
Use a template to guide a voice conversation to
identify the scope and rules of engagement.

Make sure you get written permission to test any
third parties that own or operate target systems
(MSSPs, cloud providers, ISPs, shared hosting
environments, border routers, DNS servers, etc.)

Discuss with target system personnel the
particularly sensitive information they have in
their environment (such as PII) and how you can
measure access to it without actually
downloading it. Consider going after generic
sample records planted to demonstrate your
access instead of the actual sensitive data.

Discuss black-box versus crystal/white-box testing
while building your rules of engagement, noting that

crystal box testing often provides more detailed
results, is safer, and delivers better business value.

Conduct a daily debriefing call with
target system personnel to exchange
ideas and lessons learned. If daily is
too frequent, consider calls two or

three times per week.

When you gain access to a target machine, don’t use it to scan for more
targets yet, as that might get you detected prematurely. Instead, plunder it
for information about other potential targets based on network activity:

DNS cache (Windows): c:\> ipconfig /displaydns
ARP cache: arp -a
Established TCP connections: netstat -na
Routing table: netstat -nr

When you gain access to a target, if
a sniffer is installed on the machine
(like tcpdump or Wireshark’s tshark

tool), run it to look for network
traffic to identify other possible

target machines, as well as cleartext
protocols containing sensitive or

useful information.

Even without root, system, or admin
privileges on a target machine, you
can still usually perform very useful

post-exploitation activities,
including getting a list of users,

determining installed (and possibly
vulnerable) software, and pivoting

through the system.

When you get on a Windows box, look for ESTABLISHED TCP
connections to ports 445 (SMB) and 3389 (RDP), as these
other systems may be excellent systems to pivot to,
provided they are in scope:
c:\> netstat -na | find “EST” | find “:445”
c:\> netstat -na | find “EST” | find “:3389”

Set up a command or script that checks
the availability of the target service every

few seconds while you are attacking it.
That way, if you do crash it, you’ll notice
quickly and can work with target system

personnel to get it restarted.

When creating payloads that evade anti-malware tools,
do NOT submit your sample to online scanning sites like
virustotal.com to check for evasion, as that may defeat
your payload as new signature updates are distributed.

Build your payloads so that
they make a reverse

connection back to you,
increasing the chance you’ll
get through a firewall that

allows outbound connections.

For your payloads, use a protocol that
is likely allowed outbound from the
target environment, such as HTTPS

(with a proxy-aware payload like those
available in PowerShell Empire,

Metasploit, and the Veil Framework) or
DNS (such as the DNScat tool).

If your exploit fails, read the output of your exploitation tool carefully to see where it errors out. Also, run a sniffer
such as tcpdump to see how far along it gets in making a connection, sending the exploit, and loading the stager and
stage. If your stager worked but your stage couldn’t be loaded, your anti-virus evasion tactics may be failing.

Try to identify false positives
by running a different tool to

corroborate a finding.

Verify discovered vulnerability findings by researching how
to check the issue manually or through a bash, PowerShell,
Nmap Scripting Engine (NSE) script, or other script.

Run a sniffer such as
tcpdump while you are

scanning a target so you
can continually verify that

your scanner is still
running appropriately.

If you are using a virtual machine for your attacks, configure
it for bridged networking to avoid filling up NAT tables and
to ensure reverse shell connections can come back to you.

Remember to check social networking sites
(especially LinkedIn, Facebook, and Twitter)

to learn about target personnel and the
technologies they use.

In LinkedIn, look for long-term IT and
InfoSec employees to see which

technologies they are familiar with,
including firewalls, development

environments, and more.

Double-check that all IP addresses included in the
scope belong to the target organization and aren’t
a mistake. Use whois lookups and traceroute to
check that the addresses make sense and actually
belong to the target organization.

Don’t wait for the end of your
penetration test to write the report.
Instead, write the report as you test,
setting aside time each day to write
one to three pages. Not only will you
produce a better report, your pen
test itself will also be better.

