

Strategies for a flawless determination of prohibited drugs in contaminated foods: a case study of deliberate fish exposure to multi-dyes

Estelle DUBREIL - Eric VERDON

ANNUAL MEETING & EXPOSITION

133rd Annual Meeting | September 6-12, 2019 | Denver, Colorado

Anses (France)

European Union Reference Laboratory for

Antimicrobial Residues and dye in Food

TO

STEPS

SEVERAL

- -Use of prohibited vet drugs
- -Regulation

- -Overview of existing analytical strategies
- -Considerations to monitor residues:
 - Restrictive residue monitoring
 - Extensive multi-residue monitoring
 - Multi-residues including biomarkers

/metabolites

FOOD SAFETY

Use of prohibited vet drugs

Alerts in Europe:

RASFF Portal	RASFF Consumers Portal Support Help Disclaimer Log in
European Commission > RASFF Portal	
Notifications list New search	
Search Page	Get results Clear form
Notification	Date Week
Reference Subject dyes Or O and	○ previous week [29] • week ♥ of year ♥
Notified by	Notified between and (dd/mm/yyyy)
Open alerts	
Туро	Product
Type	Category Flagged as
Classification withdrawn	<u> </u>
Basis	Country
	Action taken
Hazard	Keywords Open URL
Category Risk decision	
rdsk decision	

Ronidazole: 13 alerts (since 2005)

AMOZ: 111 alerts (since 2002)

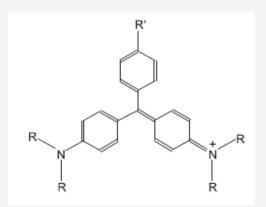
Chloramphenicol: 520 (since 2001)

Malachite green: 150 (since 2002)

Crystal violet: 15 (since 2002)

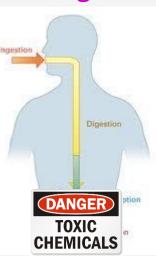
Victoria pure blue bo: 1 (in 2010)

yes: Toxicity and harmfull effects for consumers


etsa classified 20 dyes (2017):

European Food Safety Authority

Substance belongs to **Group I.** TSV is 0.0025 µg/kg bw per day



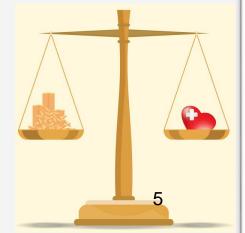
Food poisoning

Genotoxic Mutagenic

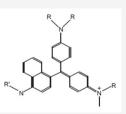
Malachite green- Crystal violet Brilliant green- Victoria blue - Pararosaniline- Other dyes ...

CODEX ALIMENTARIUS WHO/FAO

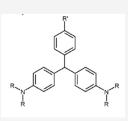
Policy of "zero tolerance" adopted in most countries JECFA ADI (acceptable daily intake)

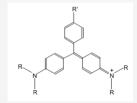

Analytical Methods: what is required for prohibited substances? Identification points (in EU) to ensure reliability of analyte control

- Avoid false negatives: Safety for Health!
- But also false positives: Important consequences for farmers!



40 years


Multi-class methods



3 residues + metabolites

1 residue (+ leuco form)

SEVERAL

1st option: Restrictive monitoring

Malachite green Crystal violet (Brilliant green)

Leuco metabolites

by

Based on known fraudulent treatment or occurrence

Often Post-alerts: "curative"

Suited for National Residues control plans:

routine methods

E.Dubreil-E.Verdon

1st option: Restrictive monitoring

example

VETERINARY DRUG RESIDUES

1152 HURTAUD-PESSEL ET AL.: JOURNAL OF AOAC INTERNATIONAL Vol. 96, No. 5, 2013

RESIDUES AND TRACE ELEMENTS

Determination of Residues of Three Triphenylmethane Dyes and Their Metabolites (Malachite Green, Leuco Malachite

Green, Crystal Violet, Leuco Crystal Violet, and Brilliant Green) in Aquaculture Products by LC/MS/MS:

First Action 2012.25

Dominique Hurtaud-Pessel, Pierrick Couëdor, and $\operatorname{Eric} \operatorname{Verdon}^1$

