
ibm.com/redbooks

IBM High Availability Solution
for IBM FileNet P8 Systems

Provides HA strategies and options for
IBM FileNet P8 systems

Includes HA implementation for
Content Engine, Process Engine,
and Application Engine

Describes HA implementation for
Content Search Engine, Image
Services, and databases

Front cover

Wei-Dong Zhu
Whei-Jen Chen
Scott Braman
Andrea Calfurni
Jesse F Chen
Jesse C Clem

Cristina Y. Doi
Atul V. Gore
Jochen Kerscher
Tim Morgan
Andrei Socoliuc

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM High Availability Solution for IBM FileNet P8
Systems

August 2009

International Technical Support Organization

SG24-7700-00

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2009)

This edition applies to Version 4.0 of IBM FileNet Content Manager (product number 5724-R81),
Version 4.0 of IBM FileNet Business Process Manager (product number 5724-R76), and
Version 4.1.2 IBM FileNet Image Services (5724-R95).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xii
Become a published author . xv
Comments welcome. xv

Part 1. Concepts and overview . 1

Chapter 1. Introducing high availability . 3
1.1 High availability . 4
1.2 Measuring availability . 4

1.2.1 Planned compared to unplanned outages . 5
1.2.2 Availability matrix . 6
1.2.3 Total availability of a system . 7

1.3 Levels of availability . 8
1.4 High availability cost compared to loss . 11
1.5 High availability and continuous availability . 12
1.6 IBM FileNet P8 platform infrastructure fundamentals 13

1.6.1 Application clustering (server farms). 16
1.6.2 Platform clustering (server clusters) . 17
1.6.3 Choosing between a farm or a cluster . 18

Chapter 2. IBM FileNet P8 system architectural overview. 19
2.1 Architectural overview . 20
2.2 Content Engine . 21

2.2.1 Database. 25
2.2.2 Communication protocols . 25

2.3 Process Engine . 26
2.3.1 Component Integrator . 28
2.3.2 Communication protocols . 29

2.4 Application Engine. 29
2.4.1 Communication protocols . 32

2.5 Image Services and CFS-IS . 32
2.5.1 Communication protocols . 34
2.5.2 CFS-IS architecture. 34

2.6 Content Search Engine . 36
2.6.1 Content Search Engine architecture . 37
© Copyright IBM Corp. 2009. All rights reserved. iii

2.6.2 K2 Master Administration Server . 39
2.6.3 K2 Administration Server . 39
2.6.4 K2 Ticket Server . 39
2.6.5 K2 Index Server . 40
2.6.6 K2 Broker and Search Servers . 41
2.6.7 Communication protocols . 42

Chapter 3. High availability strategies for IBM FileNet P8 systems 43
3.1 Component redundancy . 44
3.2 Virtualization compared to high availability . 45
3.3 Application Engine. 46

3.3.1 Session affinity for Application Engine . 48
3.4 Content Engine . 48

3.4.1 Load balancing the EJB transport . 49
3.4.2 Load balancing the WSI transport . 49
3.4.3 Session affinity for Content Engine . 49

3.5 Process Engine . 50
3.5.1 Session affinity for Process Engine. 51

3.6 Content Search Engine . 51
3.7 Image Services and CFS-IS . 55
3.8 Summary . 56

Part 2. High availability implementation for IBM FileNet P8 system components 59

Chapter 4. Infrastructure setup: Introducing the case study 61
4.1 Case study introduction. 62
4.2 Hardware. 62

4.2.1 IBM p5 595 features and overview . 63
4.2.2 BIG-IP 6800 system features and overview 66

4.3 Physical architecture . 66
4.4 Architecture summary . 69

4.4.1 Scenario A. 69
4.4.2 Scenario B. 71

4.5 Installation sequence reference . 72

Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 73
5.1 BIG-IP System overview . 74

5.1.1 Core modules . 74
5.1.2 Key benefits . 76

5.2 BIG-IP configuration for IBM FileNet P8 . 77
5.2.1 Configuring the self IP and virtual local area networks 79
5.2.2 Define the pools for Application Engine, Content Engine, and Process

Engine. 84
5.2.3 Define the virtual servers for Application Engine, Content Engine, and
iv IBM High Availability Solution for IBM FileNet P8 Systems

Process Engine. 88
5.2.4 Enable session affinity for Content Engine in BIG-IP 90
5.2.5 Configure health monitors for Application Engine, Content Engine, and

Process Engine. 91
5.2.6 Validate load balancing . 97
5.2.7 Test 1: Load balancing on two HTTP nodes 99
5.2.8 Test 2: Load balancing on one HTTP node 100
5.2.9 Test 3: Load balancing on two CE nodes . 101
5.2.10 Test 4: Load balancing on one CE node. 103
5.2.11 Test 5: Load balancing on two PE nodes 104
5.2.12 Test 6: Load balancing on one PE node . 106

5.3 Setting up and configuring standby BIG-IP . 106
5.3.1 Configuring the new BIG-IP in a redundant pair 108
5.3.2 Configuring the original BIG-IP as a standby system 110
5.3.3 Synchronizing configurations . 111
5.3.4 Viewing redundancy states and synchronization status 111
5.3.5 Validate standby BIG-IP failover . 113

5.4 Set up administrative partitions for P8. 114

Chapter 6. Web tier implementation . 119
6.1 Introduction . 120
6.2 Hardware components . 121

6.2.1 Load balancers . 122
6.3 Software components . 123

6.3.1 IBM HTTP Server system requirements . 123
6.3.2 HTTP server and plug-in setup and management overview 123
6.3.3 Web tier component installation preparation. 124
6.3.4 IBM HTTP Server installation steps . 126
6.3.5 Web server plug-ins installation steps. 127
6.3.6 Fix Pack 17 installation steps . 129

6.4 Failover test at the Web tier level . 130
6.5 Maintenance recommendations . 131

Chapter 7. Application Engine implementation . 133
7.1 Introduction . 134
7.2 High availability options for Application Engine. 134
7.3 Design for the case study . 135
7.4 Setup for active/active Application Engine cluster (farm) 136

7.4.1 Procedure for Application Engine cluster setup 136
7.5 High availability tests at the Application Engine level 146

7.5.1 Application Engine basic availability test. 146
7.5.2 Application Engine node availability test 1 148
7.5.3 Application Engine node availability test 2 149
 Contents v

Chapter 8. Content Engine implementation . 151
8.1 Introduction . 152
8.2 High availability options for Content Engine . 152
8.3 Case study design . 153
8.4 Setting up the active/active Content Engine cluster (farm) 154

8.4.1 Procedure for the Content Engine cluster setup 155
8.5 High availability tests at the Content Engine level. 192

8.5.1 Content Engine basic availability test . 193
8.5.2 Node availability test 1 . 195
8.5.3 Node availability test 2 . 197
8.5.4 Load balance test . 199

Chapter 9. Process Engine implementation . 203
9.1 Introduction . 204
9.2 High Availability options for Process Engine . 204
9.3 Design for the case study . 205
9.4 Setup for active/active Process Engine cluster (farm). 206

9.4.1 Procedure for PE active/active cluster (farm) setup 207
9.5 High availability tests at the Process Engine level 214

9.5.1 Process Engine basic availability test . 214
9.5.2 Node availability test 1 . 216
9.5.3 Node availability test 2 . 217
9.5.4 High availability test . 218

Chapter 10. Content Search Engine implementation. 221
10.1 Introduction . 222
10.2 Content Search Engine high availability strategy 223
10.3 Design for the case study . 224
10.4 Installing and configuring the CSE components 225

10.4.1 System prerequisites. 225
10.4.2 Installing Autonomy K2 on IBM AIX 5.3.0 229
10.4.3 Configure an HACMP resource group for CSE. 239
10.4.4 Configure an HACMP application server for CSE. 248
10.4.5 Updating the Content Engine Server farm 253
10.4.6 Configuring document classes and properties for CBR 258
10.4.7 Validate basic indexing and searching operations 266

10.5 High availability tests at the CSE level . 276
10.5.1 CSE planned failover and failback procedures 277
10.5.2 CSE unplanned failover and failback procedures 279
10.5.3 Content Engine failures: K2 Dispatcher Queue 280

10.6 Troubleshooting the Content Search Engine . 282

Chapter 11. Image Services implementation . 285
11.1 High availability options for Image Services . 286
vi IBM High Availability Solution for IBM FileNet P8 Systems

11.1.1 High availability for Image Services . 286
11.1.2 IS cluster takeover example . 287
11.1.3 High availability considerations for IS . 288

11.2 Installing IS in a high availability environment. 290
11.2.1 IS HA support and documentation . 290
11.2.2 Fresh installation of IS on HACMP . 291
11.2.3 Integrating an existing IS into HACMP . 335
11.2.4 Connecting optical storage libraries . 337

11.3 High availability test for IS cluster . 341
11.3.1 Restart and takeover tests . 341
11.3.2 Database reconnect test . 352

11.4 IS maintenance in HACMP clusters . 355
11.4.1 Managing IS as a cluster resource . 355
11.4.2 Overview of local and shared resources . 357
11.4.3 IS update procedures with HACMP . 364
11.4.4 Troubleshooting and log files . 366

Chapter 12. DB2 implementation . 369
12.1 DB2 high availability strategies for FileNet P8 370

12.1.1 Database considerations for FileNet P8 . 371
12.1.2 Scenarios for DB2 high availability . 372

12.2 Setting up DB2 high availability for FileNet P8 380
12.2.1 The lab environment . 380
12.2.2 Prepare the DB2 setup . 383
12.2.3 Install DB2 server . 385
12.2.4 DB2 configuration for FileNet P8. 393
12.2.5 Setting up HADR. 396
12.2.6 Integrating DB2 HADR and IBM Tivoli System Automation for

Multiplatforms . 401
12.3 High availability tests for DB2 . 413

12.3.1 Test case description . 413
12.3.2 Performing the tests . 416

12.4 Maintenance and upgrade recommendations for DB2 425
12.4.1 DB2 upgrade for FileNet P8 . 425
12.4.2 DB2 maintenance for FileNet P8. 427

Chapter 13. System-level failover testing . 431
13.1 System-level testing . 432

13.1.1 Prerequisites . 432
13.1.2 HTTP servers . 433
13.1.3 Application Engine: Workplace . 434
13.1.4 Content Engine . 435
13.1.5 Content Search Engine . 436
 Contents vii

13.1.6 Process Engine server farm . 437
13.1.7 Image Services . 438
13.1.8 Databases . 439

13.2 Actual testing process and results. 439
13.2.1 HTTP servers . 440
13.2.2 Application Engine: Workplace . 442
13.2.3 Content Engine and Process Engine . 445
13.2.4 Database failover . 451

Related publications . 455
IBM Redbooks publications . 455
Other publications . 455
Online resources . 456
How to get IBM Redbooks publications . 457
Help from IBM . 457

Index . 459
viii IBM High Availability Solution for IBM FileNet P8 Systems

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Autonomy materials reprinted with permission from Autonomy Corp. Refer to http://www.f5.com for more
information about Autonomy Corp.

F5 materials reprinted with permission from F5 Networks, Inc.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
© Copyright IBM Corp. 2009. All rights reserved. ix

http://www.f5.com

programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
DB2®
eServer™
FileNet®
FlashCopy®
HACMP™

IBM®
Informix®
Passport Advantage®
POWER5+™
PowerHA™
pSeries®
Redbooks®

Redbooks (logo) ®
System p5®
System p®
System Storage™
Tivoli®
TotalStorage®
WebSphere®

The following terms are trademarks of other companies:

BIG-IP® is a registered trademark F5 Networks, Inc.

FileNet, and the FileNet logo are registered trademarks of FileNet Corporation in the United States, other
countries or both.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

ACS, JBoss, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S.
and other countries.

EJB, J2EE, Java, JDBC, JRE, JSP, JVM, Solaris, Sun, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Expression, Internet Explorer, Microsoft, Outlook, SharePoint, SQL Server, Windows Server,
Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM High Availability Solution for IBM FileNet P8 Systems

http://www.ibm.com/legal/copytrade.shtml

Preface

Many organizations require almost continuous availability of their mission-critical,
IBM® FileNet® P8 systems. Loss of system resources and services can
translate directly into lost revenue and lost customers. The goal, therefore, is to
design and implement IBM FileNet P8 systems, which are highly available by
compensating for both planned and unplanned system outages, and therefore to
eliminate single points of failure.

IBM FileNet P8 Platform provides availability features that are built into the core
components. With these features, the high availability (HA) of an IBM FileNet P8
system can be achieved through redundancy: redundant components, redundant
systems, and redundant data. Hardware and software components might fail.
With redundancy, the failure can be eliminated or minimized.

This IBM Redbooks® publication covers strategies and options for core IBM
FileNet P8 system components. In addition, the book provides detailed,
step-by-step procedures that we used to implement high availability for our case
study IBM FileNet P8 system. This book serves as both a theoretical and
practical reference when you design and implement highly available IBM FileNet
P8 systems.

The core components and the high availability implementation that we discuss in
the book include:

� Hardware load balancer (F5 BIG-IP®)

� Web tier (Farm)

� Application Engine (Farm)

� Content Engine (Farm)

� Process Engine (Farm, using a hardware load balancer)

� Content Search Engine (High-Availability Cluster Multi-Processing
(HACMP™))

� Image Services (HACMP)

� DB2® (Data Server High Availability and Disaster Recovery (HADR) feature
with IBM Tivoli System Automation for Multiplatforms (TSA))

This book is intended for IT architects, IT specialists, project managers, and
decision makers, who need to identify the best high availability strategies and
integrate them into the IBM FileNet P8 system design process.
© Copyright IBM Corp. 2009. All rights reserved. xi

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Wei-Dong Zhu (Jackie) is an Enterprise Content Management (ECM) Project
Leader with International Technical Support Organization. She has more than 10
years of software development experience in accounting, image workflow
processing, and digital media distribution. Jackie holds a Master of Science
degree in Computer Science from the University of the Southern California.
Jackie joined IBM in 1996. She is a Certified Solution Designer for IBM Content
Manager and has managed and led the production of many Enterprise Content
Management IBM Redbooks publications.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in database
design and modeling, DB2 system administration, and application development.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development, as well as an IBM Certified IT Specialist.

Scott Braman is a Managing Consultant in the IBM ECM Lab Services Group,
where he is currently focuses on delivering High Availability and Disaster
Recovery solutions for the FileNet P8 platform. Prior to joining IBM, he served in
various roles in the arena of midrange systems design and operations. He holds
a Bachelor of Science degree from the University of Georgia, is certified in Six
Sigma, and has over 10 years experience and technical expertise across a broad
range of midrange infrastructure technologies.

Andrea Calfurni is an AMS IT specialist in Italy. He has six years of experience
in CM8 fields. He holds a degree in Mathematics from the University of Florence
and joined IBM in 1989. His areas of expertise include AIX®, HACMP,
WebSphere®, UDB, and MQ.

Jesse F Chen is a Senior Software Engineer in the Information Management
group with a focus on software performance and scalability. He has 12 years of
IT experience in software development and services. His recent projects include
FileNet and DB2 integration and optimization, Master Data Management, and
WebSphere Product Center. Jesse is also a frequent contributor and speaker at
multiple ECM conferences on topics of performance, scalability, and capacity
planning. He earned a Bachelor degree in Electrical Engineering and Computer
Science from the University of California, at Berkeley, and a M.S. degree in
Management in Information and Systems from New York University.
xii IBM High Availability Solution for IBM FileNet P8 Systems

Jesse C Clem is a Master Certified IT Specialist and Solutions Architect in the
IBM Software Group. He has more than 10 years of experience in the Enterprise
Content Management field. He holds a degree in Computer Science from Taylor
University. His areas of expertise include Enterprise Network Architecture,
Enterprise Storage, Disaster Recovery and Continuity Planning, Enterprise
Content Management and Collaboration, and Project Management. He has been
with IBM since 2004 and holds many industry certifications.

Cristina Yoshimi Doi is an ECM IT Specialist in Brazil. She has ten years of
experience in the Information Technology field at Informix® and IBM. Cristina
joined IBM in 2001. Her areas of expertise include the IBM Content Management
portfolio, from solution design to quality assurance, and technical consulting. She
is certified in IBM Content Manager, IBM DB2 Content Manager OnDemand for
Multiplatforms, and DB2. She holds a Bachelor degree in Computer Science
from the University of Sao Paolo, Brazil.

Atul V. Gore is an IT Professional with IBM Information Management Lab
Services and has a total of 15 years of IT experience. He has been working with
the IBM Enterprise Content Management portfolio for past six years. Atul is IBM
FileNet P8-certified and is an expert in IBM Content Manager Enterprise Edition.
Atul has designed, installed, configured, maintained, and supported various IBM
Enterprise Content Management client solutions worldwide. He also has
extensive experience in application development and experience in the
Manufacturing and Telecommunications industries. Atul holds many professional
certifications, including IBM DB2 UDB Database, Oracle® Database, Solaris™,
and TCP/IP. He holds a Masters degree in Computer Science from the University
of Pune, India.

Jochen Kerscher is an ECM High Availability Systems Specialist with the IBM
Software Group in Frankfurt/Mainz, Germany. Jochen has 13 years of
experience in Information Management at FileNet and IBM. He holds a Masters
degree in Computer Science from the University of Applied Sciences Wuerzburg.
Jochen has designed, implemented, and upgraded High Availability and Disaster
Recovery solutions with FileNet clients worldwide.

Tim Morgan is a Software Architect for the P8 platform, specializing in
performance, high availability, and disaster recovery. He has 25 years
experience in the computer field, ranging from UNIX system management to
designing and implementing call processing software for the telephony industry.
Tim joined FileNet in 2004 in the Performance Analysis group. He earned a
Bachelor degree in Physics and Computer Science from Vanderbilt University,
and M.S. and Ph.D. degrees in Information and Computer Science from the
University of California, Irvine.
 Preface xiii

Andrei Socoliuc is a technical team leader for Server and Storage group in ITS
Romania. He has more than 10 years experience in IT infrastructure. Andrei
holds a Master of Science degree in Computer Science from the University
Politehnica of Bucharest. Andrei joined IBM in 1998. He is a Certified Advanced
Technical Expert IBM System p® and also a Certified Tivoli® Storage Manager
Specialist. He has worked extensively on HACMP and Disaster Recovery
projects, and he is also a coauthor of various HACMP IBM Redbooks
publications.

Special thanks to the following people for their contributions to this project:

Patrick Chesnot
Chuck Fay
Jean-Marc Vergans
IBM Software Group, Costa Mesa, US

We also want to thank the following people, who have contributed to this project:

Mohammed Attar
Kenytt Avery
Alan Babich
Yuan-Hsin Chen
Kenny H Kim
Eric Fonkalsrud Jr
Diane Leinweber
Linda McDonald
Stephen R. (Steve) Timm
Pat Simpson
IBM Software Group, Costa Mesa, US

Richard Heffel
William H. McWherter
Leonora Wang
IBM Software Group, San Jose, US

Bernie Schiefer
Steve Raspudic
IBM Software Group, Canada

Octavian Lascu
Global Technology Services, IBM Romania

Paolo Lorenzetti
Global Services, IBM Italy
xiv IBM High Availability Solution for IBM FileNet P8 Systems

Randy Cleveland
Mike Schrock
F5 Networks, Inc.

Emma Jacobs
Deanna Polm
International Technical Support Organization, San Jose Center

Become a published author

Join us for a two- to six-week residency program. Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us.

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publication form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi IBM High Availability Solution for IBM FileNet P8 Systems

Part 1 Concepts and
overview

Part 1
© Copyright IBM Corp. 2009. All rights reserved. 1

2 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 1. Introducing high availability

High availability is important to mission-critical applications. Maintaining high
levels of access to content within an IBM FileNet P8 environment can be
challenging. This chapter provides an introduction to concepts that are critical to
high availability and its implementation.

We discuss the following topics:

� High availability
� Measuring availability
� Levels of availability
� High availability cost compared to loss
� High availability and continuous availability
� IBM FileNet P8 platform infrastructure fundamentals

1

© Copyright IBM Corp. 2009. All rights reserved. 3

1.1 High availability

Availability is a measure of the time that a server or process functions normally
for general usage, as well as a measure of the amount of time that the recovery
process requires after a component failure.

High availability is system design and implementation that achieves system and
data availability almost all of the time, 24 hours a day, 7 days a week, and 365
days a year. High availability does not equate to 100% availability. To achieve
100% availability is not a cost-effective reality for the large majority of
implementations today; rather, it is a goal.

Many organizations require almost continuous availability of their mission-critical
applications and server resources. Loss of system resources and services, also
called a system outage, can translate directly into lost revenue or lost customers.
The goal, therefore, is to design and implement systems that are highly available
by compensating for both planned and unplanned outages that can be caused by
a single point of failure.

