Instructor: Dr. Daniel Lewis

Date: May 2025

This unit, the Scientific Method, introduces learners to the scientific method and introduces them to the study of science. Over the course of completing this unit on the scientific method, the students will begin the process of completing Tennessee Science Standard: 7.ETS2.1 – Use appropriate tools and methods to design and conduct scientific investigations. The unit will move learners from an introduction level (Day 1 and 2), through an intermediate level (Day 3 and 4), and to an advanced level (Day 5). Learning objectives for each day draw from the Cognitive, Affective, and Psychometer domains of learning objectives. Each lesson within the unit increases the level of student's learning about the scientific method. The following learning objectives guide each day's learning activities.

Introduction Level (Day 1 and 2)

- A. Cognitive/Understand: Learners will explain each step of the scientific method and its purpose in guiding scientific investigations.
- B. Affective/Respond: Students will express curiosity and interest in using the scientific method to explore real-world questions.
- C. Psychomotor/Guided Response: Learners will construct and label a diagram illustrating the steps of the scientific method.

Intermediate Level (Day 3 and 4)

- A. Cognitive/Analyze: Learners will analyze a scientific study to determine how a scientist applied each step of the scientific method.
- B. Affective/Valuing: Students will show respect for data accuracy and organization by practicing systematic data recording.
- C. Psychomotor/Guided Response: Students will independently apply the scientific method to conduct a guided classroom experiment and record results.

Advanced Level (Day 5)

- A. Cognitive/Evaluate: Students will evaluate the effectiveness of their scientific investigation by identifying strengths, errors, and improvements.
- B. Affective/Valuing: Students will express appreciation for the scientific method as a reliable tool for solving complex problems.
- C. Psychomotor/Characterization by a Value Complex: Students will demonstrate consistent and independent use of the scientific method in planning a self-directed investigation.

Day1: Introduction to the Scientific Method

II. Tei	de Level and Subject: 7 th Grade Earth Science nessee Science Standard: 7.ETS2.1 – Use appropriate tools and methods to design and conduct
	Tic investigations.
III. To	pic: Learning how scientists use the scientific method to conduct a scientific investigations.
IV. Le	arning Objective:
Introdu	action Level (Day 1 and 2)
A.	Cognitive/Understand: Learners will explain each step of the scientific method and its purpose in guiding scientific investigations.
B.	Affective/Respond: Students will express curiosity and interest in using the scientific method to explore real-world questions.
C.	Psychomotor/Guided Response: Learners will construct and label a diagram illustrating the steps of the scientific method.
V. Spe	cific Learning Theory: Social Learning Theory and Experimental Learning Theory
	A. Social Learning Theory: Peer interaction enhances understanding.
	B. Experimental Learning Theory described learning as a cyclical process involving four stages:
	concrete experience, reflective observation, abstract conceptualization, and active
	experimentation.
V. Ma	terials: The lesson requires the following Materials:
	A. PowerPoint slides for Lesson (Appendix A)
	B. Scientific Method Flash Cards/ Matching Game (Appendix B)
	C. Möbius strip Literature Review (Appendix C)
	D. Lab handouts, paper strips, tape, markers, and scissors (Appendix D)
VI. Te	
	chnology Connection:
Using	chnology Connection: videos in the classroom
•	videos in the classroom
•	

Lesson Phase	50 Minute Format	80 Minute Format
Bell Work	5 Minutes	5 Minutes
	What does it mean to <i>think like a</i>	What does it mean to <i>think like a</i>
	scientist?	scientist?
	Write 2-3 sentences.	Write 2-3 sentences (5 min).
Set Stage for	10 Minutes (15)	10 Minutes (15)
Learning:	Students watch video on the	Students watch video on the
	scientific method (4:05)	scientific method (4:05)
	https://www.youtube.com/watch	https://www.youtube.com/watch
	?v=SMGRe824kak	v=SMGRe824kak
	5 Minutes (20)	5 Minutes (20)
	Matching game of the 6 steps of	Matching game of the 6 steps of
	the scientific methos. Students	the scientific methos. Students
	match the name of each step	match the name of each step
	with what is done in each step.	with what is done in each step.
	with what is done in each step.	with what is done in each step.
Developmental	15 Minutes (35)	40 Minutes (60)
Activities	Möbius strip Literature Review	Möbius strip Literature Review
	(Handout)	(Handout)
	Möbius strip lab (Marasco,	Möbius strip lab (Marasco,
	2021): Do experiments 1, 2, 4,	2021): Do experiments 1
	and 5. Answer question 1.	through 9. Answer questions 1 to
		3.
Closure	10 Minutes (45)	15 Minutes (75)
	Group activity: Create a visual	Group activity: Create a visual
	model (flow chart) of the	model (flow chart) of the
	scientific method.	scientific method.
Exit Ticket	5 Minutes (50)	5 Minutes (80)
Lait Heret	Complete a learning log (see	Complete a learning log (see
	Complete a rearining log (see	complete a rearining log (see