ANSES, French Agency for Food, Environmental and Occupational Health Safety, Fougères Laboratory, Veterinary Drug Residues Unit, EU-RL for Antibiotic and Dye Residues, La Haute Marche, Javené, BP 90203, 35302 Fougères, France DAWN DOWELL

AOAC INTERNATIONAL, 481 North Frederick Ave, Suite 500, Gaithersburg, MD 20877-2417

Dye Residue Analysis in Raw and Processed Aquaculture
Products: Matrix Extension of AOAC INTERNATIONAL
Official Method SM 2012.25

Andersen et al.: Journal of AOAC International Vol. 101, No. 6, 2018 1927

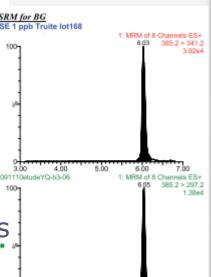
WENDY C. ANDERSEN

U.S. Food and Drug Administration, Animal Drugs Research Center, Denver Federal Center, Bldg 20, Denver, CO 80225

CHRISTINE R. CASEY, TARA J. NICKEL, and SUSAN L. YOUNG

U.S. Food and Drug Administration, ORA Denver Laboratory, Denver, CO 80225
SHERRI B. TURNIPSEED

U.S. Food and Drug Administration, Animal Drugs Research Center, PO Box 25087, Denver Federal Center, Denver, CO 802


Very reliable and sensitive (range 0.5 - 2 μg/kg)
Often methods with extensive sample purification

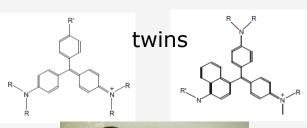
Intensive validation: inter-species, inter-laboratories

Issues

- only three dyes monitored
- not all metabolites available
- some false results due to cross contamination is poss*ble

2nd option: Extensive multi-families monitoring

Triarylmethanes TriaryInaphtyImethanes Phenothiazines Phenoxazines Xanthènes



Based on known similar properties and/or therapeutic effects

(Alderman, Journal of Fish Diseases, 1982)

Not necessarily proofs of fraudulent use More costly methods: not yet applied in routine

Parasitic fungi

E.Dubreil - E.Verdon

2nd option: Extensive multi-families monitoring

examples

ANALYTICA CHIMICA ACTA 625 (2008) 188-194

FISEVIER

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/aca

Contents lists available at ScienceDirect

Journal of Chromatography B. 953-954 (2014) 92-101

Journal of Chromatography B

journal homepage: www.elsevier.com/locate/chromb

Multiresidue determination of triarylmethane and phenothiazine dyes in fish tissues by LC-MS/MS

Jonathan A. Tarbin*, Danny Chan, George Stubbings, Matthew Sharman

Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK

Journal of Chromatographic Science 2012;50:591–597 doi:10.1093/chromsci/bms054 Advance Access publication April 26, 2012 Multi-dye residue analysis of triarylmethane, xanthene, phenothiazine and phenoxazine dyes in fish tissues by ultra-performance liquid chromatography-tandem mass spectrometry

Tim Reyns^{a,*}, Claude Belpaire^b, Caroline Geeraerts^c, Joris Van Loco^a

^a Scientific Institute of Public Health, Food, Medicines and Consumer Safety, Chemical Residues and Contaminants, Juliette Wytsmanstraat 14, 1050 Brussel. Belgium

b Pocoarch Institute for Nature and Forest Duhoislaan 14 1560 Groenendaal-Hoeilaart, Belgium eraardsbergen, Belgium

Article

Simultaneous Determination of Malachite Green, Crystal Violet, Methylene blue and the Metabolite Residues in Aquatic Products by Ultra-Performance Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry

Ying-Jiang Xu^{1,2}, Xiu-Hui Tian^{1,2}, Xiu-Zhen Zhang^{1,2}, Xiang-Hong Gong^{1,2}, Hui-Hui Liu^{1,2}, Huan-Jun Zhang^{1,2}, Hui Huang³ and Li-Min Zhang^{1,2}*

¹Marine Fisheries Research Institute of Shandong Province, Yantai 264006, People's Republic of China, ²Shandong Province Key Laboratory of Restoration for Marine Ecology, Yantai 264006, People's Republic of China, and ³College of Food Science and Technology, Shanghai Ocean University, Shanghai 200000, People's Republic of China

