scalar properties are also known as attributes which define 

objects at the dimensional level only. 

 

Some Useful Theorems Involving Tensors 

Theorem 1: 

If all components of an orthogonal tensor vanish in one coordinate system, 

then they vanish in all other orthogonal coordinate systems. 

 

Theorem 2: 

The sum or difference of two orthogonal tensors of the same rank is again 

a tensor of the same rank 

 

Theorem 3: 

If a tensor equation is true in one orthogonal coordinate system, then it is 

true in all orthogonal coordinate systems. 

 

Theorem 4: 

When only orthogonal coordinates are considered, the partial derivatives of 

any tensor field behave like the components of an orthogonal tensor. 

 