Diversity / Differentiation for Exceptionalities:

- A. Learning Styles (modalities / multiple intelligences) The lesson allows students to complete tasks within auditory, visual, and kinesthetic learning styles.
- B. Gender-Friendly Classroom Instructional Approaches The pictures displayed during the lesson will show both men and women engaged in scientific inquiry.
- C. Gifted Elements of the lesson cater to various gifts. For gifted students in the classroom the lesson will be adapted to allow them to further develop their gifts and explore gifts not yet fully developed. Some more advanced students may be grouped with students who might need help so that they can act as an assistant in learning. Teaching others is a wonderful way to learn.
- D. ESL or LEP (Limited English Proficiency) Electronic documents and websites will be translated using translate.google.com, the Google translate service.
- E. LD, ED, ADD or ADHD The lesson will be modified to meet all IEP requirements for students with special needs.
- F. Multicultural Connections The graphics presented during the lesson will show how people from diverse cultures interact with scientific investigation.

Evaluation/Assessment: Evaluation/Assessment: For this lesson student learning will be evaluated in two main ways. The individual written components and the group task. The following rubric will be used to evaluate student work at the end of the week.

Criteria	20- 15 pts.	14 – 10 pts.	9-5 pts.	< 5 pts.
Accuracy –	Fully meets	Mostly meets	Barely	Fails to
Does the project	criteria	criteria, but	meets	meet
contain accurate		not completely	criteria	criteria
material?				
Organization –				
is the project				
organized in a				
logical and clear				
way.				
Completeness -				
Does the work				
learning and				
comprehension.				
Creativity – Did				
student's work				
show creativity.				

Biblical Application: For a Christian School setting, the lesson may be intergraded with the concept of the Creation Mandate, Genesis 1:28, the theological concept that outlines humanity's responsibility to care for and manage God's creation. The creation mandate, often understood as a call to explore, develop, and steward the natural world, includes engaging in scientific endeavors. A Science Communicator who understands and embraces the Creation Mandate can effectively convey the wonders of God's creation through scientific discovery while also highlighting the responsibility humans hold to care for our environment. In a secular setting, the need for scientific investigation falls under a general stewardship responsibility for the environment.

Day2: Asking Questions and Forming Hypotheses

	de Level and Subject: 7 th Grade Earth Science
	nessee Science Standard: 7.ETS2.1 – Use appropriate tools and methods to design and conduct ic investigations.
III. To	pic: Learning how scientists use the scientific method to conduct a scientific investigations.
IV. Le	arning Objective:
Introdu	ction Level (Day 1 and 2)
A.	Cognitive/Understand: Learners will explain each step of the scientific method and its purpose in guiding scientific investigations.
В.	Affective/Respond: Students will express curiosity and interest in using the scientific method to explore real-world questions.
C.	Psychomotor/Guided Response: Learners will construct and label a diagram illustrating the steps of the scientific method.
V. Spe	 cific Learning Theory: Social Learning Theory and Experimental Learning Theory A. Social Constructivism: This theory emphasizes that learning is a collaborative process where individuals construct their understanding through interaction and discussion with others. B. Experimental Learning Theory described learning as a cyclical process involving four stages: concrete experience, reflective observation, abstract conceptualization, and active experimentation.
V. Ma	terials: The lesson requires the following Materials:
	 A. PowerPoint slides for Lesson (Appendix A) B. Scientific Method Flash Cards/ Matching Game (Appendix B) C. Möbius strip Literature Review (Appendix C) D. Lab handouts (Appendix D)
VI. Te	chnology Connection:
Using	videos in the classroom
Comp	

