
This article describes distributed transactions and shows you how to configure a WebSphere Studio Application
Developer test server with XA resources for DB2, Oracle, and JMS that can be used together in a distributed
transaction. The article describes an example session bean that updates both databases and sends a JMS message,
all in the same transaction. The Oracle database must also be configured to support XA transactions, so the article
shows the Java exceptions that occur when it is not configured properly, and how to fix these problems.

Bobby Woolf is a member of the IBM Software Services for WebSphere consulting practice, where he assists clients in developing
applications for WebSphere Application Server using WebSphere Studio Application Developer. He is a co-author of Enterprise Integration
Patterns and The Design Patterns Smalltalk Companion, both from Addison-Wesley, and a frequent conference speaker. You can reach
Bobby at bwoolf@us.ibm.com

01 June 2004

What are distributed transactions?
Before diving into how to develop applications using distributed transactions,
let's review what distributed transactions are and why they're useful. Several
terms are often used interchangeably: transaction, distributed transaction, two-
phase commit, XA transaction, transaction propagation, and CORBA OTS
transaction. But these terms actually have different meanings:

Transaction -- a series of actions performed as a single logical unit of work in
which either all of the actions are performed or none of them are (also called a local or simple transaction).
A transaction is often described as ACID -- atomic, consistent, isolated, and durable. Changes made
during a transaction are tentative; to make them permanent, a transaction ends with a commit action that
finalizes the changes. If any of the changes cannot be committed, the transaction will roll back, undoing all
of the changes as if the transaction never took place. If the code performing the actions decides not to
commit or cannot commit successfully, then it must roll back the transaction to undo the actions. If an
application crashes in the middle of a transaction, when it restarts, transaction recovery will roll back the
open transaction. In a write transaction, all changes must either all commit or all roll back. In a read
transaction, there are no changes to commit, but the transaction prevents the data being read from
changing until all of the reads are complete.

Distributed transaction -- An ACID transaction between two or more independent transactional
resources (for example, two separate databases). For the transaction to commit successfully, all of the
individual resources must commit successfully; if any of them are unsuccessful, the transaction must roll
back in all of the resources.

Two-phase commit -- An approach for committing a distributed transaction in two steps: Phase 1,
Prepare: Each of the resources votes on whether it's ready to commit -- usually by going ahead and
persisting the new data but not yet deleting the old data. Phase 2, Commit: If all of the resources are
ready, they all commit -- after which the old data is deleted and the transaction can no longer roll back.
Two-phase commit ensures that a distributed transaction can always be committed or always rolled back,

Configuring and using XA distributed transactions in Configuring and using XA distributed transactions in
WebSphere StudioWebSphere Studio

developerWorksdeveloperWorks Technical topicsTechnical topics WebSphereWebSphere Technical libraryTechnical library

Page 1 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

even if parts of the system crash while the transaction is being committed. Many, but not all, distributed
transaction implementations use two-phase commit.

XA specification -- Documents the Open Group's X/Open Distributed Transaction Processing (DTP)
model, which defines how an application program uses a transaction manager to coordinate a distributed
transaction across multiple resource managers. Any resource manager that adheres to the XA
specification can participate in a transaction coordinated by an XA-compliant transaction manager, thereby
enabling different vendors' transactional products to work together. All XA-compliant transactions are
distributed transactions; XA supports both single-phase and two-phase commit.

This diagram form the XA specification shows the parts of a distributed transaction:

X/Open Distributed Transaction Processing (DTP) model

Transaction propagation -- Enables multiple collaborating objects to participate in a single transaction,
by passing the transactional context as part of the thread. As the thread passes through the collaborating
objects, the transaction manager uses the thread's transaction context to perform all work.

CORBA OTS specification -- (Common Object Request Broker Architecture Object Transaction Service,
from the Object Management Group) -- Defines how compliant processes propagate a transactional
context from one process to the next across multiple process threads. This propagation enables
distributed objects to collaborate in a single transaction, even if they're running in containers (e.g., ORBs)
from different vendors. The CORBA OTS specification builds on the XA specification

This diagram form the OTS specification shows the parts of a transaction involving distributed objects:

Object Transaction Service (OTS) Model

Page 2 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

IBM® WebSphere® Application Server V5 provides its applications with a transaction manager that is both
XA- and CORBA OTS-compliant. This transaction manager implements two APIs that are part of Java™ 2
Enterprise Edition (J2EE) -- the Java Transaction API (JTA), which provides simplified access to the Java
Transaction Service (JTS). The XA part of JTA is capable of coordinating the transactions for any XA-
compliant resource (via the interface javax.transaction.xa.XAResource). Two resource types in
J2EE that support XA are the Java Database Connectivity (JDBC) API (through the interface
javax.sql.XAConnection) and the Java Message Service (JMS) API (through the interface
javax.jms.XAConnection). The transaction manager uses CORBA OTS when an EJB in one container
calls an EJB in another container.

Why use distributed transactions?
Whenever an application needs to access or update the data in a transactional resource, it should (and
usually must) use a transaction to do so. In standard JDBC code without auto-commit, the application uses
a connection to access and update data, then commits the connection to end the transaction (and start
another). When a JMS client sends or receives a message, the messaging provider uses a transaction to
add the message to or remove the message from the destination. The JMS client can optionally control
this transaction explicitly, such as to coordinate receiving a message from one queue with sending a
message on another queue in the same messaging system.

Whenever an application has a single function that needs to access or update the data in multiple
transactional resources, it should use a distributed transaction. You can use a separate simple transaction
on each of the resources, but this approach is error-prone. If the transaction in one resource commits
successfully but another fails and must roll back, the first transaction can no longer be rolled back, so the
state of the application becomes inconsistent. If one resource commits successfully but the system
crashes before the other resource can commit successfully, the application again is inconsistent.

