Gorilla Glue

Sample ID: 2411CRG2488.7233

Strain: -Matrix: Plant Type: Flower - Cured Sample Size: 16 g; Batch: Produced: Collected:

Received: 11/12/2024 Completed: 11/22/2024

Batch#:

Prairie Island Retail Inc

Lic.#

6030 Sturgeon Lake Rd Welch, MN 55089

Summary

Test	Date Tested	Result
Cannabinoids	11/20/2024	Complete
Moisture	11/14/2024	Complete
Water Activity	11/14/2024	Pass
Terpenes	11/20/2024	Complete
Microbials	11/14/2024	Pass
Mycotoxins	11/20/2024	Pass
Pesticides	11/20/2024	Pass
Heavy Metals	11/15/2024	Pass
Foreign Matter	11/13/2024	Pass

Complete Cannabinoids

28.073% 280.73 mg/g

Total THC

0.107% 1.07 mg/g

Total CBD

28.311% 283.112 mg/g **Total Cannabinoids**

32.178% 321.779 mg/g **Total Unconverted** Cannabinoids

LOD	LOQ	Results	Results	
mg/g	mg/g	%	mg/g	
0.0004	0.0900	31.327	313.27	
0.0036	0.0900	0.546	5.46	
0.0004	0.0700			
	mg/g	mg/g mg/g 0.0004 0.0900 0.0036 0.0900 0.0036 0.0900 0.0011 0.0900 0.0016 0.0900 0.0014 0.0900 0.0005 0.0900 0.0013 0.0900	mg/g mg/g % 0.0004 0.0900 31.327 0.0036 0.0900 0.546 0.0036 0.0900 0.053 0.0011 0.0900 0.031 0.0016 0.0900 0.109 0.0014 0.0900 0.011 0.0005 0.0900 0.011 0.0013 0.0900 0.090 0.0013 0.0900 0.090	mg/g mg/g % mg/g 0.0004 0.0900 31.327 313.27 0.0036 0.0900 0.546 5.46 0.0036 0.0900 0.053 0.53 0.0011 0.0900 0.031 0.31 0.0016 0.0900 0.109 1.09 0.0014 0.0900 0.011 0.11 0.0005 0.0900 0.011 0.11 0.0013 0.0900 0.090 0.90 0.0004 0.0900 <loq< td=""> <loq< td=""></loq<></loq<>

Notes: Method: HPLC SOP-420

Netton: HPLC SOP-420
Name of approved analytical instrumentation (Shimadzu LC-2030C HPLC) Total THC means the sum of THC, delta 8 THC, and THCA. Total THC is calculated using the following equation: Total THC (mg/g) = [(delta 8-THCA concentration (mg/g) + delta 9-THCA concentration (mg/g)] + delta 9-THCA concentration (mg/g)] LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Measurement uncertainty is not taken into account when statements of conformity (Pass/fail) are made in this report. The decision rule, i.e. All statements of conformity, in this report are made according to the action limits set by CA-DCC (Pass-results within limits/specifications, Fail-results exceed limits/specifications) and can be found within California Code of Regulations Title 4 Division 19. Department of Cannabis Control

14.9% Complete

Moisture Content

0.64 aw

Water Activity

Pass

Foreign Matter

Ronald Montez Lab Director 11/22/2024

Jordan Brooks Chemistry and QA Director 11/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

Gorilla Glue

Sample ID: 2411CRG2488.7233

Strain: -Matrix: Plant Type: Flower - Cured Sample Size: 16 g; Batch: Produced: Collected:

Received: 11/12/2024 Completed: 11/22/2024

Batch#:

Client

Prairie Island Retail Inc

Lic.#

6030 Sturgeon Lake Rd Welch, MN 55089

Terpenes

Analyte Results Results

Primary Aromas

Date Tested: 11/20/2024

Method: HS-GCMS SOP-427. LOQ = Limit of Quantitation; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Ronald Montez Lab Director 11/22/2024

Confident LIMS All Rights Reserved coa. support@confident lims.com(866) 506-5866 www.confidentlims.com

Gorilla Glue

Sample ID: 2411CRG2488.7233

Strain: -Matrix: Plant

Type: Flower - Cured Sample Size: 16 g; Batch: Produced:

Collected: Received: 11/12/2024

Completed: 11/22/2024

Batch#:

Client

Prairie Island Retail Inc

Lic.#

6030 Sturgeon Lake Rd Welch, MN 55089

Pass Pesticides

Analyte	LOD	LOQ	Limit	Results	Status	Analyte	LOD	LOQ	Limit	Results	Status
	µg/g	µg/g	µg/g	μg/g			µg/g	µg/g	µg/g	μg/g	
Abamectin			0.100	NR	NT	Fludioxonil			0.100	NR	NT
Acephate			0.100	NR	NT	Hexythiazox			0.100	NR	NT
Acequinocyl			0.100	NR	NT	Imazalil			0.010	NR	NT
Acetamiprid			0.100	NR	NT	Imidacloprid			5.000	NR	NT
Aldicarb			0.010	NR	NT	Kresoxim Methyl			0.100	NR	NT
Azoxystrobin			0.100	NR	NT	Malathion			0.500	NR	NT
Bifenazate			0.100	NR	NT	Metalaxyl			2.000	NR	NT
Bifenthrin			3.000	NR	NT	Methiocarb			0.010	NR	NT
Boscalid			0.100	NR	NT	Methomyl			1.000	NR	NT
Captan			0.700	NR	NT	Mevinphos			0.015	ND	Pass
Carbaryl			0.500	NR	NT	Myclobutanil			0.100	NR	NT
Carbofuran			0.010	NR	NT	Naled			0.100	NR	NT
Chlorantraniliprole			10.000	NR	NT	Oxamyl			0.500	NR	NT
Chlordane			0.030	NR	NT	Paclobutrazol			0.010	NR	NT
Chlorfenapyr			0.030	NR	NT	Parathion Methyl			0.030	NR	NT
Chlorpyrifos			0.010	NR	NT	Pentachloronitrobenzene			0.100	NR	NT
Clofentezine			0.100	NR	NT	Permethrin			0.500	NR	NT
Coumaphos			0.010	NR	NT	Phosmet			0.100	NR	NT
Cyfluthrin			2.000	ND	Pass	Piperonyl Butoxide			3.000	NR	NT
Cypermethrin			1.000	ND	Pass	Prallethrin			0.100	NR	NT
Daminozide			0.030	NR	NT	Propiconazole			0.100	NR	NT
Diazinon			0.100	NR	NT	Propoxur			0.010	NR	NT
Dichlorvos			0.010	NR	NT	Pyrethrins			0.500	NR	NT
Dimethoate			0.010	NR	NT	Pyridaben			0.100	NR	NT
Dimethomorph			2.000	NR	NT	Spinetoram			0.100	ND	Pass
Ethoprophos			0.010	NR	NT	Spinosad			0.100	ND	Pass
Etofenprox			0.010	NR	NT	Spiromesifen			0.100	NR	NT
Etoxazole			0.100	NR	NT	Spirotetramat			0.100	NR	NT
Fenhexamid			0.100	NR	NT	Spiroxamine			0.010	NR	NT
Fenoxycarb			0.010	NR	NT	Tebuconazole			0.100	NR	NT
Fenpyroximate			0.100	NR	NT	Thiacloprid			0.010	NR	NT
Fipronil			0.010	NR	NT	Thiamethoxam			5.000	NR	NT
Flonicamid			0.100	NR	NT	Trifloxystrobin			0.100	NR	NT

Date Tested: 11/20/2024
Method: LC-MS/MS& GC-MS/MS SOP-426. LOQ = Limit of Quantitation; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Measurement uncertainty is not taken into account when statements of conformity (Pass/fail) are made in this report. The decision rule, i.e. All statements of conformity, in this report are made according to the action limits set by CA-DCC (Pass-results within limits/specifications, Fail-results exceed limits/specifications) and can be found within California Code of Regulations Title 4 Division 19. Department of Cannabis Control

Ronald Montez Lab Director 11/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

Gorilla Glue

Sample ID: 2411CRG2488.7233

Strain: -Matrix: Plant Type: Flower - Cured

Sample Size: 16 g; Batch:

Produced: Collected:

Received: 11/12/2024 Completed: 11/22/2024

Batch#:

Client

Prairie Island Retail Inc

Lic.#

6030 Sturgeon Lake Rd Welch, MN 55089

Microbials		Pass
Analyte	Results	Status
Shiga Toxin-Producing E. Coli	Not Detected in 1g	Pass
Salmonella SPP	Not Detected in 1g	Pass
Aspergillus flavus	Not Detected in 1g	Pass
Aspergillus fumigatus	Not Detected in 1g	Pass
Aspergillus niger	Not Detected in 1g	Pass
Aspergillus terreus	Not Detected in 1g	Pass
Date Tested: 11/14/2024		

Analyte Results Status

Date Tested: 11/14/2024

Microbial Analytes reported as Detected / Not Detected are not considered in the Pass / Fail determination for Microbial Testing

Mycotoxins					Pass
Analyte	LOD	LOQ	Limit	Results	Status
	µg/kg	μg/kg	μg/kg	μg/kg	
B1	4.96	5		ND	Tested
B2	3.56	5		ND	Tested
G1	4.92	5		ND	Tested
G2	4.02	5		ND	Tested
Total Aflatoxins	4.96	5	20	ND	Pass
Ochratoxin A	4.95	5	20	ND	Pass

Date Tested: 11/20/2024

Method: LC-MS/MS SOP-425. LOQ = Limit of Quantitation; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Measurement uncertainty is not taken into account when statements of conformity (Pass/fail) are made in this report. The decision rule, i.e. All statements of conformity, in this report are made according to the action limits set by CA-DCC (Pass-results within limits/specifications, Fail-results exceed limits/specifications) and can be found within California Code of Regulations Title 4 Division 19. Department of Cannabis Control

Heavy Metals	Pass
--------------	------

Analyte	LOD	LOQ	Limit	Results	Status
	μg/g	μg/g	µg/g	μg/g	
Arsenic	0.060413505311077	0.092618076631259	0.2	ND	Pass
Cadmium	0.061219650986343	0.092618076631259	0.2	ND	Pass
Lead	0.066625569044006	0.092618076631259	0.5	0.440061	Pass
Mercury	0.071699544764795	0.092618076631259	0.1	ND	Pass

Date Tested: 11/15/2024

Method: ICP-MS SOP-423. LOQ = Limit of Quantitation; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Measurement uncertainty is not taken into account when statements of conformity (Pass/fail) are made in this report. The decision rule, i.e. All statements of conformity, in this report are made according to the action limits set by CA-DCC (Pass-results within limits/specifications, Fail-results exceed limits/specifications) and can be found within California Code of Regulations Title 4 Division 19. Department of Cannabis Control

Ronald Montez Lab Director 11/22/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

