MAGNETICS 2021

The Ideal Permanent Magnet – Myths and Realities.

Dr John Ormerod January 20th, 2021

"The Nation That Controls Magnetism Will Control The Universe"

- Dick Tracy cartoon strip, created by Chester Gould.
- Circa early-1960's i.e., before rare earth magnets and the Chinese dominance of RE supply chain and magnet industry!

Outline

- Introduction:
 - Me
 - Rare Earths
- The Ideal Permanent Magnet
 - Magnetics
 - Other Considerations
- Recent Magnet Material Developments
- Summary

Introduction - Me

- BSc, MSC and PhD in Metallurgy from the University of Manchester (1972 1978).
- Magnetics career began for Philips (UK and Holland) 1979 1990.
 - Developed and commercialized SmCo5, 2:17 and NdFeB magnets.
- Joined Arnold Magnetic Technologies (USA) responsible for soft and hard magnetic materials development and GM for permanent magnets (1990 – 2002).
- 2002 2014 President of Res Manufacturing in Milwaukee.
 - Metal stamping and value-added assemblies to the automotive market (Toyota, GM, Nissan).
 - Major supplier to Tesla Motors for Model S and Model X.
- Founded business and technology consultancy for magnetics and metals related industries in 2015 – JOC LLC (<u>www.jocllc.com</u>) assisted clients in all aspects of the PM supply chain.
- Provided expert testimony on key NdFeB patent challenges over the last few years.
- Advisory Board member for Bunting Group, Technology/Industry Advisor for Bunting, CMI and MP Materials.

Introduction – Rare Earths

JOC LLC

China's REE dominance is (might be) diminishing

China's Dominance of Mining is Diminishing, but.....

On Top of the Mountain

China dominates global production of mined rare earths

Source: U.S. Geological Survey, Mineral Commodity Summaries, February 2019 Data in metric tons of rare-earth oxide equivalent

BloombergOpinion

China Still Dominates Downstream RE Processing – Global Capacities

- Separation: 80%
- Reduction to Metals: 75%
- Magnet Manufacturing: 75%

Rare Earths – Supply Demand (out of) Balance

Rare-Earth Elements

Originally produced for the October 2011 issue of Scientific American

What Are They Used For?

Scandium	Aerospace components, aluminum alloys				
Yttrium	Lasers, TV and computer displays, microwave filters				
Lanthanum	Oil refining, hybrid-car batteries, camera lenses				
Cerium	Catalytic converters, oil refining, glass-lens production				
Praseodymium	Aircraft engines, carbon arc lights				
Neodymium	Computer hard drives, cell phones, high-power magnets				
Promethium	Portable x-ray machines, nuclear batteries				
Samarium	High-power magnets, ethanol, PCB cleansers				
Europium	TV and computer displays, lasers, optical electronics				
Gadolinium	Cancer therapy, MRI contrast agent				
Terbium	Solid-state electronics, sonar systems				
Dysprosium	Lasers, nuclear-reactor control rods, high-power magnets				
Holmium	High-power magnets, lasers				
Erbium	Fiber optics, nuclear-reactor control rods				
Thulium	X-ray machines, superconductors				
Ytterbium	Portable x-ray machines, lasers				
Lutetium	Chemical processing, LED lightbulbs				

Projected Supply & Demand (2016)								
2016	Demand		Supply		Surplus			
Element	tonnes	%	tonnes	%	(Deficit)			
La	36,750	23.0%	52,000	26.7%	15,250			
Ce	65,000	40.6%	81,000	41.5%	16,000			
Pr	7,500	4.7%	9,500	4.9%	2,000			
Nd	30,000	18.8%	31,500	16.2%	1,500			
Sm	1,000	0.6%	3,750	1.9%	2,750			
Eu	780	0.5%	500	0.3%	-280			
Gd	2,225	1.4%	2,750	1.4%	525			
Tb	450	0.3%	350	0.2%	-100			
Dy	1,650	1.0%	1,450	0.7%	-200			
Er	1,000	0.6%	800	0.4%	-200			
Y	13,350	8.3%	10,000	5.1%	-3,350			
Ho-Tm-Yb-Lu	250	0.2%	1,400	0.7%	1,150			
TOTAL	159,955	100.0%	195,000	100.0%	35,045			

C

Texas Mineral Resources: http://tmrcorp.com/ree/market_dynamics/

Rare Earths – DOD Systems Need REE's Not A Good Idea To Be Dependent On China

Rare Ingredients

Source: Congressional Research Service

JOC LLC

Outline

- Introduction:
 - Me
 - Rare Earths
- The Ideal Permanent Magnet
 - Magnetics
 - Other Considerations
- Recent Developments
- Summary

Hysteresis Measurement of Ideal Magnet

Magnetizing Field < H_c? Grain Boundary Pinning Mechanism (SmCo₅ and Nd₂Fe₁₄B)

Fig. 1. Initial magnetisation curve of a thermally demagnetised $SmCo_5$ (RES 190) magnet.