What kinds of functions need to access multiple transactional resources? Here are some examples:

Moving data between databases -- An application moving data from one database to another requires
a distributed transaction. Otherwise, the data may be duplicated (if the insert completes and the delete
fails) or lost (if the delete completes and the insert fails).

Moving data between a database and a message -- An application may need to move data from a
JMS message to a database table or vise versa. Without a distributed transaction, the data can be either
duplicated or lost.

Logging messages to a database -- An application may use a database to keep a "paper trail" of
messages exchanged with partner applications. To keep the record consistent and accurate, it should log
the message in the same distributed transaction that sends or receives the message.

Moving a message between messaging systems -- Many messaging scenarios involve receiving one
message and sending another as a result. When the two destinations are in the same messaging
system, the receive and send can be done in a simple transaction because they involve a single
transactional resource. However, when the message is received from a destination in one messaging
system and sent to a destination in a separate messaging system, the application should perform the
action in a distributed transaction between the two messaging systems to ensure that the message is
neither duplicated nor lost.

Page 3 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Coordinating with an enterprise information system (EIS) -- The J2EE specification includes the
J2EE Connector Architecture for implementing adapters to access enterprise information systems (EIS)
such as CICS or SAP. The level of transactional support the adapter provides -- none, local, or XA --
depends on the capabilities of the EIS being adapted. If an adapter supports XA transactions, the
application can use distributed transactions to coordinate the EIS resource with JDBC and JMS
resources.

Basically, whenever an application is using multiple transactional, persistent resources, it may need
distributed transactions. Any function that manipulates more than one resource should use a distributed
transaction.

Transactions and EJBs
Enterprise JavaBeans (EJBs) have many advantages: componentization, remoteness, security,
persistence capabilities, messaging capabilities, and so on. While all of these features are useful, perhaps
the single greatest advantage of using EJBs is transaction management. EJBs and container-managed
transactions (CMTs) make transaction management virtually transparent to the bean developer.

Every public method on an EJB defines a transactional boundary between the EJB container and the EJB
client, as specified in the deployment descriptor. The result is that all EJB code invoked by a client call
typically executes in a single container- managed transaction (unless the deployment descriptor specifies
otherwise), such that either all of the code's work is performed, or it all rolls back. Furthermore, the bean
developer doesn't actually have to write any code for handling transactions, such as deciding when to
invoke the commit() method and what to do if it fails. The container infers the transaction model from the
method boundaries and deployment descriptor, and controls the transaction commits and rollbacks at
runtime.

EJB container-managed transactions work even when multiple EJBs collaborate to perform a task. Once
the first EJB in the thread establishes a transactional context, the transaction manager uses transaction
propagation to pass the context to the collaborating EJBs so that all work is performed in the same
transaction (unless the deployment descriptor specifies otherwise). Even if the collaborating EJBs are in
different containers, CORBA OTS enables the containers' transaction managers to coordinate so that the
transaction propagates across containers.

EJB container-managed transactions are especially helpful for controlling distributed transactions. This
approach allows code to manipulate multiple sets of data without regard to whether the data all comes
from a single resource (requiring a simple transaction) or multiple resources (requiring a distributed
transaction). The application simply uses EJBs to manipulate the data as needed. The EJB container's
transaction manager determines at runtime whether the data comes from one resource -- in which case it
lets the resource manager manage the transaction -- or multiple resources -- in which case the transaction
manager manages the transaction and coordinates the resource managers. Whether the data comes from
one resource or many, the EJB code remains the same, and the EJB container handles the transaction
appropriately.

Developing with distributed transactions
Now we've reviewed what we want to accomplish. We've established what distributed transactions are,
scenarios where they're useful and necessary, and how EJB technology makes these scenarios much

Page 4 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

simpler for the bean developer. Now let's use WebSphere Studio Application Developer (hereafter called
Application Developer) to create and run a simple example.

These sections show you how to create an Application Developer test server and configure it for JDBC
and JMS. It shows you the specific settings to fill in, using values that are specific to this example. The
description before each table explains which values are applicable to all applications and which only apply
to this example.

This example will show how to configure XA data sources for two common JDBC database products,
DB2®, and Oracle. It will also show how to configure a JMS destination with an XA connection.

To start, we need to create a new test server. To do so, switch to the Servers perspective. From the
Server Configuration view's context (e.g. right mouse button) menu, select New => Server and Server
Configuration. In the create dialog, enter a server name (such as "XA Example Server"), choose Test
Environment (either WebSphere version 5.0 or WebSphere version 5.1 for this example) as the server
type, and click finish.

Create a new server and server configuration dialog

Configure an Oracle XA data source
Before we create the data source, we'll create a JAAS authentication entry, which later we'll associate with
the data source so that it can log into the database. In the server configuration editor, switch to the
Security page. In the JAAS Authentication Entries list, add an entry. Your entry must be a valid login for
your database, one that is able to create tables and add data as shown in this article. For this example,
we'll use a sample login that's part of the default Oracle install. You may need to use a different login with
your particular install.

Oracle JAAS authentication entry settings

Page 5 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Property Name Property Value Default?

Alias Scott

User ID scott

Password tiger

Add JAAS authentication entry dialog

For this example, the server configuration must include a JDBC data source registered in JNDI as
jdbc/OracleXADS. Its JDBC provider will be accessed as an Oracle XA database.