Reliable and sensitive, sometimes a compromise between molecules with ± extensive purification 10

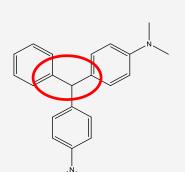
Validation intra-lab in line with the regulatory requirements

E.Dubreil-E.Verdon

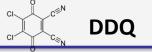
2nd option: Extensive multi-families monitoring

example

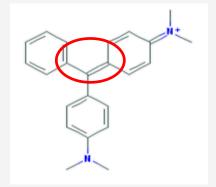
Oxidation step to convert unknown leuco forms

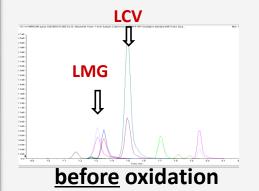


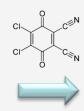
Contents lists available at ScienceDirect Food Chemistry


Dye residues in aquaculture products: Targeted and metabolomics mass spectrometric approaches to track their abuse

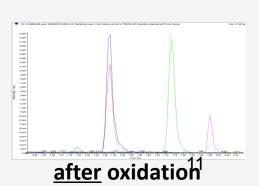
E. Dubreil^{a,*}, S. Mompelat^a, V. Kromer^a, Y. Guitton^b, M. Danion^c, T. Morin^c, D. Hurtaud-Pessel^a,


- b LABERCA, Omiris, INRA, Université Bretagne-Loire, 44307 Nantes, France
 c ANSES Ploufragan-Plouzane Laboratory, Unit of Viral Pathology in Fish, F-22440 Ploufragan-Plouzane, France

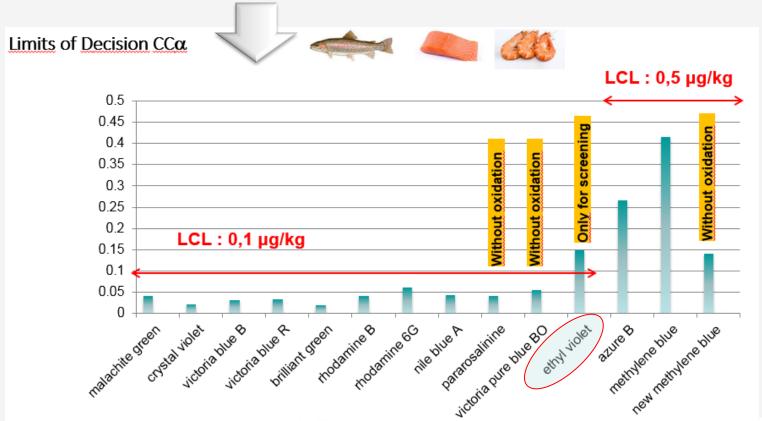




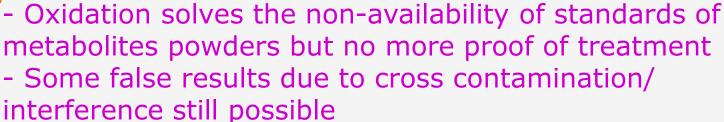
Enzymatic reduction



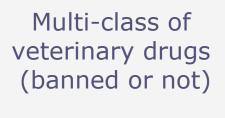
Extract of spiked sample



After addition of DDQ



2nd option: Extensive multi-families monitoring


Issues



3rd option: Multi-class of veterinary drugs monitoring

High resolution MS

- . Expensive instruments
- . Often for screening and not enough sensitive for confirmation
 - of banned VD
- . More suited for Applied Research (exposomics) and for risk assessment

4th option: Multi-families monitoring including metabolites/biomarkers

Multi-families of Dyes

Relevant metabolites

Biomarkers of effects

Issues

Based on endogenous/exogenous metabolism

- /. Need to implement in vitro/in vivo experiments
 - . Bring better proof of fraudulent use
 - . More suited for research (new practices) and for risk assessment

4th option: Multi-families monitoring including <u>metabolites</u>/biomarkers

Chemosphere

Available online 10 August 2019, 124538 In Press, Journal Pre-proof (?)

