

Continued Progress in the Multiclass, Multiresidue Analysis of Veterinary Drugs in Animal Tissues

Steven J. Lehotay

Agricultural Research Service Eastern Regional Research Center Wyndmoor, Pennsylvania; USA

Outline

- 1) Conclusions
- 2) Background
- 3) Progress
 - Summation Integration Approach
 - Analyte Identification
 - Ion-Pairing Agent in the Final Extract
- 4) Future Possibilities
 - TYT for TAT Interlab Method Validations
 - Isocratic Fast (UHP)LC-MS/(HR)MS

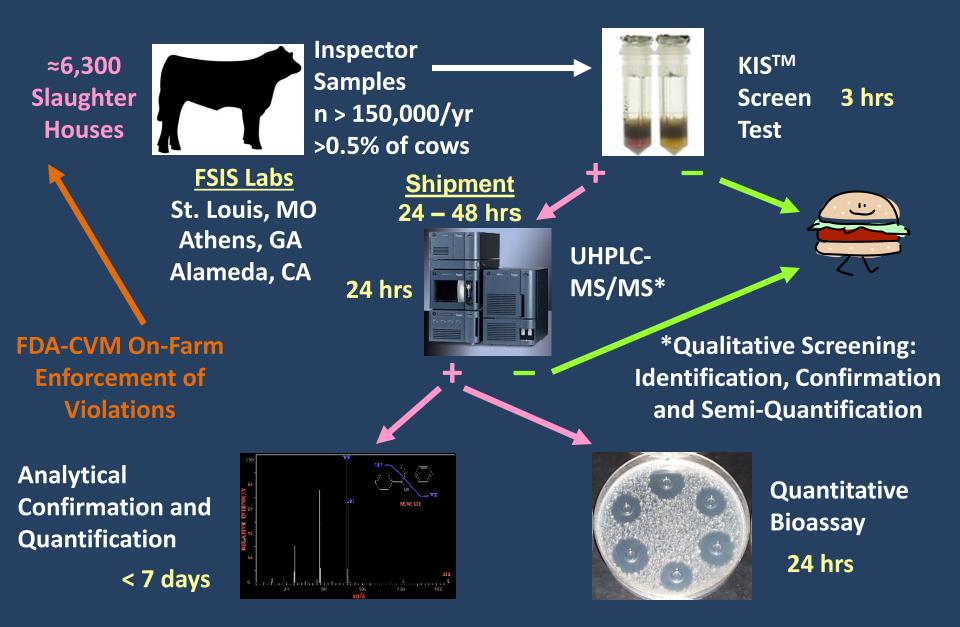
Conclusions

- Current validated USDA ARS/FSIS methods have been demonstrated to be very effective and efficient for analysis of >170 targeted drugs in animal tissues (not milk).
- Ion-pairing reagent added to combined final extracts allows inclusion of aminoglycosides in the same UHPLC-MS/MS method with other common drugs.
- Automated data processing using summation chromatographic peak integration yields trustworthy quantification and identification without human review and re-integrations.
- Method files can be shared to easily and readily compare multiple methods in interlab trials of PT-like samples.

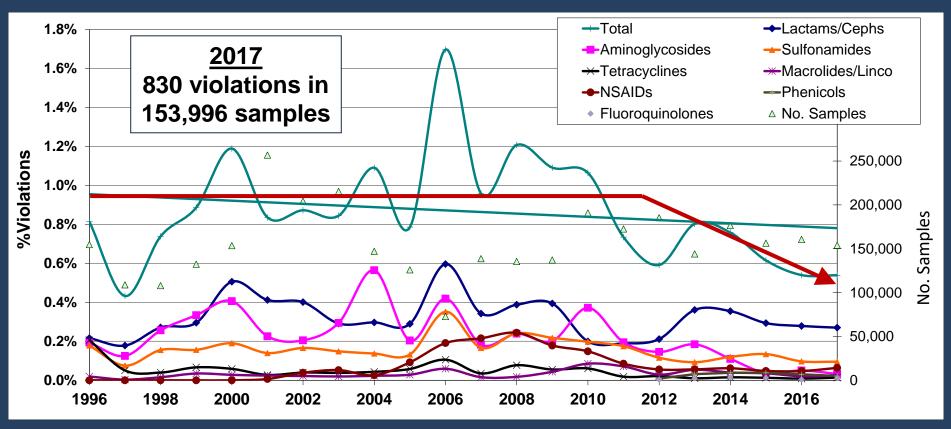
USDA Food Safety and Inspection Service

Link to US National Residue Program:

www.fsis.usda.gov/wps/portal/fsis/topics/regulatory-compliance/regulatory-enforcement/!ut/p/a1/04 _Sj9CPykssy0xPLMnMz0vMAfGjzOINAg3MDC2dDbwMDIHQ08842MTDy8_YwMgYqCASWYG_paEbUEF YoL-3s7OBhZ8xkfpxAEcDQvq9iLDAqMjX2TddP6ogsSRDNzMvLV8_oig1vTQnsSS_qFI3FShQIJyam5pXohuH4XXPH8TdAVYPAxRgNtHBbmhEVU-acGe6YqKAPChfMA!/?1dmy¤t=true&urile=wcm%3Apath %3A%2Ffsis-content%2Finternet%2Fmain%2Ftopics%2Fdata-collection-and-reports%2Fchemistry%2F residue-chemistry


Blue Book – Annual Sampling and Analysis Plans Red Book – Annual Monitoring Results

Link to FSIS Chemistry Laboratory Guidebook:


www.fsis.usda.gov/wps/portal/fsis/topics/science/laboratories-and-procedures/guide books-and-methods/chemistry-laboratory-guidebook/chemistry-laboratory-guidebook

CLG-MRM(#) - Multiclass, Multiresidue Method CLG-AMG(#) - Aminoglycosides Method

FSIS Residue Monitoring Scheme since 2012

Violation Rate of Veterinary Drugs In Bovine Slaughter Classes

KIS test and UHPLC-MS/MS implemented in 2012

A Decade of Gradual Progess

Schneider and Lehotay, "A comparison of the FAST, Premi[®] and KIS[™] tests for screening antibiotic residues in beef kidney juice and serum" *Anal. Bioanal. Chem.* **390**, 1775-1779 (2008).

Schneider et al., "Comparison of screening methods for antibiotics in beef kidney juice and serum" *Anal. Chim. Acta* 637, 290-297 (2009).

B. Kinsella et al., "New method for the analysis of flukicide and other anthelmintic residues in bovine milk and liver using liquid chromatography – tandem mass spectrometry" *Anal. Chim. Acta* **637**, 196-207 (2009).

Lehotay et al., "Development and validation of a streamlined method designed to detect residues of 62 veterinary drugs in bovine kidney using ultrahigh performance liquid chromatography – tandem mass spectrometry" *Drug Testing Anal.* **4 (S1)**, 75-90 (2012).

Geis-Asteggiante et al., "Ruggedness testing and validation of a practical analytical method for >100 veterinary drug residues in bovine muscle by ultrahigh performance liquid chromatography – tandem mass spectrometry" *J. Chromatogr. A* **1258**, 43-54 (2012).

Lehotay et al., "Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography - tandem mass spectrometry" *J. Chromatogr. A* **1313**, 103-112 (2013).

Identification and Confirmation by Mass Spectrometry:

Lehotay et al., "Identification and confirmation of chemical residues by chromatographymass spectrometry and other techniques" *Trends Anal. Chem.* **27**, 1070-1090 (2008).

Lehotay et al., "Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry" *Trends Anal. Chem.* **69**, 62-75 (2015).

