February 1, 2024

Computer Modeling of Performance Engines and Vehicles

automotivecs.com

Outline

Background of ACS

- Motivation for why computer-based modeling of performance engines/vehicles is useful
- What tools are available
- How one-dimensional (1-D) models are constructed
- Examples of 1-D simulations
- Three-dimensional (3-D) modeling for flow systems
- Examples of 3-D simulations
- Outlook and Summary
- Additional Reading

Background

This service of ACS is a specialization in engine and vehicle computer simulation. Typically - Engine, Valvetrain, Cooling, Lube/Oil, Vehicle Systems

Projects are most often confidential

For many clients, ACS becomes their "virtual" engineering department

Diversity of project types

- Concept propulsion systems
- o Automotive
- Industrial/Agricultural
- Stationary
- Performance/Racing

Motivation

Why use computer-based simulations?

Cost

- Initial investment in a model is probably similar to a new dyno test run, but facility and hardware costs have enormous savings
- Still requires specialist people and equipment (computer/software)

Time

- Large test plans can be run much faster with simulations
- Set up can be just few days, depending on complexity

Understanding

- Much more information is available for more complete and deeper understanding
- Simulations are like a dyno test with unlimited number of data channels!

What Tools are Available? 1-D Simulation

Basic Simulation Tools

- Vary in basic capabilities
- Some are "catalog" lookups correlated to basic relationships
- Some are based on gas dynamics
- Limited in model complexity

Advanced Simulation Tools

- Multi-Physics Platforms
 - Flow, Acoustics, Thermal, Mechanical, Electric, Chemistry, Controls
- Extensive detail possible for geometry and content
- Extensive pre and post processing
- Distributed computing (multiple CPUs)
- Coupling to other 3rd party software
 - 3-D CFD, engine controls, etc.

< Engine Expert > WAVE **Performance Trends, Inc.**

7

What Tools are Available? 1-D Simulation

GT Gamma Technologies

- Gamma Technologies GT Suite
 - ACS' software of choice
 - Very stable platform, continued rapid software development, and very good customer support/training/user community
 - Very good pre and post processing
 - Worldwide market leader
 - Wide array of modules
 - Pre/Post Processing
 - GT-ISE, GEM3D, GT-Spaceclaim, GT-Post
 - GT-Power, VTDesign, Cool3D, GT-Drive+, Converge-Lite
 - Couples well to 3rd party CFD and engine controls software

What Tools are Available? 3-D Simulation Tools

- 3-D Computational Fluid Dynamics (CFD) Simulation Tools
 - Multi-Physics Platforms
 - Flow, Acoustics, Thermal, Mechanical, Chemistry
 - Extensive detail possible for geometry and content
 - Moving or sliding meshes
 - Turbochargers, piston/cylinder, valves, etc.
 - Extensive pre and post processing
 - Distributed computing (multiple CPUs)
 - Coupling to other 3rd party software

ENGINE SIMULATION INPUT LIST

How 1-D models are Constructed

- For an engine or vehicle model...first, you need a lot of information, the more the better
 - Basic engine and/or vehicle geometry and specs
 - Engine air flow system geometry
 - 3D CAD models always preferred, but not necessary
 - Engine/vehicle operating information
 - Spark timing, fuel rate/type...
 - Transmission, clutch, final drive, tires, brakes...
 - Road/driving cycle info
 - Test data from a similar engine/vehicle for correlation
 - Power/torque, inlet restriction, exhaust backpressure, friction, crank angle-based cylinder pressure, manifold pressure...
 - Vehicle elapsed time, tractive forces, speed, acceleration...
- Almost never get all this, but we work with what is available
- With good and complete input, a well correlated baseline model could typically achieve 1-2% accuracy

ITEM	VALUE	DATA SOURCE	RESPONSIBLE
General Engine Parameters		Engine Specifications	
Bore, mm			
Stroke, mm	L		
Connecting Rod Length, mm		4	
Piston Pin Offset, mm		- 1	
Geometric Compression Ratio		-	
Cylinder Firing Order		-	
Cylinder Finng Separation, crank deg		-	
Valve Sizes		Engine Specifications	
Intake Outer Diameter, mm			
Number of Intake per Cylinder			
Exhaust Outer Diameter, mm			
Number of Exhaust per Cylinder			
Flow Data		Flow bench testing at	
Intake port	<u> </u>	7 kPa and a higher	
Exhaust port		test pressure	
Intake manifold with throttle body	1		
Exhaust manifolds		1	
		1	
Valve Lift vs Crank Angle		Measured, or	
mm of net lift vs degree		dynamic spintron, or	
		simulated (Tabular	
	1	computer file)	
Flow System Geometry		3D design data,	
length and area schedule for ports		hardware	
manifold runner		measurements, dyno	
exhaust manifold		setup	
throttle body			
		4	
air cleaner		-	
dyno inlet and exhaust		-	
Plenum Geometry		3D design data,	
Size		hardware	
Shape		measurements	
runner orientation		-	
Spark Timing vs Engine Speed		Dyno test or	
deg BTDC vs rpm at Wide Open Throttle (WOT)		calibration	
Air/Fuel Ratio or Fuel Rate		Dyno test at one or	
(Engine Average and Cylinder-to-Cylinder Spread) at		two engine speeds	
Wide Open Throttle (WOT)		-	
Fuel Characteristics		Fuel specs	
Octane]	
Stoichiometric Ratio]	
Heat Content, kJ/g			
ENED an Engine On and	ļ	Dura and array of	
PMEP vs Engine Speed		testing at WOT fining	
		a worning	
Inlet Restriction vs Engine Speed (MAP)	1	WOT Dyno test	
kPa vs rpm] ,	
Exnaust Restriction vs Engine Speed		WOT Dyno test	
Location of measurement needed, kPa vs rpm		-	
Cvlinder Pressure vs Crank Angle	+	WOT Dyno test at one	
Table of pressure vs angle		or two engine speeds	
		for one or two	
	1	cylinders	
Intake Runner Pressure vs Crank Angle		WOT Dyno test at one	
Location of measurement needed, kPa vs degrees		or two engine speeds	
······································		for any intake	
		manifold runner	
Plenum Pressure vs Crank Angle		Dyno test at one or	
Location of measurement needed, kPA vs degrees		two engine speeds	