Identify targets by
IP address (IPv4
and IPv6 if you

have it), domain
name, and (if you

have it) MAC
address (especially
for compromised
client machines

using DHCP).

To add extra value to your
recommendations, consider including
steps an operations person can take
to verify that a recommended fix is in
place, such as a command to check for

the presence of a patch. For some
findings, this can be hard to do, so in

those cases recommend that the given
issue be retested.

Create a word list fine-tuned to
the target organization based on

words from its website.

Create a word list fine-tuned
for users based on their

social networking profiles.

When you successfully crack a password using
word-mangling rules, add that password to your
dictionary for further password attacks on that
penetration test. That way, if you encounter the
same password in a different hash format, you
won’t have to wait for word-mangling to
re-discover that password.

For password guessing, always
consider the account lockout policy
and try to avoid it by using password
spraying techniques (a large number
of accounts and targets with a small

number of passwords).

EXP LOITATION

PRE-ENGAGEMENT RECONNAISSANCE

VULNERABILITY
ANALYSIS

REPORTI NG

PASSWORD ATTACKSPOST-EXP LOI TATION

Keep your skills fresh by setting aside an hour or two per
week to participate in Capture the Flag competitions,

including the free SANS Holiday Hack Challenge at
www.holidayhackchallenge.com or the numerous free CtFs at

http://www.amanhardikar.com/mindmaps/Practice.html

Use the Shodan search engine’s “net:” directive to
look for unusual or interesting devices in the target
network address ranges. Also, use unique footer
information (such as a common copyright notice
on target web pages) to find additional pages via
Shodan using the “html:” directive.

Carefully consider all interactions with third-party
servers and searches to ensure you do not divulge
sensitive information about the target or violate a
non-disclosure arrangement by using them. You may
want to consider using the TOR network to obscure
your relationship with the target organization.

Look for common office documents posted on target
websites by using Google searches for:

site:<TargetDomain> ext:doc | ext:docx |
ext:xls | ext:xlsx | ext:pdf

While open ports such as
TCP 445 often indicate a
Windows machine, this is
not always the case. The
target could be a Samba
daemon or another
SMB-based target.

Remember, passwords can
be gathered using a variety

of techniques, including
automated guessing,
cracking, sniffing, and

keystroke logging.

Sometimes you don’t need a password for
authentication because simply using the hash
can get the job done, as with pass-the-hash
attacks against Windows and SMB targets,
and with hashes of passwords stored in
cookies for some websites.

As soon as you get hashes
from targets, start a password
cracker to try to determine the
passwords. Don’t let any time
go by until you start cracking
the hashes you’ve gotten.

If you have a compatible GPU on your
system, consider using a GPU-based

password cracking tool, such as Hashcat, as
you’ll get 20 to 100 times the performance.

To lower the chance of crashing Windows
target systems and services, once you gain
admin-level credentials and SMB access to
them, use psexec or similar Windows features
(WMIC, sc, etc.) to cause them to run code,
instead of a buffer overflow or related exploit.

While they can be very useful for management
demonstrations, be careful turning on video

cameras and capturing audio from compromised
target machines. Conduct that level of invasive
access only with written permission, and have it

reviewed by your legal team to ensure
compliance with local laws.

Include
screenshots in
your report to
illustrate findings
clearly. Annotate
screenshots with
arrows and
circles pointing
out the important
aspects of the
illustration.

Put vulnerabilities that you have
identified in the context of how
critical the asset is, as this helps

you assign priority and assess risk.Write for the proper audience in each section:
The Executive Summary should be for the
decision-makers who are allocating resources.
Findings should be written from a technical
perspective, informed by business issues.
Recommendations should take into account
the operations team and their processes.

B L U E P R I N T : B U I L D I N G A B E T T E R P E N T E S T E R
High-value penetration testing involves modeling the techniques used by real-world computer attackers to find vulnerabilities, and, under controlled
circumstances, to exploit those flaws in a professional, safe manner according to a carefully designed scope and rules of engagement. This process

helps to determine business risk and potential impact of attacks, all with the goal of helping the organization improve its security stance.
Here are tips for each phase of penetration testing to help you provide higher business value in your work.