Structural Characterization by Mass Spectrometry:

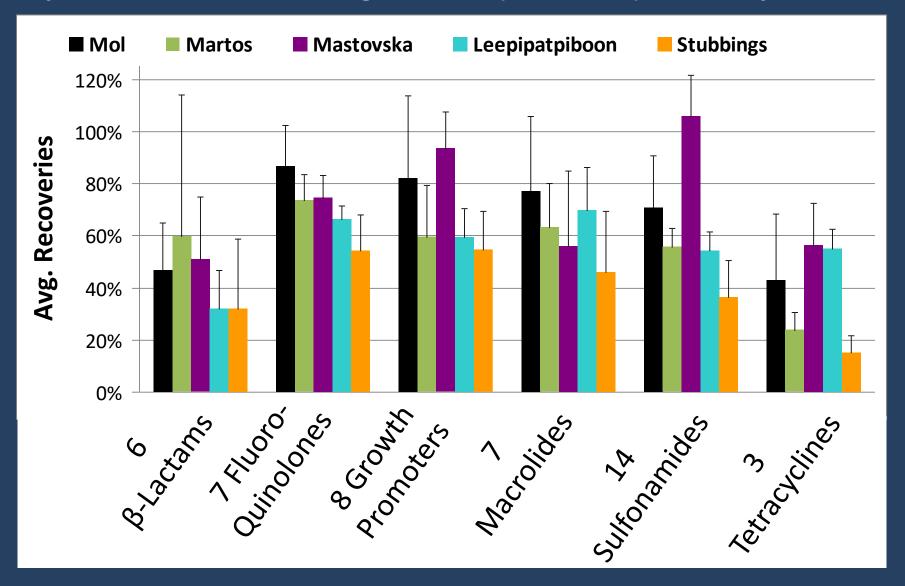
Geis-Asteggiante et al., "Structural characterization of product ions by electrospray ionization and quadrupole time-of-flight mass spectrometry to support regulatory analysis of veterinary drug residues in foods" *Rap. Commun. Mass Spectrom.* **28**, 1061-1081 (2014).

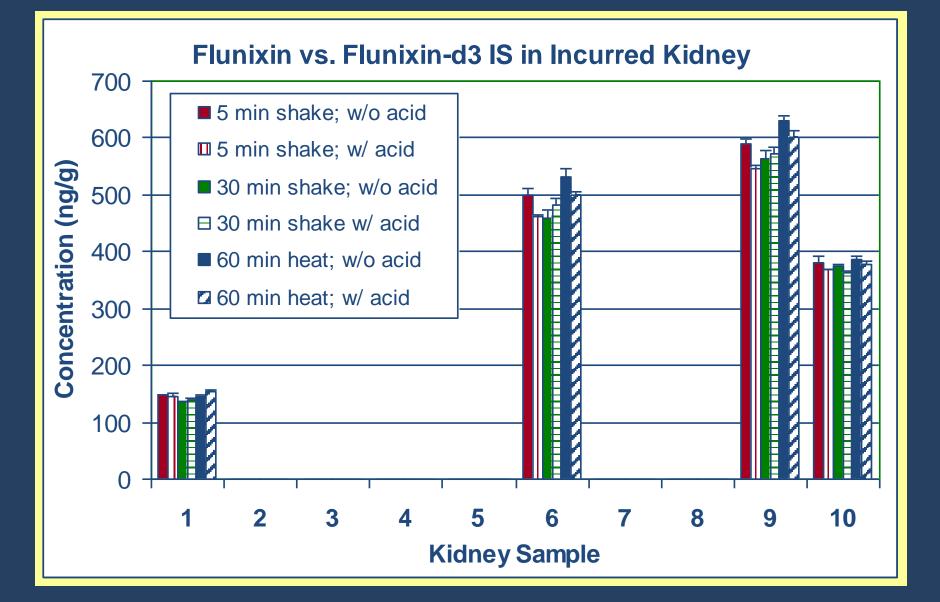
Nuñez et al., "Structural characterization of product ions by electrospray ionization and quadrupole time-of-flight mass spectrometry to support regulatory analysis of veterinary drug residues in foods. Part 2: Benzimidazoles, nitromidazoles, phenothiazines, and mectins" *Rap. Commun. Mass Spectrom.* **29**, 719-729 (2015).

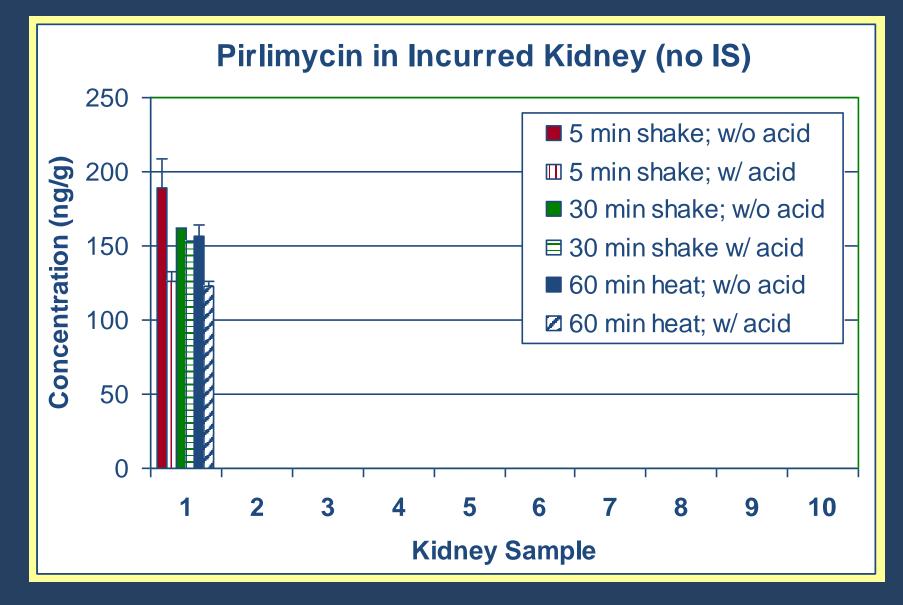
Nuñez et al., "Structural characterization of product ions of regulated veterinary drugs by electrospray ionization and quadrupole time-of-flight mass spectrometry. Part 3: Anthelmintics and thyreostats" *Rap. Commun. Mass Spectrom.* **30**, 813-822 (2016).

