

Reference Materials -In a nutshell

Presented by Don Shelly

NACRW 2018

THE ELEPHANT IN THE ROOM

The Second Source

What is a second source and why should I need one?

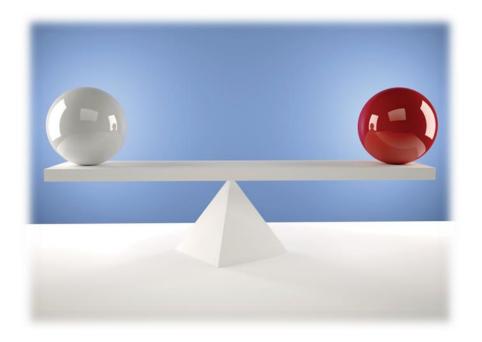
A second source is used to verify the integrity of the primary source. What defines a second source?

- The answer depends on your industry
 - Different starting material?
 - Different lot of starting material?
 - Different supplier of starting material?
 - Different preparation?
 - Preparation from a different vendor?

The NELAC definition

Independent preparation of a standard

- Different lot numbers from same starting material
- Different lot numbers from different starting materials
- Prepared from different vendors



Starting Materials

- The joy of sharing
 - There is often only one manufacturer of a neat material, 2 at most.
 - Blenders (provide mixes) generally acquire neats from vendors that can provide consistent quality at a competitive price.

Stability

ISO 17034:2016 Reference Material (RM)

- Material, sufficiently homogeneous and stable with respect to one or more specified properties
- Established to be fit for its intended use in a measurement process.

ISO 17034:2016 Certified Reference Material (CRM)

- Reference material characterized by a metrologically valid procedure for one or more specified properties
- Accompanied by a reference material certificate
 - provides the value of the specified property
 - its associated uncertainty
 - a statement of metrological traceability
 - Note: The uncertainty is the Total Combined Uncertainty at a specified coverage factor

Uncertainty Determination

• RM

- Characterization - Manufacturing Process

- Weights
- Volumes
- Neat material purity

Uncertainty Determination

- CRM (Total Combined Uncertainty)
 - Characterization Manufacturing Process
 - Homogeneity Manufacturing Process
 - Transportation Shipping, impacts shelf life
 - Long term stability Chemistry, impacts shelf life and is the <u>major contributor to uncertainty</u>

Shelf Life Determination

- Classical Method Real time storage data
 - Hold product and test at various intervals until product fails or desired time elapses
 - Use when product development and/or life cycle allows
- Historical data/Product knowledge
- Accelerated Method Estimate shelf life
 - Stress product with appropriate environmental variables to accelerate failure
 - Valuable when product development cycle is short

Accelerated Methods

- Assumes that product failure, rate of degradation, increases if environmental conditions are made more harsh than the stated storage conditions
- Ensuring that the certified values for the analytes are within the stated uncertainties for the specified shelf life is critical

Gravimetrically Prepared Analytical Reference Materials

- Most of our organic reference materials are sealed in ampoules so the predominate variables we measure are temperature and composition
- Composition changes primarily through chemical reactions
 - Analyte Analyte
 - Analyte Solvent
- Chemical reaction rates change with temperature can use Arrhenius' Equation

Accelerated Stress Experiment

- Put one unit at storage temperature
- Heat stress additional units at three or more temperatures between the storage temperature and 100 °C for a given time
- Analyze all samples sequentially

Other Factors Which Influence Shelf Life Determination

- Analyte stability for a long period does not necessarily mean that the solution is not changing
 - Analyte Solvent interaction can impact solution pH and redox potential over time
 - Chlorinated hydrocarbons in methanol (methanol becomes more acidic with time)
 - Linear ketones degrade within hours (acetone, MEK, 2hexanone)

Solvent - Analyte Interaction

- Benzaldehyde Benzidine reaction in methylene chloride to form the hydrozone like derivative
 - As methylene chloride ages, it becomes more acidic and catalyzes this reaction
- Urea based pesticides in acetonitrile
 - Acetonitrile goes basic as it ages and causes urea based pesticides to degrade

Environmental Conditions

- Storage conditions
- Transportation conditions

We are here to help

Contact

- DON.SHELLY@LGCGROUP.COM
- lgcstandards.com
- +1 (603) 622 7660
- lgcusa@lgcstandards.com

Science for a safer world