Rules of Engagement Scoping

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

Poster!

Post Modules from Meterpreter
With an available Meterpreter session,
post modules can be run on the target machine.

RUN POST MODULES FROM METERPRETER
meterpreter > run post/multi/gather/env

RUN POST MODULES ON A BACKGROUNDED SESSION
msf > use post/windows/gather/hashdump
msf > show options
msf > set SESSION 1
msf > run

Base Syntax
nmap [ScanType] [Options] {targets}

Sniffing and pcaps
To sniff using Berkley Packet Filters:
>>> packets =
sniff(filter="host 1.1.1.1")

Sniffing using counts:
>>> packets = sniff(count=100)

Reading packets from a pcap:
>>> packets =
rdpcap("filename.pcap")

Writing packets to a pcap:
>>> wrpcap("filename.pcap",
packets)

Receiving and Analyzing Packets
Received packets can be stored in a variable when using a
send/receive function such as sr(), srp(), sr1() sr1p():
>>> packet =
IP(dst="10.10.10.20")/TCP(dport=(0,1024))
>>> unans, ans = sr(packet)
Received 1086 packets, got 1024 answers, remaining 0
packets

“ans” will store the answered packets:
>>> ans
<Results: TCP:1024 UDP:0 ICMP:0 Other:0>

To see a summary of the responses:
>>> ans.summary()
IP / TCP 10.1.1.15:ftp_data >
10.10.10.20:netbios_ssn S ==> IP / TCP
10.10.10.20:netbios_ssn > 10.1.1.15:ftp_data
SA / Padding
Note: this is the output from port 139 (netbios_ssn). Notice
how this port was open and responded with a SYN-ACK.

To view a specific pair of sent/replied packets:
>>> ans[15]

To view the first packet in the stream:
>>> ans[15][0] (this will be packet the
Scapy sent)
<IP frag=0 proto=tcp dst=10.10.10.20 |<TCP
dport=netstat flags=S |>>

To view the response from the distant end:
>>> ans[15][1]
<IP version=4L ihl=5L tos=0x0 len=40
id=16355 flags=DF frag=0L ttl=128 proto=tcp
chksum=0x368c src=10.10.10.20 dst=10.1.1.15
options=[] |<TCP sport=netstat
dport=ftp_data seq=0 ack=1 dataofs=5L
reserved=0L flags=RA window=0 chksum=0x2b4c
urgptr=0 |<Padding
load='\x00\x00\x00\x00\x00\x00' |>>>

To view the TCP flags in the response packet:
>>> ans[15][1].sprintf("%TCP.flags%")
'RA'

Basic Packet Crafting / Viewing
Scapy works with layers. Layers are individual
functions linked together with the "/" character to
construct packets. To build a basic TCP/IP packet with
"data" as the payload:
>>> packet = IP(dst="1.2.3.4")/
TCP(dport=22)/"data"

Note: Scapy allows the user to craft all the way down to
the ether() (Data Link) layer, but will use default values
for the data link layer if it's omitted when using the
send() or sr() functions. To correctly pass traffic, layers
should be ordered from lowest to highest from left to
right (e.g., ether -> IP -> TCP).