Vertical scalability provides availability by using multiple processes. However,
the physical machine might become a single point of failure. A highly available
system topology, therefore, typically involves both vertical and horizontal scaling
with redundancy across multiple processes, servers, and machines.

The IBM FileNet P8 Platform provides availability features that are built into the
core components. With these features, high availability of an IBM FileNet P8
system can be achieved through redundancy: redundant components, redundant
systems, redundant data, and even redundant people. Hardware and software
components might fail. With redundancy, the failure can be eliminated or
minimized. Redundancy is the key of a highly available system.

1.2 Measuring availability

Availability is measured in percentage of time. If a system is available 99% of the
time for normal business operation, the system’s availability is 99%. This
availability percentage translates to the average of the specific amount of
downtime per day or per year.

Note: Redundancy is the key to achieve high availability and avoid single
points of failure.
4 IBM High Availability Solution for IBM FileNet P8 Systems

To truly measure the availability of a system, we must first differentiate the
planned outages and the unplanned outages.

1.2.1 Planned compared to unplanned outages

Outages can be broadly classified into two categories. One category
encompasses the planned outages that take place when the operations staff
takes a server offline to perform backups, upgrades, maintenance, and other
scheduled events. The other type is unplanned outages that occur due to
unforeseen events, such as power loss, a hardware or software failure, system
operator errors, security breaches, or natural disasters. As a result, system
downtime can be caused by both planned and unplanned events, as shown in
Table 1-1. Planned events can account for as much as 90% of downtime.
Unplanned events account for 10% of downtime. The most important issue is
how to minimize the unplanned downtime, because nobody knows when the
unplanned downtime occurs, and businesses require that their systems are up
during normal operating hours.

Table 1-1 Planned outages compared to unplanned outages

Unplanned outages (failures) are spread across the various components that
make up an IBM P8 Platform, such as hardware, software, and applications. It is
important to understand that a redundant hardware-only solution clearly helps to
prevent unplanned outages, but a true highly available system must take into
account all the components of an end-to-end solution. You must also include the
human factor. The human error factor can be a major contributor to downtime.
Although education is important, it is also important, or perhaps even more
important, to design easy-to-use system management facilities with
well-documented and executed polices and procedures to help minimize any
potential human factors contributing to downtime.

Type Planneda

a. source: IBM TotalStorage Solutions for Disaster Recovery, SG24-6547

Unplanned

Software 13% 30%

Hardware 8% 15%

Application 8% 27%

Network 10% N/A

Operation 52% 25%

Other 9% 3%
 Chapter 1. Introducing high availability 5

1.2.2 Availability matrix

In an ideal environment, we strive for no unplanned outage, or 100% uptime. In
reality, a 100% uptime system is expensive to implement. For certain
applications, 99.9% uptime is adequate, leaving a downtime of only 1.4 minutes
per day on average or 8.8 hours per year. See the following formula:

With 99.9% uptime, the total downtime
= (100% - 99.9%) x 24 hours/day x 60 minutes/hour
= 1.4 minutes per day on average OR
= 1.4 minutes/day x 365 days = 8.8 hours per year

For certain applications, 99.99% or higher uptime is required. It is common to
refer to 99%, 99.9%, 99.99%, and 99.999% as two nines, three nines, four nines,
and five nines. The five nines uptime is generally thought of as the most
achievable system with reasonable costs, leaving a downtime of less than a
second per day on average or 5.26 minutes per year. See the following formula:

With 99.999% uptime, the total downtime
= (100% - 99.999%) x 24 hours/day x 60 minutes/hour x 60 seconds/minute
= 0.86 second (less than a second) per day on average OR
= 0.86 second / 60 seconds/minute x 365 days = 5.26 minutes per year

Table 1-2 shows the relationship of availability in percentages and the actual
downtime or time loss per year.

Table 1-2 Availability matrix

Note: The most important issue is minimizing the unplanned downtime,
because nobody knows when the unplanned downtime occurs, and this
downtime impacts business operations.

Availability in percentage Approximate time loss per year

99.9999% (six nines) 32 seconds

99.999% (five nines) 5 minutes

99.99% (four nines) 53 minutes

99.9% 8.8 hours

99% 87 hours (3.6 days)

90.0% 876 hours (36 days)
6 IBM High Availability Solution for IBM FileNet P8 Systems

1.2.3 Total availability of a system

The total availability of a system is calculated by multiplying the availability of
each component:

Total availability of a system
= Availability (component1) x ... Availability of component n

It is extremely important to balance the availability of all components in the
implemented system, as perceived by the users. Therefore, the true availability is
the product of the availability of all the components or the weakest link
comprising the end-to-end solution, as shown in Figure 1-1. Do not under-spend
and under-engineer on one component, and overspend and over-engineer on
other components. For example, the system that is shown in Figure 1-1 has a
system availability of 86.12% as experienced by the users, compared to the
availability of the process servers at 99.8%:

Total availability of the example system
= 98.5% x 98.5% x 99.5% x 98.1% x 99.6% x 97.3%
x 97.4% x 98.3% x 99.9% x 99.8% x 99.6% x 99.7%
= 86.12%

Figure 1-1 Total availability as the product of the availability of all its components

Availability is not free. It takes hard work and serious management attention to
integrate the many diverse components, people, and processes into a stable,
highly available system. High availability starts with reliable products. Today’s
IBM FileNet P8 products are reliable and are capable of delivering high levels of
availability, but reliable products alone do not assure high quality service. A high

Measure the perceived availability as observed by users

Total systems availability including all elements: 86.12 %

Availability 98.5% 98.5% 99.5% 98.1% 99.6% 97.3%

Availability 97.4% 98.3% 99.9% 99.8% 99.6% 99.7%

Ingest Fax, Scan
Import…

ISP /
Network

Load
BalancerFirewall HTTP

Server

Firewall
Web

Appl.
Server

CE/PE
Databases

Server
Process
Server

Storage Retrieve
 Chapter 1. Introducing high availability 7

level of availability relies on an infrastructure and application design that includes
availability techniques and careful system integration. A lack of, or failure to
follow, careful management and effective systems management procedures is
one of the most common causes of an outage. Change management, in
particular, requires more emphasis. Effective change and operational
management practices that employ defined and repeatable processes contribute
significantly to higher levels of availability. In the long run, these practices
actually decrease the cost of IT services because of the resulting more effective
and efficient use of IT resources.

1.3 Levels of availability

The high availability solutions require up-front planning with continual monitoring.
Many areas have to be taken into consideration when designing and
implementing a highly available solution. They include:

� Internet Protocol (IP) sprayer/load balancer
� Firewall process
� HTTP server
� Web application server or mid-tier applications
� Lightweight Directory Access Protocol (LDAP) server
� Databases
� Core processes, services, or engines
� Disk subsystem
� Operating system processes
� Cluster or farm setups

Multiple technologies can be deployed to achieve high availability for systems.
Figure 1-2 on page 9 shows availability levels and several of the commonly used
technologies that are implemented to achieve each level.
8 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 1-2 High availability levels

Availability can be divided into five levels:

� Level 1: Basic
� Level 2: RAID x
� Level 3: Failover
� Level 4: Replication
� Level 5: Disaster Recovery

At Level 1, Basic, there is no redundancy involved. Systems do not employ any
special measures to protect against loss of data or services. Backups are most
likely taken on a regular basis. When an outage occurs, support personnel
restore the system from the backup (usually tape).

At Level 2, RAID x, disk redundancy, disk mirroring, or both disk redundancy and
disk mirroring are used to protect the data against the loss of a physical disk or
volume at this level. Disk redundancy can also be extended to include newer
technologies, such as storage area network (SANs), network-attached storage
(NAS) devices, or Virtual Storage Infrastructures. Several of these technologies
are emerging in the marketplace as best practices implementations for highly
available disk subsystems.

C
os

ts

Levels of Availability

Basic
No Redundancy

RAID x
Disk Redundancy

Level 1

Level 2

Level 3

Failover
Component
Redundancy

Replication
Data

Redundancy

Disaster
Recovery

Site Redundancy

Level 4

High Availability
 Levels ---

Level 5
 Chapter 1. Introducing high availability 9

At Level 3, Failover, multiple instances or component redundancy are used to
prevent a single-point-of-failure. In a system where multiple components are
involved, an outage in any single component can result in service interruption to
users. Multiple instances or redundancy for any single component need to be
deployed for availability purposes. There are two primary techniques to deploy
failover strategies:

� Application clustering, which is also known as farming (for example,
WebSphere clustering)

� Platform clustering, for example, IBM PowerHA for AIX (HACMP - formerly
IBM High Availability Cluster Multi-Processing)

Both of these methods are fundamental approaches to accomplishing high
availability. Components that support application clustering can also take
advantage of load balancing in addition to availability benefits. In order to
achieve high availability in an IBM FileNet P8 Platform environment, you typically
deploy both application clustering and platform clustering, assuming your
solution is operating in a multi-tier and multi-server environment. If you run the
full IBM FileNet P8 Platform stack on a single server (with all components in one
machine), platform clustering or IP-based failover might be the appropriate
strategy to deploy.

In a platform clustering environment, a standby or backup system is used to take
over for the primary system if the primary system fails. In principle, almost any
component can become highly available by employing platform clustering
techniques. With IP-based cluster failover, we can configure the systems as
active/active mutual takeover or active/standby (hot spare).

At Level 4, Replication or data redundancy, high availability implementation
extends the protection by duplicating the database content (metadata and control
tables) and file system content to another machine (server, NAS device, or SAN
device) in the event of a hardware, software, disk, or data failure. This approach
provides another level of protection and high availability in the event of a failure
with data and content being replicated compared to a shared disk with failover
strategy for Level 3. This type of a high availability implementation (replication)
can also be used as a disaster recovery strategy; the difference is whether the
servers are located within the same location or are geographically separated.

At Level 5, Disaster recovery, systems are maintained at separate sites. When
the primary site becomes unavailable due to a disaster, the remote site (the
backup site) becomes operational within a reasonable time to continue business
operations. This level of high availability can be achieved through regular data
backups in combination with geographical clustering, replication, or mirroring
software. Disaster recovery is not addressed in this book.
10 IBM High Availability Solution for IBM FileNet P8 Systems

It is possible and a best practice to combine multiple high availability levels within
a single solution. For example, you can have a failover (Level 3) strategy for
hardware and a replication strategy (Level 4) for the database content and file
system content with all servers using a disk redundancy strategy (Level 2).

IBM high availability solutions for IBM FileNet P8 use multiple strategies and
technologies. The strategies and technologies that are used must be weighed
against the costs for a particular implementation to meet the business
requirements.

1.4 High availability cost compared to loss

Designing high availability solutions always requires you to balance the cost
against the loss. Although highly available systems are desirable, an optimum
balance between the costs of availability and the costs of unavailability is usually
required. Factoring in the intangible consequences of an outage adds to the
requirement to invest in extremely high levels of availability.

It is critical to understand the business impact of a failure and what the loss to the
business is if an unplanned outage occurs. Too many times, we under design a
solution that is too simple for a business and is not adequate to meet the
business requirements, or we over design a solution that is too complex to
manage and is not necessary for the business. Various businesses have
differing costs for downtime. While a certain business might be less impacted
when their systems are down, other businesses, such as financial services,
might lose millions of dollars for each hour of downtime during business hours.
The cost of downtime includes direct dollar losses and potentially reputation
losses and bad customer relationships. Understanding the impact of downtime
for your business helps you to define the level of high availability that you want to
achieve for your business solution.

Figure 1-3 on page 12 shows how this balance applies to various operating
environments and when the investment in availability can reach the point of
diminishing returns. At a certain point, the cost of availability and the loss due to
availability reaches an optimum availability investment point. The optimum point
can be difficult to calculate with quantifying the losses being the more
challenging of the two variables. The concept, though, is to try to reach an
optimum balance by designing the most cost-effective, highly available solution

Note: The objective of designing and implementing a high availability solution
is to provide an affordable level of availability that supports the business
requirements and goals with acceptable system downtime.
 Chapter 1. Introducing high availability 11

to support the business environment. As shown in Figure 1-3, high availability
becomes increasingly expensive as you approach continuous availability (100%).

Figure 1-3 Cost of availability as opposed to loss due to availability

1.5 High availability and continuous availability

Confusion often occurs between high availability and continuous availability. High
availability focuses on reducing the downtime for unplanned outages. Continuous
availability focuses on continuous operation of the systems and applications. The
sum of high availability and continuous operations equals continuous availability.

Figure 1-4 on page 13 shows how bringing acceptable levels of high availability
and continuous operations delivers a continuously available solution.

Note: To achieve a high availability of five nines means to achieve system
availability 99.999% of the time.

High availability

Loss due to
availability

Cost of
availability

Loss
Financial
Legal
Business strategy
Image, morale
Cost of an outage
Customer sat
User productivity
IT productivity
. . .

Costs
Planning and design
Implementation
Skills / Resources
Network
Operation
Hardware costs
Software costs
. . .Optimum

availability
investment

Highly available
subsystems and
components

Redundant systems,
components, and data.

Zero downtime.

99.x Continuous availability99.xx

Availability %
12 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 1-4 High availability and continuous availability

1.6 IBM FileNet P8 platform infrastructure fundamentals

The growth of the Internet and the World Wide Web has led to the widespread
need for computing services that are scalable (can be expanded easily to handle
an increasing rate of requests over time) as well as being highly available. The
solution that has evolved that meets both of these needs is the n-tier
architecture. In this approach, a monolithic service is broken down into separate
components, such as a Web presentation tier, a business logic tier, a database
tier, and a storage tier, but more or other tiers can also be employed. This
architecture provides a number of advantages:

� The software is broken into separate components, each of which can be
developed and maintained separately.

� Certain components, such as the database tier, can potentially be sourced
from third parties.

� Similarly, price and performance trade-off can be made by, for instance,
substituting a higher performing, but more costly, storage subsystem for a
slower, lower cost subsystem.

� Because each tier operates independently, it is often the case that it can be
implemented to function independently. This approach allows for a farmed
configuration that achieves both scalability (by adding more servers at a given
tier) and availability (because more than one instance of each service is
available).

Continuous availability
A system that delivers an
acceptable or agreed-to
high level of service at
any time of the day on
any day of the year.

No unplanned outages
• Fault avoidance
• Fault tolerance
• Environmental independence
• Failure-proof applications
• Fast recovery and restart

No planned outages
• Nondisruptive changes
• Nondisruptive maintenance
• Continuous applications

High availability
A system that delivers an
acceptable or agreed-to
high level of service to

users during
scheduled periods.

Continuous operations
A system that allows users

to access the system at
any time.

(24 hours x 7 days a week)
 Chapter 1. Introducing high availability 13

The IBM FileNet P8 Platform conforms to this standard architecture. You can
view this architecture from a logical perspective, focusing on the services that are
provided by each tier, or from a physical perspective, examining the actual
implementation of the architecture. A logical architecture of the P8 platform is
shown in Figure 1-5. In Figure 1-5, all of the necessary services are shown from
a high-level, logical perspective. However, the diagram does not depict which
services reside within which tiers of the architecture or on which servers. Instead,
all the services are depicted as they are seen from a user’s perspective: the user
knows that each service is available, but not necessarily how it is actually
implemented.

Figure 1-5 IBM FileNet P8 logical components and tiers

In contrast, a multi-tier physical model, as represented in Figure 1-6 on page 15,
depicts how these services would be deployed across a collection of physical
computer hardware. In this typical case, we have divided the services into the
following functional tiers, which are explained in more depth:

� Client tier
� Presentation tier
� Business logic or application tier
� Data tier
� Storage tier

Ancillary
Source

Web
Presentation

ServerFi
re

w
al

l
Fi

re
w

al
l

Fi
re

w
al

l
Fi

re
w

al
l

Content
Server(s)

FirewallFirewall Integration
Services

IntranetIntranet

InternetInternet

Internal
Users

External
Users

Application
Server

Workflow
Services

Security
Services

Sys Mgmt
Services

Legacy
System

Content
enabled

applications
14 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 1-6 Sample Multi-Tier Physical Model

The client tier encompasses various client types, such as browsers, applets, or
stand-alone application clients. These clients can reside both within and outside
of the enterprise firewall. User actions are translated into server requests, and
the server responses are translated into a user-readable format.

The presentation tier provides services to enable a unified user interface. It is
responsible for all presentation-related activity. In its simplest form, an HTTP
server accesses data and services from other tiers, handles user requests and
work flow, and can also control user interaction. In order to separate the
presentation tier from an application tier, an HTTP server is used in conjunction
through plug-ins with a Web application server, such as WebSphere. The
advantage of using a separate HTTP is that you can move the application server
behind the domain firewall into the secure network, where it is more protected.

The business logic or application tier embraces Web components, JavaServer
Pages (JSPs), beans, or servlets, which are deployed in Web containers. The
Web application server provides the infrastructure for application and business
logic. It is capable of running both presentation and business logic, but it
generally does not serve HTTP requests.

The data tier is commonly referred to as the back-end tier; examples include
database manager systems, content management systems, mainframe
transaction processing, and other existing systems.

Tier 1
Client

Tier 2
Presentation

Tier 3
Application

Tier 4
Data

Sample Multi-Tier Physical Model

Tier 5
Storage

(DMZ)
Clients Application

Server
HTTP
Server

Database
Server

Storage
Devices
 Chapter 1. Introducing high availability 15

In a highly available IBM FileNet P8 solution, there are several components
within the tiers that have to be taken into consideration when designing an
end-to-end high availability system:

� Client workstations

� The Domain Name System (DNS) server

� IP sprayers/load balancers

� Firewall process

� HTTP servers

� Web application server and mid-tier applications (such as
Workplace/WorkplaceXT)

� IBM FileNet P8 applications

� Databases

� Disk subsystems

� LDAP servers

Redundancy of these components can be accomplished through either
application clustering, platform clustering, or a combination of both application
clustering and platform clustering.

1.6.1 Application clustering (server farms)

A server farm is a group of identical servers, which are accessible through
hardware or software load balancing technology. All the servers are actively
providing the same set of services and are interchangeable. A load balancer
distributes incoming client requests over the servers in the group. For example,
there are hardware-based load balancers that automatically spread the incoming
client workload across a farm of servers, each providing access to the same
content or services. Also available are the software-based load balancing
capabilities that are built into products, such as WebSphere Network Deployment
Edition. As requests come in from external clients, the software-based load
balancer spreads out the requests across the servers to balance the workload
evenly. Both software and hardware load balancers offer various algorithms that
can be set up to spread requests among multiple servers in a farm.

A load-balanced server farm provides both better availability and better
scalability than a single server. When a server fails, the load balancer
automatically detects the failure and redirects user requests to another server in
the farm, thereby keeping the site available. Administrators can increase system
performance and capacity by adding servers to the farm.
16 IBM High Availability Solution for IBM FileNet P8 Systems

With a hardware-based load balancing solution, redundant load balancers are
required to avoid a single point of failure. The software-based load balancers are
typically designed to avoid a single point of failure by running the network load
balancing software on each server in the farm. There are many competing load
balancing products that can be considered to find the best combination of price
and performance.

Server farms are best suited to server tiers that are processing-centric rather
than data-centric, because all the servers in the farm are clones of each other.
Processing logic does not change often, so it is feasible to keep all the servers
identical in a processing-centric tier. Web servers and application servers that
execute business logic are both good candidates for server farms.

Data-centric tiers, such as file servers and data servers, are not well suited for
farming, because their data content constantly changes. Keeping this dynamic
data identical across a group of cloned file or data servers, and managing the
client accesses to the data to protect the integrity of the data in the face of
multiple writers, can be difficult in a farm, with a copy of data and file on each
server. The better solution for this type of server is the platform clustering.

1.6.2 Platform clustering (server clusters)

Platform clustering, which is sometimes referred to as server clusters, is based
on the concept of shared software configuration data storage. The servers have
a shared disk that holds the configuration data that is shared between both
nodes. In contrast, server farms do not share software configuration data among
the servers in the farm. Each server has its own copy of the configurations that it
has to run, and in most cases, the configuration is an exact copy of the files that
are on the other servers in the farm.

Many server hardware and software vendors offer vendor-specific server
clustering products as their high availability offering for these kinds of
data-centric servers. These products all have the following general
characteristics:

� Two or more servers share a highly available disk array for data storage. The
array incorporates redundant copies of the data, but it appears as a single
disk resource to the servers, therefore, avoiding the need for data replication
between servers. Each server has its own local disk for the static storage of
the operating system, utilities, and other software.

� A common set of applications runs on each server.

� Server clients see the cluster as a single virtual server.