First, we need to create a JDBC provider that describes how to access an Oracle XA database. In the
server configuration editor, switch to the Data Source page. In the JDBC provider list, add a provider with
the settings shown below. The name can be anything; we'll use the provider type.

Oracle JDBC provider settings

Property Name Property Value Default?

JDBC Provider type Oracle JDBC Driver (XA)

Name Oracle JDBC Driver (XA)

Implementation class name oracle.jdbc.xa.client.OracleXADataSource default

Class path ${ORACLE_JDBC_DRIVER_PATH}/ojdbc14.jar default

Page 6 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Create a JDBC provider dialog

Second, create a JDBC data source that will provide access to our specific Oracle XA database. Select
the Oracle provider we just created, and then add a data source with the settings shown below. The name
can be anything. The JNDI name is the unique identifier your code will use to lookup the data source; this
article's example code uses jdbc/OracleXADS. For the container-managed authentication alias, choose
the JAAS authentication entry we created earlier. URL is a required resource property; specify the one for
accessing your database.

Oracle JDBC data source settings

Property name Property value Default?

JDBC Provider type Oracle JDBC Driver (XA), version 5.0

Name Example Oracle XA Data Source

JNDI name jdbc/OracleXADS

Helper class com.ibm.websphere.rsadapter.OracleDataStoreHelper default

Authentication alias Scott

URL jdbc:oracle:thin:@localhost:1521:example

Page 7 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Create a JDBC data source dialog

The JDBC provider we created earlier looks for its JAR file in the directory specified by the variable
ORACLE_JDBC_DRIVER_PATH. The variable must be set to the proper directory, but WebSphere Studio
does not know where you the Oracle client is installed, so you must specify this directory. In the Server
Configuration Editor, switch to the Substitution variables page. Under Node settings is a list of defined
variables. Find the one for Oracle and set it to the directory containing the ojdbc14.jar file.

Oracle defined variables (for nodes) settings

Property Name Property Value Default?

ORACLE_JDBC_DRIVER_PATH C:\oracle\ora92\jdbc\lib

Edit Oracle JDBC driver path variable dialog

You have now configured the server with an Oracle XA JDBC data source. Save the server configuration.

Although you have now configured your test server with an Oracle XA JDBC data source, you may also
need to configure the Oracle database itself to support XA transactions. Your Oracle DBA can help you
determine if further configuration is necessary and can help you perform the steps. Later in this article,
we'll discuss the errors you get if your Oracle database is not configured for XA, and how to configure it.

Page 8 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Configure a DB2 XA data source
This example also includes a DB2 XA data source. The configuration settings for a DB2 data source are
very similar to those for an Oracle data source.

First, define a JAAS identity capable of logging into your database. In this example, we've set up one
named DB2.

DB2 JAAS authentication entry settings

Property name Property Value Default?

Alias DB2

User ID db2

Password a_password

Second, we need to create a JDBC provider for DB2 XA data sources.

DB2 JDBC provider settings

Property Name Property Value Default?

JDBC Provider
type

DB2 Universal JDBC Driver Provider (XA)

Name DB2 Universal JDBC Driver Provider (XA)

Implementation
class name

com.ibm.db2.jcc.DB2XADataSource default

Class path ${DB2UNIVERSAL_JDBC_DRIVER_PATH}}/db2jcc.jar

${UNIVERSAL_JDBC_DRIVER_PATH}}/db2jcc_license_cu.jar

${DB2UNIVERSAL_JDBC_DRIVER_PATH}}/db2jcc_license_cisuz.jar

default

Third, we need to create a DB2 XA data source with the JNDI name jdbc/DB2XADS. We'll use the JAAS
identity from step 1. Whereas an Oracle data source needs a URL string for accessing the database, a
DB2 data source just needs the name of the database, in this case, "sample."

DB2 JDBC data source settings

Property Name Property Value Default?

JDBC Provider
type

DB2 Universal JDBC Driver Provider (XA), version 5.0

Name Example DB2 XA Data Source

JNDI name jdbc/DB2XADS

Helper class com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper default

Authentication
alias

DB2

databaseName sample

Page 9 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Fourth, we need to specify the path where the DB2 drivers are installed, which is the directory that
contains the db2jcc.jar file. Also, verify the default value of the other variable in the data source's class
path.

DB2 defined variables (for nodes) settings

Property Name Property Value Default?

DB2UNIVERSAL_JDBC_DRIVER_PATH C:\db2\SQLLIB\java

UNIVERSAL_JDBC_DRIVER_PATH ${WAS_INSTALL_ROOT}/universalDriver/lib default

You have now configured a DB2 XA data source registered as jdbc/DB2XADS. Save the server
configuration.

Configure a JMS provider
To demonstrate an XA transaction, while we're at it, let's also add in a JMS resource. A simple one to use
that also has full XA capabilities is the JMS simulator built in to Application Developer. Your WebSphere
applications that use DB2 and or Oracle XA may use resources other than JMS, but it is required for this
example.

In the server configuration editor, switch to the JMS page. Under JMS Server Properties, add the queue
name XAExampleQ . Under JMS Provider, select MQ Simulator for Java Developers.

For this example, the server configuration must include two JMS resources, a queue connection factory
named jms/XAExampleQCF and a queue named jms/XAExampleQ. On the server configuration editor's
JMS page, in the WASQueueConnectionFactories entries list, add a new queue connection factory with
the settings shown below. Be sure that XA support is enabled; that's the whole point of this example.

WAS queue connection factory settings

Property Name Property Value Default?

Name XAExampleQCF

JNDI Name jms/XAExampleQCF

Enable XA Support True (checked) default

Page 10 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Add WAS Queue Connection Factory Dialog

In the WASQueue entries list, add a new queue with these settings:

WAS queue settings

Property Name Property Value Default?