Lesson Phase	50 Minute Format	80 Minute Format
Bell Work	5 Minutes	5 Minutes
	How do scientists solve	How do scientists solve
	problems and answer questions?	problems and answer questions
	Write 2-3 sentences.	Write 2-3 sentences (5 min).
Set Stage for	5 Minutes (10)	5 Minutes (10)
Learning:	Students watch a video on	Students watch a video on the
C	Hypothesis and Rationale (1:40)	scientific method (1:40)
	https://www.youtube.com/watch ?v=OvU0qZ4ULZs	https://www.youtube.com/watc ?v=OvU0qZ4ULZs
	10 Minutes (20)	5 Minutes (20)
	Use PowerPoint slide and flash	Use PowerPoint slide and flash
	cards to review the steps of the	cards to review the steps of the
	scientific method.	scientific method.
Developmental Activities	15 Minutes (35)	40 Minutes (60)
	Möbius strip lab (Marasco,	Möbius strip lab (Marasco,
	2021): Have students think, pair,	2021): Have students think, pai
	and share their results from	and share their results from
	yesterday's lab. (10 minutes)	yesterday's lab. (10 minutes)
	Read and answer question 4.	Möbius strip Literature Review
	Read the end of the lab. (5	(Handout). Students compare
	minutes)	their lab results with the
		literature review and discuss
		repeatability in science. (10
		minutes).
		Read and answer question 4.
		Read the end of the lab. (5
		minutes)
		Socratic Seminar about the lab
		(15 minutes)

Closure	10 Minutes (45)	15 Minutes (75)	
	Group activity: Revise a visual model (flow chart) of the scientific method, based on new learning.	Group activity: Revise a visual model (flow chart) of the scientific method, based on new learning.	
Exit Ticket	5 Minutes (50) Complete a learning log (see	5 Minutes (80) Complete a learning log (see	
	Appendix A, lesson 2)	Appendix A, lesson 2)	

Diversity / Differentiation for Exceptionalities:

- A. Learning Styles (modalities / multiple intelligences) The lesson allows students to complete tasks within auditory, visual, and kinesthetic learning styles.
- B. Gender-Friendly Classroom Instructional Approaches The pictures displayed during the lesson will show both men and women engaged in scientific inquiry.
- C. Gifted Elements of the lesson cater to various gifts. For gifted students in the classroom the lesson will be adapted to allow them to further develop their gifts and explore gifts not yet fully developed. Some more advanced students may be grouped with students who might need help so that they can act as an assistant in learning. Teaching others is a wonderful way to learn.
- D. ESL or LEP (Limited English Proficiency) Electronic documents and websites will be translated using translate.google.com, the Google translate service.
- E. LD, ED, ADD or ADHD The lesson will be modified to meet all IEP requirements for students with special needs.
- F. Multicultural Connections The graphics presented during the lesson will show how people from diverse cultures interact with scientific investigation.

Evaluation/Assessment: Evaluation/Assessment: For this lesson student learning will be evaluated in two main ways. The individual written components and the group task. The following rubric will be used to evaluate student work at the end of the week.

Criteria	20- 15 pts.	14 – 10 pts.	9-5 pts.	< 5 pts.
Accuracy –	Fully meets	Mostly meets	Barely	Fails to
Does the project	criteria	criteria, but	meets	meet
contain accurate material?		not completely	criteria	criteria

Organization –			
is the project			
organized in a			
logical and clear			
way.			
Completeness -			
Does the work			
learning and			
comprehension.			
Creativity – Did			
student's work			
show creativity.			

Biblical Application: For a Christian School setting, the lesson may be intergraded with the concept of the Creation Mandate, Genesis 1:28, the theological concept that outlines humanity's responsibility to care for and manage God's creation. The creation mandate, often understood as a call to explore, develop, and steward the natural world, includes engaging in scientific endeavors. A Science Communicator who understands and embraces the Creation Mandate can effectively convey the wonders of God's creation through scientific discovery while also highlighting the responsibility humans hold to care for our environment. In a secular setting, the need for scientific investigation falls under a general stewardship responsibility for the environment.

Day 3: Designing and Conducting Experiments

I. Grade Level and Subject: 7th Grade Earth Science

II. Tennessee Science Standard: 7.ETS2.1 – Use appropriate tools and methods to design and conduct scientific investigations.

III. Topic: Learning how scientists use the scientific method to conduct a scientific investigations.

IV. Learning Objective: Intermediate Level (Day 3 and 4)

- A. Cognitive/Analyze: Learners will analyze a scientific study to determine how a scientist applied each step of the scientific method.
- B. Affective/Valuing: Students will show respect for data accuracy and organization by practicing systematic data recording.
- C. Psychomotor/Guided Response: Students will independently apply the scientific method to conduct a guided classroom experiment and record results.