How 1-D Engine Models are Constructed – Intake Manifold

How 1-D Engine Models are Constructed – Exhaust Manifold

How 1-D Engine Models are Constructed – Muffler

How 1-D Engine Models are Constructed – Valvetrain

How 1-D Engine Models are Constructed – Valvetrain

How 1-D Engine Models are Constructed – Assembled Model

How 1-D Engine Models are Constructed – Assembled Model

How 1-D Engine Models are Constructed – Assembled Model

Turbo System

How 1-D Vehicle Models are Constructed – Assembled Model

Examples of 1-D Simulations – Typical Applications

V8 Intake Manifold

- o End feed plenum
- o Dual Plane
- Cam Timing
 - $\circ~$ DOE sweep for intake and exhaust lobe center
- Port Flow
 - Low lift vs high lift flow?
- 🕨 Firing Order
 - $_{\odot}$ 1-8-7-2-6-5-4-3 vs 1-8-4-2-6-5-7-3
- Vehicle Mass
 - Evaluate the effect of mass on ¼ mile acceleration

Intake Manifold – Overall Performance Differences

Intake Manifold – Cyl-to-Cyl Differences

Valve Timing – DOE for Cam Timing

DOE set up was 150 unique combinations of LC timing

Valve Timing – DOE for Cam Timing

Best torque at 4800 rpm

Best power at 6400 rpm

Port Flow Comparison

Port Flow Comparison – Flow by Crank Angle

Port Flow Comparison – Flow by Crank Angle

Port Flow Comparison – LogP/LogV at 4800 rpm

Firing Order Comparison, 4-7 Swap, Power & Torque

Firing Order Comparison, 4-7 Swap, Cyl-to-Cyl VE

Vehicle Mass Comparison on ¹/₄ Mile Run

3-D Modeling for Flow Systems

- 3-D modeling for flow systems can provide even more detailed understanding of fluid flow subsystems.
 - Air cleaner induction systems
 - Intake and exhaust ports and manifolds
 - □ Steady or transient (pulsing) flow.
 - For transient, can be coupled to GT-Suite or use GT-Suite for boundary conditions.
 - Combustion chamber
 - Mixture motion and flame propagation
 - Moving piston and valves
 - Cooling systems
 - Cold flow distribution, or with heat transfer
- Requires more computational resources
- Rapid prototyping and flow bench testing can also be used in place of CFD, but yields little understanding

Examples of 3-D Simulations

Steady flow intake manifold
In-cylinder flow and combustion
Block and head cooling system

Examples of 3-D Simulations – Steady Flow Intake Manifold

V8 Intake Manifold

Examples of 3-D Simulations – Steady Flow Intake Manifold

Results for runners 1 and 7 at 28 in H2O vacuum

Runner 1	Runner 7	
1.783	1.758	~ 1.4%
kg/sec	kg/sec	
	ow Data	

IVIUSS FIOW RULE

Examples of 3-D Simulations – In-Cylinder Flow and Combustion

In-cylinder flow and combustion, small single cylinder engine

Examples of 3-D Simulations – In-Cylinder Flow and Combustion

Video results

Further understand the flow patterns inside the cylinder block and head with "cold flow"

- Improve cooling efficiency
- Improve durability of components
- Improve overall aerodynamics of the vehicle

Faster cars that finish races!

Coolant Flow Optimization in a Racing Cylinder Block and Head Using CFD Analysis and Testing, SAE 2004-01-3542, D. Agnew/J. Covey/J. Ye, 2004.