To get a packet summary:
>>> packet.summary()

To get more packet details:
>>> packet.show()

Sending Packets
CREATING AND SENDING A PACKET

>>> packet = IP(dst="4.5.6.7")/
TCP(dport=80, flags="S")
Send a packet, or list of packets without custom ether
layer:
>>> send(packet)

SEND FUNCTION OPTIONS

filter = <Berkley Packet Filter>
retry = <retry count for unanswered packets> timeout =
<number of seconds to wait before giving up>
iface = <interface to send and receive>
>>> packets = sr(packet, retry=5,
timeout=1.5, iface="eth0", filter="host
1.2.3.4 and port 80")

Scapy Basics
To list supported layers:
>>> ls()

Some key layers are:
arp, ip, ipv6, tcp, udp, icmp

To view layer fields use ls(layer):
>>> ls(IPv6)
>>> ls(TCP)

To list available commands:
>>> lsc()

Some key commands for interacting
with packets:
rdpcap, send, sr, sniff,
wrpcap

Getting help with commands use
help(command):
>>> help(rdpcap)

Syntax
Cmdlets are small scripts that follow a
dash-separated verb-noun convention such
as "Get-Process".

SIMILAR VERBS WITH DIFFERENT ACTIONS:
- New- Creates a new resource
- Set- Modifies an existing resource
- Get- Retrieves an existing resource
- Read- Gets information from a source,
such as a file
- Find- Used to look for an object
- Search- Used to create a reference to
a resource
- Start- (asynchronous) begin an
operation, such as starting a process
- Invoke- (synchronous) perform an
operation such as running a command

PARAMETERS:
Each verb-noun named cmdlet may have
many parameters to control cmdlet
functionality.

OBJECTS:
The output of most cmdlets are objects
that can be passed to other cmdlets and
further acted upon. This becomes
important in pipelining cmdlets.

Finding Cmdlets
To get a list of all available cmdlets:
PS C:\> Get-Command

Get-Command supports filtering. To filter cmdlets on the verb set:
PS C:\> Get-Command Set* or
PS C:\> Get-Command –Verb Set

Or on the noun "Process":
PS C:\> Get-Command *Process or
PS C:\> Get-Command –Noun process

Getting Help
To get help with help:
PS C:\> Get-Help

To read cmdlet self documentation:
PS C:\> Get-Help <cmdlet>

Detailed help:
PS C:\> Get-Help <cmdlet> -detailed

Usage examples:
PS C:\> Get-Help <cmdlet> -examples

Full (everything) help:
PS C:\> Get-Help <cmdlet> -full

Online help (if available):
PS C:\> Get-Help <cmdlet> -online

Cmdlet Aliases
Aliases provide short references to long commands.
To list available aliases (alias alias):
PS C:\> Get-Alias

To expand an alias into a full name:
PS C:\> alias <unknown alias>
PS C:\> alias gcm

Efficient PowerShell
TAB COMPLETION:
PS C:\> get-child<TAB>
PS C:\> Get-ChildItem
Parameter shortening:
PS C:\> ls –recurse is equivalent to:
PS C:\> ls -r

Pipelining, Loops, and Variables
Piping cmdlet output to another cmdlet:
PS C:\> Get-Process | Format-List
–property name

ForEach-Object in the pipeline (alias %):
PS C:\> ls *.txt | ForEach-Object
{cat $_}

Where-Object condition (alias where or ?):
PS C:\> Get-Process | Where-Object
{$_.name –eq "notepad"}

Generating ranges of numbers and looping:
PS C:\> 1..10
PS C:\> 1..10 | % {echo "Hello!"}

Creating and listing variables:
PS C:\> $tmol = 42
PS C:\> ls variable:

Examples of passing cmdlet output down
pipeline:
PS C:\> dir | group extension |
sort
PS C:\> Get-Service dhcp |
Stop-Service -PassThru |
Set-Service -StartupType Disabled

CONCEPT
PS C:\> Get-Help
[cmdlet]
-examples

PS C:\> Get-
Command

PS C:\> Get-
Member

PS C:\> ForEach-
Object { $_ }

PS C:\> Select-
String

WHAT’S IT DO?
Shows help &
examples

Shows a list of
commands

Shows properties
& methods

Takes each item
on pipeline and
handles it as $_

Searches for
strings in files or
output, like grep

A HANDY ALIAS
PS C:\> Help
[cmdlet]
-examples

PS C:\> [cmdlet]
| gm

PS C:\> gcm
[string]