V. Materials: The lesson requires the following Materials:

- A. PowerPoint slides for Lesson (Appendix A)
- B. Scientific Method Flash Cards/ Matching Game (Appendix B)
- C. How could baby dinosaurs live in the Arctic? (Druckenmiller, et al., 2022)

VI. Technology Connection:

Using videos in the classroom

PowerPoint slides for Bell Work, Six Steps of Scientific Method, and Learning Log

Lesson Phase	50 Minute Format	80 Minute Format
Bell Work	5 Minutes	5 Minutes
	How do scientists use	How do scientists use
	experiments?	experiments?
	Write 2-3 sentences.	Write 2-3 sentences
Set Stage for	1 Minutes (6)	1 Minutes (6)
Learning	Students watch:	Students watch:
	Discovery about the Möbius	Discovery about the Möbius
	strip! (1:00 min)	strip! (1:00 min)
	https://www.youtube.com/shorts/	https://www.youtube.com/shorts
	d9wFmZlNc	/d9wFmZlNc
	14 Minutes (20)	14 Minutes (20)
	Use the scientific method step	Use the scientific method step
	flash cards to have the students	flash cards to have the students
	discuss how the scientific	discuss how the scientific
	method was used to make a new	method was used to make a new
	discovery about the Möbius	discovery about the Möbius
	strip!	strip!
Developmental	20 Minutes (40)	40 Minutes (70)
Activities	How could baby dinosaurs live	How could baby dinosaurs live
	in the Arctic? (Druckenmiller, et	in the Arctic? (Druckenmiller, et
	al., 2022). Read Article as a	al., 2022). Read Article as a
	class (5 minutes).	class (5 minutes).
		What questions were asked in
	Have students relate the	the methods section? How were
	Abstract, Introduction, Methods,	those questions answered (10
	Results, and Discussion sections	minutes)
	to the steps of the scientific	Have students relate the
	method (15 minutes)	Abstract, Introduction, Methods,
		Results, and Discussion sections
		to the steps of the scientific
		method (15 minutes)
		What conclusions were drawn
		from the results? (10 minutes)

Clo	sure	5 Minutes (45)	5 Minutes (75)
		Students create a concept map of	Students create a concept map of
		how scientists used scientific	how scientists used scientific
		methods to learn about baby	methods to learn about baby
		dinosaurs in the artic. The map	dinosaurs in the artic. The map
		should show which observations	should show which observations
		led to which conclusions.	led to which conclusions.
Exi	t Ticket	5 Minutes (50)	5 Minutes (80)
		Complete a learning log (see	Complete a learning log (see
		Appendix B. lesson 3)	Appendix B, lesson 3)

Diversity / Differentiation for Exceptionalities:

- A. Learning Styles (modalities / multiple intelligences) The lesson allows students to complete tasks within all multiple intelligences. It also has students do some work in multiple intelligences in which they may not be strong. The show and tell exercise at the end of independent practice showcases the abilities and gifts each student brings to the learning environment.
- B. Gender-Friendly Classroom Instructional Approaches As the teacher discusses the Creation Mandate as a central reason that we study earth science he will emphasize that this was a role for both men and women. The pictures displayed at the start of the lesson will show both men and women engaged in learning about the earth.
- C. Gifted Elements of the lesson cater to various gifts. For gifted students in the classroom the lesson will be adapted to allow them to further develop their gifts and explore gifts not yet fully developed. Some more advanced students may be grouped with students who might need help so that they can act as an assistant in learning. Teaching others is a wonderful way to learn.
- D. ESL or LEP (Limited English Proficiency) Electronic documents and websites will be translated using translate.google.com, the Google translate service.
- E. LD, ED, ADD or ADHD The lesson will be modified to meet all IEP requirements for students with special needs. The activities during the lesson will accommodate students with ADD and ADHD. Components of the lesson will be kept to short time intervals and the types of activities alternated. Gifted students will be paired with special needs children to enhance the learning for both.
- F. Multicultural Connections The graphics presented at the start of the lesson will show how different cultures uses resources found on the earth. Videos also show individuals from

different cultures. During the discussion the teacher will incorporate information on how different worldviews (such as pantheism) can influence how individuals view their relationship to the creation.

Evaluation/Assessment: Evaluation/Assessment: (100 words) For this lesson student learning will be evaluated in two main ways. The task based on student's preferred learning style/ multiple intelligences will be graded using a rubric.

Criteria	20-15	14 – 10 points	9-5points	< 5
	points			Points
Accuracy –	Fully meets	Mostly meets	Barely	Fails to
Does the project	criteria	criteria, but	meets	meet
contain accurate		not completely	criteria	criteria
material?				
Organization –				
is the project				
organized in a				
logical and clear				
way.				
Completeness -				
Does the work				
show we learn				
about the earth				
for practical				
reasons and it is				
a responsibility				
given to us by				
God.				
Creativity – Did				
the students use				
their gifts to				
express what				
they had leaned.				