� If the active server fails, the other server picks up the workload of the failed
server (sometimes referred to as a failover). When the failed server is
 Chapter 1. Introducing high availability 17

repaired and is brought back online, the workload is shifted back from the
other server to the originally active server (sometimes referred to as a
failback). In certain configurations, the repaired server simply becomes the
new backup server, and no failback is required.

� The failover feature can mask both planned and unplanned outages from
users. For instance, an intentional failover can be done to allow one of the
servers to be backed up and then brought back online in a failback.

� In most server clusters, only one server is actively serving clients at a time,
which is called an active-passive configuration. Certain cluster server
products also support another mode, which is called an active-active
configuration. In this mode, all the servers in the cluster can be actively
sharing part of the workload at the same time. It typically requires an
application that is designed to partition data sets among the servers to avoid
data integrity problems resulting from concurrent updates to the same data
from multiple servers.

IBM offers IBM PowerHA™ for AIX (HACMP - formerly IBM High Availability
Cluster Multi-Processing), as the server cluster product for the AIX environment.

Server clusters typically communicate through a broadcast, or they share a
central repository to keep track of cluster information and cluster node status.
Each machine in the cluster is referred to as a node. Each node in the cluster
monitors the local services that it is running and broadcasts this information on a
private network connection. This private network connection allows all nodes in
the cluster to know the status of all clustered resources. In the event that a
service on one node fails, another node receives this status through the private
network connection and in response, can start the service locally to maintain
high availability for the service.

1.6.3 Choosing between a farm or a cluster

The technology direction for the IBM FileNet P8 Platform and its products is to
support load-balanced server farms wherever possible, in preference to
active-passive server clusters.

Load-balanced server farms have a scalability advantage, exhibit better server
utilization, and recover more quickly from server failures when compared to
active-passive server clusters. Farming support is continually being added to the
IBM FileNet P8 Platform and products that previously only supported
active-passive server clusters. See Chapter 3, “High availability strategies for
IBM FileNet P8 systems” on page 43 for a further description of each component
in the IBM FileNet P8 Platform and the type of clustering configuration that it
supports.
18 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 2. IBM FileNet P8 system
architectural overview

In this chapter, we provide an overview of the overall IBM FileNet P8 Platform
system architecture and its three core components: Content Engine, Process
Engine, and Application Engine. In addition, we describe two other important
server components: Image Services (IS) and the Content Search Engine (CSE).
We discuss the services that these engines provide and the communication
protocols that are employed for communication between the various
components.

We describe the following topics:

� Architectural overview
� Content Engine
� Process Engine
� Application Engine
� Image Services and CFS-IS
� Content Search Engine

2

© Copyright IBM Corp. 2009. All rights reserved. 19

2.1 Architectural overview

The IBM FileNet P8 suite of products provides a business-centric Enterprise
Content Management (ECM) system. The core components of the IBM FileNet
P8 suite of products are Content Engine (CE), Process Engine (PE), and
Application Engine (AE). Content Engine stores documents, workflow objects,
and custom objects. Process Engine manages business processes, also known
as workflows or workflow processes. Application Engine is the ready to use,
predefined user interface for the IBM FileNet P8 Platform, which through its
layered application, Workplace or WorkplaceXT, provides a general folder-based
view of an IBM FileNet P8 content repository. The user interface also provides
various Process Engine components for representing objects, such as inboxes,
public queues, and step processors.

Together, these core engines provide the IBM FileNet P8 Platform on which
many applications are built, including:

� IBM FileNet Content Manager

� IBM FileNet Business Process Manager (BPM)

� Process Analyzer (a tool that is provided with BPM)

� Process Simulator (a tool that is provided with BPM)

� IBM FileNet Capture

� IBM FileNet Email Management (currently replaced by IBM Content
Collection for Emails)

� IBM FileNet Records Crawler (currently replaced by IBM Content Collection
for File Systems)

� IBM FileNet Records Manager

� IBM FileNet Business Activity Monitoring (BAM)

� IBM FileNet eForms

� IBM FileNet Business Process Framework (BPF)

� Rendition Engine

� Client-developed applications

Content Engine and Process Engine are servers. They can be accessed by client
programs, including the Application Engine user interface, but also by
stand-alone programs that can be developed by clients or third parties. The CE
and PE both provide Application Programming Interfaces (APIs) for accessing all
of their features and capabilities. Client programs of these servers are often
Java™ programs, so they both offer Java APIs. The Java APIs allow stand-alone
or Java 2 Platform, Enterprise Edition (J2EE™)-based applications written in
20 IBM High Availability Solution for IBM FileNet P8 Systems

Java to access all the features of Content Engine and Process Engine. Most of
the products that are listed access Content Engine or Process Engine using their
Java APIs, which is usually the most efficient method to access the engines.

2.2 Content Engine

In an enterprise content management environment, the content of each
document is stored and managed by content management software. In the case
of the IBM FileNet P8 suite of products, this function is performed by the Content
Engine (CE) server. It is implemented as a J2EE application, and so it runs within
a J2EE application server. Content Engine supports WebSphere, WebLogic, and
JBoss® application servers.

The properties associated with each document comprise the document’s
metadata. Typical metadata properties include: creator of the document, creation
time of the document, and the type of the document. The metadata is stored in a
database that is known as the document catalog. Content Engine supports DB2,
Oracle, and SQL Server® databases. Searching for a particular document
consists of querying the Content Engine database, and then retrieving the
content corresponding to the matching documents. More than one piece of
content, which is called a content element, can be associated with a single
document. The content elements can be stored in any of the following locations:

� Database
� Conventional file system
� Fixed-content device

Although content can be stored in the Content Engine database, customers
typically do not use this configuration, because the database can become too
large and therefore difficult to manage if it holds all the content. Most customers
therefore use one of the other two choices to store content: the file system or a
fixed content device. If a file system is used, it is most often stored on a
network-attached storage (NAS) or storage-attached network (SAN) device.
Implementing a Redundant Array of Independent Disks (RAID) system provides
both higher performance and high availability of the data.

Fixed content devices typically include specialized storage subsystems that meet
certain compliance requirements, such as the ability to guarantee that content is
never modified and that it cannot be deleted until a specified date in the future.
These devices are often used to store legal and other documents in the financial,
insurance, and related industries.

The architecture of Content Engine allows for a variety of different devices to be
used as fixed content devices. Content Engine can also be connected to other
 Chapter 2. IBM FileNet P8 system architectural overview 21

content storage systems, using these systems to store the content as
conventional fixed content devices do. Content Federated Services (CFS) allows
Content Engine to import document metadata and populate its object store while
leaving the actual content in the remote content management system. This
process, called federation, provides a number of unique benefits:

� New applications, taking advantage of the rich metadata object model
provided by Content Engine, can be developed and used with both new
content that is stored natively inside Content Engine and with older content
that resides in an existing content management system.

� Because the content remains inside the existing system, applications that use
interfaces that are provided by that system can continue to be used.

� The time and space required to federate the metadata of existing documents
is much less than the time and space required for a full migration of content
from the old system to the new one. No downtime is required of either system.
Users can continue to use and add new documents to the existing system
during the federation process.

� Clients can continue to use the existing systems and related hardware for as
long as desired. Conversely, a migration over time can be effected, first by
quickly federating the metadata, and then slowly moving content from the
existing system into Content Engine as time and storage space permit. When
the content of the last documents in the existing system have been moved,
then the existing system can be retired.

A single Content Engine domain can manage one or more content repositories,
which are called object stores. Each object store consists of a metadata
database and one or more content storage locations. Information about object
stores and domain configuration information are kept in a database called Global
Configuration Data (GCD). By sharing access to the GCD, multiple Content
Engines can participate in a single Content Engine domain, allowing these
Content Engines to access the same object stores. This feature is the key for
both Content Engine’s scalability (more servers can be added as demand grows)
and its high availability (if one node fails, the other nodes can still be used to
continue processing requests until the failed node can be restored).

Content Engine supports user-extensible document classes, allowing users to
define new types of documents that can be stored and what additional metadata
these classes of documents will maintain. The CE also supports event
processing, that is, the ability to perform a user-defined action whenever a
chosen event happens, such as creating, deleting, checking in, and checking out
documents. Security can be configured on document classes or on an individual
document using an Access Control List (ACL), allowing the owner of a document
to define precisely who can access or modify the document. Content can be
versioned, that is, revisions to the content of the document can be checked into
22 IBM High Availability Solution for IBM FileNet P8 Systems

the CE, and the CE maintains a list of all these versions over time. Documents
within Content Engine can be arranged hierarchically by filing them into one or
more folders.

Content Engine uses any of a number of supported Lightweight Directory Access
Protocol (LDAP) servers to perform user authentication. Using an LDAP server
simplifies the installation and administration of the CE system, because most
corporations use an LDAP system for maintaining their user IDs and passwords.
Content Engine caches the responses from the LDAP server (keeps a copy for a
period of time), which reduces the number of LDAP queries and reduces future
response times. In addition, Process Engine uses Content Engine for user
authentication, again simplifying its installation and administration.

Figure 2-1 depicts the Content Engine system architecture.

Figure 2-1 Content Engine system architecture

As seen in Figure 2-1, Content Engine’s system architecture can be divided into
three general areas: client connectivity, persistence, and background processing
threads. Client connectivity is based on the Enterprise JavaBeans (EJB™)
Listener, which receives client requests, executes them, and returns the results
to the client. In order to accommodate standard Web Services clients, a Web
Services Interface (WSI) Listener converts external Content Engine Web
Services (CEWS) calls into the corresponding EJB calls and then passes them to
the EJB layer for processing.

RDBMSRDBMS

CE farm
(active/active)

CE farm
(active/active)

Background ThreadsBackground Threads

Directory Server

Customer
Code

Modules

IIOPIIOP

HTTPHTTP

DB / Storage areas / FCDs

Verity

Liquent

IS

WSI ListenerWSI Listener

EJB ListenerEJB Listener

Persistence Layer

Persisters Caches
Retrievers

Authorization
Storage

Persistence Layer

Persisters Caches
Retrievers

Authorization
Storage

Sync Events

StorageStorage
ClassificationClassification

PublishingPublishing

Text IndexingText Indexing

IS Pull DaemonIS Pull Daemon

Async EventsAsync Events
 Chapter 2. IBM FileNet P8 system architectural overview 23

The Persistence Layer is responsible for many of the Content Engine’s basic
functions. It handles communications with the supported databases and storage
and retrieval of content from storage areas, including the database, FileStore
Areas, and Fixed Content Devices (FCDs). The Persistence Layer also performs
authorization for the Content Engine by communicating with the supported LDAP
server, and this layer also manages Content Cache Areas and their use. Finally,
the Persistence Layer initiates event processing in response to changes to
content and metadata, such as document creation, updates, and deletions.

For Synchronous Events, the corresponding event code is executed directly by
the Persistence Layer. In other cases, the Persistence Layer will signal a
background thread about an action of interest, and the Content Engine will
perform further processing asynchronously. Asynchronous processing means
that the activity occurs within a separate transaction and that the server does not
wait until the operation has completed before returning control to the client. Such
processing not only includes explicit Asynchronous Events, which can be used
for workflow launches to request processing by the Process Engine, but it also
includes activities, such as:

� Classification: Content Engine provides a framework for automatically
assigning incoming documents to a designated document class. With
automatic document classification, you can automatically change a
document’s class and set its property values. Content Engine provides ready
to use, predefined support for the auto-classification of documents.

� Publishing: Content Engine’s publishing framework provides a rich set of tools
and capabilities for re-purposing the content that is contained in document
objects into HTML and PDF formats. Publishing is useful when you want to
make a document available to customers, but you do not want them to be
able to modify the document. When you publish a document, you maintain
control over the source document and can continue to update and make
changes to the source that are not visible to users of the publication
document. When you are ready to make the new version of the document
available to your users, you republish the source document, thereby creating
a new version of the publication document. Document Publishing is
performed by the Rendition Engine.

� Indexing: Indexing a document consists of breaking the document into
individual words and storing those words into a separate database, which is
called a Collection, so that users can search for documents based on their
content. This process is called Content Based Retrieval (CBR) or full text
indexing.

Other background threads within the Content Engine include the IS Pull Daemon,
which is responsible for communicating with an Image Services server to perform
Content Federated Services for Image Services (CFS-IS), and storage
24 IBM High Availability Solution for IBM FileNet P8 Systems

management, which handles copying content into FileStore Areas and finalizing
the file’s location, or deleting it if its originating transaction fails.

In addition to the Content Engine server, Content Engine also includes the IBM
FileNet Enterprise Manager, a Microsoft® Management Console (MMC) snap-in
application through which you can manage Content Engine services and object
stores.

2.2.1 Database

Figure 2-2 shows the internal database structures for Content Engine. A Content
Engine can have one to many object stores. This diagram shows the databases
of two object stores, OS1 and OS2. These databases store information about the
content and can store the content itself. The Global Configuration Database
(GCD) stores information about the object stores and information about the
system configuration.

Figure 2-2 Content Engine internal database structure

2.2.2 Communication protocols

Content Engine supports a single API, with two transport protocols available for
clients to use: Enterprise JavaBeans (EJB) and the Web Services Interface
(WSI), also known as Content Engine Web Services (CEWS). Both transports
support the same API, and each transport can access the full capabilities of

RDBMSRDBMS OS1 Database

GCD Database
Marking sets

Object stores

System
config

DocVersion
Generic

ListOf…

Events…

OS2 Database
DocVersion

Generic

ListOf…

Events…
 Chapter 2. IBM FileNet P8 system architectural overview 25

Content Engine. These transports are sometimes referred to as the EJB API and
the Web Services API of Content Engine. In reality, both transports offer the
same set of services and thus represent the same API in separate ways.

The EJB transport resolves to a protocol that is specific to each application
server. Therefore, clients of the Java API running within a J2EE application
server and using the EJB transport must be running on the same application
server as Content Engine (for instance, IBM WebSphere Application Server) so
that the client and server portions of the EJB transport are compatible.
Stand-alone Java applications that are to be Content Engine clients must
similarly be linked with client libraries supplied with the application server on
which Content Engine is running.

The Content Java API allows either transport to be used by Java clients. The EJB
transport generally provides faster performance than the WSI transport, because
internally within Content Engine, the WSI layer is built on top of the EJB layer. For
this reason, most IBM FileNet P8 products that are written in Java and work with
Content Engine, such as the Application Engine, use the Java API with the EJB
transport. However, the WSI transport offers several advantages:

� Client applications can be written in any language, not just Java, because the
Web Services Interface and transport are standards.

� No application-server-specific libraries are required by the clients, and access
through firewalls can be simpler, easing deployment.

� The availability of the Web Services Interface allows Content Engine to
participate fully in standard service-oriented architectures (SOAs).

Content Engine also provides a .NET API. This API uses the WSI transport to
communicate with the server. Similarly, there is a COM API provided for
backward compatibility with earlier versions of Content Engine. This API also
uses the WSI transport for server communications.

2.3 Process Engine

Process Engine is a 32-bit C++ application that follows a single-threaded
multi-process model. Process Engine currently runs on IBM AIX operating
system, Hewlett-Packard UNIX (HP-UX) operating system, Sun™ Microsystem
Solaris operating environment, and Microsoft Windows® operating system.
Process Engine provides enterprise-level software services for managing all
aspects of business processes, including process modeling, routing, execution,
process simulation, and analysis. Process Engine allows you to create, modify,
and manage processes implemented by applications, enterprise users, or
external users (such as partners and customers).
26 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 2-3 illustrates the Process Engine system architecture.

Figure 2-3 Process Engine system architecture

As shown in Figure 2-3, the Process Engine’s system architecture is divided into
four areas:

� VWBroker processes receive incoming Internet Inter-ORB Protocol (IIOP)
requests from clients and route them to a VWK’s process.

� Execution subsystem is the heart of the Process Engine, and it is mostly
embedded in VWKs. It executes the steps of the defined workflow and in
response moves workflow items from one queue to another queue.
Interprocess Communication occurs between all the processes that
implement the Execution subsystem. The Execution module includes these
pieces:

– Timer Manager: Controls workflow timers, deadlines, delays, and similar
time-related activities. It is implemented by vwtime.

– Map Interpreter: Interprets workflow maps. A workflow map is a graphical
representation of the workflow that shows the sequences of steps needed
to complete the business processes.

– Expression® Evaluator: Evaluates expressions. Expressions are formulas
that are used to obtain results for route properties, data field definitions,
and other field-related expressions.

RPCs

Execution

PE farm
(active/active)

PE farm
(active/active)

Broker
(vwbroker)

Broker
(vwbroker)

Content EngineContent Engine

Incoming
IIOP

requests

Event Handler 1
(VWKs)

Event Handler 1
(VWKs)

Event Handler 2
(VWKs)

Event Handler 2
(VWKs)

Event Handler n
(VWKs)

Event Handler n
(VWKs)

…

Cache

Log ManagerLog Manager

Workspace
Cache

Workspace
Cache

Participant
Cache

Participant
Cache

Timer Manager
(vwtime)

Timer Manager
(vwtime)

Map InterpreterMap Interpreter

Expression
Evaluator

Expression
Evaluator

Event
Manager

Event
Manager

External Interfaces
DatabaseDatabase

EmailEmail

RulesRules

User/Group
Lookups

User/Group
Lookups

Mail ServerMail Server

XPath, XSLT,
Schema

XPath, XSLT,
Schema

RDBMSRDBMS

ILog
 Chapter 2. IBM FileNet P8 system architectural overview 27

– Log Manager: Manages logs. Event logs contain a record of specific
system-related or workflow-related events for each isolated region. This
type of logging is useful for tracking and analyzing workflow activity.

– Event Manager: Workflows within Process Engine can involve waiting for
an event to occur, after which the workflow can proceed. This processing
is handled by the Event Manager.

– XPath/Extensible Stylesheet Language Transformation (XSLT)
processing: Processes XPath and XSLT. It includes functions for
manipulating XML formatted strings.

� Cache: For performance reasons, Process Engine caches commonly used
information. In particular, the users and groups that are returned by the
directory service are cached in the Participant Cache. Another cache is
Workspace Cache (a workspace is the configuration components of a type of
workflow instance).

� External Interfaces of the PE include its database connections, the ability to
originate Simple Mail Transfer Protocol (SMTP) e-mail, the authentication of
users and groups through the Content Engine, and its interface for rules
processing.

As with Content Engine, each Process Engine can operate independently of any
others, storing all necessary data in the database. By load balancing requests
across a group of PE servers, clients can achieve both scalability and high
availability with Process Engine.

2.3.1 Component Integrator

Component Integrator provides a framework that enables Process Engine to
connect to external applications or services. With Component Integrator, you can
make custom Java code or existing Java Message Service (JMS) components
available in a workflow. A component, in this context, can be a Java object or a
JMS messaging system. Component Integrator handles the import of Java
classes and manages the communication between Process Engine and the
external interfaces. Component Integrator provides the Web Services invocation
framework for process orchestration, which uses SOAP/HTTP as its transport
protocol. Component Integrator includes adaptors that communicate events from
Process Engine to external system, services, or entities. Adaptors interact with
various types of components from a workflow process step. Each of these
interfaces is managed in Application Engine by an instance of Component
Manager.

Component Integrator provides a default set of Content Engine operations in
Process Engine. It can also include any custom components that are created by
you or other people. Instances of Component Manager manage connections to
28 IBM High Availability Solution for IBM FileNet P8 Systems

external components. In a consistent way, Content Engine operations allow a
workflow step to perform operations on Content Engine, such as filing a
document in a folder or setting the properties of a document.

2.3.2 Communication protocols

Similar to Content Engine, Process Engine offers its services through two
transports: Web Services and CORBA/IIOP. The Process Java API uses the
IIOP transport, so clients, such as Application Engine, use this transport to
connect to Process Engine. The Web Services interface can be used by clients
in many languages, including IBM FileNet P8 applications, such as the
SharePoint® Connector.

Process Engine acts as a client of Content Engine. In response to Content
Engine requests, Process Engine executes workflow operations. It also uses
Content Engine to authenticate IBM FileNet P8 domain users. The connections
are made using Content Engine’s Web Services transport.

Process Engine can be either a provider or a consumer of Web services by using
the process orchestration framework. Process orchestration uses standard Web
Services definitions for business process management systems, such as
Business Process Execution Language (BPEL), that were created to allow an
IBM FileNet Business Process Manager system to participate in an SOA.
Process orchestration also uses the Web Services transport.

2.4 Application Engine

Application Engine forms the Web tier front end, or presentation layer, to Content
Engine and Process Engine. Application Engine is the IBM FileNet P8 Platform
component that hosts the Workplace or WorkplaceXT1 Web application,
Workplace Java applets, application development tools, and other IBM FileNet
P8 Web applications.