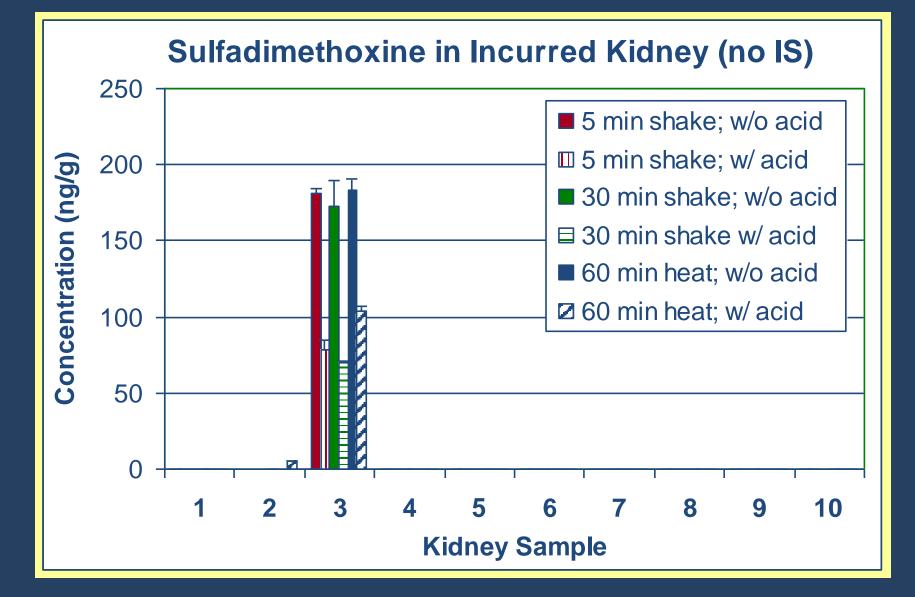
Recent Developments

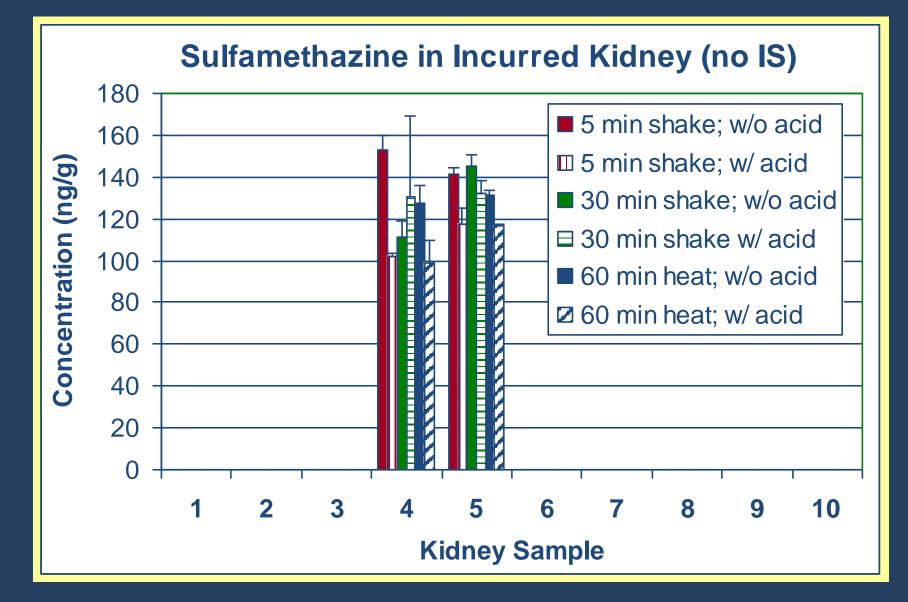
Schneider et al., "Validation of a streamlined multiclass, multiresidue method for determination of veterinary drug residues in bovine muscle by liquid chromatography – tandem mass spectrometry" *Anal. Bioanal. Chem.* **407**, 4423-4435 (2015).

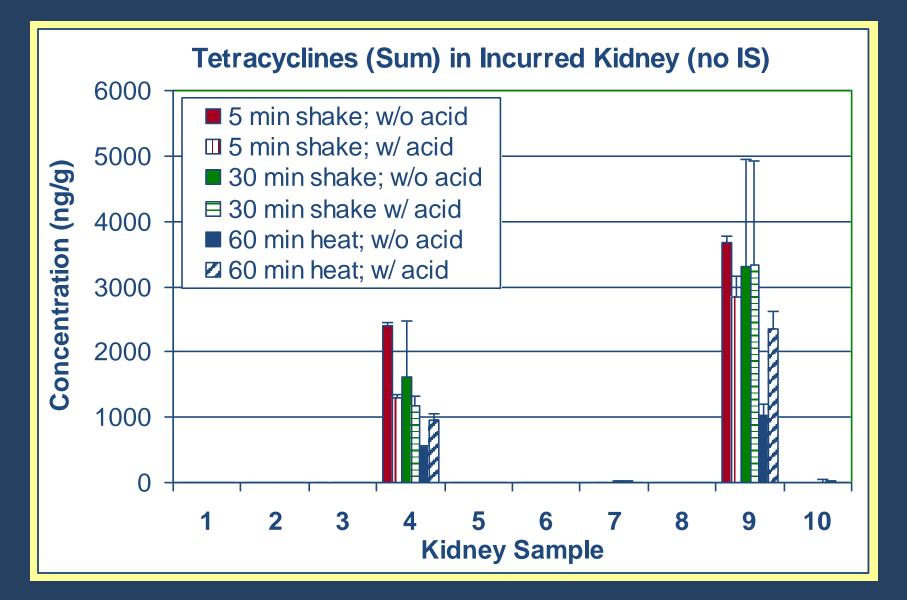

Anumol et al., "Comparison of veterinary drug residue results in animal tissues by ultrahigh-performance liquid chromatography coupled to triple quadrupole or quadrupole-time-of-flight tandem mass spectrometry after different sample preparation methods, including use of a commercial lipid removal product" *Anal. Bioanal. Chem.* **409**, 2639-2653 (2017).

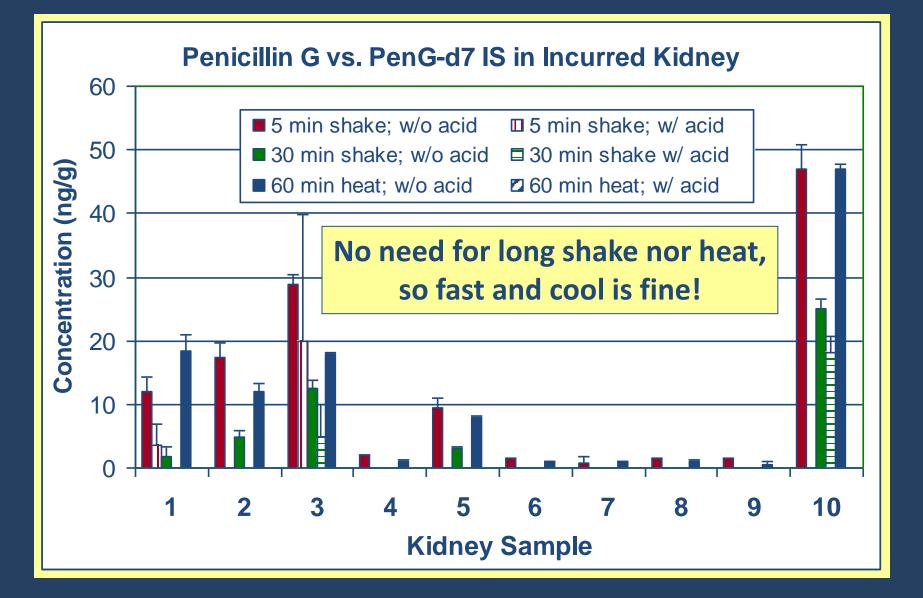

Lehotay, "Utility of the Summation Chromatographic Peak Integration Function to Avoid Manual Reintegrations in the Analysis of Targeted Analytes" *LCGC North America* **35**, 391-402 (2017) and *LCGC Europe* **30**, 530-540 (2017).


Lehotay and Lightfield, "Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography – tandem mass spectrometry using an ion-pairing reagent added to final extracts." *Anal. Bioanal. Chem.* **410**, 1095-1109 (2018).

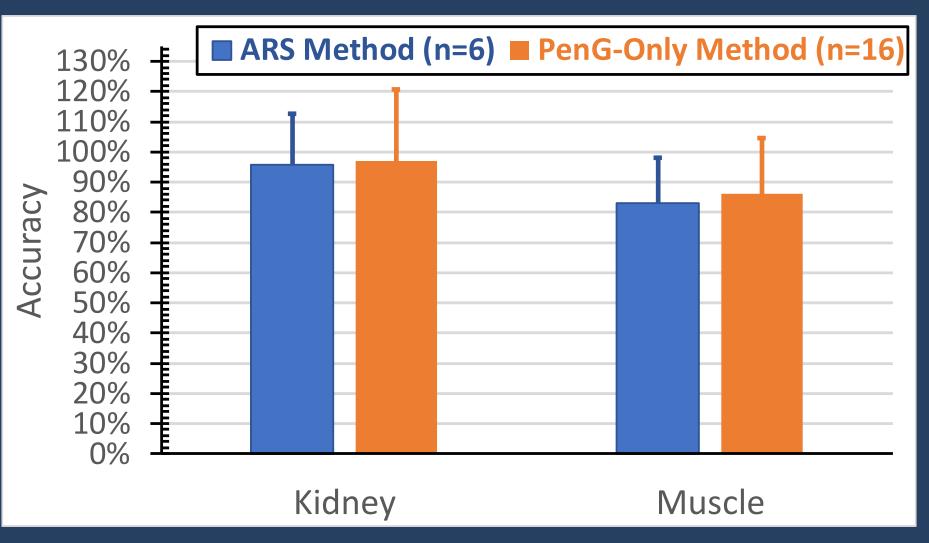

Comparison of 5 Vet. Drug Methods


Spiked ½x, 1x, and 2x Target Levels (n= 6 each) in Kidney, No I.S.