Fig. 2. Dependence of coercivity on initial magnetising field of thermally demagnetised $SmCo_5$ (RES 190) magnets.

Source: J. Ormerod, Journal of the Less-Common Metals, 111 (1985) 49 - 69

It's all About the Grain Boundaries (and Energy Wells)

C

The Ideal Magnet Depends On Application – Duh!

Sintered NdFeB IPM machines with a Br of 10 kG at 150°C with a straight-line B versus H characteristic.

Work holding application using alnico magnets with a $\rm B_r$ of 13 kG and $\rm H_c$ of 1.0 kOe

JOC LLC

The Ideal Permanent Magnet – Other Considerations

- Critical Material Content
- Uniformity
- No toxic or environmental damaging processes
- Usable temperature range
- Magnetization change with temperature (RTC)
- Corrosion resistance
- Physical strength
- Electrical resistivity
- Available sizes, shapes, and manufacturability
- Raw material cost and availability
- Net shape processing

US DoE Critical Materials Assessment – 2015 - 2025

EU 2020 Critical Raw Materials List

2020 critical raw materials (new as compared to 2017 in bold)					
Antimony	Hafnium	Phosphorus			
Baryte	Heavy Rare Earth Elements	Scandium			
Beryllium	Light Rare Earth Elements	Silicon metal			
Bismuth	Indium	Tantalum			
Borate	Magnesium	Tungsten			
Cobalt	Natural graphite	Vanadium			
Coking coal	Natural rubber	Bauxite			
Fluorspar	Niobium	Lithium			
Gallium	Platinum Group Metals	Titanium			
Germanium	Phosphate rock	Strontium			

Dysprosium, Coercivity and Higher Application Temperatures

Reference: IEEE Transactions on Magnetics, Volume 20, Issue 5, September 1984, pp. 1584-1589

132

Journal of Sustainable Metallurgy (2018) 4:126-146

REE	Consumption in 2012 (tons of REOs)	Relative part of the total consumption (%)	Relative abundance (%) ^a	
Lanthanum	31,495	27.8	24.9	
Cerium	45,525	40.2	43.2	
Praseodymium	4945	4.4	4.6	
Neodymium	19,925	17.6	16.2	
Samarium	515	0.5	2.2	
Europium	425	0.4	0.3	
Gadolinium	1020	0.9	1.4	
Terbium	290	0.3	0.2	
Dysprosium	845	0.7	0.9	
Erbium	540	0.5	0.2	
Holmium-thulium-ytterbium- lutetium	75	0.1	0.8	
Yttrium	7650	6.8	4.9	
Total	113,250	100		

JOC LLC

^aAverage of 51 REE deposits

Dy-Diffusion of NdFeB magnets

20

0

40

Depth (µm)

60

80

JOC LLC

- approximately 50% Dy content and 5% improvement in Br.
- However, this is low temperature solid state diffusion
 process limiting the cross sectional that can be treated
 and tends to develop a concentration profile.

Dy-diffused magnets in IPM EV drivetrains (GM Research Center)

HEVs and EVs frequently have interior permanent magnet-type motors where the permanent magnets are embedded inside the rotor in one or more layers with V-shaped poles

Figure 5. (a) A schematic of magnet locations of samples for VSM measurements. (b) The second quadrant BH curves for corner and center 2-mm cubic samples machined from magnets with Tb GBD measured by VSM.

Outline

- Introduction:
 - Me
 - Rare Earths
- The Ideal Permanent Magnet
 - Magnetics
 - Other Considerations
- Recent Developments
- Summary

Achievement of High Coercivity in Sm(Fe_{0.8}Co_{0.2})₁₂

Acta Materialia, Volume 194, 1 August 2020, Pages 337-342

- Sputtered 100 nm films?
- Sm supply issue?
- Interesting but a long
 - way from prime time.

Outline

- Introduction:
 - Me
 - Rare Earths
- The Ideal Permanent Magnet
 - Magnetics
 - Other Considerations
- Recent Developments
- Summary

JOC LLC

Thank you for your attention Any Questions?

Dr. John Ormerod

JOC LLC

Loudon, Tennessee

https://www.linkedin.com/in/jormerod/

+1 414 899 2859

Jormerod8@gmail.com

John@jocllc.com