The teacher will also use the learning logs completed during the closure of the lesson to evaluate student understanding and develop further teaching strategies. The first question checks for student's understanding of the purpose of the lesson. The second question has students identify what they learned from the lesson. The third question allows students to ask questions without having to identify themselves. The teacher can answer these questions at the end of the class or the start of the next class. The final question allows the students to give feedback on what worked for them in the lesson and what did not. This allows the teacher to adjust learning to meet student's needs. **Biblical Application:** For a Christian School setting, the lesson may be intergraded with the concept of the Creation Mandate, Genesis 1:28, the theological concept that outlines humanity's responsibility to care for and manage God's creation. The creation mandate, often understood as a call to explore, develop, and steward the natural world, includes engaging in scientific endeavors. A Science Communicator who understands and embraces the Creation Mandate can effectively convey the wonders of God's creation through scientific discovery while also highlighting the responsibility humans hold to care for our environment. In a secular setting, the need for scientific investigation falls under a general stewardship responsibility for the environment.

Day4: Analyzing Data and Drawing Conclusions

I. Grade Level and Subject: 7th Grade Earth Science

II. Tennessee Science Standard: 7.ETS2.1 – Use appropriate tools and methods to design and conduct scientific investigations.

III. Topic: Learning how scientists use the scientific method to conduct a scientific investigations.

IV. Learning Objective: Intermediate Level (Day 3 and 4)

- A. Cognitive/Analyze: Learners will analyze a scientific study to determine how a scientist applied each step of the scientific method.
- B. Affective/Valuing: Students will show respect for data accuracy and organization by practicing systematic data recording.
- C. Psychomotor/Guided Response: Students will independently apply the scientific method to conduct a guided classroom experiment and record results.

V. Specific Learning Theory: Social Learning Theory and Experimental Learning Theory

- C. Social Learning Theory: Peer interaction enhances understanding.
- **D.** Experimental Learning Theory described learning as a cyclical process involving four stages: concrete experience, reflective observation, abstract conceptualization, and active experimentation.

V. Materials: The lesson requires the following Materials:

A. PowerPoint slides for Lesson (Appendix A)

- B. Article: How Could Dinosaurs Live in the Arctic
- C. Article: Nesting at extreme polar latitudes by non-avian dinosaurs

VI. Technology Connection:

Using videos in the classroom

PowerPoint slides for Bell Work, Literature Review, Six Steps of Scientific Method, and Learning Log

	50 Minute Format	80 Minute Format	
Bell Work	5 Minutes	5 Minutes	
	Why do scientists collect data?	Why do scientists collect data?	
	Write 2-3 sentences.	Write 2-3 sentences.	
Set Stage for	10 Minutes (15)	10 Minutes (15)	
Learning:	Students watch a video on Let's	Students watch a video on Let's	
	Learn About Data (1:31)	Learn About Data (1:31)	
	https://youtu.be/MKP_N9Ipm7Y	https://youtu.be/MKP_N9Ipm7Y	
	Discuss how the students	Discuss how the students	
	collected data and the	collected data and the	
	importance of accurate data (data	importance of accurate data	
	validity and data reliability)	(data validity and data	
		reliability)	
	5 Minutes (20)	5 Minutes (20)	
	Matching game of the 6 steps of	Matching game of the 6 steps of	
	the scientific methos. Students	the scientific methos. Students	
	match the name of each step	match the name of each step	
	with what is done in each step.	with what is done in each step.	
	Discuss the role of data in each	Discuss the role of data in each	
	step.	step.	
Developmental	15 Minutos (25)	40 Minutes (60)	
Activities	15 Minutes (35) Have students review how data	Have students review how data	
	was used in How Could	was used in How Could	
	Dinosaurs Live in the Arctic (5	Dinosaurs Live in the Arctic (5	
	Dinosaurs Live III ule Alcue (J	Dinosauts Live in the Aretic (J	
	minutes).	minutes).	