The Case of Penicillin G


Due to degradation concerns, added main metabolites of penicillin G to the target list in the method.

In a degradation study, no degradation was observed when using fresh acetonitrile/water solutions and mobile phase, but older solutions caused degradation, presumably due to formation of acetamide, which was also monitored.

We still look for the PenG metabolites, but have only observed slight degradation of the PenG-d7 int. std. over time in the stock solution.

A key to the improved analysis of PenG is to use reasonably fresh extraction solution and mobile phase (made weekly).

Analysis of PenG in Prof. Test Samples

Freeze-dried PT samples analyzed among 4 labs monthly with blind conc. 20-200 ng/g (so far)

Phase I Validated Method (2012)

extraction

lean-up

2 g tissue in a 50 mL tube

add IS mix (SMZ-IS; flunixin-d3; PenG-d7)

add 10 mL of 4/1 (v/v) MeCN/water vortex briefly, shake for 5 min centrifuge for 5 min >3500 rcf

supernatant + 500 mg C18 + 10 mL hexane sat'd
w/MeCN; mix for 30 s, centrifuge for
5 min > 3500 rcf; aspirate hexane to waste

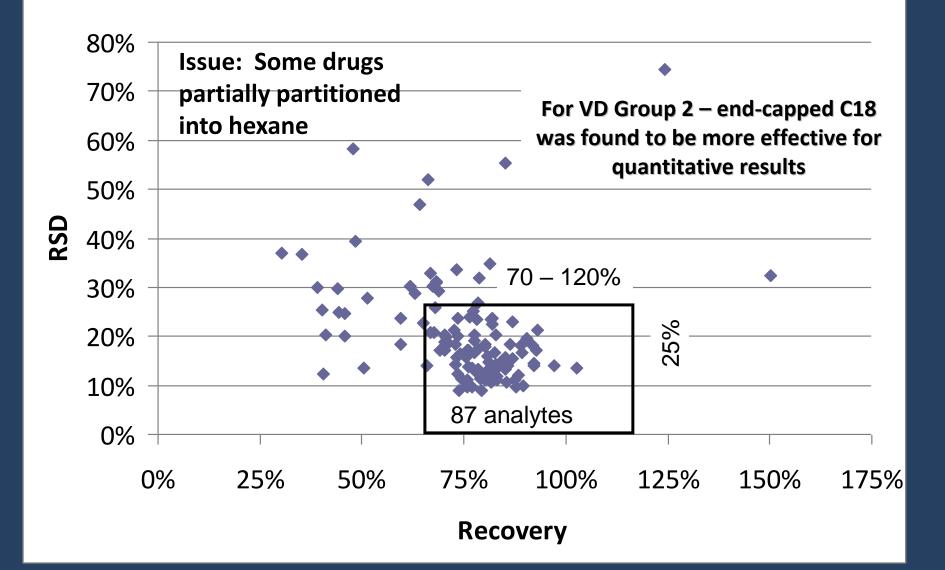
evaporate 5 mL extract to 1 mL final vol.

filter extract with the Mini-UniPrep[™]

UHPLC-MS/MS analysis

UPLC-TQD Parameters

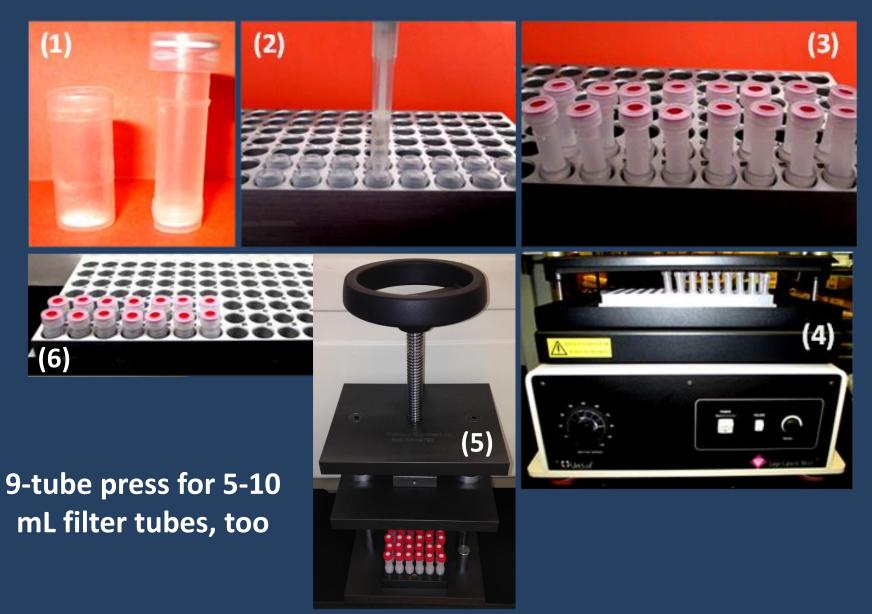
- ✓ Column Acquity UPLC HSS T3, 1.7 µm, 100 x 2.1 mm
- \checkmark Mobile Phase A 95% H₂0 / 5% MeCN / 0.1% formic acid
- ✓ Mobile phase B 100% MeCN / 0.1% formic acid
- ✓ Flow rate of 0.50 mL/min.
- ✓ Gradient:


0.0 min – 0.2% B, 0.1 min – 0.2% B, 8.00 min – 99.8% B, 9.5 min – 99.8% B, 9.6 min – 0.2% B, 12.8 min – 0.2% B

Injection volume of 20 μ L = 17.4 mg equiv. sample!

Phase I Method Logistics

1 chemist was able to process 60 pre-homogenized samples in an 8-hr day for an overnight sequence (longest step was 1 hr to evaporate MeCN) No glassware to be cleaned afterwards Cost of materials \approx \$3/sample (using bulk C18) Waste = 10 mL hexane and 5 mL MeCN (and two 50 mL and one 15 mL polypropylene tubes)


Average Recoveries and Reproducibilities

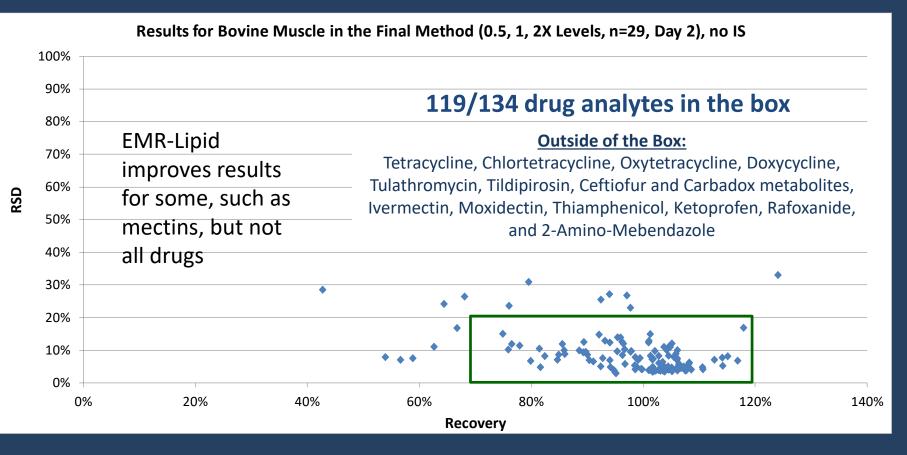
Phase II: Filter-Vial dispersive-SPE

Filter-Vial d-SPE in a Batch Process

Phase II Method for Veterinary Drugs (2015)

2 g tissue in a 50 mL tube add IS mix (SMZ-IS; flunixin-d3)

add 10 mL of 4/1 (v/v) MeCN/water vortex briefly, shake for 5 min centrifuge for 5 min >3500 rcf


extraction

0.4 mL supernatant + 25 mg C18 in filter-vial d-SPE; vibrate AS tray for 30 s and filter through 0.2 μm PVDF by pressing plungers to seal the vials

Inject 1 µL in UHPLC-MS/MS

17.4 mg equiv. sample reduced to 0.174 mg by using more modern instrument!