Workplace or WorkplaceXT forms the presentation layer (a Web-based user
interface) for both Content Engine and Process Engine. When a user logs in, the
credentials that are supplied are maintained and protected by Application
Engine. If Secure Sockets Layer (SSL) security is in use, Application Engine also
provides this function. Workplace or WorkplaceXT runs in a Web container in a
J2EE application server, such as IBM WebSphere Application Server, as used in
the configuration for this book. Component Manager, another Java application
residing in Application Engine, manages interaction with external entities (in this

1 WorkplaceXT is the new application name, replacing the previous version that is called Workplace.
 Chapter 2. IBM FileNet P8 system architectural overview 29

context, components). Workplace can provide custom actions by integrating
external custom code. Workplace also has the ability to configure custom
viewers based on document Multipurpose Internet Mail Extensions (MIME)
types.

In addition to the Workplace application, Application Engine can host a number
of other features and applications:

� Records Manager is an addition to the features of Workplace that provides
records management-related functions. These functions include declaring
records, setting retention periods, and performing record holds on documents
that must not be deleted because of pending litigation or other reasons.

� eForms is an electronic forms management package.

� Integration with Microsoft Office enables users to manage Office documents
and Outlook® e-mail messages within the IBM FileNet P8 content repository.
Users can store, search, and retrieve documents, e-mail, and attachments
directly from Microsoft Office menus. In addition to securing and versioning
Office documents, users can browse object stores and insert properties into
Word and Excel® documents. Users can also use entry templates to add
documents to an object store and launch an approval workflow.

� WebDAV Servlet allows users to create and edit documents and manage
content from WebDAV-compliant applications, such as Microsoft Word.

� Component Integrator provides a framework that allows you to create
connectors to external applications, services, or entities. See 2.3.1,
“Component Integrator” on page 28 for details.

In addition to the these features, Application Engine includes the Java APIs for
Content Engine and Process Engine, the .NET API for Content Engine, and the
Web Application Toolkit (WAT). The Web Application Toolkit is the basis of
Application Engine and Records Manager. It provides an extensible framework
and reusable modules for building Web applications. The Toolkit provides
application developers with access to Content Engine, Process Engine, and
third-party back-end servers. It supplies the behaviors and data structures for
authentication, event routing, state information, preferences, localization, and
other features of robust and scalable applications. The Toolkit’s reusable user
interface component model facilitates the development of a robust HTML-based
application user interface with little or no DHTML/JavaScript required. In addition
to the toolkit, Application Engine also includes the Application Integration Toolkit
and the Application Integration Express Add-in. For more information about these
services and applications, refer to IBM FileNet P8 System Overview,
GC31-5482.

Figure 2-4 on page 31 shows the Application Engine system architecture.
30 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 2-4 Application Engine system architecture

The Application Engine’s system architecture includes two major parts.

The first part, the Servlet Container, which is within the supporting application
server, supports the execution of Workplace/WorkplaceXT, Records Manager,
eForms, and any custom applications. The CE Java API and the PE Java API
are used by these applications to communicate with the corresponding CE and
PE servers. Requests arrive at the AE through HTTP, typically from users on
Web browsers, and responses are also delivered to the clients over the same
HTTP connection.

The second part of the Application Engine shown in Figure 2-4 is implemented
by the Component Integrator, which is described fully in 2.3.1, “Component
Integrator” on page 28. One or more Component Managers (Java applications)
can run. CE operations allow workflows to access the Content Engine, and Web
Services provides an invocation framework that is used for process
orchestration.

Because each Application Engine works independently of any others and does
not store any user data on disk, clients can easily provision a set of AE servers.
This configuration results in both scalability and high availability.

AE farmAE farm J2EE Application / Web Server

Servlet container

Component Manager
(Java application)

Workplace
Custom

Applications

PE farm
(active/active)

PE farm
(active/active)

PE Java AP
I

CE Operations

Custom Java
Component

Web Services

CE farm
(active/active)

CE farm
(active/active)

CE
 Java API

eForms
Extensions

RM
Extensions

Incoming
HTTP

requests
 Chapter 2. IBM FileNet P8 system architectural overview 31

2.4.1 Communication protocols

Clients of Application Engine are Web browsers. They use the HTTP or HTTPS
protocols in connecting to Application Engine. As a client of Content Engine and
Process Engine, Application Engine uses their client protocols to connect to
them. For Content Engine, the communication protocol used is the EJB
transport. For Process Engine, the protocol is IIOP. Both protocols are carried
over TCP/IP connections.

2.5 Image Services and CFS-IS

Image Services (IS) is a powerful image and document management system. It
integrates with a number of storage devices, including optical disk systems,
Magnetic Storage and Retrieval (MSAR), and specialty storage units for
compliance, such as IBM System Storage™ DR550 and IBM System Storage N
series storage.

Many companies with Image Services implementations want to take advantage
of the functionality and features in the IBM FileNet P8 suite, including Content
Engine’s document class data model and Process Engine’s process workflow
capabilities. Without having to give up existing applications and procedures that
work with Image Services, IBM FileNet P8 offers Content Federation Services for
Image Services (CFS-IS) for these companies.

Content Federation Services (CFS) allows Content Engine to function as the
master metadata catalog for documents that are stored in IBM FileNet P8, Image
Services, and other disparate content sources. Documents can be searched and
retrieved directly by any IBM FileNet P8 application, no matter where the actual
content is stored.

For Image Services, CFS-IS federates the Image Services documents to the IBM
FileNet P8 catalog, meaning that the Image Services document metadata is
stored in the IBM FileNet P8 catalog, while the content remains where it was
stored originally, until a user retrieves the document.

CFS-IS allows the Image Services users to deploy new IBM FileNet P8
applications, which can use the documents that are stored in Image Services,
while the existing Image Services applications can continue to function for as
long as they are required, until the decision is made to replace them with IBM
FileNet P8 applications.

CFS-IS also enables Content Engine to use Image Services as a content storage
device. Users of IBM FileNet P8 applications can have full access to content that
is stored in existing Image Services repositories. Anything that is created in
32 IBM High Availability Solution for IBM FileNet P8 Systems

Workplace or created programmatically using Content Engine APIs can be
stored in the Image Services’ permanent storage infrastructure if desired,
allowing companies to continue using their Image Services systems.

With CFS-IS, existing Image Services content is preserved and usable by Image
Services clients, and it is also reusable by IBM FileNet P8 applications, such as
WorkplaceXT and Records Manager, without duplication and without change to
existing applications. The location of document content is transparent to all
Content Engine applications. Applications that store documents in Image
Services systems can continue to be used.

For companies that are migrating from Image Services to IBM FileNet P8
Platform, CFS-IS provides an initial bridge that allows Content Engine to be
implemented quickly, without first requiring a full migration of all data. In this
case, Content Engine can be configured to store new documents in its native
storage areas, and content stored on the Image Services system can be
migrated slowly while production operations continue. New applications can be
developed in the IBM FileNet P8 platform. When all content is migrated from the
Image Services system, and the Image Services system is no longer required for
any applications, the Image Services system can be decommissioned.

If Image Services applications must run in parallel with the IBM FileNet P8
application for at least a certain period of time, dual cataloging of documents is
an option. Image Services documents can be cataloged in the Content Engine
catalog, and they can also be cataloged in the Image Services catalog, resulting
in all content being accessible by both Image Services clients and any
application built on the IBM FileNet P8 platform, such as WorkplaceXT. Both the
Image Services and Content Engine catalogs are masters and are automatically
synchronized by CFS-IS. If properties change in Image Services, they are
automatically propagated to the Content Engine catalog (metadata). Note that
synchronization is not bidirectional. Updates in the Content Engine metadata do
not propagate back to the Image Services catalog, so they are available only to
IBM FileNet P8 clients. Therefore, as long as Image Services clients are still in
use, any updates must be made through the Image Services clients so that they
are reflected in both catalogs (metadata).

During the transition period from the Image Services catalog to the Content
Engine catalog, both IBM FileNet P8 platform applications and Image Services
clients can run concurrently, accessing the documents that are stored in Image
Services. When a transition to the Content Engine catalog is complete, you can
remove entries from the Image Services catalog, and you can replace the
existing Image Services clients with native IBM FileNet P8 applications.

You can catalog existing documents, images, and other content that are already
cataloged on the Image Services system on an IBM FileNet P8 system. The
Image Services Catalog Export tool exports existing index data (document
 Chapter 2. IBM FileNet P8 system architectural overview 33

properties) from an Image Services catalog to a Content Engine catalog. The tool
includes an option to delete the index entries from the Image Services index
database after the index data has been exported to the Content Engine catalog.
In preparation for implementing CFS-IS, the administrator must define a mapping
between the document classes and properties within the Image Services
system’s catalog and the document classes and properties in Content Engine.
Properties that do not have a defined mapping are not exported. After CFS-IS is
fully configured, CFS-IS automatically propagates the catalog entries of new
documents added to Image Services document classes that are mapped to
Content Engine document classes to the Content Engine catalog.

Architecturally, Image Services implements various components as separate
processes. All of these processes can execute on the same host, in a combined
server configuration, or you can spread the root/index and library services across
multiple hosts in a dual server configuration. Although Image Services does not
support an active/active configuration, separation of these processes can allow
an Image Services system to be scaled within limitations to accommodate
increased demand. For high availability, only a combined server configuration is
supported, with all the services resident in the same host. Remote Cache servers
can also be used to improve performance in a geographically distributed
environment by caching local copies of document content at remote work sites.

2.5.1 Communication protocols

The CFS-IS threads reside in Content Engine. CFS-IS connects Image Services
with Content Engine using a proprietary protocol over TCP/IP.

2.5.2 CFS-IS architecture

In IBM FileNet P8 4.0, the implementation of CFS-IS resides within Content
Engine as a number of Java classes and threads. This implementation is an
important feature, because it means that the CFS-IS functionality is spread
across all Content Engines in a Content Engine farm. This design increases
performance and scalability automatically as the number of active Content
Engines in the farm increases. From a high availability standpoint, the CFS-IS
functionality is inherently highly available when Content Engine is configured in
this way. Figure 2-5 on page 35 depicts the integration of Content Engine and an
Image Services system.
34 IBM High Availability Solution for IBM FileNet P8 Systems

When you add new documents to an Image Services system that is federated
using CFS-IS, you can configure CFS to operate in one of two ways:

� Index new documents to the Content Engine catalog only.

� Index new documents to the Content Engine catalog and the Image Services
catalog.

In the latter option, updates to Image Services catalog entries are automatically
propagated to the Content Engine catalog.

Figure 2-5 Integration of Content Engine and Image Services with CFS-IS

More than one Image Services system can be federated to the same Content
Engine system, because each Image Services system appears to Content
Engine as an individual fixed-content device.
 Chapter 2. IBM FileNet P8 system architectural overview 35

2.6 Content Search Engine

Content Search Engine (CSE) provides the ability to search for documents within
Content Engine based on the content of the documents. It performs two basic
functions:

� Full-text indexing: New documents that are added to the Content Engine
repository can be full-text indexed. That is, the documents are scanned to
determine individual words that are found throughout the documents. The
administrator can define a list of common words that are not to be indexed
(also known as the Excluded Word List); the use of this list greatly reduces
both the size of the indexes and the time that it takes to index each document.

� Search, also known as Content Based Retrieval (CBR): This function
identifies the documents whose content and properties match a given search
query.

In defining a search template, a user can specify a search for one or more
keywords, possibly also with conditional or alternative requirements, such as
‘high NEAR availability OR HA”. Search capabilities also include the ability to
account for misspelled words, typographical errors, phonetic searching, word
stem searching, synonym expansion, and wildcard searching, based on the
search language that has been configured. Other important aspects of the
search function include:

� A single search can span multiple object stores across databases. This type
of search is known as a Cross Repository Search (CRS). A Cross Repository
Search is specified in Workplace simply by including more than one object
store in the list of search targets.

� Workplace users can search for documents, folders, and custom objects.
Searches can be designed to specify multiple folders, including a common
folder name used in multiple object stores. Search templates can be
constructed using a Query Builder, or more complex searches can be
specified using the Verity Query Language (VQL).

� Content searches return matches not only on content but also on properties
enabled for full-text indexing.

� Search results can be ranked automatically by relevancy.

� Searches can use language-specific processing and indexing.

� Bulk operations can be performed on search results in IBM FileNet Enterprise
Manager, where the operations can be scripted, or selected from a set of
predefined operations, such as delete, cancel checkout, file, unfile, and
change security.
36 IBM High Availability Solution for IBM FileNet P8 Systems

� Searches can be created and stored for easy execution of common queries.
Search templates provide a simple user interface for entering search criteria.
Shortcuts to searches can be saved so it is easy to find them later.

� Searches can be expanded to retrieve documents, folders, and custom
objects in the same search specification.

2.6.1 Content Search Engine architecture

Content Search Engine consists of a number of components that can be
deployed across one or more computers. Figure 2-6 shows an example CSE
deployment, illustrating how the major components of CSE are interrelated.

Figure 2-6 Example CSE configuration

When a document is indexed by Content Search Engine, relevant information is
stored in a proprietary database format in a file called a collection. Collections
are stored within an Index Area, which is a Content Engine object created within
IBM FileNet Enterprise Manager. When a collection becomes full, a new
collection is automatically created, up to the maximum number of collections that
has been specified for the Index Area.

Ticket Server
Master

Administration
Server

Index Server

Local storage

Ticket Server
Administration

Server

Index Server

Local storage

Broker ServerAdministration
Server

Search Server

Broker Server Administra tion
Server

Search Server

Local or remote access Local or remote access
 Chapter 2. IBM FileNet P8 system architectural overview 37

To initiate a request for Content Search Engine to index a document, Content
Engine copies the document’s content to a temporary area, and then it submits a
request to a Content Search Engine Index Server to index that document. In IBM
FileNet Content Manager Version 4.0 or prior, if there are multiple Content
Engines in a farm environment, you need to manually set one Content Engine to
initiate the index request. This unique Content Engine is designated by setting its
EnableDispatcher configuration parameter to true. Starting from Version 4.5, the
system automatically assign a Content Engine to perform the task. So, if this
Content Engine fails, another Content Engine from the farm will take over
automatically.

If the Content Search Engine Indexing Servers are down or unavailable, Content
Engine queues up requests to index documents, up to a maximum of 100,000
documents. Under normal circumstances, therefore, the unavailability of the
Content Search Engine server does not prevent ingestion of new documents into
Content Engine. Monitoring to insure that the CSE Indexing Servers are up and
running is therefore an important administrative task.

Not all new documents are required to be indexed. You can configure specific
document classes and properties within the document classes to be full-text
indexed, and documents of other classes will not be indexed. In addition to
automatic indexing of new documents, the administrator can manually submit a
reindexing job from IBM FileNet Enterprise Manager for a given document class,
for all documents that have been marked for indexing, or for an individual
document, folder, or subclass of any base document class. For example, the
administrator can manually submit a reindexing job from IBM FileNet Enterprise
Manager to restore a collection that was lost because of a hardware failure.
During the time that documents are being reindexed, search queries can still be
performed against the existing collections. When the newly created collections
are ready, the old ones are deleted and the new ones become active.
Reindexing jobs are typically time-consuming, so we recommend performing this
task during non-peak business hours.

The following sections describe each of the components of the Content Search
Engine software. Although the term “server” is used for these components, each
one is really a service, and within limits, each one can be deployed separately,
helping to achieve scalability and availability requirements. In a minimal
configuration, all of these services can be deployed on a single host computer, as
in the configuration employed for this book. However, for scalability purposes,
many clients spread these services across multiple host computers (or logical
equivalents, such as logical partitions (LPARs) as is done in the configuration
used for this book). The services that require the most compute resources are
the Index Servers and the Search Servers. Chapter 3, “High availability
strategies for IBM FileNet P8 systems” on page 43 discusses the high availability
considerations and the requirements for the components.
38 IBM High Availability Solution for IBM FileNet P8 Systems

2.6.2 K2 Master Administration Server

For every Content Search Engine installation, there must be exactly one K2
Master Administration Server running. This server maintains information for all
the other Content Search Engine server components. When Content Search
Engine configuration changes (for instance, a new Search Server is added), the
Master Administration Server updates itself and all of the other K2 Administration
Servers so that they have the latest configuration settings. The Administration
Servers also synchronize periodically with the Master Administration Server,
upon startup and every 15 minutes thereafter.

An installation of a Master Administration Server and all the related services
(which can be on the same or on remote hosts) is referred to as an Autonomy K2
domain.

2.6.3 K2 Administration Server

Only one host computer within a K2 domain runs the Master Administration
Server at a given time. Every other host computer in the K2 domain instead runs
the K2 Administration Server.

Administration Server monitors the health of the Content Search Engine
components installed on its host machine. In addition, Administration Servers
can transfer configuration files that are used by the Content Search Engine
system from one Content Search Engine host to another Content Search Engine
host in order to propagate configuration changes.

Administration Server software is automatically installed when any other Content
Search Engine server software is installed on a host machine. Remote
Administration Servers are maintained by the Master Administration Server,
including information, such as the configuration and status of a Content Search
Engine installation. The information maintained by the local Administration
Server is used by the other services running on the same host.

2.6.4 K2 Ticket Server

K2 Ticket Server is used for the security of the Content Search Engine system
and its collection data. One or more Ticket Servers can exist in a K2 domain. The
Ticket Servers store authentication information for users and grant access to the
index collections accordingly. When a user authenticates to an LDAP server, the
user receives a ticket. The Ticket Server gives the user access only to the part of
the Content Search Engine system for which the user has the correct ticket. In
the case of Content Engine, the credentials and other information that is
necessary for Content Engine to connect with the Content Search Engine
 Chapter 2. IBM FileNet P8 system architectural overview 39

servers are stored in the K2 domain Configuration tab of the IBM FileNet P8
domain root properties page within IBM FileNet Enterprise Manager.

2.6.5 K2 Index Server

K2 Index Server is the software application that performs full-text indexing of
documents. Specifically, Index Server reads a document, breaks it down into its
component words, eliminates words that are in the Excluded Word List, and then
creates entries in the collection, mapping those words to the particular
document. Breaking apart the document to identify its relevant keywords for
indexing is called information abstraction. Index Server is capable of performing
this process on a wide range of document types.

Only Index Server writes to the collection files. To do so, Index Server requires
local file access to the collection files. Physically, the files do not have to reside
within the computer hosting Index Server. Most commonly, especially for highly
available configurations, the collection files are stored on a SAN and accessed
through a Fibre Channel network. Such access creates the appearance that the
files are stored on a local Small Computer System Interface (SCSI) device, which
Index Server can then access. Index Server cannot access collection files
through network file share, such as Common Internet File System (CIFS) or
Network File System (NFS).

The properties of each Index Area specify one or more Index Servers that
Content Engine can use for that Index Area. By using this list, Content Engine
can pick an Index Server for each document to be indexed. Figure 2-7 on
page 41 shows how Content Engine distributes indexing requests among several
Index Servers.
40 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 2-7 How Content Engine index requests are sent to Index Servers

2.6.6 K2 Broker and Search Servers

The content search process is the heart of a Content Search Engine system.
Content Search Engine divides this process across two types of servers: K2
Broker Server and Search Server. When there is a search request, Content
Engine sends the request to one of the Broker Servers. That Broker Server, in
turn, divides the request into smaller pieces and spreads these pieces across a
number of Search Servers. The configuration of each Broker Server determines
to which Search Servers that broker distributes the request. When the Search
Servers return their results to the Broker Server, it collates and merges the data
into a single response and returns that response to the requesting Content
Engine. Because the search process is one of the most critical functions of the
Content Search Engine system, Search Servers are sometimes referred to
simply as K2 Servers.

As with the farming capabilities of AE, CE, and PE, this architecture allows
automatic load balancing and scalability: as more Search Servers are added,
individual searches can be spread over more servers, allowing faster response
times. This process is called parallel querying. It also provides for automatic
high availability: if a particular Search Server fails, as long as at least one Search
Server is available, the search process can still function.

CSECSE
CE Object Store

Content Search
Engine 2

Content Search
Engine 1

Index server 1Index server 1

Index server 2Index server 2

Index server 3Index server 3

Object Store 1Object Store 1

Object Store 2Object Store 2

Index request

Index request

Index request

Collection 2

Collection 3

Collection 1

Indexing

Indexing

Indexing

Index Area 3Index Area 3

Index Area 1Index Area 1

Index Area 2Index Area 2
 Chapter 2. IBM FileNet P8 system architectural overview 41

Search Servers can access the collection files either as a local disk or through a
network share, such as CIFS or NFS. Content Engines are automatically made
aware of the Broker and Search Servers in the K2 domain by querying the
Master Administration Server. When new Brokers or Search Servers are added,
the Content Engines are automatically kept up-to-date.