In vitro investigations of the metabolism of

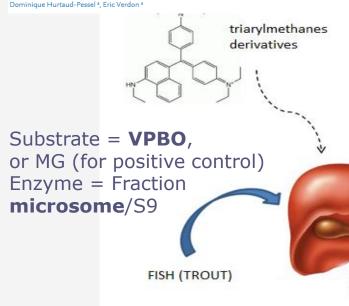
Victoria pure blue BO dye to identify main

metabolites for food control in fish

example

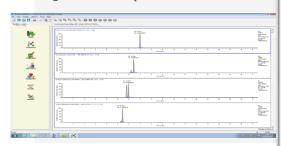
CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4 CYP4A11 UGT SULT GST NAT MT

LIVER MICROSOMES/S9



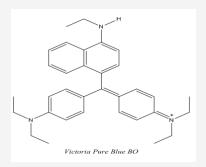
METABOLITES

Step 1: *in Vitro* investigations for search of metabolites


> **LC-HRMS** analysis

LTQ-Orbitrap Thermo

Metworks + Bibliography


4th option: Multi-families monitoring including metabolites/biomarkers

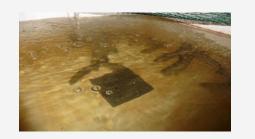
. Rapid to implement

Step 1: in Vitro investigations for search of metabolites

Métabolite	Δm/z	Métabolisation proposé	Liver Micro	Liver S9 BNF
VPBO	0	-	67,0%	77,4%
Deéthylation (-28,03130)	-28,03130	N-deethylation	25 197 736	83 207 072
	-56,0626	Double Deethylation	34 875 279	47 038 661
	-84,0939	triple Deethylation	6 868 805	10 527 223
	-112,1252	quadruple Deethylation	642 658	1 156 568
	-140,1565	quintuple Deethylation	49 302	433 473
Demethylation	-14,01565	N-demethylation*	538 242	1 556 792
(-14,01565)	-42,04695	Deethyl + DM*	85 220	77 755
Hydroxylation - (+15,99491) -	15,99491	Oxidation de VPBO**	331 525	1 299 942
	-12,03639	Deethyl + O** de VPBO	357 525	1 248 496
	-40,06769	Double Deethylation + O** de VPBO	261 357	478 910
	-68,09899	triple Deethylation + O** de VPBO	88 259	205 989
	-96,13029	quadruple Deethylation + O** de VPBO	-	-
	13,97926	O** + DS*** de VPBO	NF	360 560
Hydroxylation + désaturation	-14,05204	Deethyl + O** + DS*** de VPBO	NF	327 640
	-42,08334	double Deethylation + O** + DS*** de VPBO	NF	393 826
	-70,11464	triple Deethylation + O** + DS*** de VPBO	99 634	237 218
Leuco-DF-VPBO	-26.01565	Deethyl-Leuco-VPBO	NF	544 773

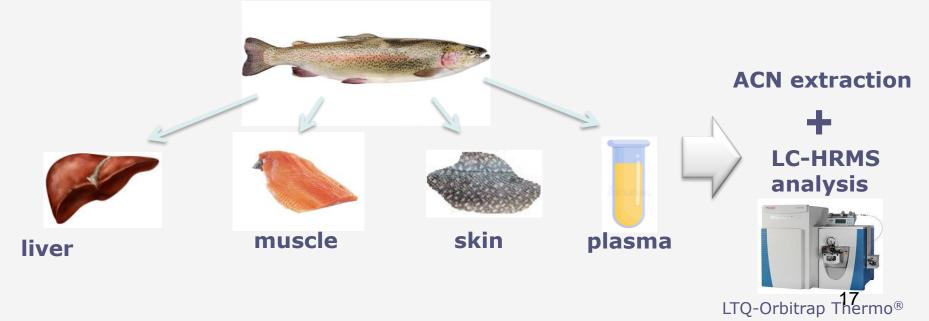
$$n \left(-CH_2 + H\right)$$

$$R \longrightarrow R$$
 $R \longrightarrow R$
 $R \longrightarrow R$
 $R \longrightarrow R$
 $R \longrightarrow R$
 $R \longrightarrow R$