PS C:\> [cmdlet]
| % { [cmdlet]
$_ }

PS C:\> sls –path
[file] –pattern
[string]

5 PowerShell Essentials

Useful Auxiliary Modules
TCP PORT SCANNER:
msf > use auxiliary/scanner/portscan/tcp
msf > set RHOSTS 10.10.10.0/24
msf > run

DNS ENUMERATION
msf > use auxiliary/gather/dns_enum
msf > set DOMAIN target.tgt
msf > run

FTP SERVER
msf > use auxiliary/server/ftp
msf > set FTPROOT /tmp/ftproot
msf > run

PROXY SERVER
Create a socks4 proxy on the local machine that
allows external tools to use Metasploit's routing.
msf > use auxiliary/server/socks4
msf > run

Target Specification
IPv4 address: 192.168.1.1
IPv6 address: AABB:CCDD::FF%eth0
Host name: www.target.tgt
IP address range: 192.168.0-255.0-255
CIDR block: 192.168.0.0/16
Use file with lists of targets: -iL <filename>

Target Ports
No port range specified scans 1,000 most popular
ports
-F Scan 100 most popular ports
-p<port1>-<port2> Port range
-p<port1>,<port2>,... Port List
-pU:53,U:110,T20-445 Mix TCP and UDP
-r Scan linearly (do not randomize ports)
--top-ports <n> Scan n most popular ports
-p-65535 Leaving off initial port makes Nmap
scan start at port 1
-p0- Leaving off end port makes Nmap scan up
to port 65535
-p- Leaving off start and end port makes Nmap
scan ports 1-65535

Probing Options
-Pn Don't probe (assume all hosts are up)
-PB Default probe (TCP 80, 445 & ICMP)
-PS<portlist>
Check whether targets are up by probing TCP ports
-PE Use ICMP Echo Request
-PP Use ICMP Timestamp Request
-PM Use ICMP Netmask Request

Scan Types
-sn Probe only (host discovery, not port scan)
-sS SYN Scan
-sT TCP Connect Scan
-sU UDP Scan
-sV Version Scan
-O OS Detection
--scanflags Set custom list of TCP using
 URGACKPSHRSTSYNFIN in any order

Fine-Grained Timing Options
--min-hostgroup/max-hostgroup <size>
Parallel host scan group sizes
--min-parallelism/max-parallelism
<numprobes>
Probe parallelization
--min-rtt-timeout/max-rtt-timeout/in
itial-rtt-timeout <time>
Specifies probe round trip time.
--max-retries <tries>
Caps number of port scan probe retransmissions.
--host-timeout <time>
Give up on target after this long
--scan-delay/--max-scan-delay <time>
 Adjust delay between probes
--min-rate <number>
Send packets no slower than <number> per
second
--max-rate <number>
Send packets no faster than <number> per
second

Aggregate Timing Options
-T0 Paranoid: Very slow, used for IDS evasion
-T1 Sneaky: Quite slow, used for IDS evasion
-T2 Polite: Slows down to consume less bandwidth,
 runs ~10 times slower than default
-T3 Normal: Default, a dynamic timing model based
 on target responsiveness
-T4 Aggressive: Assumes a fast and reliable network
 and may overwhelm targets
-T5 Insane: Very aggressive; will likely overwhelm
 targets or miss open ports

Output Formats
-oN Standard Nmap output
-oG Greppable format
-oX XML format
-oA <basename>

Misc Options
-n Disable reverse IPaddress lookups
-6 Use IPv6 only
-A Use several features, including OS Detection,
Version Detection, Script Scanning (default), and
traceroute
--reason Display reason Nmap thinks port is open,
closed, or filtered

Scripting Engine
-sC Run default scripts
--script=<ScriptName>|
<ScriptCategory>|<ScriptDir>...
Run individual or groups of scripts
--script-args=<Name1=Value1,...>
Use the list of script arguments
--script-updatedb
Update script database