	Have students construct a Vin	Discuss the use of data in that	
	Diagram comparing and	article (10 minutes).	
	contrasting How Could		
	Dinosaurs Live in the Arctic	Have students construct a Vin	A.
	with Nesting at extreme polar	Diagram comparing and	
	latitudes by non-avian dinosaurs	contrasting How Could	
	(10 minutes)	Dinosaurs Live in the Arctic	
	(10 minutes)	with Nesting at extreme polar	
		latitudes by non-avian dinosaurs	
		•	
		(10 minutes)	
		Discuss how the second article	
		used data (15 minutes).	
Closure	10 Minutes (45)	15 Minutes (75)	
	Group activity: Create a visual	Group activity: Create a visual	
	model (flow chart) of the ways	model (flow chart) of the ways	
	scientists use data.	scientists use data.	
Exit Ticket	5 Minutes (50)	5 Minutes (80)	
	Complete a learning log (see	Complete a learning log (see	
	Appendix A. lesson 4)	Appendix A, lesson 4)	

Diversity / Differentiation for Exceptionalities:

- A. Learning Styles (modalities / multiple intelligences) The lesson allows students to complete tasks within auditory, visual, and kinesthetic learning styles.
- B. Gender-Friendly Classroom Instructional Approaches The pictures displayed during the lesson will show both men and women engaged in scientific inquiry.
- C. Gifted Elements of the lesson cater to various gifts. For gifted students in the classroom the lesson will be adapted to allow them to further develop their gifts and explore gifts not yet fully developed. Some more advanced students may be grouped with students who might need help so that they can act as an assistant in learning. Teaching others is a wonderful way to learn.
- D. ESL or LEP (Limited English Proficiency) Electronic documents and websites will be translated using translate.google.com, the Google translate service.
- E. LD, ED, ADD or ADHD The lesson will be modified to meet all IEP requirements for students with special needs.
- F. Multicultural Connections The graphics presented during the lesson will show how people from diverse cultures interact with scientific investigation.

Evaluation/Assessment: Evaluation/Assessment: For this lesson student learning will be evaluated in two main ways. The individual written components and the group task. The following rubric will be used to evaluate student work at the end of the week.

Criteria	20- 15 pts.	14 - 10 pts.	9-5 pts.	< 5 pts.
Accuracy –	Fully meets	Mostly meets	Barely	Fails to
Does the project	criteria	criteria, but	meets	meet
contain accurate		not completely	criteria	criteria
material?				
Organization –				
is the project				
organized in a				
logical and clear				
way.				
Completeness -				
Does the work				
learning and				
comprehension.				
Creativity – Did				
student's work				
show creativity.				

Biblical Application: For a Christian School setting, the lesson may be intergraded with the concept of the Creation Mandate, Genesis 1:28, the theological concept that outlines humanity's responsibility to care for and manage God's creation. The creation mandate, often understood as a call to explore, develop, and steward the natural world, includes engaging in scientific endeavors. A Science Communicator who understands and embraces the Creation Mandate can effectively convey the wonders of God's creation through scientific discovery while also highlighting the responsibility humans hold to care for our environment. In a secular setting, the need for scientific investigation falls under a general stewardship responsibility for the environment.

Day 5: Summary and Review

I. Grade Level and Subject: 7th Grade Earth Science

II. Tennessee Science Standard: 7.ETS2.1 – Use appropriate tools and methods to design and conduct scientific investigations.

III. Topic: Learning how scientists us the scientific method for conduct scientific investigations.

IV. Specific Learning Theory: Social Learning Theory and Experimental Learning Theory

- E. Social Learning Theory: Peer interaction enhances understanding.
- F. Experimental Learning Theory described learning as a cyclical process involving four stages: concrete experience, reflective observation, abstract conceptualization, and active experimentation .

V. Learning Objective:

Intermediate Level (Day 5)

- A. Cognitive/Evaluate: Students will evaluate the effectiveness of their scientific investigation by identifying strengths, errors, and improvements.
- B. Affective/Valuing: Students will express appreciation for the scientific method as a reliable tool for solving complex problems.
- C. Psychomotor/Characterization by a Value Complex: Students will demonstrate consistent and independent use of the scientific method in planning a self-directed investigation.

V. Materials: The lesson requires the following Materials:

- A. PowerPoint slides for Lesson (Appendix A)
- **B.** Note cards and writing pens

VI. Technology Connection:

Using videos in the classroom

PowerPoint slides for Bell Work

Diversity / Differentiation for Exceptionalities:

Learning Styles (modalities / multiple intelligences) – The lesson allows students to complete tasks within auditory, visual, and kinesthetic learning styles. Gender-Friendly Classroom Instructional Approaches – The pictures displayed during the lesson will show both men and women engaged in scientific inquiry. Gifted – Elements of the lesson cater to various gifts. For gifted students in the classroom the lesson will be adapted to allow them to further develop their gifts and explore gifts not yet fully developed. Some more advanced students may be grouped with students who might need help so that they can act as an assistant in learning. Teaching others is a wonderful way to learn.