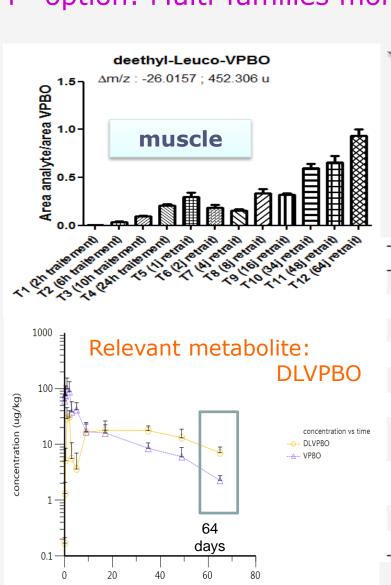


4th option: Multi-families monitoring including metabolites/biomarkers

Trout exposed to VPBO in water bath, 1 day of treatment, 64 days of depuration



Step 2 optional: in Vivo investigations for metabolites



E.Dubreil-E.Verdon

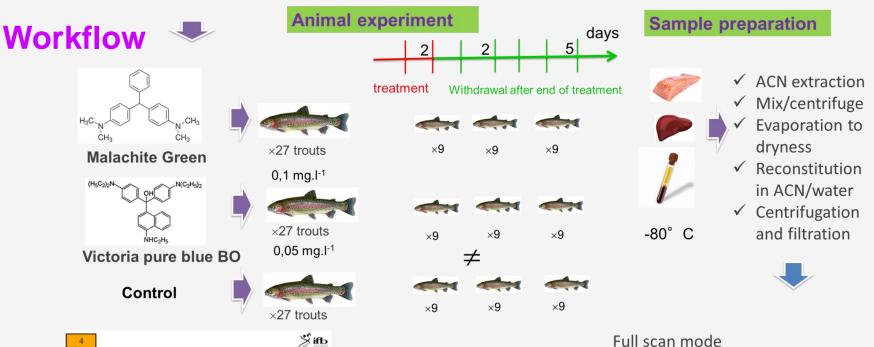
4th option: Multi-families monitoring including <u>metabolites</u>/biomarkers

time (day)

Step 2: *in Vivo* investigations for metabolites

	Muscle		
	VBPO	DLVBPO	
Lambda_z (/days)	0.0352	0.03079	
HL Lambda z (d)	19.69	22.51	
AUC _{last} (µg d/l ou kg)	956.9 ± 56.7	945.1 ± 63.8	
AUC _{INF} (µg h/l ou kg)	1010.2	1174.6	
AUC _{Extrap} (%)	5.52	19.53	
MRT _{last} (d)			
MRT _{INF} (d)	12.25	110.80	
T _{max} (d)	1	1	
C _{max} (μg/l ou kg)	99.9 ± 22.2	28.9 ± 6.9	
		18	

E.Dubreil - E.Verdon



4th option: Multi-families monitoring including metabolites/biomarkers

Other possibility to metabolite investigation: <u>Untargeted</u> metabolomic study

Step 3: *in Vivo* investigations for biomarkers

Wm Workflow4metabolomics

Multivariate statistical analysis Candidate biomarkers validation

Data analysis

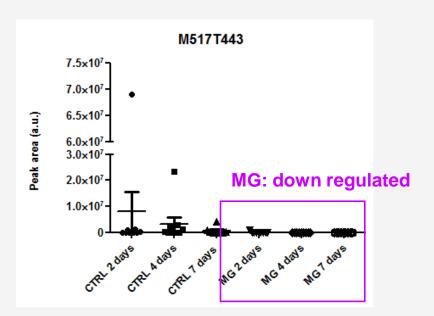
Xcms

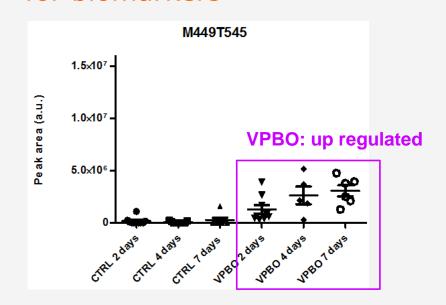
Alignment + filters, denoising, normalization for batch effects, filters for QC variation (< 30%)

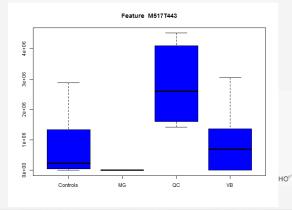
within m/z
[100-1000] uma, ESI+
FWHM: 60000
Use of QC samples