Name XAExampleQ

JNDI Name jms/XAExampleQ

Add WAS Queue Dialog

Save the server configuration.

Page 11 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

You are now through configuring the server. It has a data source for accessing Oracle through XA, and a
JMS queue with a queue connection factory that supports XA transactions. You can even run the server at
this point. It doesn't contain any applications, but you can verify that it starts without errors and binds the
JDBC and JMS resources in JNDC that we configured for this server. A successful startup will contain
JMS- and JDBC-specific messages like these:
JMSMQJDProvid A MSGS0656I: Starting the MQJD JMS Provider
JMSMQJDProvid A MSGS0650I: MQJD JMS Provider open for business
ResourceMgrIm I WSVR0049I: Binding XAExampleQCF as jms/XAExampleQCF
ResourceMgrIm I WSVR0049I: Binding XAExampleQ as jms/XAExampleQ
ResourceMgrIm I WSVR0049I: Binding Example Oracle XA Data Source as jdbc/OracleXADS
ResourceMgrIm I WSVR0049I: Binding Example DB2 XA Data Source as jdbc/DB2XADS
CacheServiceI I DYNA0048I: WebSphere Dynamic Cache initialized successfully.

Optional: Import the server configuration
You really should practice setting up the server configuration as described so far. But if you're
unsuccessful and still wish to run the example application described below, you can import the
configuration instead.

To start, download and unzip the example file. It contains a directory called XA Example Server.wsc;
this is a WebSphere version 5.1 server configuration.

To import a server configuration, you first need to create a server, which is described at the beginning of
this article. Make sure it is a WebSphere version 5.1 Test Environment (available in Application Developer
version 5.1.1), since the configuration is for version 5.1.

Also, it helps to be able to see both the list of servers and the list of configurations. In the Server
Configuration view of the Server perspective, select View => Advanced from the Menu (e.g., down
triangle) button.

Advanced Server Configuration View Menu

Next, import the server configuration by following these steps:

1. From the Studio menu bar, choose File => Import.
2. The Import wizard opens on its Select page. Select Server Configuration and click Next.
3. The wizard switches to its Import a Server Configuration page.

1. At the Configuration Name field, enter some name that is different from the name of the server you
just created, such as "Imported Configuration."

2. The Folder field will default to the name of your servers project, which is usually called "Servers."
3. For the Configuration Type, select WebSphere version 5.1 => Server Configuration.
4. In the Location field, click Browse and select the XA Example Server.wsc file you downloaded.

4. Click Finish to import the server configuration. Your Server Configuration view will now list the new
configuration with the name you specified.

Page 12 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Import a server configuration dialog

Now we need to switch the server you created to use the server configuration you just imported. In the
Server Configuration view, select the server, pop up the context (e.g., right mouse button) menu, select
Switch configuration, and select the configuration you imported.

Open the server configuration editor for your server and you'll see that it now has the settings for the JDBC
and JMS resources described earlier. (If you don't see these settings, make sure to switch your server to
the imported configuration.)

Start the server and you'll see the server startup log shown earlier.

Set up the example application
This article includes a simple J2EE application that you can download, import into Application Developer,
and run. It will execute an XA transaction using the JDBC and JMS resources you configured earlier.

To start, download and unzip the example file. It contains an Enterprise Archive (EAR) file named
XAExampleEAR.ear. Follow these steps to import it into your WebSphere Studio workspace:

1. From the Studio menu bar, choose File => Import.
2. The Import wizard opens on its Select page. Select EAR file and click Next.
3. The wizard switches to its Enterprise Application Import page. At the EAR File field, click Browse and

select the XAExampleEAR.ear file you downloaded. The project name will default to XAExampleEAR.
4. Click Finish to import the EAR. Your workspace will now contain three projects named XAExampleEAR,

XAExampleEJB, and XAExampleWeb.

The XAExampleEJB project, not too surprisingly, contains EJBs, so you must generate their deployment
code. Select the XAExampleEJB project, pop up the context (e.g., right mouse button) menu, and select
Generate => Deployment and RMIC code. Use the dialog to generate the code for the
XAExampleSession bean. Application Developer will generate new classes with names like

Page 13 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

EJSLocalStatelessXAExampleSession_5a0991c7. These are the concrete classes with work with the
WebSphere Application Server EJB container to make the example EJBs fulfill all of the qualities defined
by the EJB specification.

You must also add the EAR project to the test server. This is analogous to deploying an EAR, but more
flexible because as you modify the EAR's code, you don't have to redeploy the EAR to use the new code.
Instead, you can simply restart the server or restart the EAR project within the running server and start
testing your code changes.

To add the EAR project to the test server, select the server in the Server Configurations view, pop up the
context (e.g. right mouse button) menu, and select Add and remove projects. In the dialog, add
XAExampleEAR to the list of configured projects. In the Server Configuration view, expand the imported
configuration and you'll now see that the EAR is part of the configuration.

The download contains a file named XAExampleDB.sql, which creates a database table named
XA_EXAMPLE. For Oracle, run this file in SQL*Plus to create the table:
SQL> @C:\temp\XA Example Article\XAExampleDB.sql
DROP TABLE XA_EXAMPLE
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Table created.

For DB2, run the file in the DB2 command line processor:
C:\db2\SQLLIB\BIN>db2 -tvf C:\temp\XA Example Article\XAExampleDB.sql
DROP TABLE XA_EXAMPLE
DB21034E The command was processed as an SQL statement because it was not a
valid Command Line Processor command. During SQL processing it returned:
SQL0204N "DB2.XA_EXAMPLE" is an undefined name. SQLSTATE=42704

CREATE TABLE XA_EXAMPLE (TEXT VARCHAR(256) NOT NULL)
DB20000I The SQL command completed successfully.