Phase II Method Performance

LC-MS/MS results based on matrix-matched calibration - added int. stds not employed

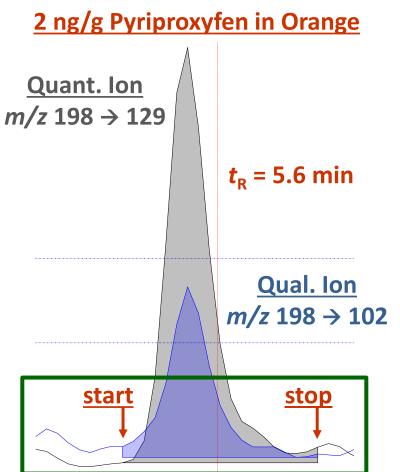
Phase II Method Logistics

<u>1 chemist</u> was able to process <u>60 pre-homogenized</u> samples in <u>3 hours</u>

(longest steps involved labeling tubes/vials, weighing, and preparing calibration standards)

No glassware to be cleaned afterwards

Waste = 10 mL MeCN (and one 50 mL tube and an autosampler vial)

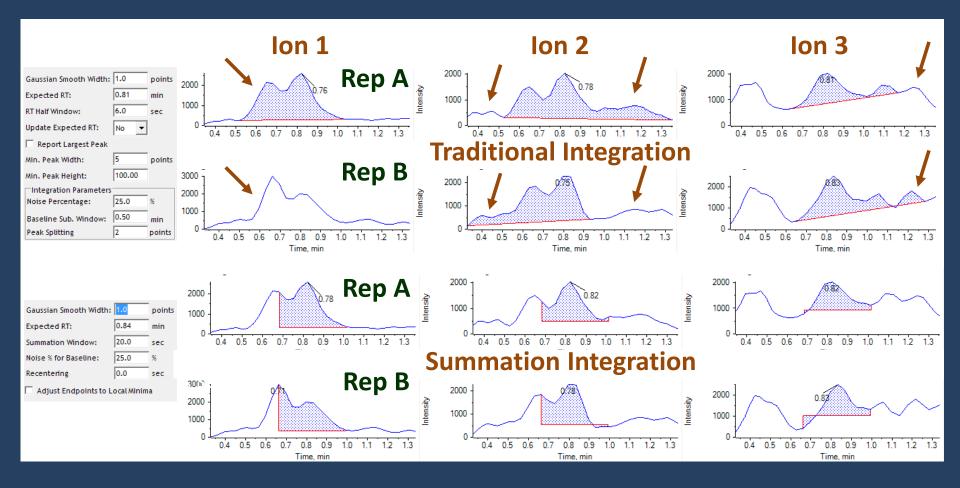

Review of results for 135 drugs x 3 transitions x 67 injections (>27,000 data points) took 8 hours

Poor integration undoes excellent detection

SIMPLIFY, don't COMPLIFY! <u>2 ng/g Pyriproxyfen in Orange</u>


- Draw a straight line at the baseline just before the start of the expected peak to just after its expected end → EASY PEASY!
- See: Lehotay, LCGC North America
 35 (2017) 391-402.
- Advanced ≠ Better
- Function ≠ Beauty
- Time = Money

Quant. and Qual. lons Co-Elute with the Same t_{R} !


Summation Integration Function

 ≈1 min to integrate a batch of >60 samples of ≈660 MRMs per sample WITHOUT REVIEW!

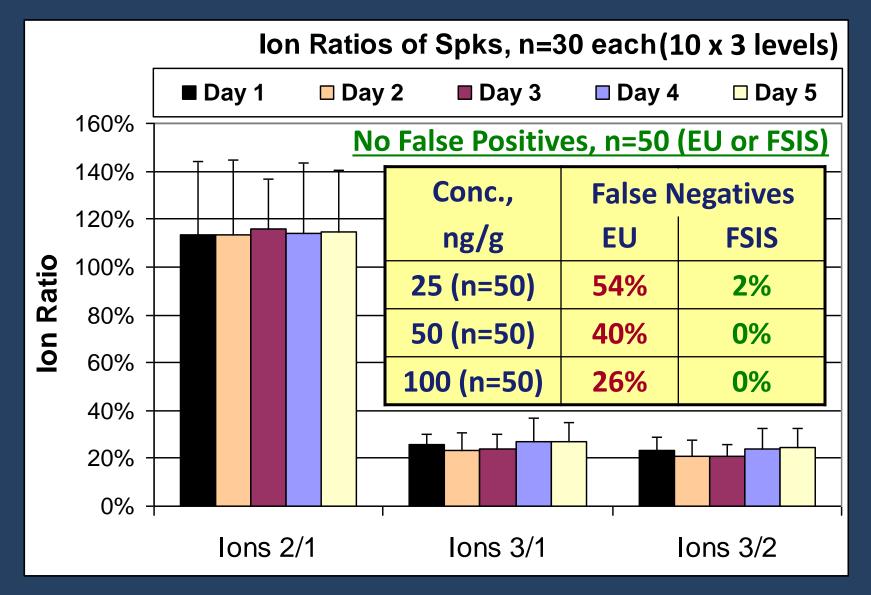
 This is a >40 year-old integration function, but LACKING IN SOME DATA PROCESSING SYSTEMS!

Summation integration is consistent and reliable

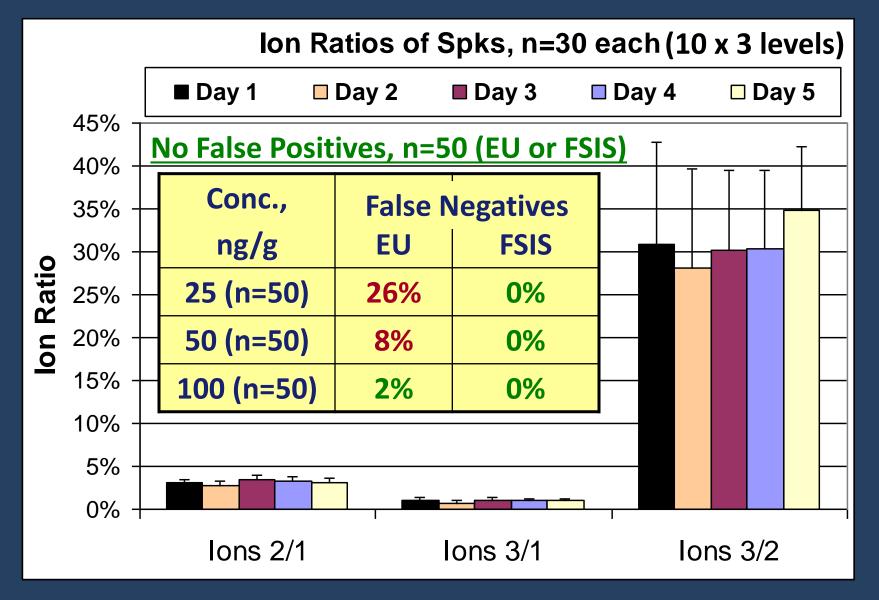
The top two integrations were false negatives, but not when using summation integration.

USDA Rules in Automatic Post-Run Identification (*e.g.* in Excel or Instrument Software)

Note: Any Set of Identification Criteria can be Applied


1) Ret. time (t_R) for each ion (Quant. and Qual.) must be $\leq |0.1|$ min from the contemporaneous t_R (ref.), which is the **avg** t_R from high conc. calibration stds in solvent in the same sequence.

2) Ion Ratio (IR) = (signal ion 2)/(signal ion 1), 3/1, 3/2, etc. (in %); IR(ref.) = avg IR of contemporaneous high conc. calibration stds in solvent [note: IR(ref.) ≤ 110%]


Ident. requires |±10%| for ≥1 IR or |±20%| for ≥2 IRs *vs.* IR(ref.)