Data processing

C-ESI-HRMS


E.Dubreil-E.Verdon




4th option: Multi-families monitoring including metabolites/biomarkers

Step 3: *in Vivo* investigations for biomarkers

Endogenous metabolites involved

Identification as bile acids

E.Dubreil-E.Verdon

OOD SAFETY

4th option: Multi-families monitoring including metabolites/biomarkers

<u>example</u>

Dyes (15)

Malachite green (MG)

Crystal violet (CV) Azur B (AZB)

Victoria blue B (VBB)

Victoria pure blue bo (VPBO)

Victoria blue R (VBR)

Methylene blue (MB)

New methylene blue (NMB)

Brilliant green (BG)

Rhodamine B (RHB)

Ethyl violet (EV)

Nile blue A (NBA)

Rhodamine B (RHB)

Rhodamine G (RHG)

Pararosalinine (PRRA)

Combination ...

Metabolites (4)

Leuco MG (LMG)

Leuco CV (LCV)

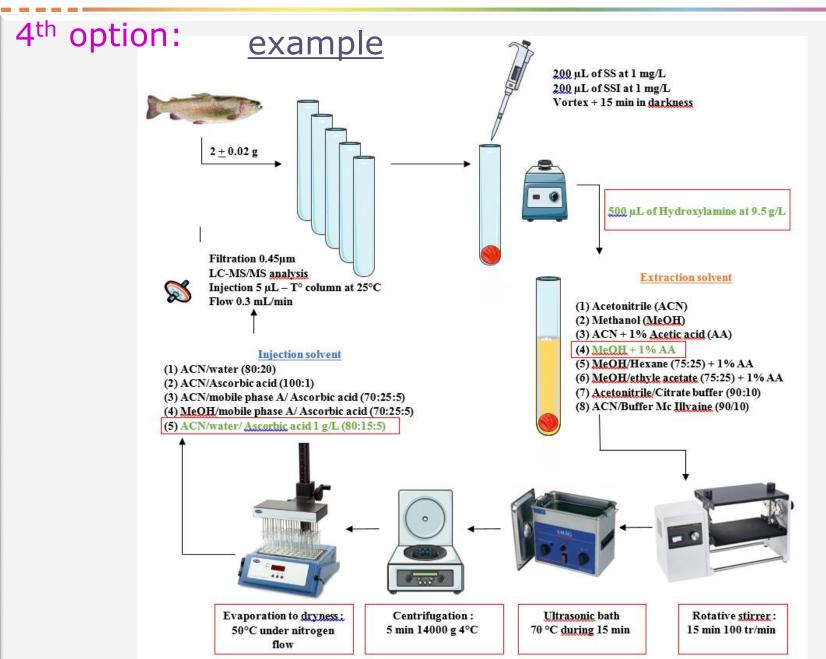
Deethyl leuco VPBO (DLVPBO)

Leuco BG (LBG)

Endogenous biomarkers (3)

Taurodeoxycholic acid (TRDA) Glycodeoxycholate (GCDA) Deoxycholic acid (DCA)

> Internal standards (4) MG-d5, LMG-d5


CV-d6, LCV-d6

... to be continued

To find transitions of DLVPBO, contaminated extract was injected in different modes (SIM, MS/MS et \neq CE (V))

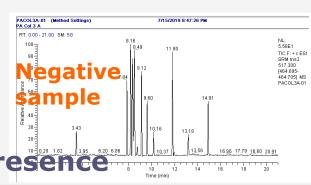
E.Dubreil-E.Verdon

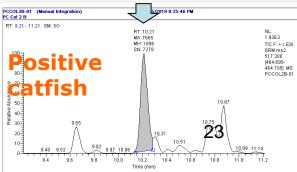
E.Dubreil-E.Verdon

4th option: Multi-families monitoring including metabolites/biomarkers

Applicability: analysis of a positive sample from a routine lab

Catfish




Malachite green: 0,905 μg/kg Leuco Malachite green: 23,062 μg/kg

Levels of bile acids:

DCA: 49 μg/kg TRDA: 15 μg/kg

Up-regulation
MG confirmation of presence

Ex:TRDA

Considerations for the monitoring of residues of

banned Vet Drugs:

Multi-res. incl. biomarkers / metabolites
Extensive multi-residue monitoring
Restrictive residue monitoring