Example code
The example application is simple and consists of two classes:

1. XAExampleSessionBean -- A session EJB that performs an XA transaction.
2. XAExampleServlet -- A servlet that invokes the EJB.

The session bean's public method, persistAndSend(String), writes the argument to the two JDBC
tables (DB2 and Oracle) and a JMS message. This functionality alone is not a very useful application;
however, since JDBC and JMS are transactional resources, performing all three tasks requires an XA
transaction. The distributed (two-phase) transaction ensures that all three tasks are performed
successfully. If one task cannot commit successfully, the others are rolled back such that none of the tasks
are performed. This maintains consistency between the two resources.

publicvoid persistAndSend(String data) throws Exception {
try {

 DataSource oracleDS = getDataSource("java:comp/env/jdbc/OracleXADS");
 persist(data, oracleDS);

 DataSource db2DS = getDataSource("java:comp/env/jdbc/DB2XADS");
 persist(data, db2DS);

 QueueConnectionFactory factory =
 getQueueConnectionFactory("java:comp/env/jms/XAExampleQCF");
 Queue queue = getQueue("java:comp/env/jms/XAExampleQ");
 send(data, factory, queue);
 }

catch (Exception e) {
 e.printStackTrace();

this.getSessionContext().setRollbackOnly();
throw e;

 }
 }

The method performs three steps:

Page 14 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

1. Persists the data using the data source named jdbc/OracleXADS.
2. Persists the data using the data source named jdbc/DB2XADS.
3. Sends the data in a JMS message to a queue named jms/XAExampleQ.

If anything goes wrong, the catch block will catch the exception, mark the transaction for rollback, and
rethrow the exception. Just for completeness, here's the rest of the code for implementing the session
bean:

privatevoid persist(String data, DataSource datasource)
throws SQLException {

 System.out.println("Adding a new database row containing: " + data);

 Connection connection = null;
try {

 connection = datasource.getConnection();

 PreparedStatement statement =
 connection.prepareStatement(
 "INSERT INTO XA_EXAMPLE (TEXT) VALUES (?)");
 statement.setString(1, data);
 statement.execute();

 System.out.println("Successfully added row: " + data);
 }

finally {
if (connection != null)

 connection.close();
 }
 }

privatevoid send(String data, QueueConnectionFactory factory, Queue queue)
throws JMSException {

 System.out.println("Sending a message containing: " + data);

 QueueConnection connection = null;
try {

 connection = factory.createQueueConnection();
 QueueSession session =
 connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
 QueueSender sender = session.createSender(queue);
 TextMessage message = session.createTextMessage(data);

 sender.send(message);

 System.out.println("Successfully sent message: " + data);
 }

finally {
if (connection != null)

 connection.close();
 }
 }

private DataSource getDataSource(String jndiName) throws NamingException {
return (DataSource) this.getJNDIObject(jndiName);

 }

private QueueConnectionFactory getQueueConnectionFactory(String jndiName)
throws NamingException {

return (QueueConnectionFactory) this.getJNDIObject(jndiName);
 }

private Queue getQueue(String jndiName) throws NamingException {
return (Queue) this.getJNDIObject(jndiName);

 }

private Object getJNDIObject(String jndiName) throws NamingException {
 Context root = new InitialContext();

return root.lookup(jndiName);
 }

This is standard code for using JDBC and JMS. There isn't even any code to define a transaction or make
it XA. But because the code is invoked by the WebSphere Application Server's EJB container as a single
public EJB method, the container automatically runs the code in a transaction. The container would
normally use a simple (e.g. single phase) transaction, but it automatically detects when the second
transactional resource is updated and converts the transaction to an XA transaction. As part of doing so,
the container informs the resources that it is coordinating an XA transaction for them and to participate
accordingly. All of this behavior is achieved automatically, without any additional code for the developer to
write, simply by implementing the code in an EJB.

Page 15 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Run the example application
Ideally, while you're reading this article, you should also be performing these steps in Application
Developer. If you have been, you have now configured a test server and installed the example EAR.

You can now start the server to run the application. In the Server perspective, go to the Servers view.
Select your server and click Start to run it. If the server starts correctly, you'll see a startup log in the
console similar to this:
JMSMQJDProvid A MSGS0656I: Starting the MQJD JMS Provider
JMSMQJDProvid A MSGS0650I: MQJD JMS Provider open for business
ResourceMgrIm I WSVR0049I: Binding XAExampleQCF as jms/XAExampleQCF
ResourceMgrIm I WSVR0049I: Binding XAExampleQ as jms/XAExampleQ
ResourceMgrIm I WSVR0049I: Binding Example Oracle XA Data Source as jdbc/OracleXADS
ResourceMgrIm I WSVR0049I: Binding Example DB2 XA Data Source as jdbc/DB2XADS
CacheServiceI I DYNA0048I: WebSphere Dynamic Cache initialized successfully.
. . .
ApplicationMg A WSVR0200I: Starting application: XAExampleEAR
EJBContainerI I WSVR0207I: Preparing to start EJB jar: XAExampleEJB.jar
EJBContainerI I WSVR0037I: Starting EJB jar: XAExampleEJB.jar
WebContainer A SRVE0169I: Loading Web Module: XAExampleWeb.
WebGroup I SRVE0180I: [XAExampleWeb] [/XAExampleWeb] [Servlet.LOG]: JSP 1.2 Processor: init
WebGroup I SRVE0180I: [XAExampleWeb] [/XAExampleWeb] [Servlet.LOG]: SimpleFileServlet: init
WebGroup I SRVE0180I: [XAExampleWeb] [/XAExampleWeb] [Servlet.LOG]: InvokerServlet: init
ApplicationMg A WSVR0221I: Application started: XAExampleEAR