2.6.7 Communication protocols

As a client of Content Search Engine, Content Engine connects to the Content
Search Engine as a K2 Java client over TCP/IP. Installing the P8CSE client
software on each of the Content Engine servers in the farm and then
re-deploying the FileNetEngine.ear file installs the necessary K2 Java client files.
42 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 3. High availability strategies
for IBM FileNet P8 systems

This chapter describes high availability options and strategies for IBM FileNet P8
core components.

We discuss the following topics:

� Component redundancy
� Virtualization compared to high availability
� Application Engine
� Content Engine
� Process Engine
� Content Search Engine
� Image Services and CFS-IS

3

© Copyright IBM Corp. 2009. All rights reserved. 43

3.1 Component redundancy

Depending on the availability requirement that is set by your business, achieving
high availability requires that there is no single point of failure in an entire system,
in either a hardware component or a software component. All components in the
system must be redundant.

Multiple IBM FileNet P8 components work together to comprise a total solution.
They depend upon other services to function in a production environment. These
other services, therefore, must also be highly available to ensure the entire
solution is highly available. These other services include the Network File
System (NFS) service and the network service. Make sure that other services
involved in the solution are also highly available.

In certain cases, a hardware component already provides internally built-in
redundancy, and if so, you do not need to set up two separate hardware
components to achieve high availability. For hardware components, such as
storage subsystems, network load balancers, switches, and routers, it is
common to use this type of internal redundancy, because these components are
often used in high availability environments.

When considering making a network application highly available, determine the
types of network communication that the service receives from its clients, and
any connections from the software to other services. The protocols used, the
caching of data on a per-session or per-user basis, and other factors dictate the
best methods of achieving load balancing and high availability.

In this book, we focus on providing redundancy for IBM FileNet P8 components
only.

In conjunction with this book, we recommend that you read the following
publications in the area of high availability, and use them for your reference:

� IBM FileNet P8 Platform High Availability Technical Notice, GC31-5487

Consult this technical paper, especially if you are configuring a IBM FileNet
P8 high availability environment using software components other than IBM
software.

Note: One of the key factors in providing high availability for a system is
ensuring hardware and software redundancy for all of the components that are
involved in the system.
44 IBM High Availability Solution for IBM FileNet P8 Systems

� Content Manager Backup/Recovery and High Availability: Strategies,
Options, and Procedures, SG24-7063

This book focuses on achieving high availability for IBM Content Manager
Enterprise Edition. Although it covers another product, several of the
concepts and practical procedures provided in the book can be a good
reference when you design and implement your high availability system.

3.2 Virtualization compared to high availability

Platform virtualization is a technique that is used to partition a single computing
system into a number of separate systems, each a software emulation of a
separate computer system and operating system instance. There are a number
of techniques for achieving virtualization. You can achieve virtualization through
software emulation of the underlying hardware, hardware partitioning, or
virtualized operating system partitioning. In the case of IBM AIX on Power
hardware, the hardware is partitioned into logical partitions (LPARs).

Partitioning a single large system into effectively smaller systems offers several
advantages:

� The amount of computing resources devoted to each partition can be varied
dynamically as demand changes over time. This ability allows administrators
to be responsive and helps to meet system-level agreements.

� Each partition can potentially run a separate operating system.

� A security breach in one partition does not affect any other partitions.

� Similarly, an application or operating system software fault in one partition
does not affect the other partitions.

� By consolidating multiple servers, administrators can reduce the hardware
footprint, reduce administrative and energy costs, and increase efficiency.

� Because each system runs on an abstract hardware platform, it is isolated
from the particulars of any given piece of hardware. Therefore, if the
hardware fails, the same virtual machine can immediately be brought back up
on another virtual server.

� In the same way, a new partition can be allocated and deployed much more
easily than a new hardware platform.

High availability is achieved through the elimination of all single points of failure,
whether hardware or software. You can eliminate all single points of failure
through the wholesale duplication of an entire computer system’s hardware and
software. Often, this approach is exactly how high availability is achieved,
although doing so doubles hardware and software costs. Certain hardware
 Chapter 3. High availability strategies for IBM FileNet P8 systems 45

platforms have built-in redundancy by duplicating all essential components of the
hardware platform, such as network ports, memory, CPU, and buses. They
provide automatic failover at the hardware and software level if a component
fails.

The feature of virtualization that allows a virtual machine to quickly start up on
the same or another hardware platform is useful in achieving high availability,
disaster recovery, or both. However, platform virtualization, by itself, does not
guarantee high availability. While it can provide quick recovery from software
faults, it does not eliminate the possibility of hardware failures. This problem can
be overcome either through the use of two (or more) virtualized platforms, in an
active/passive or an active/active configuration, or through the use of a hardware
platform that includes built-in redundancy of all components so that no single
points of failure exist. The configuration that is used in this book uses the latter
approach, a single hardware platform that is fully redundant at the hardware
level, and the use of multiple LPARs to provide software redundancy with
active/passive clusters and active/active farms.

3.3 Application Engine

The Application Engine (AE) is implemented in Java as a Java 2 Platform,
Enterprise Edition (J2EE) application. It therefore executes in a J2EE application
server, such as IBM WebSphere Application Server Network Deployment.
Clients of the Application Engine are Web browsers. They use the HTTP protocol
over TCP for communication.

AE is a platform and toolkit for client applications for Content Engine (CE) and
Process Engine (PE). The supported applications include Workplace,
WorkplaceXT, eForms, Records Manager, and other applications. From the
perspective of providing high availability, any or all of these applications are the
same, so in this chapter, we refer to this platform, and whatever applications are
deployed on it, as Application Engine.

The best recommended high availability strategy for Application Engine is using
a load-balanced server farm, which is also known as an active/active cluster. By
having all nodes active simultaneously, the best possible performance and
scalability are achieved, and no hardware is left idle. An active/active
configuration also provides the best possible high availability solution, because if
any given node fails, the other nodes are already up, operational, and continue to
process any incoming requests. The failover time consists only of the time that is
required to detect that the node has failed.

In a typical installation, the Application Engine tier is placed behind an HTTP
server tier that implements the WebSphere HTTP Plug-in. The HTTP servers
46 IBM High Availability Solution for IBM FileNet P8 Systems

accomplish several functions, including off-loading work from the Application
Engine servers, such as the encryption and decryption of secure
communications (HTTPS traffic). Performing these functions allows these
servers to be placed within a DMZ area in the network, separated by firewalls
from the users and other machines in the network. This approach greatly
enhances the security of the network, because it minimizes the sources of
connections that are allowed to reach the interior servers. The HTTP Plug-in
provides a load balancing mechanism for HTTP traffic to WebSphere-based
applications. It spreads the load across the available Application Engine servers,
but more importantly, if one of the Application Engine servers goes down, or a
new one is added to the pool of available servers, the Plug-ins automatically
accommodate this change. This configuration is considered the best practice in a
WebSphere environment for both high availability, scalability, and security. We
implemented this configuration in our case study, with the exception that the
firewalls necessary to create a DMZ area were omitted for simplicity.

To avoid introducing single points of failure, at least two HTTP servers must exist
in the Web service tier. They can be front-ended by a hardware load balancer.
This load balancer must either internally implement high availability through
redundant hardware, or a secondary load balancer must be available, to avoid
the introduction of a single point of failure.

An alternative configuration that does not provide the same level of security as
the best practices configuration is to use a hardware or software load balancer
directly in front of the Application Engine tier. Again, whatever load balancing
mechanism is used, avoid introducing single points of failure, either hardware or
software, into the system.

In order for all Application Engine nodes to be configured identically, they must
share a configuration directory and bootstrap properties. In order to avoid single
points of failure, this shared configuration directory must be made highly
available and mounted from all Application Engine nodes. Alternatively, you can
install Application Engine in a single, highly available shared location, with all
Application Engine instances run from the same set of binaries and configuration
files.

The Application Engine is a client of the Content Engine and the Process Engine,
in both cases, using their Java APIs. The protocol used for the Application
Engine to communicate with Content Engine is the Enterprise JavaBean (EJB)
transport over TCP. For Process Engine communications, Common Object
Request Broker Architecture (CORBA)/Internet Inter-ORB Protocol (IIOP) is
used running again over TCP. We discuss the high availability considerations for
these protocols in the following sections describing the high availability aspects
of the Content Engine and Process Engine.
 Chapter 3. High availability strategies for IBM FileNet P8 systems 47

3.3.1 Session affinity for Application Engine

When a user connects to the Application Engine, that user has to log in to the
system to access the services behind it (the Content Engine and the Process
Engine). The load balancer in front of the Application Engine tier can use any
algorithm for load balancing these initial connections. Because Web browsers
can disconnect from a server after each interaction, the Application Engine
maintains the user’s state between each interaction, including the user’s logon
credentials and the document with which the user is currently working. It is
therefore important that the user connections are directed to the same
Application Engine server consistently after the user logs in. This load balancer
behavior is known as session affinity or sticky sessions.

3.4 Content Engine

Like the Application Engine, the Content Engine is implemented in Java and runs
under an application server. For our case study implementation, we use IBM
WebSphere Application Server Network Deployment.

The Content Engine accepts connections from clients using two separate
transports, which are both carried by TCP connections:

� EJB/IIOP (Remote Method Invocation (RMI)/IIOP for WebSphere)

Only the Java applications using the Java API for Content Engine use this
protocol. Application Engine, portions of IBM FileNet Records Manager, and
custom Java applications that are written with the Java API use this protocol.

� Web Services Interface (WSI) over HTTP

The .Net API of Content Engine and the backward-compatible Content
Engine 3.x COM API use this protocol. IBM FileNet Enterprise Manager and
Process Engine use this transport to connect to the Content Engine. Portions
of IBM FileNet Records Manager use it also. Third-party service-oriented
architecture (SOA) applications written in a variety of languages can use this
protocol, as well.

Each of these transport protocols, EJB and WSI, requires special consideration
when constructing a high availability environment for Content Engine.
Consequently, you must employ two load balancing mechanisms to make
Content Engine highly available.
48 IBM High Availability Solution for IBM FileNet P8 Systems

3.4.1 Load balancing the EJB transport

For the EJB/IIOP transport, we recommend always using the native load
balancing software that is provided with the application server if at all possible. In
the case of WebSphere Application Server, this feature is the Network
Deployment Workload Manager. We do not recommend using hardware or
external software load balancers, which results in extremely poor performance.

3.4.2 Load balancing the WSI transport

Because the WSI transport uses the standard HTTP protocol for connections, it
can be load-balanced by either a hardware or a software load balancer. In the
case study configuration that is used in developing this book, we use a hardware
load balancer, the F5 BIG-IP. One example of a software load balancer that you
can use is the the WebSphere HTTP Plug-in, which we use for load balancing
connections.

3.4.3 Session affinity for Content Engine

The Content Engine is, by design, stateless. Any request can be made to any
Content Engine within a farm. Certain transactions might perform better with
session affinity, but it is not proven in testing. When load balancing EJB clients,
the WebSphere Network Deployment Workload Manager can provide session
affinity only for statefull session beans. Because the Content Engine is designed
to be stateless, it uses only stateless beans. WebSphere Application Server
Network Deployment does not provide session affinity for these types of clients.
Most load balancers that might be used with WSI, however, offer session affinity
as an option.

While session affinity might produce higher performance for a small number of
request types, it can lead to an imbalance in the load across a farm of Content
Engine servers, depending upon client behavior, and this imbalance leads to
lower overall performance and throughput. We therefore consider it the best
practice not to attempt to perform session affinity for connections to the Content
Engine for this reason.

Note: Because the EJB clients must use the client software that is provided
with the application server, clients that run within an application server, such
as the Application Engine, must be deployed on the same type of application
server as the Content Engine.
 Chapter 3. High availability strategies for IBM FileNet P8 systems 49

3.5 Process Engine

In releases prior to 4.0, Process Engine requires an active/passive cluster
configuration to achieve high availability. Starting with Release 4.0, Process
Engine has been redesigned to be stateless, so that an active/active server farm
can be implemented. Just as with the Content Engine, this stateless
configuration is the best practice configuration for achieving high availability.
However, unlike Application Engine and Content Engine, Process Engine is not a
J2EE application, so it does not run within an application server. Therefore, the
external load balancers must be used in front of Process Engine to balance its
client traffic. Up until the date that this book was written, only hardware load
balancers have been tested and qualified for this purpose. For our case study,
we set up an active/active cluster configuration of Process Engine using the F5
BIG-IP hardware load balancer.

The alternative high availability configuration, using an active/passive cluster, is
also an option for Process Engine. It is not the best practice high availability
configuration, but clients who use the IBM FileNet P8 Version 3.5 in that
configuration might upgrade to Version 4.x while keeping the active/passive
approach. As presented in the P8 4.x High Availability Technical Notice,
GC31-5487, Microsoft Cluster Server and Veritas Cluster Server have been
tested and qualified for use with Process Engine 4.x for an active/passive
configuration.

Special configuration note regarding IBM FileNet Enterprise Manager:
Refer to the P8 4.x High Availability Technical Notice, GC31-5487, which can
be downloaded from the following URL:

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

Scroll down to FileNet P8 Platform Technical Notices for this document.

Applications, such as IBM FileNet Enterprise Manager (which uses the WSI
transport) that can create new document classes, must not load balance their
interactions across a farm of servers. Content Engine caches the metadata
state of each object store (in particular, information about the document
classes defined for that object store). If a class is created on node 1, and the
user immediately attempts to use that class on node 2, node 2 will not be
aware of the class until its refresh interval has passed. In this scenario, it
appears to the user that the class just created is unavailable. Therefore, we
recommend that you configure IBM FileNet Enterprise Manager to
communicate with a particular node in a server farm rather than to the virtual
address of the server farm.
50 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

Like Content Engine, Process Engine offers two separate: a Java API that uses
the CORBA/IIOP protocol and a Web Services Interface (WSI) that uses the
HTTP transport protocol. Among IBM clients of Process Engine, Application
Engine (Workplace and WorkplaceXT) and custom Java applications use the
Java API, while SharePoint Connector and any custom Web Service applications
for Process Engine use WSI, and thus HTTP. Fortunately, load balancing for
both APIs can be performed using a hardware load balancer, as long as it is
capable of load balancing all ports and protocols, not just HTTP traffic over TCP.
In addition to the F5 BIG-IP hardware load balancer that is used in the
configuration for this book, the Cisco Local Director has also been tested with
Process Engine.

3.5.1 Session affinity for Process Engine

Process Engine is stateless; therefore, any client request can be directed to any
Process Engine within an active/active server farm. Unlike Application Engine,
Process Engine maintains the user state within the database, so that no
information is lost if a particular node in a server farm goes down. User
credentials are passed with each interaction with the server so that no new logon
is required if the user’s connection is redirected from one server to another
server upon failover. In practice, the Java API maintains session affinity
automatically as long as the original server remains available. This behavior can
lead to an imbalance in load across the servers in a farm, depending upon client
behavior.

3.6 Content Search Engine

The Content Search Engine (CSE) consists of a number of components, each
with unique high availability considerations:

� K2 Master Administration Server
� K2 Administration Servers
� K2 (search) Servers
� K2 Index Servers
� K2 Broker Servers
� K2 Ticket Servers

In a minimal configuration, all of these servers, or services, can be deployed on a
single host, which is the configuration that we used for the case study for this
book. However, for scalability purposes, many solutions spread these services
across multiple hosts. The services that require the most computing resources
are the Index Servers and the Search Servers.
 Chapter 3. High availability strategies for IBM FileNet P8 systems 51

There are several potential single points of failure in this set of servers:

� The Master Administration Server
� CE Dispatcher
� Index Servers

Master Administration Server
For any IBM FileNet P8 4.0 solution, there must be only one Master
Administration Server; therefore, it must be paired in an active/passive cluster to
achieve high availability.

Dispatcher
Within the Content Engine farm, in Version 4.0.0 and Version 4.0.1, you can only
designate one Content Engine as the dispatcher. Therefore, only one Content
Engine can send requests for documents to be indexed to the administration
servers. This functionality is enabled within the Content Engine by setting the
EnableDispatcher configuration setting. Because this function must be enabled
on only one Content Engine at a time, if that Content Engine fails, dispatching
stops. In these versions of the Content Engine, the administrator must manually
enable this setting on a separate Content Engine if the designated Content
Engine fails. A potential method of automating the failover of this functionality is
to include the Content Engine with this setting enabled in an active/passive
cluster of the Master Administration Server. Then, if a failover happens for any
reason, the passive Content Engine can be brought up with the setting enabled,
and dispatching continues. As of this writing, this approach has not been tested
for our case study. Beginning in Release 4.5, more than one Content Engine can
have this setting enabled. Therefore, all Content Engines at the site where the
Content Search Engine servers reside can submit the request, thus eliminating
the single point of failure.

Index Servers
Each Index Server manages one or more collections of documents, and each
collection is a member of only one Index Area within the Content Engine. When a
document is added to an object store, the Content Engine determines which
Index Area is used to index that document, based on a number of factors that are
designed to maximize performance, and thus choosing a set of collections.
When a collection becomes full, a new collection is automatically created.

There are two aspects of the Index Servers that impact high availability
configurations:

� K2 Index Servers manage all writes and updates to the collection files. To do
so, they require local disk access to the file system housing the collections.
While such a file system can be housed on a storage area network (SAN) and
connected through a Fibre Channel network (so that it appears as a local disk
52 IBM High Availability Solution for IBM FileNet P8 Systems

to the server), it cannot be accessed by the Index Server through a network
share, such as Network File System (NFS) or Common Internet File System
(CIFS). Testing has shown that if the Index Server accesses the collections
through a network share, corruption of the collection files can result.

� The Index Server is not designed to work in an active/active configuration.
Therefore, for any given set of collections (Index Area), there can be only one
Index Server active at a time. Therefore, for a high availability configuration,
each Index Server must be paired in an active/passive cluster configuration.
In order for the passive node to be able to access the collections as local
storage, it is also therefore necessary to store the collections on a SAN and
access them through a Fibre Channel network, so that the passive system
can take control of the storage area at the time of failover.

Compared with the Index Servers, it is easy to make the Search Servers highly
available. Requests for searches are sent to the Broker Servers. The Brokers
farm the requests across all available Search Servers and coalesce the results
before returning them to the Content Engine. This approach implements a
proprietary high availability solution. The Search Servers, unlike the Index
Servers, can access the collections through shared file systems. Because this
file system is the local storage on the Index Server host, this approach is typically
implemented by having that host share the storage using NFS or CIFS. The
number of Search Servers can thus be easily scaled at any time to meet high
availability and performance requirements

Figure 3-1 on page 54 illustrates a typical IBM FileNet P8 4.0 system configured
for high availability, including an N+1 active/passive cluster for Content Search
Engine.
 Chapter 3. High availability strategies for IBM FileNet P8 systems 53

Figure 3-1 N+1 active/passive cluster for CSE in a P8 high availability configuration

In the active/passive cluster shown in Figure 3-1, four servers (A, B, C, and D)
are configured with identical software and settings. Any one server can be used
as the passive server. In this configuration, server A is the active server that runs
everything. Server B is the passive server. Although all the software is installed
on this passive server, it is not running these components, and thus, server B is
shown with the installed software grayed out, in a steady state of the N+1 cluster.
Servers C and D are the scaled-out active Index Servers. Each Index Server
must be configured with its own dedicated K2 collection, but searches span all of
the collections. The Broker Server and the Search Server are optional
components on these servers. The servers can run these components or be
dedicated to indexing other collections. In addition, they do not run the Master
Administration Server or the CE K2 dispatcher, because only one active server in
the cluster needs to perform these tasks. Starting with Release 4.5, CSE can
detect when the active CE K2 dispatcher fails and start it automatically on
another CE. So, the clustering software does not need to start, stop, or monitor
the CE K2 dispatcher in Release 4.5. Server E and server F are scaled out
servers dedicated for searching. Depending on system performance

Passive (CE &) K2
(CE K2 dispatcher)

(Master) Admin Server
Ticket Server
Broker Server

Search Server (opt.)
Index Server

(SAN access to
collections)

N+1 Active-passive cluster w/ HACMP, or equiv.

Content Engine

Load-balanced server farm

K2 collections &
K2 configuration data

K2 Host

Admin Server
Ticket Server

Broker Server (opt.)
Search Server
(NAS access

 to collections)

K2 Host

Admin Server
Ticket Server

Broker Server (opt.)
Search Server
(NAS access

to collections)

. . .

. . .

SAN/SCSI

CE file storage areas

NAS

. . .