3) Conc. must be > **reporting level** (*e.g.* LOQ, LOI, or MRL)

Ion Ratios for Ciprofloxacin in Kidney

Ion Ratios for Lincomycin in Kidney

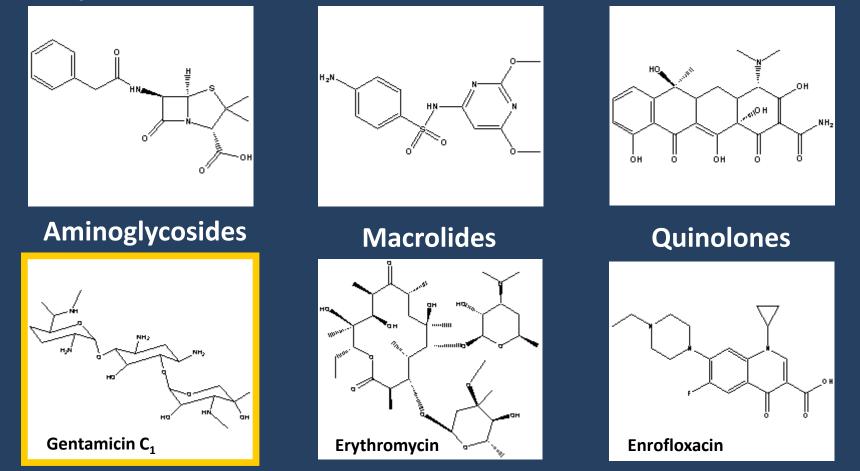
Bottom Line

There are many complicated opinions of "good enough" criteria to meet MS-based identification standards

But they are all based on generalizations, not scientific assessments at all actual conditions

The bottom line is rates of false pos/neg

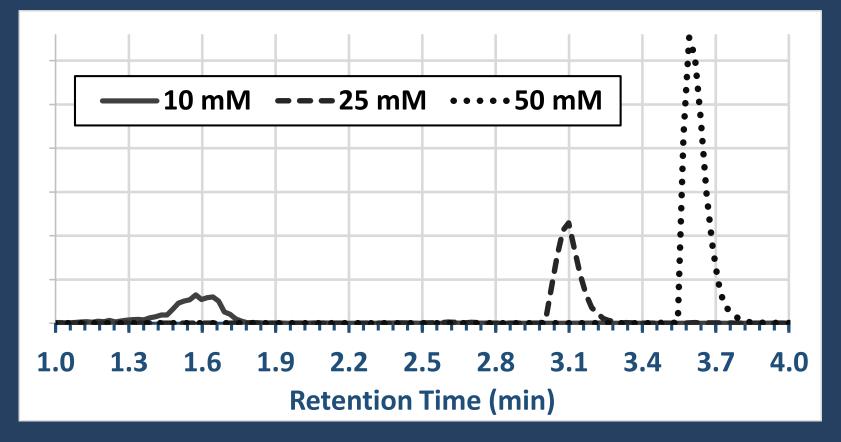
If analytical conditions shown to meet <5% false results in extensive validation (multi-matrix, multi-level, blind), then it should be acceptable

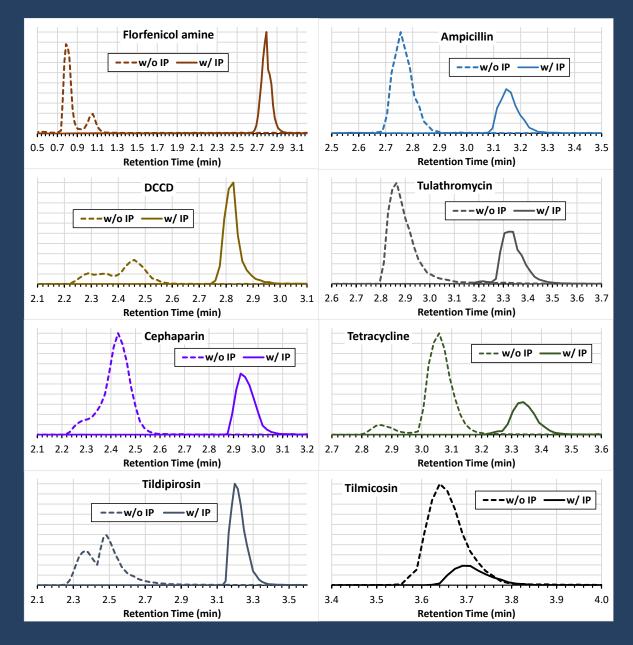

Rely on Orthogonal Confirmation Methods

Issue: What about Aminoglycosides?

β-Lactams

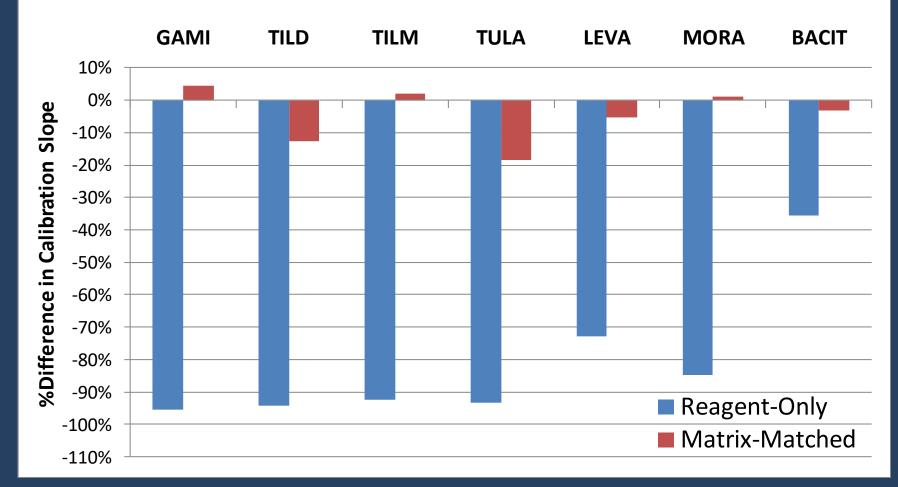
Sulfonamides


Tetracyclines


Currently, 219 vet. drugs (including >100 antibiotics) are on our list, but have targeted and evaluated ≈180 so far in (UHP)LC-MS/MS.

Sodium 1-Heptanesulfonate in Final Extract

UHPLC of apramycin and amount of IP agent



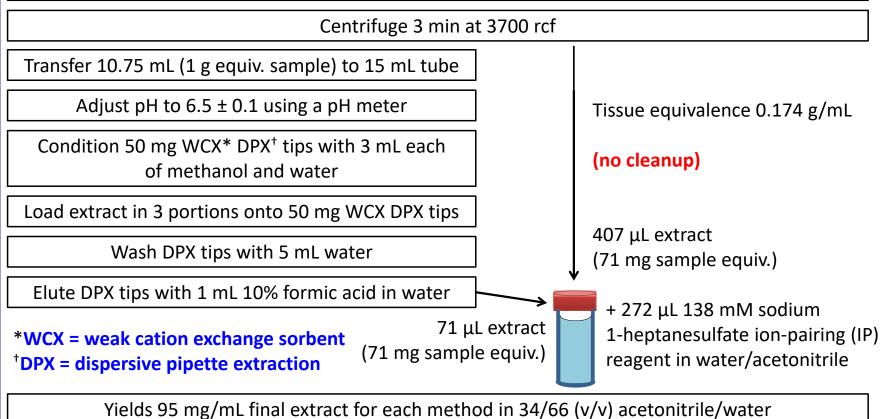
Effect of Ion-Pairing Agent in Final Extract