Metasploit Meterpreter
BASE COMMANDS:
? / help: Display a summary of commands
exit / quit: Exit the Meterpreter session
sysinfo: Show the system name and OS type
shutdown / reboot: Self-explanatory

FILE SYSTEM COMMANDS:
cd: Change directory
lcd: Change directory on local (attacker's)
machine pwd / getwd: Display current working
directory ls: Show the contents of the directory
cat: Display the contents of a file on screen
download / upload: Move files to/from the
target machine
mkdir / rmdir: Make / remove directory
edit: Open a file in the default editor (typically vi)

PROCESS COMMANDS:
getpid: Display the process ID that Meterpreter is
running inside
getuid: Display the user ID that Meterpreter is
running with
ps: Display process list
kill: Terminate a process given its process ID
execute: Run a given program with the privileges
of the process the Meterpreter is loaded in
migrate: Jump to a given destination process ID
- Target process must have same or lesser privileges
- Target process may be a more stable process
- When inside a process, can access any files that
process has a lock on

NETWORK COMMANDS:
ipconfig: Show network interface information
portfwd: Forward packets through TCP session
route: Manage/view the exploited system's routing
table

Managing Sessions
MULTIPLE EXPLOITATION:
Run the exploit expecting a single session that is
immediately backgrounded:
msf > exploit -z

Run the exploit in the background, so that
msfconsole can still be used while the exploit is
running:
msf > exploit –j

List all current jobs (usually exploit listeners):
msf > jobs –l

Kill a job:
msf > jobs –k [JobID]

Generate Nmap,
Greppable, and XML
output files using
basename for files

What are the target organization's biggest security
concerns? (Examples include disclosure of sensitive
information, interruption of production processing,
embarrassment due to website defacement, etc.)

What specific hosts, network address ranges, or
applications should be tested?

What specific hosts, network address ranges, or
applications should explicitly NOT be tested?

List any third parties that own systems or networks
that are in scope as well as which systems they
own (written permission must have been obtained
in advance by the target organization).

Will the test be performed against a live
production environment or a test environment?

Metasploit Console Basics (msfconsole)
SEARCH FOR MODULE:
msf > search [criteria]

SPECIFY AN EXPLOIT TO USE:
msf > use exploit/[ExploitPath]

SPECIFY A PAYLOAD TO USE:
msf > set PAYLOAD [PayloadPath]

SHOW OPTIONS FOR THE CURRENT MODULES:
msf > show options

SET OPTIONS:
msf > set [Option] [Value]

START EXPLOIT:
msf > exploit

Penetration testing team contact information
Target organization contact information
"Daily debriefing" frequency
"Daily debriefing" time/location
Start date of penetration test
End date of penetration test
Times when the testing occurs

Will test be announced to target personnel?

Will target organization shun IP addresses of
attack systems?

Does target organization's network have
automatic shunning capabilities that might
disrupt access in unforeseen ways (i.e., create a
denial-of-service condition), and if so, what
steps will be taken to mitigate the risk?

Would the shunning of attack systems conclude
the test, and if not, what steps will be taken to
continue if systems get shunned and what
approval (if any) will be required?

What are the IP addresses of penetration testing
team's attack systems?

Is this a "black box" test?

What is the policy regarding viewing data
(including potentially sensitive/confidential
data) on compromised hosts?

Will target personnel observe the testing team?

Which of the following testing techniques will the
penetration test include:

Ping sweep of network ranges?
Port scan of target hosts?
Vulnerability scan of targets?
Penetration into targets?
Application-level manipulation?
Client-side reverse engineering?
Physical penetration attempts?
Social engineering of people?
Other?

Will penetration test
include internal
network testing?

If so, how will access
be obtained?

Are client/end-user
systems included in
scope?

If so, how many
client systems will
be targeted?

Is social engineering
allowed?

If so, how may it
be used?

Are denial-of-service
attacks allowed?

Are dangerous
checks/exploits
allowed?