More K2 collections

SAN/SCSI

Other K2 collections

SAN/
SCSI

Clustered master admin server and CE K2 dispatcher, plus index server scale out Search server scale out

NAS Network: Provides Search Servers with
access to Verity collections and provides Index
Servers with access to CE file storage areas.
Grayed out components: Software is installed
but the components are not running on the
specific nodes.

B FE

NAS Network

Active CE & K2
CE K2 dispatcher

Master Admin Server
Ticket Server
Broker Server

Search Server (opt.)
Index Server

(SAN access to
collections)

A

Active (CE &) K2 Host
(CE K2 dispatcher)

(Master) Admin Server
Ticket Server

Broker Server (opt.)
Search Server (opt.)

Index Server
(SAN access to

collections)

C

Active (CE &) K2 Host
(CE K2 dispatcher)

(Master) Admin Server
Ticket Server

Broker Server (opt.)
Search Server (opt.)

Index Server
(SAN access to

collections)

D

54 IBM High Availability Solution for IBM FileNet P8 Systems

requirements, you can scale out multiple servers dedicated only for indexing
other collections or performing searches.

For more information about various configuration options, see the Autonomy
documentation, which you can find at this Web site:

http://www.f5.com

3.7 Image Services and CFS-IS

Image Services is a collection of native programs written in C. It does not operate
under an application server. The only option for high availability for Image
Services is an active/passive cluster. For scalability, the separate services that
comprise Image Services can be spread across multiple servers, but the high
availability operation only supports a combined server with all of the services
co-resident.

Tests of high availability configurations of Image Services have included
Microsoft Cluster Server and Veritas Cluster Server. Detailed information about
configuring Image Services for high availability is in IBM FileNet Image Services:
VERITAS Cluster Server and VERITAS Volume Replicator Guidelines,
GC31-5545.

For the case study that we implemented for this book, the Image Services cluster
is managed by IBM PowerHA for AIX (HACMP - formerly IBM High Availability
Cluster Multi-Processing).

One restriction on the Image Services configuration for high availability is that
only Magnetic Storage and Retrieval (MSAR) storage is supported, not optical
drives on Small Computer System Interface (SCSI) connections.

If the database goes down and comes back up (in the case of a database failover
in an active/passive cluster) while Image Services is operating, versions of IS
prior to 4.1.2 do not automatically reconnect to the database and continue
operating. The Image Services system must be stopped and restarted manually.
For this reason, for these versions, the best practice is to collocate the database
and the Image Services system, so that a failover of either component (database
or Image Services) automatically results in a failover of the other component. An
undocumented alternative is to automate the restart of Image Services whenever
the database is restarted under control of the cluster management software.

Note: In Version 4.5 and later releases, because more than one CE can
dispatch indexing requests, CE is not part of the active/passive cluster.
Otherwise, the configuration is identical to Figure 3-1.
 Chapter 3. High availability strategies for IBM FileNet P8 systems 55

http://www.f5.com

Starting with Version 4.1.2, Image Services can reconnect to the database after
the connection is lost. A new setting, db_reconnect_disabled, must be disabled
(set to the value “0”) to configure this new behavior. If the configuration is done
this way, users who are executing a transaction at the time of a database
connection loss, might receive a <121,0,41> error message, after which the
transaction is automatically retried.

Image Services normally operates as a stand-alone product. When integrated
with Content Engine, each instance of Content Engine includes connector
software known as Content Federated Services for Image Services (CFS-IS).
There is a many-to-one relationship between the Content Engine instances and
a single Image Services instance. The import agent portion of CFS-IS pulls new
documents from an import queue within Image Services, so this function is
automatically farmed across all Content Engine instances.

There are two important differences in the 4.x version of CFS-IS compared with
the 3.5 version:

� In the 3.5 version, CFS-IS was not integrated with Content Engine. For a high
availability solution, while Content Engine 3.5.x can be farmed, the File Store
Service (FSS) in Content Engine 3.5.x could not be farmed, only
active/passive-clustered. The best solution for Content Engine 3.5 was to set
up FSS on a separate computer.

� The 3.5.x version of CFS-IS required the installation of the Image Services
Toolkit (ISTK) on the Content Engine hosts.

With the 4.x version of CFS-IS, these steps are no longer required.

3.8 Summary

Table 3-1 on page 57 summarizes the high availability options and recommended
strategies for the main P8 server components.
56 IBM High Availability Solution for IBM FileNet P8 Systems

Table 3-1 High availability options and best practice strategies for P8 components

Server Supported HA solutions Best practice HA strategy

Content Engine Farming or
active/passive clustering

Farming

Process Engine Farminga or
active/passive clustering

a. Process Engine farming only supports hardware load balancers at the time
of writing this book.

Farming

Application Engine Farming or
active/passive clustering

Farming

Image Services Active/passive clustering Active/passive clustering

CFS-IS Farming with CE Farming with CE

Content Search
Engine

N+1 active/passive
cluster

N+1 active/passive cluster
 Chapter 3. High availability strategies for IBM FileNet P8 systems 57

58 IBM High Availability Solution for IBM FileNet P8 Systems

Part 2 High availability
implementation for
IBM FileNet P8
system components

Part 2
© Copyright IBM Corp. 2009. All rights reserved. 59

60 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 4. Infrastructure setup:
Introducing the case study

This chapter describes the high-level architecture of our lab environment that is
used as the case study for this IBM Redbooks publication. In this case study, we
set up the entire IBM FileNet P8 environment from the beginning. We use the
best practices that are recommended to set up high availability (HA) for P8
whenever possible. The steps that are used for this setup are shared in the later
chapters to provide a practical guide for you to follow when you plan and set up
your high availability solutions. We discuss the following topics:

� Case study introduction
� Hardware
� Physical architecture
� Architecture summary
� Installation sequence reference

4

Note: The steps we take are not always the only way to accomplish the tasks.
We recommend that you also consult the IBM FileNet High Availability White
Paper for additional information. To access this paper, go to the FileNet
Product Documentation Web site:

http://www-01.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

And then, search for “High Availability” under the Technical Notices section.
© Copyright IBM Corp. 2009. All rights reserved. 61

http://www-01.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

4.1 Case study introduction

Based on the high availability strategies and best practices that were presented
in Chapter 3, “High availability strategies for IBM FileNet P8 systems” on
page 43, for our case study, we implement a highly available IBM FileNet P8
solution in conjunction with writing this book.

The steps involved in implementing this infrastructure are documented in detail in
the remaining chapters of this book. Use these steps as sample, practical
procedures that you can reference when planning, designing, and implementing
high availability for your IBM FileNet P8 solution.

Many of the IBM FileNet P8 software components can be configured in multiple
ways to achieve high availability. Where it was feasible and possible within our
lab environment, we set up and test these configurations.

Assumptions and dependencies
For our case study, we assume that the network infrastructure, the external
storage infrastructure, and other components and services provided by the
network, such as Domain Name System (DNS), Lightweight Directory Access
Protocol (LDAP), security, and firewalls are highly available. Setting up those
components (that are not directly within the IBM FileNet P8 environment) is
outside the scope of this book. However, it is worthy to note that if any of those
dependency services are not highly available, they can represent a single point
of failure outside of the IBM FileNet P8 infrastructure that can cause an outage.

Work with your architecture team to ensure that there is no single point of failure
outside of your IBM FileNet P8 environment.

4.2 Hardware

For our case study, we use the IBM System p5® 595 server to deploy the IBM
FileNet P8 components. The hardware load balancer that we use is an F5 BIG-IP
series 6800. There are other options for servers and load balancers. Check with
your architecture team to determine the best servers and load balancers to use
for your environment.
62 IBM High Availability Solution for IBM FileNet P8 Systems

4.2.1 IBM p5 595 features and overview

The IBM System p5 595 server (Figure 4-1) is one of the most powerful IBM
System p servers, which delivers exceptional performance, reliability, scalability,
and flexibility, enabling businesses to take control of their IT infrastructure by
confidently consolidating application workloads onto a single system.

Equipped with advanced 64-bit IBM POWER5+™ processor cores in up to
64-core symmetric multiprocessing (SMP) configurations, this server provides
the processing power for a full range of complex, mission-critical applications
with demanding processing requirements, including business intelligence (BI),
enterprise resource planning (ERP), transaction processing, and ultra high
performance computing (HPC).

With twice the number of processors, twice the memory capacity, and nearly four
times the commercial performance of the previous top-of-the-line IBM eServer™
pSeries® 690 server 1, the p5-595 can ultimately help companies make
decisions faster and drive business innovation.

For more information about P595, refer to the following Web site:

http://www.ibm.com/systems/p/hardware/highend/595/index.html

Figure 4-1 IBM p5 595

Table 4-1 on page 64 lists the p5-595 features.
 Chapter 4. Infrastructure setup: Introducing the case study 63

http://www.ibm.com/systems/p/hardware/highend/595/index.html

Table 4-1 System p5 595 features

Features Benefits

POWER5+ technology � Designed to provide excellent application
performance and high reliability.

� Includes simultaneous multithreading to help increase
commercial system performance and processor
utilization.

High memory/I/O
bandwidth

� Fast processors wait less time for data to move
through the system.

� Delivers data faster for the needs of high performance
computing (HPC) and other memory-intensive
applications.

Flexibility in packaging � High-density 24-inch system frame for maximum
growth.

Shared processor poola � Provides the ability to transparently share processing
power between partitions.

� Helps balance processing power and makes sure that
the high priority partitions get the processor cycles
that they need.

Micro-Partitioninga � Allows each processor in the shared processor pool
to be split into as many as 10 partitions.

� Fine-tunes processing power to match workloads.

Virtual I/Oa � Helps save cost and ease systems administration by
sharing expensive resources.

Virtual LANa � Helps speed internal communication between
partitions at memory speeds.

Dynamic logical
partitioninga

� Allows reallocation of system resources without
rebooting affected partitions.

� Offers greater flexibility in using available capacity
and more rapidly matching resources to changing
business requirements.

Mainframe-inspired
reliability, availability, and
serviceability (RAS)

� Delivers exceptional system availability using
features that include redundant service processor,
IBM Chipkill memory, First Failure Data Capture,
dynamic deallocation of selected system resources,
hot-plug/blind-swap PCI-X slots, hot-swappable disk
bays, redundant hot-plug cooling and power
subsystems, selective dynamic firmware updates,
hot-add I/O drawers, dual system clocks, and more.
64 IBM High Availability Solution for IBM FileNet P8 Systems

Broad range of capacity
on demand (CoD)
offeringsa

� Provides temporary access to processors and
memory to meet predictable business spikes.

� Provides prepaid access to processors to meet
intermittent or seasonal demands.

� Offers a one-time 30 day trial to test increased
processor or memory capacity before permanent
activation.

� Allows processors and memory to be permanently
added to meet long-term workload increases.

� Provides backup system with inactive processors to
be activated in disaster recovery situations.

Grid Computing supporta � Allows sharing of disparate computing and data
resources across heterogeneous, geographically
dispersed environments, helping to increase user
productivity.

Scale-out with
communications storage
manager (CSM) supporta

� Allows for more granular growth so user demands can
be readily satisfied.

� Provides centralized management of multiple
interconnected systems.

� Provides ability to handle unexpected workload peaks
by sharing resources.

High Performance Switch
attachmenta

� Offers maximum performance, scalability, and
throughput for parallel message-passing applications.

� Allows attachment of up to 16 server nodes.

Multiple operating system
support

� Allows clients the flexibility to select the right
operating system and the right application to meet
their needs.

� Provides the ability to expand application choices to
include many open source applications.

AIX 5L™ operating
systema

� Delivers increased throughput for mixed workloads
without complex system configuration or tuning.

� Delivers integrated security features designed for
system protection.

� Extends application choices with Linux® affinity.

Linux operating systema � Enables access to 32-bit and 64-bit open source
applications.

� Provides a common operating environment across
IBM server platforms.

� Built on open standards.

a. Indicates this feature is optional, is available on selected models, or requires
separate software.

Features Benefits
 Chapter 4. Infrastructure setup: Introducing the case study 65

Case study usage
For our case study, we use a fully loaded IBM p5 595 system. The system is
equipped with 64 processor nodes operating at 2.1GHz and 512 GB of RAM. We
partitioned the p5 595 system into multiple logical partitions (LPARs), each
allocated with four processors and 4 GB of RAM. Storage is allocated on an IBM
DS8300 connected to each LPAR via multiple 2 Gbps Fibre Channel virtual
paths. We installed AIX 5.3 in all logical partitions.

The high availability techniques that are discussed in this book are applicable not
only to this type of configuration. You can also use multiple, less powerful
machines to achieve high availability.

4.2.2 BIG-IP 6800 system features and overview

For our case study, we use the BIG-IP 6800 hardware load balancer (Figure 4-2)
to load balance HTTP traffic between our active/active clusters.

The BIG-IP 6800 system is a port-based, multi-layer switch that supports the
virtual local area network (VLAN) technology, F5 Network. Refer to Chapter 5,
“Hardware load balancer implementation (F5 BIG-IP)” on page 73 for features
and an overview.

Figure 4-2 F5 BIG-IP 6800

4.3 Physical architecture

Our case study consists of two scenarios. Figure 4-3 on page 67 illustrates the
physical architecture of scenario A of our case study system. The remaining
sections of the chapter describes the logical architecture of our system.

BIG-IP 6800®
66 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 4-3 Scenario A: P8 physical architecture with PE in an active/active setup
 Chapter 4. Infrastructure setup: Introducing the case study 67

Note the following information in Figure 4-3 on page 67:

� Each rectangle represents a machine or a system. A clear rectangle shows
the active or primary system in this HA configuration, and a shaded rectangle
shows the standby or secondary system.

� “NFS” indicates a particular directory or file system is shared via an NFS
mount.

� “Fibre” indicates a particular directory or file system is shared via Fibre
Channel connections; therefore, all systems that are connected with “Fibre”
will access the exact same storage or disks.

� The storage units in the center of the diagram list all the critical P8-related
configuration files, binaries, and data that require HA setup.

� In general, the lines that connect all the rectangular boxes indicate network
connection, unless marked “Fibre.”

All of the hardware used in our case study existed as logical partitions (LPARs)
of a single p5 595 server. However, the behavior from the standpoint of high
availability is the same as if part or all of the logical servers are implemented on
physically separate servers. Because the hardware of the p5-595 contains
redundant components, it is considered to be highly available even though it is a
single system.

Scenario B is an alternative to scenario A. In scenario B, instead of using a farm
for Process Engine, we use IBM PowerHA for AIX (HACMP - formerly IBM High
Availability Cluster Multi-Processing) to set up an active/passive cluster for
Process Engine. Figure 4-4 shows the portion of the physical architecture
diagram for scenario B that differs from scenario A.

Figure 4-4 Scenario B: Physical architecture (partial) with PE in an active/passive setup

This book describes the details of the scenario A setup in later chapters.
68 IBM High Availability Solution for IBM FileNet P8 Systems

4.4 Architecture summary

This section describes the architecture that is set up for our case study. We set
up two environments: scenario A and scenario B.

4.4.1 Scenario A

Figure 4-5 shows scenario A. In this scenario, the IBM FileNet P8 Process
Engine is set up in an active/active mode with a hardware load balancer
distributing the requests for the Process Engine. For a new setup of an IBM P8
environment, scenario A is the best practice approach.

Figure 4-5 Scenario A: P8 logical architecture with Process Engine in an active/active setup

As shown in Figure 4-5, client communications enter the system through a DMZ,
which is separated from the outside world, and from the inner, protected network,
by a pair of firewalls. The use of a DMZ is not a requirement for a P8 installation,
but we recommend using it to achieve security of the network and servers. Inside
the DMZ is a stand-alone Web server that does not store local data and thus
cannot easily be compromised. Because we are configuring this environment for
 Chapter 4. Infrastructure setup: Introducing the case study 69

high availability, there must be two of these Web servers to avoid having a single
point of failure in the network. Because there are two servers, we use a hardware
load balancer and a backup load balancer for redundancy, to route traffic to the
Web servers. Because the target system to which the Web servers will connect
is a WebSphere application server, the two Web servers in the DMZ have the
WebSphere HTTP Plug-in installed. The plug-in handles the WebSphere-specific
load balancing task.

After the traffic passes through the inner firewall, it then reaches the WebSphere
cluster running the Application Engine. The communication path from the clients
through the AE is always over HTTP or the equivalent HTTPS transport protocol.
Application Engine then communicates with the Content Engine WebSphere
cluster and the Process Engine farm via their required protocols: IIOP through a
hardware load balancer for PE and EJB/IIOP; for certain applications layered on
AE, Web Services Interface (WSI) over HTTP for CE; or WSI for PE. Again, for
redundancy, two load balancers are shown in front of the PE farm. Note also that
there is direct communication between CE and PE. This bidirectional
communication always uses the Web Services protocol over HTTP. The load
balancers shown in front of the PE farm will be used to balance these
connections when made from a PE to the CE cluster.

The figure also shows an existing Image Services system. The content stored on
this system is made accessible to the P8 clients via CFS-IS. Each CE manages
its own CFS-IS connection software, so this portion of the system is
automatically made redundant by the fact that there is more than one CE
instance in the CE cluster. The Image Services system is made highly available
via an active/passive cluster (HACMP).

Figure 4-5 on page 69 shows Image Services, CE, and PE accessing the same
database server. In practice, you can separate this function into two or more
database servers, depending upon capacity and scalability considerations. You
can have as many database servers as one for each CE object store, plus one
for the PE farm, and one for the Image Services server.

Finally, the Content Engine uses the Content Search Engine. Figure 4-5 on
page 69 shows that the CSE service is made highly available by an
active/passive HACMP cluster.

CE, CSE, and IS also make use of content storage, which must also be made
highly available. In order for this storage to be available to all the servers, it must
be made available via a file sharing protocol, such as NFS or CIFS. Therefore,
this storage is frequently stored on a Network Attached Storage (NAS) device. In
other cases, it might be stored on a Storage Attached Network (SAN). In this
case, the storage must be shared over the network either by a “NAS Head,” a
hardware device that exposes the SAN’s storage via file sharing protocols over
the network, or by attaching it to a particular computer system and having that
70 IBM High Availability Solution for IBM FileNet P8 Systems

system share the storage via NFS or CIFS. In all of these cases, there must be
no single points of failure for an HA configuration, so each device must have a
duplicate standby device available, or its hardware must include redundant
components (as is available for most NAS head devices).

4.4.2 Scenario B

Figure 4-6 shows scenario B. In this scenario, the IBM FileNet P8 Process
Engine is set up in an active/passive mode utilizing IBM HACMP software. For
the clients with IBM FileNet P8 Process Engine 3.x in a high availability setup
who are upgrading to P8 4.x, the first step is to upgrade to the scenario B
configuration. In P8 3.x, the only HA solution for Process Engine was an
active/passive cluster. After upgrading to 4.x, certain clients might prefer to
continue using the active/passive cluster approach for PE high availability.
However, the best practice recommendation is then to convert the PE cluster to
an active/active farm (scenario A), because this configuration uses the
otherwise-passive node during normal operations, resulting in better
performance, as well as requiring no downtime if a failure of one of the PE nodes
occurs.

Figure 4-6 Scenario B: P8 logical architecture with Process Engine in an active/passive setup
 Chapter 4. Infrastructure setup: Introducing the case study 71

The remainder of the configuration in scenario B is identical to the best practice
approach that is illustrated in scenario A, so refer to 4.4.1, “Scenario A” on
page 69.

4.5 Installation sequence reference

Although there is not a documented recommended order to install IBM FileNet
P8 components, we recommend installing the components in the following order:

1. Hardware load balancer and its associated software

2. Web tier (WebSphere) and databases (DB2), which can be installed in
parallel.

3. ecm_help

4. Content Engine

5. Application Engine

6. Process Engine

7. Content Search Engine

8. Image Services, which can be installed in parallel with Content Search
Engine.

Hardware load balancer and its software can be installed at a later time if you do
not have the hardware available at the beginning of the project.

This sequence is another possible installation order:

1. Hardware load balancer and its associated software

2. Web tier (WebSphere) and database (DB2)

3. ecm_help

4. Content Search Engine

5. Content Engine

6. Process Engine

7. Application Engine

Note: This book describes the detailed configuration for scenario A only.
72 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 5. Hardware load balancer
implementation (F5 BIG-IP)

The best practice to set up Process Engine for high availability is to use a
Process Engine farm. You can farm Process Engine by using hardware load
balancers only. For our case study setup, therefore, we choose to use a
lab-approved hardware load balancer, the BIG-IP System from F5 Network.

This chapter describes the use of the BIG-IP 6800 system, the hardware load
balancer that is also known as the application delivery controller (ADC), in our
IBM FileNet P8 high availability setup. For the convenience of the setup and to
take advantage of the many benefits that the BIG-IP System has to offer, you can
also use the load balancer for multiple IBM FileNet P8 components for high
availability purposes.