Issue: Losses due to Filtration w/o Matrix

Effect of Filtering (5:1 dil'n) for Macrolides/Others

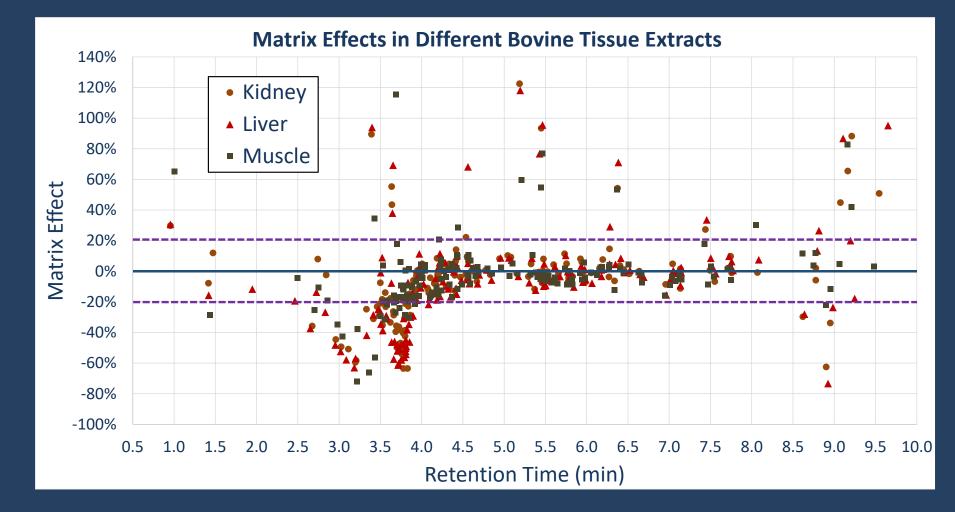
Can avoid matrix effects by dilution, but still needed matrix-matching to compensate for losses of some analytes

Phase III Veterinary Drug Residue Method

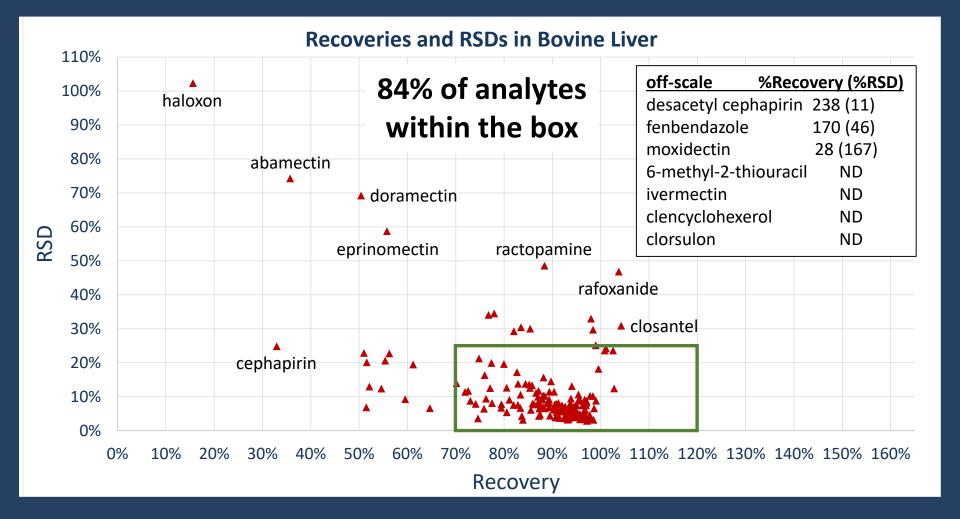

Aminoglycosides

Multiclass, Multiresidues

2 g tissue + 20 mL of 10 mM NH_4OAc , 0.4 mM EDTA, 2% trichloroacetic acid, and 0.5% NaCl in water + IS


2 g tissue + 10 mL 4/1 (v/v) acetonitrile/water + IS

Shake 5 min on pulsed vortex platform shaker (80% setting, max pulsation)



containing 50 mM IP reagent and 0.85% HO₂CH \rightarrow 4 µL injection = 0.38 mg equiv. sample on column

Matrix Effects

Phase III Validation Results

Validation of Liquid and Powdered Eggs

FSIS Validation Protocol followed for <u>168</u> Targeted Drugs

Criterion	Liquid Eggs	Powdered Eggs
Recoveries 70-120% *	156 (89%)	152 (87%)
RSD < 25% *	154 (88%)	155 (89%)
False Negatives <10%	154 (92%)	153 (91%)
Limit of Quant. < 10 ng/g	144 (86%)	97 (58%) **
Limit of Ident. < 10 ng/g	122 (73%)	72 (43%) **

* 175 targets including QC; ** dry weight sample

Subsequently, coccidiostats and ionophores were added to the list of drug analytes and similar validation results were achieved for catfish, chicken tenders, bacon, and sausage

Acknowledgments

Alan Lightfield Marilyn Schneider Katerina Mastovska Lucia Geis-Asteggiante Jian Wang Terry Dutko Louis Bluhm **Jenny Scifres** Thomson Waters Agilent Sciex **Thermo-Fisher** Phenomenex

Disclaimer: USDA does not recommend any products over others of a similar nature.

New Developments

 Added several coccidiostats to multiresidue method (MRM), and most give acceptable results with current method

2) Conducting proficiency test samples from FSIS for penicillin, and our MRM results match FDA single-analyte method so far

3) Studied penicillin degradation and need to avoid old aqueous acetonitrile solutions in which acetamide is generated

4) Comparing and validating our and other published MRMs for drugs in catfish and ready-to-eat meats

5) Analyzed proposed certified reference material from Canada in freeze-dried bovine muscle

Other Future Plans

- Comparing rates of false positives and negatives when using 2 ions vs. 3 ions in qualitative MS/MS analyte identifications.
- Investigations of HILIC and/or ion-pairing (and different IP agents) in simultaneous LC-MS analysis of diverse analytes.
- Can flow-injection analysis achieve acceptable results in multiclass, multiresidue monitoring?
- Improved sample preparation for better cleanup and wider scope, including problematic analytes and matrices.

Phase III Validation Results

Table 1: Results for the veterinary drugs spiked at 0.5X, 1X, and 2X levels, n=10 each, in the bovinetissues; (t_R = retention time); aminoglycosides in blue text.Red = <50 or >150% Recovery or >40% RSD

Gold = 80-110% Recovery, ≤15% RSD Silver = 70-120% Recovery, ≤25% RSD Bronze = 50-150% Recovery, ≤40% RSD

Drug Analyte	t _R (min)	1X Level (ng/g)	Kidney	Liver	Muscle	Drug Analyte	t _R (min)	1X Level (ng/g)	Kidney	Liver	Muscle
13C6-Sulfamethazine	3.75	200				Lincomycin	3.78	100			
2-Mercaptobenzimidazole	3.66	25				Mabuterol	4.42	100			
2-Mercapto-1-methylimidazole	1.95	200				Marbofloxacin	3.85	100			
Quinoxyaline-2-caboxylic acid	3.82	100				Mebendazole	5.47	10			
2-Thiouracil	0.96	400				Mebendazole-2-amino	4.32	10			
Abamectin (Avermectin B1a)	8.80	50				Meclofenamic acid	7.53	200			
Albendazole-2-amino sulfone	3.81	50				Meloxicam	6.42	100			
Albendazole sulfoxide	4.13	50				6-Methyl-2-thiouracil	1.36	400			
Albendazole	5.45	50				Melengesterol acetate	7.57	25			
Albendazole sulfone	4.57	50				Morantel	4.22	100			
Amikacin	3.71	100				Moxidectin	8.93	100			
Amoxacillin	3.50	50				Metronidazole	2.83	10			
Ampicillin	3.89	20				Metronidazole-hydroxy	2.47	10			
Apramycin	3.78	100				Nafcillin	6.39	100			
Acetopromazine	5.09	10				Nalidixic acid	5.48	200			
Azaperone	4.21	10				Naproxen	6.35	100			
Bacitracin	4.68	1000				Neomycin	3.84	1000			
Beclomethasone	6.07	100				Niclosamide	7.76	10			
Betamethasone	5.96	100				Niflumic acid	7.15	200			
Bithionol	8.09	10				Nitroxynil	5.75	50			
Bromchlorobuterol	4.29	10				Norfloxacin	3.91	50			
Brombuterol	4.35	10				Novobiocin	7.78	1000			
Cambendazole	4.55	10				Oxyphenylbutazone	6.18	100			
Chloramphenicol	4.72	50				Orbifloxacin	4.10	50			
Carazolol	4.43	10				Oxytetracycline	3.96	1000			
Carbadox	3.74	30				Oxacillin	5.98	100			
Carprofen	6.97	50				Oxbendazole	4.63	10			
Cefazolin	3.81	100				Oxyclozanide	7.46	10			
Cephapirin	3.48	100				Oxfendazole	4.70	800			
Cimaterol	3.57	10				Phenylbutazone	7.05	100			
Ciprofloxacin	3.96	50				Phenylbutazone-d10	7.02	200			
Clencyclohexerol	3.88	10				Penicillin G	5.47	50			
Clenbuterol	4.22	10				Penicillin G d7	5.43	200			
Clenbuterol-d9	4.20	200				6-Phenyl-2-thiouracil	4.23	400			
Clenpenterol	4.43	10				Pirlimycin	4.48	300			
Clindamycin	4.58	100				Piroxicam	5.77	100			
Clorsulon	4.54	100				Propionylpromazine	5.48	10			
Closantel	8.82	50				Prednisone	5.38	100			
Cloxacillin	6.20	10				Prednisolone	5.51	100			
Chlorpromazine	5.58	10				Promazine	5.06	10			
Cortisone	5.48	100				Procaterol	3.58	100			