Now we can run the application. In your favorite web browser, invoke this URL:
 http://localhost:9080/XAExampleWeb/XAExampleServlet?data=hello%20world

This invokes our XAExampleServlet servlet with a single parameter whose name is data and whose
value is "hello world." If everything runs successfully, the browser will display this result:
Just persisted and sent data: hello world

Likewise, in the server console, you'll see some status messages like these:
SystemOut O Adding a new database row containing: hello world
SystemOut O Successfully added row: hello world
SystemOut O Adding a new database row containing: hello world
SystemOut O Successfully added row: hello world
SystemOut O Sending a message containing: hello world
SystemOut O Successfully sent message: hello world

If all of this works for you, congratulations, you've successfully run an application that uses an XA
transaction spanning JDBC and JMS resources.

Troubleshooting the example application
Several potential problems can prevent you from running the example successfully. Two of them are
common mistakes in deploying the example and are easy to fix. Two others have to do with configuration
problems in the Oracle database and require an Oracle DBA to fix.

The following sections list the problems that can occur, show the exceptions displayed in the Application
Developer console, give a brief description of why the problem occurred, and explain what to do to fix each
problem.

ClassNotFoundException: EJSStatelessXAExampleSessionHomeBean
When starting the server, when the application starts successfully, you get these messages:
ApplicationMg A WSVR0200I: Starting application: XAExampleEAR
EJBContainerI I WSVR0207I: Preparing to start EJB jar: XAExampleEJB.jar
EJBContainerI I WSVR0037I: Starting EJB jar: XAExampleEJB.jar
WebContainer A SRVE0169I: Loading Web Module: XAExampleWeb.
WebGroup I SRVE0180I: [XAExampleWeb] [/XAExampleWeb] [Servlet.LOG]: JSP 1.2 Processor: init
WebGroup I SRVE0180I: [XAExampleWeb] [/XAExampleWeb] [Servlet.LOG]: SimpleFileServlet: init
WebGroup I SRVE0180I: [XAExampleWeb] [/XAExampleWeb] [Servlet.LOG]: InvokerServlet: init
ApplicationMg A WSVR0221I: Application started: XAExampleEAR

However, you may instead get an error like this:
ApplicationMg A WSVR0200I: Starting application: XAExampleEAR
EJBContainerI I WSVR0207I: Preparing to start EJB jar: XAExampleEJB.jar

Page 16 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

BeanMetaData E CNTR0075E: The user-provided class
 "com.ibm.example.xa.EJSStatelessXAExampleSessionHomeBean_5a0991c7"
 needed by the EnterpriseBean could not be found or loaded.
EJBContainerI E WSVR0209E: Unable to prepare EJB jar XAExampleEJB.jar
 [class com.ibm.ws.runtime.component.DeployedModuleImpl],
 enterprise bean com.ibm.etools.ejb.impl.SessionImpl(XAExampleSession)
 (transactionType: Container, sessionType: Stateless)
 java.lang.ClassNotFoundException:
 com.ibm.example.xa.EJSStatelessXAExampleSessionHomeBean_5a0991c7
 at com.ibm.ws.classloader.CompoundClassLoader.findClass(CompoundClassLoader.java:351)
 at com.ibm.ws.classloader.CompoundClassLoader.loadClass(CompoundClassLoader.java:261)
 at java.lang.ClassLoader.loadClass(ClassLoader.java(Compiled Code))
 at com.ibm.ejs.container.BeanMetaData.loadExistedClass(BeanMetaData.java:2573)
 at com.ibm.ejs.container.BeanMetaData.<init>(BeanMetaData.java:888)
 at com.ibm.ws.runtime.component.EJBContainerImpl.createBeanMetaData(EJBContainerImpl.java:980)
 . . .

DeployedAppli W WSVR0206E: Module, XAExampleEJB.jar, of application,
 XAExampleEAR.ear/deployments/XAExampleEAR, failed to start
ApplicationMg W WSVR0101W: An error occurred starting, XAExampleEAR
ApplicationMg A WSVR0217I: Stopping application: XAExampleEAR
ApplicationMg A WSVR0220I: Application stopped: XAExampleEAR

The error is ClassNotFoundException, where the missing class is
com.ibm.example.xa.EJSStatelessXAExampleSessionHomeBean_5a0991c7. It occurred while
attempting to start the EJB jar XAExampleEJB.jar.

What this indicates is that you forgot to generate the EJB code, so the container cannot find the generated
Home class for the XAExampleSession bean. To fix this problem, generate the Deployment and RMIC
code for all of the beans in the indicated EJB project, then restart the server.