We discuss the following topics:

� BIG-IP System overview
� BIG-IP configuration for IBM FileNet P8
� Setting up and configuring standby BIG-IP
� Set up administrative partitions for P8

5

© Copyright IBM Corp. 2009. All rights reserved. 73

5.1 BIG-IP System overview

The BIG-IP System is a port-based, multilayer switch that supports virtual local
area network (VLAN) technology. Because hosts within a VLAN can
communicate at the data-link layer1, a BIG-IP System reduces the need for
routers and IP routing on the network, which, in turn, reduces equipment costs
and boosts overall network performance. At the same time, the BIG-IP System
can perform IP routing at the network layer, as well as manage TCP, User
Datagram Protocol (UDP), and other application protocols at the transport layer
through the application layer (for example, the Web page level). These
capabilities provide comprehensive and simplified traffic management and
security for IBM FileNet P8 components, such as the Web servers, Content
Engine, and Process Engine.

5.1.1 Core modules

BIG-IP System provides comprehensive traffic management and security for
many traffic types through the following modules that are fully integrated in the
device:

� BIG-IP Local Traffic Manager
� BIG-IP WebAccelerator
� BIG-IP Global Traffic Manager
� BIG-IP Link Controller
� BIG-IP Application Security Manager
� BIG-IP Secure Access Manager

BIG-IP Local Traffic Manager
The BIG-IP Local Traffic Manager features ensure that you get the most out of
your network, server, and application resources. BIG-IP Local Traffic Manager
removes single points of failure and virtualizes the network and applications
using industry-leading layer 7 (L7) application intelligence. BIG-IP Local Traffic
Manager includes rich static and dynamic load balancing methods, including
Dynamic Ratio, Least Connections, and Observed Load Balancing, which track
dynamic performance levels of servers in a group. These methods ensure that all
sites are always on, more scalable, and easier to manage than ever before.

1 Open Systems Interconnection Basic Reference Model (OSI Model) divides network architecture
into seven abstract layers: (1) Physical, (2) Data Link, (3) Network, (4) Transport, (5) Session, (6)
Presentation, and (7) Application.
74 IBM High Availability Solution for IBM FileNet P8 Systems

For more information, see the Configuration Guide for BIG-IP Local Traffic
Management. You can access BIG-IP documentation from the following Web
sites:

� BIG-IP System Management Guide:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys.html

� Instructions for BIG-IP 5 high availability configuration in the GUI:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826

BIG-IP WebAccelerator
BIG-IP WebAccelerator is an advanced Web application delivery solution that
provides a series of intelligent technologies that overcomes performance issues
involving browsers, Web application platforms, and wide area network (WAN)
latency. By decreasing page download times, WebAccelerator offloads servers,
decreases bandwidth usage, and ensures the productivity of application users.

BIG-IP Global Traffic Manager
The BIG-IP Global Traffic Manager provides intelligent traffic management for
high availability across multiple data centers, for managing backup and disaster
recovery, and for your globally available network resources. Through the Global
Traffic Manager, you can select from an array of load balancing modes, ensuring
that your clients access the most responsive and robust resources at any given
time. In addition, the Global Traffic Manager provides extensive monitoring
capabilities so the health of any given resource is always available. For more
information, see the Configuration Guide for BIG-IP Global Traffic Management.

BIG-IP Link Controller
BIG-IP Link Controller monitors the availability and performance of multiple WAN
connections to intelligently manage bidirectional traffic flows to a site, providing
fault-tolerant, optimized Internet access regardless of connection type or
provider. The Link Controller ensures that traffic is always sent over the best
available link to maximize user performance and minimize bandwidth cost to a
data center. For more information, see the Configuration Guide for BIG-IP Link
Controller.

BIG-IP Application Security Manager
BIG-IP Application Security Manager provides Web application protection from
application layer attacks. BIG-IP Application Security Manager protects Web
applications from both generalized and targeted application layer attacks,
including buffer overflow, SQL injection, cross-site scripting, and parameter
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 75

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys.html
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826

tampering. For more information, see the Configuration Guide for BIG-IP
Application Security Manager.

BIG-IP Secure Access Manager
BIG-IP Secure Access Manager is a high-performance, flexible security platform,
providing a unified secure access solution on a single appliance. Using Secure
Sockets Layer (SSL) technology for encrypted traffic, BIG-IP Secure Access
Manager provides policy-based, secure access to enterprise applications for any
client user, from employees, contractors, partners, suppliers, and customers to
any corporate resource. BIG-IP Secure Access Manager provides end-to-end
data protection for secured Web application client connectivity to enterprise
applications.

5.1.2 Key benefits

BIG-IP provides many benefits to a high availability environment:

� High availability: Delivers the industry’s most advanced system to ensure that
applications are always available.

� Accelerated applications: Provides unmatched control to accelerate
application performance by up to 3-15x, ensuring that priority applications are
served first and off-loading expensive server cycles.

� Reduced server and bandwidth cost: Triples server capacity through a rich
set of infrastructure optimization capabilities, and reduces bandwidth costs by
up to 80 percent through intelligent HTTP compression, bandwidth
management, and more.

� Greater network and application security: From denial-of-service (DoS) attack
protection to cloaking to filtering out application attacks, BIG-IP Local Traffic
Manager adds critical security features that simply cannot be addressed
elsewhere in the network.

� Unmatched application intelligence and control: The industry’s only solution
that delivers complete application fluency, enabling network-speed full
payload inspection, and programmable, event-based traffic management to
understand and act upon application flows.

� Total integration for all IP applications: Provides a comprehensive solution
that can integrate with all applications, not just Web-based protocols (HTTP
and HTTPS). Provides organizations with a centralized solution for all IP
applications, including existing and emerging applications, such as Voice
over Internet Protocol (VoIP) — all in a single, unified system.

� Industry-leading performance: Delivers the industry’s fastest traffic
management solution to secure, deliver, and optimize application
performance. As a proven leader, BIG-IP Local Traffic Manager sets the
76 IBM High Availability Solution for IBM FileNet P8 Systems

performance bar with best-in-market SSL transactions per second (TPS),
bulk encryption, and the highest concurrent SSL connections available today.

� Easy to manage, better visibility: An advanced GUI greatly simplifies product
configuration, offering granular visibility into traffic and system resources, as
well as support for making rapid changes across large configurations.

� Extends collaboration between network and application groups: Through
partitioned views and application/protocol-specific monitors, BIG-IP Local
Traffic Manager improves administrative functions and provides more
application-aware traffic management.

5.2 BIG-IP configuration for IBM FileNet P8

For our high availability case study, we utilize and configure the F5 BIG-IP 6800
system for our scenario. BIG-IP is available in a variety of platforms. See your
local F5 reseller professional or contact F5 directly for proper sizing. We design
our deployment to load balance traffic that is running various protocols in IBM
WebSphere servers, specifically Content Engine, HTTP servers for Application
Engine, and Process Engine. Figure 5-1 on page 78 shows the configuration with
a redundant pair of BIG-IP clusters of WebSphere Application Engine servers
(AE1 and AE2), Content Engine servers (CE1 and CE2), and Process Engine
servers (PE1 and PE2).
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 77

Figure 5-1 BIG-IP hardware load balancer configuration for IBM FileNet P8 high availability setup

Application Engine is implemented in Java and runs as a WebSphere
application. It serves as the user’s entry point into an IBM FileNet P8 enterprise
content management environment, typically through the Workplace application.
We use a front-tier Web server, running IBM HTTP Server, to load balance the
Web traffic to all Application Engine servers by using the WebSphere HTTP
plug-in. You can optionally use a separate pair of BIG-IP Local Traffic Managers
in the Web Tier in the DMZ. We choose to focus this chapter on the Application
Tier servers and traffic flows. We then load balance the HTTP servers with
BIG-IP. We recommend this configuration for both performance and security
reasons. This configuration enables us to locate the HTTP servers in a DMZ.

Content Engine is implemented in Java and provides two APIs to facilitate its
communications with other P8 components. One API uses Enterprise
JavaBeans (EJB). The other API is Web Services Interface (WSI), using the
HTTP transport. The HTTP transport is load-balanced in the BIG-IP
configuration, whereas the EJB transport is configured with the WebSphere
Workload Manager. See the details in Chapter 6, “Web tier implementation” on
page 119.
78 IBM High Availability Solution for IBM FileNet P8 Systems

Process Engine provides workflow management capabilities. Process Engine is
implemented in C and supports a load-balanced farm configuration. We use
BIG-IP to load balance two Process Engine instances in the high availability
configuration.

The following sections provide the detailed setup procedures for BIG-IP in the
IBM FileNet P8 high availability solution. Follow the sections in order, because
the sections include the dependencies.

These steps are required to configure the load balancer for our system:

1. Configuring the self IP and virtual local area networks.
2. Define the pools for Application Engine, Content Engine, and Process Engine.
3. Define the virtual servers for Application Engine, Content Engine, and

Process Engine.
4. Enable session affinity for Content Engine in BIG-IP.
5. Configure health monitors for Application Engine, Content Engine, and

Process Engine.

5.2.1 Configuring the self IP and virtual local area networks

When a new BIG-IP System is first installed, you must use the administrative
console to perform any tasks. The administrative console is a Web application
running in a browser. You can access the application in one of the two ways:

� Be on the same network (192.168.1.xxx) as the console interface.
� Configure a self IP on one of the lights-out management network ports.

The lights-out management system provides the ability to remotely manage
certain aspects of the operation of the hardware unit and the BIG-IP traffic
management operating system in the event that the traffic management software
becomes incapacitated.

The lights-out management system consists of the following elements:

� Switch card control processor (SCCP)

The hardware that provides the hardware control over the whole unit.

� Host console shell (hostconsh)

The shell that provides access to the command menu.

� Command menu

The menu that contains the options for lights-out management.

� Traffic management operating system

The software that you configure to manage the traffic for your site.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 79

� Out-of-band management commands

The commands that provide the ability to control various aspects of the
system with a series of keystrokes. The command menu operates
independently of the traffic management operating system through the
management port, the serial port console, and remotely through the traffic
management ports.

You can use the command menu to reset the unit, even if the BIG-IP traffic
management system has locked up. You can also remotely set a unit to netboot
for a software re-installation from an ISO image. You can get console access to
the BIG-IP traffic management system itself, so you can configure the traffic
management system from the command line interface.

The lights-out management system and the BIG-IP traffic management system
function independently within the hardware unit. Figure 5-2 shows the
relationship between the lights-out management system and the traffic
management system.

Figure 5-2 BIG-IP lights-out management system

The BIG-IP lights-out management system is accessible through the
management interface (number 1 in Figure 5-2) and the console port (number 2
in Figure 5-2). This functionality is independent of the traffic management system
(number 3 in Figure 5-2).

Create and manage virtual local area networks
A virtual local area network (VLAN) is a logical subset of hosts on a local area
network (LAN) that operate in the same IP address space. Grouping hosts
together in a VLAN has distinct advantages:
80 IBM High Availability Solution for IBM FileNet P8 Systems

� Reduce the size of broadcast domains, thereby enhancing overall network
performance.

� Reduce system and network maintenance tasks substantially. Functionally
related hosts (for example, IBM FileNet P8 Content Engine, Process Engine,
and Application Engine) no longer need to physically reside together to
achieve optimal network performance.

� Enhance security on your network by segmenting hosts that must transmit
sensitive data.

We configure all of the IBM FileNet P8 servers onto a VLAN, which is called
vlan_9 in the BIP-IP setup (Figure 5-3). Though simplified, the overall network
setup is not only valid in many production environments, but also fully illustrates
the concept of using a hardware load balancer within a highly available
configuration.

Figure 5-3 VLAN configuration on BIP-IP for IBM FileNet P8

To configure a VLAN in a FileNet P8 HA environment, log on to the BIG-IP
administrative console, select Network → VLANs, and create a VLAN called
vlan_9, as shown Figure 5-4 on page 82. Make sure to select the interfaces (that
is, port numbers) and assign them as Untagged. 1.1 and 1.2 are the names of
the interfaces or ports that are available to connect our network. The rest of the
settings are default BIG-IP values.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 81

Figure 5-4 Create a VLAN in BIG-IP

Assign a self IP to a VLAN
We configure a self IP address to associate with our VLAN, allowing access to
hosts in that VLAN. By virtue of its netmask, a self IP address represents an
address space, that is, a range of IP addresses spanning the hosts in the VLAN,
rather than a single host address.

Self IP addresses serve three purposes in our HA setup. First, when sending a
message to a destination server, the BIG-IP System uses the self IP addresses
of its VLANs to determine the specific VLAN in which a destination server
resides. For example, the VLAN vlan_9 has a self IP address of 9.30.188.93,
with a netmask of 255.255.255.0, and the destination Content Engine’s IP
address is 9.30.188.20 (with a netmask of 255.255.255.0). The BIG-IP System
recognizes that the server’s IP address falls within the range of the VLAN self IP
address, and therefore sends the message to that VLAN. More specifically, the
BIG-IP System sends the message to the interface that you assigned to that
VLAN. If more than one interface is assigned to the VLAN, the BIG-IP System
takes additional steps to determine the correct interface, such as checking the
Layer 2 forwarding table. A Layer 2 forwarding table correlates MAC addresses
of network devices to the BIG-IP System interfaces through which those devices
are accessible. On a BIG-IP System, each VLAN has its own Layer 2 forwarding
table.
82 IBM High Availability Solution for IBM FileNet P8 Systems

Second, a self IP address serves as the default route for each destination server
in the corresponding VLAN. In this case, the self IP address of a VLAN appears
as the destination IP address in the packet header when the server sends a
response to the BIG-IP System.

Third, a self IP can also be used to allow the administrator to connect remotely to
the BIG-IP to manage the objects in the system, which means that the
administrator does not have to be physically near the system. See the URL
address in Figure 5-5.

Figure 5-5 Configure a Self IP for a VLAN in BIG-IP

For more advanced configuration, refer to these resources at
https://support.f5.com:

� BIG-IP System Management Guide:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys.html

� BIG-IP System Management Overview:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1024795

� Instructions for BIG-IP 5 high availability configuration in the GUI:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 83

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys.html
https://support.f5.com
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1024795
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys.html
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys.html
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1024795
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1024795

5.2.2 Define the pools for Application Engine, Content Engine, and
Process Engine

A pool is composed of a group of network devices (called members). The BIG-IP
System load balances requests to the nodes within a pool based on the load
balancing method and persistence method that you choose when you create the
pool or edit its properties.

The core FileNet P8 servers that use a load balancing method are HTTP Servers
for Application Engine (AE), Content Engine (CE), and Process Engine (PE). In
the FIleNet P8 HA environment, we configure the following pools:

� p8ae_pool, for Application Engine nodes, AE1 and AE2

� p8ce_pool, for Content Engine nodes, CE1 and CE2

� p8pe_pool, for Process Engine nodes, PE1 and PE2

Other servers can also be configured as a pool, or you can use a pool as
additional monitors to report a system’s status, as we show in 5.4, “Set up
administrative partitions for P8” on page 114.

To create a pool using the BIG-IP Configuration utility, perform the following
steps (for brevity, we use CE as the example):

1. In the navigation pane, click Pools. The Pools window opens.

2. Click Add. The Add Pool window displays.

3. In the Name field, enter a name for your pool. In our example, we use
p8ce_pool, for the CE servers.

4. In the Load Balancing Method field, select the preferred load balancing
method. We recommend one of the following load balancing methods,
although various load balancing methods can yield optimal results for a
particular network:

– Least Connections

In Least Connections mode, the BIG-IP System passes a new connection
to the node that has the least number of current connections. Least
Connections mode works best in environments where the servers (or
other equipment) that you are load balancing have similar capabilities.

– Fastest

In Fastest mode, the BIG-IP System passes a new connection based on
the fastest response of all currently active nodes. Fastest mode can be
particularly useful in environments where nodes are distributed across
separate logical networks, or where the servers have varying levels of
performance.
84 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-6 shows the list of all available load balancing methods in the BIG-IP
device.

Figure 5-6 List of available load balancing methods

Select the appropriate load balancing method for your environment. For
detailed information about the available load balancing method, refer to
BIG-IP product manual.

5. In the Resources section, add the FileNet P8 servers to the pool:

a. In the Member Address field, type the IP address of the server. In our
example, the first IP address that we type is 9.30.188.20, for the first CE
server.

b. In the Service field, type the service number that you want to use for this
node (for example, 9080), or specify a service by choosing a service name
from the list (for example, http). In our example, we use the default
service for WebSphere, 9080.

c. The Member Ratio and Member Priority boxes are optional.

d. Click the Add icon to add the member to the Current Members list.

e. Repeat Steps a to d for each FileNet P8 server (for example, CE1 and
CE2).

f. The other fields in the Add Pool window are optional. Configure these
fields as applicable for your network. For additional information about
configuring a pool, click Help.

g. Click Done.

Figure 5-7 on page 86 and Figure 5-8 on page 87 show the properly configured
CE pool in the BIG-IP.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 85

Figure 5-7 Create a new pool window
86 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-8 Configured load balance pool for CE

As shown in Figure 5-9 on page 88, CE is listening on port number 19080 when
it is up and running. HTTP is the protocol that runs on that port. You can
configure this protocol into a health monitor, and then, add it to the Health
Monitors property of the server member. Refer to 5.2.5, “Configure health
monitors for Application Engine, Content Engine, and Process Engine” on
page 91 for details about how to set up health monitors for various software
components.

When health monitors return an available status, the status shows green. If
health monitors are unavailable, the status turns red.

You can always add health monitors to an existing server member. We show the
details of health monitors in 5.2.5, “Configure health monitors for Application
Engine, Content Engine, and Process Engine” on page 91. In this example, both
nodes are available.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 87

Figure 5-9 Show Members of a Pool in BIG-IP

5.2.3 Define the virtual servers for Application Engine, Content
Engine, and Process Engine

Based on terminology defined by F5 Network, virtual servers are a specific
combination of virtual address and virtual port, associated with a content site that
is managed by an BIG-IP System or other type of host server.

In the FIleNet P8 HA environment, we configure the following virtual servers:

� Web application entry point for user, or virtual server for HTTP servers
� Content Engine virtual server for all HTTP traffic used by PE and others
� Process Engine virtual server for AE and CE traffic

The virtual servers are used during the configuration of AE, CE, PE, and other P8
components that require communications with those servers.

Next, we define a virtual server that references the pool. Again, we define the
virtual server from the BIG-IP Configuration utility:

1. In the navigation pane, click Virtual Servers. The Virtual Servers window
opens.

2. Click Add. The Add Virtual Server window opens.

3. Enter the IP address and service for the virtual server, and then, click Next. In
our example, we use 9.30.188.91 with service of 0 (for all ports). We can
specify a particular port number if that is the only port that needs load
balancing. We use 0, which means all ports, to simplify the configuration and
testing time. See Figure 5-10 on page 89.
88 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-10 Configure a virtual server for a Content Engine farm

4. On the Configure Basic Properties window, leave Enable Address Translation
and Enable Port Translation boxes checked. The other fields are optional;
configure these fields as applicable to your network. Click Next.

5. The Select Physical Resources window displays. Click Pool option, and from
the list, select the pool that you just created in 5.2.2, “Define the pools for
Application Engine, Content Engine, and Process Engine” on page 84. See
Figure 5-11.

Figure 5-11 Select a predefined pool as the resource for a virtual server
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 89

Repeat the same step to create virtual servers for AE and PE.

5.2.4 Enable session affinity for Content Engine in BIG-IP

By design, session affinity is not required for CE. However, it provides better
performance for WSI/HTTP applications (for example, PE). In this section, we
show how to configure the BIG-IP System to load balance CE servers with
persistence on the pool. For optimal load balancing, we recommend the Insert
mode of F5’s cookie persistence for BIG-IP Version 4.0 and later.

Cookie persistence is a mode of persistence where the local traffic management
system stores persistent connection information in a cookie. This method allows
previous connections made by the same client to stay alive so that no new
connection needs to be established to the same or a separate server. Cookie
persistence generally improves performance.

You can configure cookie persistence from the Configuration utility:

1. In the navigation pane, click Virtual Servers.

2. In the virtual server list, select the name of the CE virtual server. The
properties of that virtual server appear.

3. Click the Resources tab at the top of the window.

4. In the Resources section, select cookie from the Default Persistence Profile
drop-down menu.

5. Click Update. See Figure 5-12.

Figure 5-12 Configure CE Affinity using a cookie in BIG-IP
90 IBM High Availability Solution for IBM FileNet P8 Systems

For more information about selecting the appropriate persistence profile, refer to
the BIG-IP Network and System Management Guide.