- Cylinder head section cuts 1 4
- Inlets through head gasket
- Cross drills
- Outlets into valley plate

CFD CYLINDER HEAD COOLANT FLOW RATE (gpm)						
GASKET	WATER-IN	CYL. HEAD WATER JACKET CROSS-SECTION LOCATION				
DESIGN	LOCATION	#1 Exhaust	#3 Exhaust	#5 Exhaust	#7 Exhaust	AVERAGE
Fel-Pro 1034	Front & Side	1.03	0.53	1.96	2.41	1.48
Fel-Pro 1034	Side Only	1.98	1.46	0.79	1.43	1.42
Gasket#2	Side Only	3.51	1.02	1.15	3.73	2.35
Gasket#3	Side Only	2.91	1.51	1.29	2.85	2.14
Gasket#4	Side Only	3.44	1.75	1.66	3.42	2.57
Gasket#4	Front & Side	3.39	1.43	1.27	3.37	2.37

- Block section cuts 1 4
- Inlets water pump and block
 outside wall
- Cross drills
- Outlets up through head gasket

CFD IN-BOARD BLOCK COOLANT FLOW RATE (gpm)						
GASKET	WATER-IN	BLOCK WATER JACKET CROSS-SECTION LOCATION				
DESIGN	LOCATION	Cylinder #1	Cylinder #3	Cylinder #5	Cylinder #7	AVERAGE
Fel-Pro 1034	Front & Side	3.17	2.64	0.54	0.03	1.60
Fel-Pro 1034	Side Only	1.31	0.8	1.23	1.73	1.27
Gasket#2	Side Only	0.11	0.05	0.02	0.04	0.06
Gasket#3	Side Only	5.15	5.02	5.81	5.94	5.48
Gasket#4	Side Only	3.6	3.51	3.93	4.03	3.77
Gasket#4	Front & Side	3.58	5.48	2.6	2.7	3.59

Finite Element Analysis (FEA)

- Finite Element Analysis (FEA)
 - CAD Connected
 - Advanced Materials Modeling
 - Vibration
 - Coupled Field Technology
 - Automated Meshing Adaptivity (NLAD)
 - Explicit Analysis
 - Acoustics
 - Fast Parallel Solvers
 - Linear and Nonlinear Contact
 - Crack and Fracture Modeling
 - Structural Optimization
 - Fatigue Life Analysis

Ansys

Examples of 3-D Simulations – Mechanical Stress and Deformation Analysis

Quantitative Results Identify areas of maximum stress and deformation Isolate areas of concern Predict of critical clearances

Examples of 3-D Simulations – Frequency Modal Analysis

- Identify frequencies and mode shapes that may align to input vibration sources (engine, wheel rotation)
- Revise design to raise
 natural frequencies above
 source
- Move Bolts to eliminate motions

Outlook and Summary

- Continued and rapid evolution
 - <u>Applications</u> and simulation tools
- Battery and hybrid electric vehicles
 - OEM, racing, converters (ie. Chevrolet Volt, F1 KERS, Formula-E, Isle of Man TT Zero, Zelectric Motors)

KERS Layout

KERS Alternator/Motor: Converts kinetic energy to electrical energy

and back again

The Shop, December 2017

hybridcars.com

Outlook and Summary

- Continued and rapid evolution

 Applications and <u>simulation tools</u>
- Continued development of battery, combustion, emissions, and exhaust aftertreatment sub-models
- More "Integrated Modeling"
 - o Multi-domain
 - Adaptable levels of fidelity
 - Collaborative across departments and suppliers/OEMs

"Integrated BEV & HEV Modeling in GT-Suite", Joe Wimmer, Peter Stopp, Gamma Technologies

Outlook and Summary

- Computer based engine simulations are not meant to replace good testing, just supplement and make that testing more efficient (time and cost), and improve understanding.
- Take those thousands of crazy ideas, boil them into just a few reasonable ones to verify with testing.
- There are lots of computer based tools and resources to pick from to help you.

Additional Reading – Recommendations From My Bookshelf

- o SAE Papers
 - □ What is Limiting Your Engine Air Flow. Using Normalized Steady Air Flow Bench Data, SAE 942477, D. Agnew, 1994.
 - Engineering an Optimum Air Flow Subsystem for Your Engine, SAE 983049, D. Agnew/E. Romblom, 1998.
 - Engineering a Composite Intake Manifold for the Performance Aftermarket, SAE 2004-01-3512, D. Agnew/G. Rohrback, 2004.
 - Coolant Flow Optimization in a Racing Cylinder Block and Head Using CFD Analysis and Testing, SAE 2004-01-3542, D. Agnew/J. Covey/J. Ye, 2004.
- o Gas Flow in the Internal Combustion Engines, Annand and Roe, 1974.
- Maximum Boost, Designing, Testing, and Installing Turbocharger Systems, C. Bell, 1997.
- Four-Stroke Performance Tuning, A. Bell, 2012.
- o Introduction to Engine Valvetrains, Yushu Wang, 2007.
- o Valve Mechanisms for High Speed Engines, Philip Smith, 1971.
- o Internal Combustion Engine, E. Obert, 1950.
- The Internal Combustion Engine in Theory and Practice, C. Taylor, 1960.
- o Computer Simulation Modeling of Performance Engines, AETC 2018, D. Agnew

Thank You