ESL or LEP (Limited English Proficiency) – Electronic documents and websites will be translated using translate.google.com, the Google translate service.

LD, ED, ADD or ADHD – The lesson will be modified to meet all IEP requirements for students with special needs.

Multicultural Connections – The graphics presented during the lesson will show how people from diverse cultures interact with scientific investigation.

Evaluation/Assessment: (100 words) Evaluation/Assessment: (100 words) For this lesson student learning will be evaluated in two main ways. The task based on student's preferred learning style/ multiple intelligences will be graded using a rubric.

Criteria	20-15	14 - 10 points	9-5points	< 5
	points			Points
Accuracy –	Fully meets	Mostly meets	Barely	Fails to
Does the project	criteria	criteria, but	meets	meet
contain accurate		not completely	criteria	criteria
material?				
Organization –				
is the project				
organized in a				
logical and clear				
way.				
Completeness -				
Does the work				
show we learn				
about the earth				
for practical				
reasons and it is				
a responsibility				
given to us by				
God.				
Creativity – Did				
the students use				
their gifts to				
express what				
they had leaned.				

The teacher will also use the learning logs completed during the closure of the lesson to evaluate student understanding and develop further teaching strategies. The first question checks for student's

understanding of the purpose of the lesson. The second question has students identify what they learned from the lesson. The third question allows students to ask questions without having to identify themselves. The teacher can answer these questions at the end of the class or the start of the next class. The final question allows the students to give feedback on what worked for them in the lesson and what did not. This allows the teacher to adjust learning to meet student's needs.

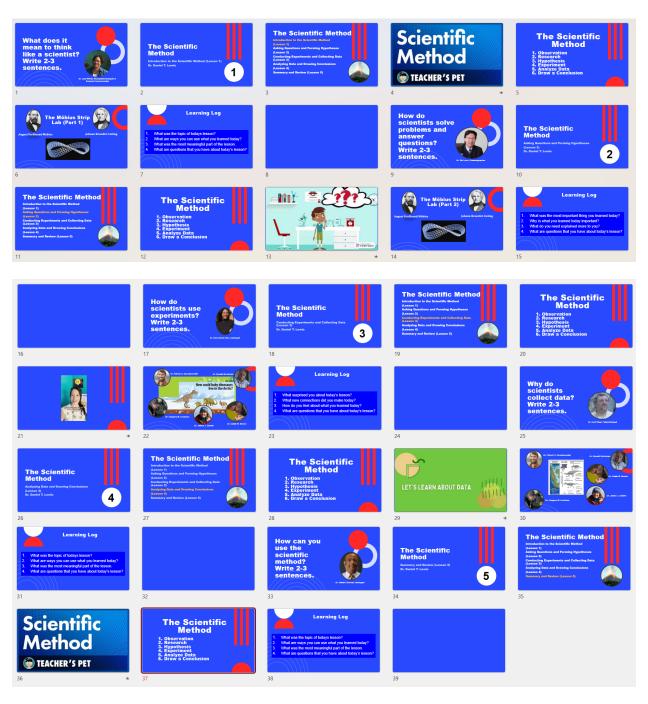
References

Druckenmiller, P., Erickson, G., Brinkman, D., Brown, C. and Eberle, J. (2021). Nesting at extreme polar latitudes by non-avian dinosaurs. *Current Biology*.

https://www.sciencedirect.com/science/article/abs/pii/S0960982221007399

Druckenmiller, P., Erickson, G., Brinkman, D., Brown, C. and Eberle, J. (2022, May) How could baby dinosaurs live in the Arctic? *Paleo Science Journal for Kids*.

https://www.sciencejournalforkids.org/wp-content/uploads/2022/06/alaska_article.pdf


Marasco, J. (2021). Möbius Strip Experiments. https://gamepuzzles.com/moebius-experiments.pdf

Stracuzzi, B. (2021). Hypothesis and Rationale. [Video]. YouTube.

https://youtu.be/OvU0qZ4ULZs?si=Y_ap8ap83LFntloj

- Teacher's Pet. (2015). The scientific method. [Video]. YouTube. https://youtu.be/SMGRe824kak
- Up and Atom. (2023, September 27). Discovery about the Möbius strip! [Video]. YouTube. https://www.youtube.com/shorts/d9wFmZl -Nc
- Yordanova, S. (2022). Data for Kids What is Data. [Video]. YouTube.