SQLException: Table or view does not exist
When running the example for the first time, you may get an error that looks like this:
WSRdbDataSour I DSRA8203I: Database product name: Oracle
WSRdbDataSour I DSRA8204I: Database product version:
 Personal Oracle9i Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
WSRdbDataSour I DSRA8205I: JDBC driver name : Oracle JDBC driver
WSRdbDataSour I DSRA8206I: JDBC driver version : 9.2.0.1.0
WebGroup E SRVE0026E: [Servlet Error]-[ORA-00942: table or view does not exist
]: java.sql.SQLException: ORA-00942: table or view does not exist

 at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:134)
 at oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:289)
 at oracle.jdbc.ttc7.Oall7.receive(Oall7.java:573)
 at oracle.jdbc.ttc7.TTC7Protocol.doOall7(TTC7Protocol.java:1891)
 at oracle.jdbc.ttc7.TTC7Protocol.parseExecuteFetch(TTC7Protocol.java:1093)
 at oracle.jdbc.driver.OracleStatement.executeNonQuery(OracleStatement.java:2047)
 at oracle.jdbc.driver.OracleStatement.doExecuteOther(OracleStatement.java:1940)
 at oracle.jdbc.driver.OracleStatement.doExecuteWithTimeout(OracleStatement.java:2709)
 at oracle.jdbc.driver.OraclePreparedStatement.executeUpdate(OraclePreparedStatement.java:589)
 at oracle.jdbc.driver.OraclePreparedStatement.execute(OraclePreparedStatement.java:656)
 at com.ibm.ws.rsadapter.jdbc.WSJdbcPreparedStatement.execute(WSJdbcPreparedStatement.java:386)
 at com.ibm.example.xa.XAExampleSessionBean.persist(XAExampleSessionBean.java:45)
 at com.ibm.example.xa.XAExampleSessionBean.persistAndSend(XAExampleSessionBean.java:30)
 at com.ibm.example.xa.EJSLocalStatelessXAExampleSession_5a0991c7.persistAndSend
 (EJSLocalStatelessXAExampleSession_5a0991c7.java:23)
 at XAExampleServlet.persistAndSend(XAExampleServlet.java:44)
 at XAExampleServlet.doGet(XAExampleServlet.java:28)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:740)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
 . . .

The error is SQLException, error code ORA-00942; specifically, an expected database table or view does
not exist. However, the error does not tell you which table or view is missing. The stack trace does show
that the error occurred in the method XAExampleSessionBean.persist, in line 45 of the .java file.
Click on that line of the stack trace and the editor takes you to the execute line of this code:
 PreparedStatement statement =
 connection.prepareStatement("INSERT INTO XA_EXAMPLE VALUES (?)");
 statement.setString(1, data);
 statement.execute();

So the problem occurred while inserting a row into the XA_EXAMPLE table. What this indicates is that you
forgot to run the SQL file that creates the database tables. To fix this problem, run the SQL file:
SQL> @C:\workspace\XAExampleEJB\XAExampleDB.sql

Now run the example again.

Page 17 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

OracleXAException: XAER_RMERR (Internal XA Error)
When running the example for the first time, you may get an error that looks like this:
WSRdbDataSour I DSRA8203I: Database product name : Oracle
WSRdbDataSour I DSRA8204I: Database product version :
 Personal Oracle9i Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
WSRdbDataSour I DSRA8205I: JDBC driver name : Oracle JDBC driver
WSRdbDataSour I DSRA8206I: JDBC driver version : 9.2.0.1.0
WSRdbXaResour E DSRA0304E: XAException occurred. XAException contents and details are:
The XA Error is : -3
The XA Error message is : A resource manager error has occurred in the transaction branch.
The Oracle Error code is : 65535
The Oracle Error message is: Internal XA Error
The cause is : null.
WSRdbXaResour E DSRA0302E: XAException occurred. Error code is: XAER_RMERR.
 Exception is: <null>
RegisteredRes E WTRN0078E: An attempt by the transaction manager to call start
 on a transactional resource has resulted in an error.
 The error code was XAER_RMERR. The exception stack trace follows:
 oracle.jdbc.xa.OracleXAException
 at oracle.jdbc.xa.OracleXAResource.checkError(OracleXAResource.java:1157)
 at oracle.jdbc.xa.client.OracleXAResource.start(OracleXAResource.java:295)
 at com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl.start(WSRdbXaResourceImpl.java:927)
 at com.ibm.ejs.j2c.XATransactionWrapper.start(XATransactionWrapper.java:1267)
 at com.ibm.ws.Transaction.JTA.JTAResourceBase.start(JTAResourceBase.java:164)
 at com.ibm.ws.Transaction.JTA.RegisteredResources.startRes(RegisteredResources.java:389)
 at com.ibm.ws.Transaction.JTA.TransactionImpl.enlistResource(TransactionImpl.java:1903)
 at com.ibm.ws.Transaction.JTA.TranManagerSet.enlist(TranManagerSet.java:494)
 . . .

The error is that the transaction manager was unable to convert the transaction to an XA transaction.
Specifically, Oracle returned an error XAER_RMERR, error code number 65535. ORA-65535 is not a valid
error code and XAER_RMERR essentially means that something went wrong with XA. What this indicates is
that your Oracle database is not configured to support XA transactions. Therefore, when the WebSphere
Application Server transaction manager instructs the Oracle transaction manager to participate in this XA
transaction, Oracle cannot comply and throws this exception.

The solution is to run two scripts that are included in the Oracle install. This will likely need to be
performed by your Oracle DBA, since you must be logged into Oracle as SYSOPER or SYSDBA in order to
have the necessary permissions for these scripts to work. The scripts are:

directory: <ORACLE_HOME>\javavm\install

file:initxa.sql

file: initjvm.sql

The initxa.sql script configures the database for XA. Once it runs successfully, your database is
configured for XA. The script may run successfully the first time you try. Unfortunately, it probably will not
run successfully because some of the database's memory spaces are too small. To fix this, run the
initjvm.sql script. It will probably fail too, but in doing so it will indicate which parameters need to be
adjusted. The parameters are stored in this file:

directory: <ORACLE_HOME>\database

file: init<DATABASE_SID>.ora

This table shows two parameters that typically need to be increased. Your particular database
configuration may require adjusting different parameters.