@SANSPenTest
@SANSInstitute

Learn more about SANS PENETRATION TESTING and ETHICAL HACKING courses at
www.sans.org/roadmap

PEN TEST BLOGS, CHEAT SHEETS, DOWNLOADS, RESOURCES:
https://pen-testing.sans.org

The Slingshot Linux distribution is used for a variety
of different SANS Penetration Testing courses.
Slingshot’s tool arsenal has been thoroughly tested to
ensure excellent results in course labs and in penetration
testing projects.

Slingshot includes the following tools:

01101000 01101111 01101100 01101001 01100100 01100001 01111001 01101000 01100001 01100011 01101011 01100011
01101000 01100001 01101100 01101100 01100101 01101110 01100111 01100101 00101110 01100011 01101111 01101101

THE METASPLOIT
FRAMEWORK

THE ARMITAGE GUI FOR
METASPLOIT

ETTERCAP MAN IN THE
MIDDLE TOOL

EXIFTOOL FOR METADATA
ANALYSIS

HYDRA PASSWORD
GUESSING TOOL

JOHN THE RIPPER
PASSWORD CRACKING TOOL

LAIR FRAMEWORK PEN TEST
COLLABORATION TOOL

NETCAT GENERAL PURPOSE
TCP/UDP TOOL

NESSUS VULNERABILITY SCANNER

NIKTO WEB SCANNER

NMAP PORT SCANNER AND
GENERAL PURPOSE PACKET TOOL

RECON-NG RECONNAISSANCE TOOL

SCAPY PACKET SUITE

SOCIAL ENGINEERING TOOLKIT

TCPDUMP SNIFFER

WIRESHARK SNIFFER

VEIL-EVASION ANTI-VIRUS
EVASION TOOL

POWERSHELL EMPIRE
POST-EXPLOITATION TOOLKIT

ZED ATTACK PROXY (ZAP) WEB
APPLICATION ATTACK TOOL

PENT-PSTR-SANS18-BP-V1

GCIH
GWAPT

GPEN
GPYC

GMOB
GAWN
GXPN

Certified Incident Handler
Web Application Penetration Tester
Penetration Tester
Python Coder
Mobile Device Security Analyst
Assessing and Auditing Wireless Networks
Exploit Researcher & Adv. Penetration Tester

Enterprise Threat and Vulnerability Assessment www.sans.org/SEC460

Hacker Tools, Techniques, Exploits, and Incident Handling www.sans.org/SEC504

Web App Penetration Testing and Ethical Hacking www.sans.org/SEC542

Active Defense, Offensive Countermeasures and Cyber Deception www.sans.org/SEC550

Network Penetration Testing and Ethical Hacking www.sans.org/SEC560

Immersive Hands-on Hacking Techniques www.sans.org/SEC561

CyberCity Hands-on Kinetic Cyber Range Exercise www.sans.org/SEC562

Red Team Operations and Threat Emulation www.sans.org/SEC564

Social Engineering for Penetration Testers www.sans.org/SEC567

Automating Information Security with Python www.sans.org/SEC573

Mobile Device Security and Ethical Hacking www.sans.org/SEC575

Metasploit Kung Fu for Enterprise Pen Testing www.sans.org/SEC580

Wireless Penetration Testing and Ethical Hacking www.sans.org/SEC617

Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques www.sans.org/SEC642

Advanced Penetration Testing, Exploit Writing, and Ethical Hacking www.sans.org/SEC660

Advanced Exploit Development for Penetration Testers www.sans.org/SEC760

SEC460

SEC504

SEC542

SEC550

SEC560

SEC561

SEC562

SEC564

SEC567

SEC573

SEC575

SEC580

SEC617

SEC642

SEC660

SEC760

GCIH
GWAPT

GPEN

GPYC
GMOB

GAWN

GXPN

CyberCity is

available for priv
ate

training only.

B L U E P R I N T :
B U I L D I N G A B E T T E R P E N T E S T E R

The Most Trusted Source for Information Security Training,
Certification, and Research
www.sans.org

www.giac.org