https://www.youtube.com/watch?v=MKP_N9Ipm7Y

Appendix A: PowerPoint Slides

Appendix B: Scientific Method Reading Cards

Overview of the 6 steps of the scientific method The six steps of the scientific method are:

- Observation: Identify a problem or something you want to learn more about. Often this is based on something you have read and researched. What is a question left unanswered by previous research?
 Example: What is the impact of the rate of burial on fossil preservation?
- Research: Gather information to understand the topic and help form a hypothesis. This is called a literature review. Scientists try to do as much background research as possible, and they try to use as many primary (original) sources as possible.
 Example: Read about how fossils get formed.
- 3. **Hypothesis:** Based on your research, make an educated guess or prediction that can be tested.

Example: Would a rapidly buried organism be more likely to become a fossil or a slowly buried organism?

- Experiment: Test the hypothesis with a controlled experiment. Identify variables and use a procedure.
 Example: Collect data on what happens to an unburried organism and a buried organism.
- 5. **Analyze the Data:** Examine the data from the experiment to see what happened. Example: Measure decay of buried and unburried organisms.

6. Draw a Conclusion Decide whether your hypothesis was supported or not. Communicate the results. Example: Rapid burial of organisms helps them get preserved as fossils.

These steps help students understand that science is a systematic way to explore questions and find answers through observation and experimentation. Print them and paste them on cards to create flash cards. Create one set of cards for each group of four students.

Observation	Identify a problem or something you want to learn more about. Often this is based on something you have read and researched. What is a question left unanswered by previous research?
Research	Gather information to understand the topic and help form a hypothesis. This is called a literature review. Scientists try to do as much background research as possible, and they try to use as many primary (original) sources as possible.
Hypothesis	Based on your research, make an educated guess or prediction that can be tested.
Experiment	Test the hypothesis with a controlled experiment. Identify variables and use a procedure.
Analyze the Data	Examine the data from the experiment to see what happened.
Draw a Conclusion	Decide whether your hypothesis was supported or not. Communicate the results.

Appendix C (Möbius Strip – Short Literature Review)

The Möbius Strip: A Strange and Amazing Shape

The Möbius strip is one of the most fascinating shapes in math and science. It looks like a simple loop, but it has very special and surprising properties. People have been studying the Möbius strip for more than 150 years, and it still amazes scientists, artists, and even magicians!

The History of the Möbius Strip

The Möbius strip is named after a German mathematician named August Ferdinand Möbius. In 1858, he and another mathematician, Johann Benedict Listing, both discovered this strange shape around the same time. They didn't work together, but both noticed that a strip with a half twist had very different properties than a regular loop. Since Möbius wrote more about it, the shape was named after him.

Before Möbius and Listing, people didn't really think much about surfaces like this. Their work helped people understand "topology," which is a part of math that studies the shapes of surfaces and spaces.

What Is a Möbius Strip?

It might look like a regular loop, but it is not. **The Möbius strip has only one side and one edge**. If you start drawing a line along the surface, without lifting your pencil, you will end up where you started—and you will have drawn on both sides of the paper! This shows that the Möbius strip really only has one side.

Also, if you cut a Möbius strip down the middle (longways), something amazing happens. Instead of getting two loops, **you get one bigger loop with a twist in it**. If you cut it again, you get two twisted loops linked together. This surprises a lot of people and makes the strip seem like a magic trick!

Why Is the Möbius Strip Important?

The Möbius strip is not just fun—it is also useful. Scientists and engineers study it to understand surfaces in 3D space. Conveyor belts can use Möbius strips because the twist helps the belt wear evenly on both sides.

Artists like the Möbius strip because it looks interesting and plays tricks on the eye. The famous artist M.C. Escher made drawings inspired by the Möbius strip. Even in science fiction, the Möbius strip shows up as a symbol of infinity or endlessness.

Conclusion

The Möbius strip may look simple, but it has a deep and exciting story. From its discovery in the 1800s to its use in art, math, and engineering today, the Möbius strip continues to inspire people. It teaches us that sometimes, things are not always what they seem—and that even a piece of paper can hold amazing secrets.

References

Cromwell, P. R. (1997). The mathematics of surfaces and knots. Cambridge University Press.

Stewart, I. (2008). Taming the infinite: The story of mathematics. Quercus.

O'Connor, J. J., & Robertson, E. F. (1996). August Möbius. University of St Andrews. https://mathshistory.st-andrews.ac.uk/Biographies/Mobius/