Oracle Initialization Values

Parameter Name Minimum Value

java_pool_size 12000000

Page 18 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Parameter Name Minimum Value

shared_pool_size 24000000

Once initjvm.sql runs successfully, then initxa.sql should run successfully. The Oracle database
will need to be restarted for the changes to take effect. You can then restart the WebSphere Studio test
server and retry running the example.

XAException: XAER_RMERR (xa_recover)
You may be able to run the example just fine, at least after fixing a few problems. You may develop an
application that uses XA transactions with Oracle and be able to run it fine. But one day you may find that
you cannot start your WebSphere Application Server. This will probably occur after crashing WebSphere
and/or Oracle without shutting down the servers properly. The WebSphere startup error looks like this:
SecurityCompo I SECJ0243I: Security service started successfully
SecurityCompo I SECJ0210I: Security enabled false
WSRdbXaResour E DSRA0304E: XAException occurred.
 XAException contents and details are: The cause is : null.
36185510 WSRdbXaResour E DSRA0302E: XAException occurred.
 Error code is: XAER_RMERR. Exception is: <null>
XARminst E WTRN0037W: The transaction service encountered an error
 on an xa_recover operation. The resource was J2CXAResourceInfo :
cfName = XA Example Data Source
configProps = [Deployed Resource Adapter Properties]
 OptionC_authDataAlias java.lang.String scott
 UserName java.lang.String scott
 Password java.lang.String ********
 TransactionResourceRegistration java.lang.String dynamic
 InactiveConnectionSupport java.lang.Boolean true
 secureMode boolean true
 . . .
The error code was XAER_RMERR. The exception stack trace follows:
 javax.transaction.xa.XAException
 at oracle.jdbc.xa.OracleXAResource.recover(OracleXAResource.java:626)
 at com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl.recover(WSRdbXaResourceImpl.java:672)
 at com.ibm.ws.Transaction.JTA.XARminst.recover(XARminst.java:130)
 at com.ibm.ws.Transaction.JTA.XARecoveryData.recover(XARecoveryData.java:673)
 at com.ibm.ws.Transaction.JTA.RecoveryManager.resync(RecoveryManager.java:1369)
 at com.ibm.ws.Transaction.JTA.ResyncThread.run(RecoveryManager.java:1440)

ApplicationMg A WSVR0200I: Starting application: IBMUTC

The error is that the transaction manager was unable to perform an XA recover operation. Specifically,
Oracle returned an error XAER_RMERR. As with the last error, XAER_RMERR indicates that something
went wrong with XA. What this indicates is that WebSphere did not close its connection with Oracle
properly, probably because either or both servers were not shut down properly; they crashed. Now that
WebSphere Application Server is attempting to reestablish the connection, Oracle needs to rollback any
transactions that were in progress, but the Oracle user that WebSphere is using to log into the database
(scott, in this example) cannot perform the recovery.

The solution is to give the Oracle user permission to perform the recovery, specifically to access the
internal Oracle tables used to manage recovery. In SQL Plus as SYSOPER or SYSDBA, run this command:
 grant select on DBA_PENDING_TRANSACTIONS to PUBLIC

If you don't want to grant this permission to all users, specify only the user listed in the error (in this
example, scott). Then restart the database, and this time you should be able to successfully restart the
WebSphere server.

Conclusions
This article has shown you how to create a WebSphere Studio Application Developer test server
configured with a JDBC data source for Oracle XA, a data source for DB2 XA, and a JMS queue
connection factory and queue. It described a simple session EJB method that updates both JDBC and

Page 19 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Resources
Browse for books on these and other technical topics.

IBM WebSphere: Deployment and Advanced Configuration by Roland Barcia,
et. al., Addison-Wesley 2004

WebSphere Studio Application Developer V5 Programming Guide, by Ueli
Wahli, et. al., IBM Redbook SG246957

"Transactions in J2EE" by Jan Smolenski and Peter Kovari, IBM Redpaper
REDP3659

"Distributed Transaction Processing: The XA Specification" by The Open
Group, February 1992, UK ISBN 1-872630-24-3

"Transaction Service Specification" (CORBA OTS) by the Object Management
Group

Dig deeper into WebSphere on
developerWorks

Overview

New to WebSphere

Technical library (articles and more)

Forums

Community

Downloads

Products

Events

Bluemix Developers
Community
Get samples, articles, product
docs, and community resources to
help build, deploy, and manage
your cloud apps.

developerWorks Labs
Experiment with new directions in
software development.

DevOps Services
Software development in the
cloud. Register today to create a
project.

IBM evaluation software
Evaluate IBM software and
solutions, and transform
challenges into opportunities.

JMS data, necessitating an XA transaction. You've seen what this simple application looks like when it
runs correctly, as well as some of the errors that can occur and how to fix them. With this knowledge, you
can now write WebSphere Java applications that use XA transactions.

Acknowledgements
The author would like to thank Tom Alcott, Keys Botzum, Roland Barcia, Bill Hines, and Paul Ilechko for
their help in developing this article.

Questions from users
Question 1: Hi Bobby -- your article is very useful and I was looking desperately to some information it
contains a few months ago when I tried to make this work with Oracle. I just wanted to mention that in our
case, it didn't work without the property "transactionBranchesLooselyCoupled" set to "true" in the
datasource. Best regards, Daniel

Response from author: Daniel -- you are correct xxxxxxxxxxxxxxx

Download
Description Name Size

Code sample XA_example_article.zip (HTTP | FTP) 43 KB

Page 20 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

Page 21 of 21Configuring and using XA distributed transactions in WebSphere Studio

7/7/2014http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woo...