Phase III Validation Results

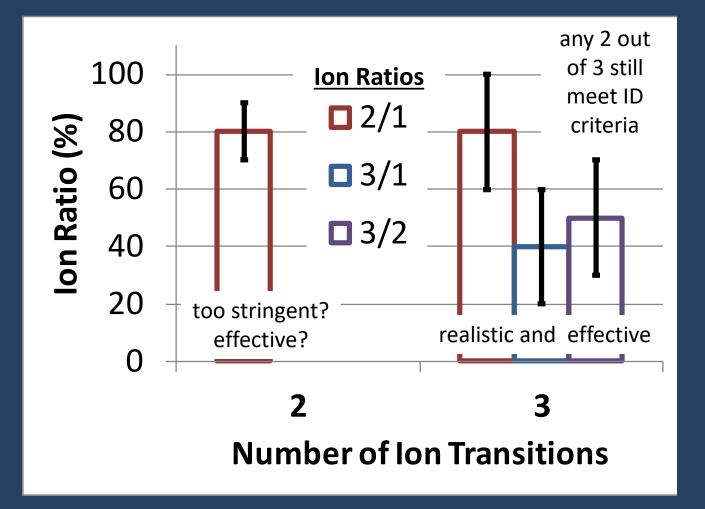
Chlortetracycline	4.39	1000		Propyphenazone	5.80	100		
Danofloxacin	3.99	200		6-Propyl-2-thiouracil	3.53	50		
Dapson	3.86	100		Pyrantel	3.97	100		
DCCD	3.40	400		Ractopamine	3.98	30		
Desacetyl-cephapirin	2.65	100		Ractopamine-d3	3.96	200		
Desethylene ciprofloxacin	3.86	100		Rafoxanide	9.11	10		
Diclofenac	7.10	200		Ritodrine	3.76	10		
Dicloxacillin	6.53	100		Ronidazole	2.96	10		
Difloxacin	4.17	50		Salbutamol	3.51	10		
Dipyrone (metabolite)	3.64	200		Sarafloxacin	4.18	50		
Dimetridazole	3.19	50		Sulfabromomethazine	5.54	100		
Dimetridazole-hydroxy	2.73	50		Sulfachloropyridazine	4.09	100		
Doramectin	8.99	100		Sulfadiazine	3.02	100		
Doxycycline	4.56	100		Sulfadimethoxine	4.79	100		
Dihydrostreptomycin	3.66	500		Sulfadoxine	4.26	100		
Emamectin B1a	7.14	50		Selamectin	9.20	200		
Enrofloxacin	4.03	100		Sulfaethoxypyridazine	4.42	100		
Eprinomectin	8.64	100		Sulfisoxazole	4.35	100		
Erythromycin A	5.20	100		Sulfamethizole	3.72	100		
Fenbufen	6.46	50		Sulfamethoxypyridazine	3.79	100		
Fenbendazole	6.18	400		Sulfamerazine	3.42	100		
Fenbendazole sulfone	5.17	400		Sulfamethoxazole	4.19	100		
Fenoterol	3.67	50		Sulfamethazine	3.76	100		
Florfenicol	4.31	300		Sulfanilamide	1.42	100		
Florfenicol Amine	3.09	300		Sulfanitran	5.49	100		
Flubendazole	5.68	10		Spectinomycin	3.52	100		
Flubendazole-2-amino	4.43	10		Sulfapyridine	3.34	100		
Flumethasone	5.85	100		Sulfaquinoxaline	4.85	100		
Flumequine	5.62	300		Streptomycin	3.65	500		
Flunixin	6.69	25		Sulfathiazole	3.20	100		
Flunixin-d3	6.69	200		Thiabendazole	3.87	100		
Gamithromycin	4.56	100		5-Hydroxythiabendazole	3.71	100		
Gentamicin C1	3.80	300		Tetracycline	4.03	1000		
Gentamicin C1a	3.81	300		Triclabendazole	7.51	50		
Gentamicin C2+C2a	3.81	300		Triclabendazole sulfoxide	7.15	50		
Haloperidol	4.96	10		Triflupromazine	5.79	10		
Haloxon	6.65	100		Tildipirosin	3.90	500		
Hygromycin	3.64	100		Tilmicosin	4.64	100		
Indoprofen	5.94	50		Tiamulin	5.31	600		
Ipronidazole	4.58	10		Tobramycin	3.78	500		
Ipronidazole-hydroxy	3.95	10		Tolfenamic acid	7.73	200		
lvermectin	9.25	50		Tulathromycin	4.11	1000		
Josamycin	5.82	100		Tylosin	5.34	200		
Kanamycin	3.72	100		Virginiamycin M1	6.28	100		
Ketoprofen	6.28	50		Xylazine	4.22	10		
Lasalosid A	9.65	100		Zeranol	5.99	100		
Levamisole	3.83	100		Zilpaterol	3.51	12		

Ion Ratio Criteria in 2002/657/EC (EU)

Rel. Abundance	
<u>vs. Base Peak</u>	
>50%	
>20-50%	
>10-20%	
\leq 10%	

Acceptable Diff. vs. Ref. <u>API-MS</u> ±20% RSD ±25% RSD ±30% RSD ±50% RSD

<u>Ref. Ratio</u>	<u>EU Range[*]</u>	FSIS (1 ion)	<u>(2 ions)</u>
70%	56% - 84%	60% – 80%	50% – 90%
24%	18% - 30%	14% - 34%	4% – 44%
12%	8.4% - 15.6%	3% – 23%	>0% - 33%
4%	2%-6%	>0% - 14%	>0% - 24%


* 2 ion transitions needed to achieve 3 ident. points in MS/MS

Guidelines in SANCO/12571/2013

Rel. Abundance	Acceptable Diff. vs. Ref.				
<u>vs. Base Peak</u>	<u>EI-MS (≥3* ions)</u>	MS/MS (≥2 ions)			
>50%	±10% Rel	±30% Rel			
>20-50%	±15% Rel	±30% Rel			
>10-20%	±20% Rel	±30% Rel			
$\leq 10\%$	±50% Rel	±30% Rel			
<u>Ref. Ratio</u>	EI-MS Range*	<u>MS/MS</u>			
70%	63 – 77%	49 – 91%			
24%	20.4 - 27.6%	16.8 - 31.2%			
12%	9.6 - 14.4%	8.4 - 15.6%			
4%	2 – 6%	2.8-6.2%			

* \geq 2 ions in high resolution MS with mass accuracy \leq 5 ppm

Example MS/MS or SIM Ion Ratio Ranges (how many ions/transitions to collect?)

Evaluation of Incurred Samples

 FSIS provided 10 kidneys found in their monitoring program to contain drug residues.

 We analyzed the samples in blind fashion (unknown drugs and unknown levels).

 These were each analyzed in duplicate using the different features of 3 methods to compare and assess their performance on real samples.