5.2.5 Configure health monitors for Application Engine, Content
Engine, and Process Engine

A health monitor checks a node to see if it is up and functioning for a given
service. If the node fails the check, it is marked down. Multiple monitors exist in
BIG-IP for checking various services. We create FileNet P8 specific health
monitors to monitor P8 servers. Table 5-1 lists the FileNet P8 specific health
monitors used.

Table 5-1 New monitors created for FileNet P8 servers in BIG-IP

HTTP Server health monitor
The default http health monitor in BIG-IP sends a http request to the root of the
Web server running the virtual server. In our case, the IBM HTTP Server, when
running, displays the welcome page as shown in Figure 5-13 on page 92.

FileNet P8 Server Health monitors used Notes

HTTP Servers for AE http BIG-IP built-in monitor

CE http
ce_startup_context

BIG-IP built-in monitor
Custom monitor

PE p8pe_32777
p8pe_32776
p8pe_32776_http

Custom monitor
Custom monitor
Custom monitor
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 91

Figure 5-13 Default welcome page of IBM HTTP Server 6.1

The BIG-IP gets a successful return code (that is, 200) from this page and marks
the node available for that HTTP Server. Figure 5-14 on page 93 shows the
properties of the http monitor in BIG-IP.

It is beyond the scope of this book to discuss in detail the configuration setup and
the reason behind each monitor. For detailed information, refer to BIG-IP
Network and System Management Guide.
92 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-14 HTTP health monitors in BIG-IP

The best practice is a 5 second interval and a 16 second timeout, because health
checks can overload the server.

Content Engine health monitors
When the CE WebSphere application server starts successfully, you can get to
the Startup Context page, which displays key running applications and their
corresponding version information, as shown in Figure 5-15 on page 94.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 93

Figure 5-15 CE Startup Context Web page as a monitor

We configure this Startup Context page as one of the CE monitors using the
BIG-IP Configuration utility:

1. In the navigation pane, click Monitors. The Network Monitors window opens.

2. Click Add. The Add Monitor window opens.

3. In the Add Monitor window, type the name of the CE monitor. In our example,
we enter ce_startup_context. In the Inherits From box, select the http
monitor template from the list. Click Next.

4. In the Configure Basic Properties section, type an Interval value and a
Timeout value. We recommend a 1:3 +1 ratio between the interval and the
timeout value (for example, the default setting has an interval of 5 and a
timeout of 16).

5. In the Send String box, enter /FileNet/Engine. The value /FileNet/Engine is
the starter Web page URL that IBM FileNet P8 uses to validate CE’s
operational status.
94 IBM High Availability Solution for IBM FileNet P8 Systems

After completing the applicable information, click Done. See Figure 5-16.

Figure 5-16 Create a CE monitor on the Startup Context page

Process Engine health monitors
The FileNet P8 Process Engine runs many processes as a whole. Each process
runs as a separate combination of a host name and a port. Two important
process broker services, vwbroker and vworbbroker, run on ports 32776 and
32777, respectively.

You can verify the status of the broker process from a browser by using the
following URL:

http://9.30.188.30:32776/IOR/ping

Figure 5-17 shows the monitor output in a browser.

Figure 5-17 PE monitor as shown in a browser
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 95

http://9.30.188.30:32776/IOR/ping

For our HA case, we create two monitors for PE in BIG-IP. The first monitor is the
TCP monitor on port 32776 and port 32777. See Figure 5-18. The best practice
for the interval and timeout values is 30/91, because health checks can overload
the server.

Figure 5-18 PE TCP monitor on port 32776

The second monitor is the http on /IOR/ping. See Figure 5-19.

Figure 5-19 Create a PE http monitor in BIG-IP

We must then add these monitors to the PE pool that was previously defined as
shown in Figure 5-20 on page 97. In this window, we add three health monitors:
p8pe_32776, p8pe_32777, and p8pe_32776_http. We add this redundancy for
96 IBM High Availability Solution for IBM FileNet P8 Systems

better reliability. In addition, because PE runs so many services (for example,
operational system-level processes), having multiple health monitors can aid in
the determination of a process that is down.

Figure 5-20 Add a new monitor to PE pool in BIG-IP

5.2.6 Validate load balancing

After we create all the high availability objects in BIG-IP, we need to validate the
load balancing that is actually accessing all the nodes in the pools. Table 5-2 is
the summary of our configured HA environment.

Table 5-2 Summary of HA nodes

Virtual server Load-balanced node IPs FileNet P8 Server

9.30.188.90 9.30.188.11
9.30.188.12

HTTP Servers to AE servers

9.30.188.91 9.30.188.20
9.30.188.21

CE Servers

9.30.188.92 9.30.188.30
9.30.188.31

PE Servers
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 97

Our test cases ensure that each of the nodes in each pool gets access during
uptime, and when one of these nodes goes down, the second node will be
accessed by all clients on subsequent requests. Table 5-3 summarizes the tests,
and the actual results are shown in the following sections.

Table 5-3 Test cases to validate BIG-IP load balancing

Test case Test Expected result Actual result

Test 1 Both HTTP nodes up.
Requests load
balanced.

Different client hits
different Web server.

See 5.2.7, “Test 1:
Load balancing on
two HTTP nodes” on
page 99.

Test 2 BIG-IP monitors
showing one HTTP
server down.
Requests still being
served.

Response from entry
IP still serving
content.

See 5.2.8, “Test 2:
Load balancing on
one HTTP node” on
page 100.

Test 3 Both CE nodes up.
Requests load
balanced.

Different client hits
different CE server in
the farm, shown from
the virtual server.

See 5.2.9, “Test 3:
Load balancing on
two CE nodes” on
page 101.

Test 4 BIG-IP monitors
showing one CE
server down.
Requests still being
served.

Response from the
virtual host for all
clients.

See 5.2.10, “Test 4:
Load balancing on
one CE node” on
page 103.

Test 5 Both PE nodes up.
Requests load
balanced.

Different client hits
different PE server.

See 5.2.11, “Test 5:
Load balancing on
two PE nodes” on
page 104.

Test 6 Both PE nodes up.
Requests load
balanced.

Response from the
virtual host for all
clients.

See 5.2.12, “Test 6:
Load balancing on
one PE node” on
page 106.
98 IBM High Availability Solution for IBM FileNet P8 Systems

5.2.7 Test 1: Load balancing on two HTTP nodes

A simple way to test whether a farm of HTTP servers are load balanced is to
place a test image onto the docroot of each Web server. The image is specific to
the Web server (for example, using the host name of the Web server in the
image), but with the same file name. Example 5-1 shows a list of all images
under the IBM HTTP server docroot, with a custom image named fnha_test.gif.

Example 5-1 Images under the IBM HTTP server docroot

[/usr/IBM/HTTPServer/htdocs/en_US/images]ls -l
total 536
-rwxr-xr-x 1 root system 223 Sep 25 15:44 administration.gif
-rwxr-xr-x 1 root system 183099 Sep 25 15:44 background.gif
-rwxrwxrwx 1 root system 15107 Oct 15 10:49 fnha_test.gif
-rwxr-xr-x 1 root system 52822 Sep 25 15:44 foreground.gif
-rwxr-xr-x 1 root system 210 Sep 25 15:44 help.gif
-rwxr-xr-x 1 root system 170 Sep 25 15:44 notes.gif
-rwxr-xr-x 1 root system 49 Sep 25 15:44 odot.gif
-rwxr-xr-x 1 root system 150 Sep 25 15:44 support.gif

We then make a browser request to the image:

http://9.30.188.90/images/fnha_test.gif

In this request, 9.30.188.90 is the BIG-IP virtual host for the HTTP servers, or the
entry point for the entire FileNet P8 application.

We open two separate browsers (for example, FireFox and Microsoft Internet
Explorer®) to create two separate sessions, which simulates two separate client
requests to the load balancer. Figure 5-21 on page 100 shows that one request
returns an image from HTTP server 2, and the other request returns an image
from HTTP server 1, while both requests (that is, the URL) in the browser are
identical.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 99

Figure 5-21 Load-balanced HTTP server test results

5.2.8 Test 2: Load balancing on one HTTP node

If one of the HTTP servers goes down, all HTTP requests from every client will
now be served from the other HTTP server. For this text, we shut down the HTTP
server through the WebSphere administrative console (Servers → Web
servers → Stop). Figure 5-22 shows that HTTP server 1 is down.

Figure 5-22 WebSphere administrative console shows that one HTTP is down

One of the nodes goes down, and BIG-IP also reports the corresponding status,
as shown in Figure 5-23 on page 101.
100 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-23 BIG-IP shows HTTP server is down

We now switch to our browsers and issue the same requests to the test image.
As expected, both clients now see HTTP server 2, as shown in Figure 5-24.

Figure 5-24 HTTP requests now go to server 2

5.2.9 Test 3: Load balancing on two CE nodes

The virtual server on BIG-IP for the CE nodes is 9.30.188.91:19080. We
configure FileNet P8 components that communicate to CE on port 19080 by
using that virtual server. To test that the two CE servers are load-balanced, we
issue the following HTTP request:

http://9.30.188.91:19080/FileNet/Engine

This page is called the CE Startup Context page. In a WebSphere clustered
configuration, this page displays the server instance on which a particular
request is served, as shown in Figure 5-25 on page 102.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 101

Figure 5-25 CE Startup Context page shows which instance is currently impacted

We open two browsers (for example, FireFox and Microsoft Internet Explorer) to
create two separate client requests to the Startup Context page. We show that
each client hits on a different CE instance. See Figure 5-26.

Figure 5-26 Two CE requests hit two separate instances

Additionally, if we refresh the page in both browsers, we get the same results: the
request is served by the exact same instance. This test confirms that the session
affinity that we configured in 5.2.4, “Enable session affinity for Content Engine in
BIG-IP” on page 90 works, because requests from the same client session
always go to the same CE instance.
102 IBM High Availability Solution for IBM FileNet P8 Systems

5.2.10 Test 4: Load balancing on one CE node

All requests must go to the “live” CE instance if the other instance goes down.
We show the results for this test in this section. We first shut down CE instance 1
in the CE cluster by using the WebSphere administrative console (Servers →
Application servers → (select the instance) Stop).

Figure 5-27 shows that CE instance 1 is down.

Figure 5-27 CE instance 1 is down

We close our previous browser sessions to clear any cached objects (images,
cookies, HTML pages, and so forth). We open the same two browsers with
requests to the Startup Context page, http://9.30.188.91:19080/FileNet/Engine.
Results in Figure 5-28 show that CE instance 2 now serves both requests.

Figure 5-28 All CE requests go to instance 2
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 103

5.2.11 Test 5: Load balancing on two PE nodes

The virtual server on BIG-IP for the PE nodes is 9.30.188.92:32776. We
configure FileNet P8 components that communicate to PE on port 32776 by
using that virtual server. To test that the two PE servers are load-balanced, we
issue the following HTTP request:

http://9.30.188.92:32776/IOR/ping

We receive the response as shown in Figure 5-29.

Figure 5-29 PE vwbroker ping page

We open two browsers (for example, FireFox and Microsoft Internet Explorer) to
create two separate client requests to the Startup Context page. We show that
each client hits on a separate PE instance. Figure 5-30 on page 105 shows that
the same request from both browsers goes to two PE hosts (that is, fnl21 and
fnl20).
104 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-30 Load-balanced PE instances

Additionally, we show in Figure 5-31 that PE does not have affinity configured,
because in the same browser, refreshing the request lands us on the second PE
instance (that is, before we were on fnl20, and now, we are on fnl21).

Figure 5-31 No affinity was set up for PE
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 105

5.2.12 Test 6: Load balancing on one PE node

We stop all services on PE instance 1 so it stops serving requests. BIG-IP shows
that the corresponding node is down, as shown in Figure 5-32.

Figure 5-32 PE node 1 is down

We then refresh the PE ping page continuously to show that the same PE node
serves the requests (instead of toggling). See Figure 5-33.

Figure 5-33 Refresh the PE ping page to test PE load balancing

5.3 Setting up and configuring standby BIG-IP

This section describes how to create a redundant pair by adding a second
BIG-IP 9.x system to an existing system.
106 IBM High Availability Solution for IBM FileNet P8 Systems

Both BIG-IP Systems in the failover pair must both run the exact same version of
the BIG-IP software. If the existing BIG-IP runs on a later software version, you
must upgrade the peer system so that both versions match. F5 Networks does
not support BIG-IP redundant pair configurations that run different software
versions. If you have a pair with different software versions installed, the
configuration can have a detrimental effect on the failover process. For
information about upgrading, refer to the BIG-IP Local Traffic Manager Release
Notes.

You will need to reboot the existing BIG-IP System. Therefore, you must perform
this configuration change during a low-traffic period or maintenance window. As
a result of this procedure, both BIG-IP Systems might be in active-active mode
for a period of 2 to 5 minutes. During this period, performance is severely
impacted.

To help you prepare for your BIG-IP redundant pair configuration change, we use
the following example setup and configuration.

Original single controller configuration
For the original single controller configuration, the existing external and internal
IP addresses (external_IP_1 and internal_IP_1) will become the new shared
addresses on the redundant system:

� The external_IP_1 address is the IP address to which the external router
directs traffic.

� The internal_IP_1 address is the default route for the servers whose loads are
being balanced.

Two additional external and two additional internal IP addresses are required for
the full configuration.

Important: To eliminate single points of failure and achieve high availability
for your system, use more than one load balancer for your system to ensure
redundancy in this component.

Note: For this IBM Redbooks publication, it is not part of the testing scope to
set up and configure a standby BIG-IP. However, for your reference, we
provide the procedures of setting up and configuring a standby BIG-IP per F5
Networks’ recommendation and documentation.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 107

Redundant configuration
For the new redundant controller configuration, external_IP_2 and external_IP_3
are the new primary external interface addresses for each controller, and
internal_IP_2 and internal_IP_3 are the new primary internal interfaces. The
external_IP_1 and internal_IP_1 addresses are changed to the floating
addresses that are shared between the units, which eliminates the need to
modify the upstream router or downstream nodes.

These addresses are the specific configuration for the BIG-IP redundant pair:

� BIG-IP 2 configuration (the new BIG-IP that is being added):

– external_IP_2 is the new primary external interface.
– internal_IP_2 is the new primary internal interface.
– external_IP_1 and internal_IP_1 are the new shared addresses.

� BIG-IP 1 configuration (the original stand-alone BIG-IP):

– external_IP_3 is the new primary external interface.
– internal_IP_3 is the new primary internal interface.
– external_IP_1 and internal_IP_1 are the new shared addresses.

Setup and configuration summary
For our example, follow this procedure to set up and configure a redundant pair:

1. Configuring the new BIG-IP in a redundant pair

2. Configuring the original BIG-IP as a standby system

3. Synchronizing configurations

5.3.1 Configuring the new BIG-IP in a redundant pair

To configure the new BIG-IP System in a redundant pair, perform the following
procedure:

1. Connect the new BIG-IP System with a failover cable to the existing BIG-IP
System, and turn on the power.

2. Connect a console to the new BIG-IP System. When the system is powered
up, type the following command:

config

Important: Do not connect the network cabling to the new BIG-IP System,
because connecting the cabling can cause a network disturbance after the
system reboots.
108 IBM High Availability Solution for IBM FileNet P8 Systems

3. Follow the steps to configure the management IP address, subnet mask, and
default gateway.

4. Log in to the Configuration utility using the management address. The Setup
utility runs. Install the license.

If the BIG-IP System contains a previous configuration, you can run the Setup
utility by clicking Overview → Welcome → Run the Setup Utility.

5. Set up the basic network configuration:

a. Enter the host name in the Host Name field.

b. From the High Availability drop-down menu, select Redundant Pair.

c. From the Unit ID drop-down menu, select 1.

d. Finish defining the General Properties and User Administration
information.

e. Click Next.

6. Under the Basic Network Configuration window, click Next. The Internal
Network Configuration window displays.

7. Set up the internal network configuration:

a. For the Floating IP, enter the existing BIG-IP System’s internal address as
the new internal Floating IP address (in our example, internal_IP_1).

b. For the Failover IP, enter the new internal primary address of the peer unit
in the redundant system (in our example, internal_IP_3).

c. Finish defining the Internal Network and VLAN configuration.

d. Click Next. The External Network Configuration window appears.

8. Set up the external network configuration:

– Enter the appropriate addresses for the Floating IP and Failover IP. For
our example, the new internal Floating IP is external_IP_1, and the
Failover IP is external_IP_3.

Important: The administrator user name and password must be the
same as the existing system. If the user name and password are not set
correctly, the configurations will not be synchronized.

Important: Do not use the IP address that the existing system currently
uses, because that address will be the shared and floating address for
the redundant pair. Additionally, the VLAN must be on the new BIG-IP
System. The name is case sensitive.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 109

9. Complete the Setup utility.

10.Reboot the new BIG-IP System.

After the reboot, the BIG-IP System will be the standby controller in a redundant
pair configuration (provided that the failover cable was connected).

Verifying and reviewing the configuration
To verify the state of the BIG-IP System, type the following command:

bigpipe fo

If the new BIG-IP System is in active mode, check to see if the failover cable is
securely connected to the failover port.

You can review the base IP configuration by typing the following command:

bigpipe base list

5.3.2 Configuring the original BIG-IP as a standby system

To configure the original BIG-IP System as the redundant standby system,
perform the following procedure:

1. Log in to the Configuration utility.

2. Select System → Platform.

3. From the High Availability drop-down menu, select Redundant Pair.

4. From the Unit ID drop-down menu, select 2, and click Update.

5. Select Network → Self IPs.

6. Edit the existing IPs, external_IP_1 and internal_IP_1, and select the Floating
IP check box for each self IP.

7. Create two new self IP addresses, where external_IP_3 is the new primary
external interface, and internal_IP_3 is the new primary internal interface.

8. Reboot the BIG-IP System.

Note: The failover port resembles the serial port. Both ports are labeled. The
failover cable has custom pinouts, as documented in SOL1426: Failover cable
pinouts for the BIG-IP and 3-DNS Controllers.

Important: Rebooting the BIG-IP System results in a temporary site outage.
110 IBM High Availability Solution for IBM FileNet P8 Systems

After you reboot, the BIG-IP System will be in a redundant pair configuration in
standby mode (provided the failover cable was connected), because the new
BIG-IP System is in active mode.

To fail back to the original BIG-IP and start traffic flowing, type the following
command on the new BIG-IP System:

bigpipe fo standby

5.3.3 Synchronizing configurations

To synchronize the configuration between the standby system and the active
system, perform the following procedure:

1. The existing BIG-IP must now be in active mode, and the new BIG-IP must be
in standby mode. Verify this situation by typing the following command on
each system:

bigpipe fo

2. After you confirm the state of the BIG-IP Systems, connect the new BIG-IP
System to the network.

3. Synchronize the configuration by typing the following command:

bigpipe config sync all

4. Confirm that the new BIG-IP System has the correct configuration by typing
the following command:

bigpipe list

5. Verify that the /config/bigip.conf file is the same size on both systems.

At this point, both units have the same configuration and will failover seamlessly.
F5 Networks recommends that you test the configuration synchronization and
failover in both directions during the maintenance window.

5.3.4 Viewing redundancy states and synchronization status

You can globally view the current redundancy state of a unit by viewing the
upper-left corner of any Configuration utility window. You can also view
synchronization status in this same portion of each window, but only if you have

Important: The new BIG-IP System must be in standby mode before you
connect it to the network; otherwise, it might respond to Address
Resolution Protocol (ARP) requests for the floating addresses, interfering
with traffic currently flowing through the active system.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 111

configured the unit to do so. (For more information about viewing synchronization
status, see “Viewing synchronization status”.)

Figure 5-34 shows an example of the status information as displayed on a
Configuration utility window.

Figure 5-34 Viewing redundancy state and synchronization status

Viewing redundancy state
Each unit in a redundant system is in either an active or a standby state at any
given time. The current state of a unit depends on the unit's redundancy state
preference, and whether the unit is available or unavailable to accept
connections. You can use the Configuration utility in two different ways to
determine the current state of a unit.

One way to view the redundancy state of a BIG-IP unit is by checking the status
display that appears in the upper-left corner of every Configuration utility window.

The other way to view the redundancy state of a unit is to use the following
procedure. To view the redundancy state of a unit:

1. On the Main tab of the navigation pane, expand System, and click High
Availability. The Redundancy Properties window opens.

2. View the value of the Current Redundancy State setting, either Active or
Standby.

Viewing synchronization status
As you learned in 5.3.3, “Synchronizing configurations” on page 111, it is
essential that an active unit share its current configuration data with its peer to
ensure that failover can occur successfully. Configuration data on a unit can
change for a variety of reasons (such as when adding a virtual server or
modifying a profile), so it is important that you can monitor synchronization status
at any given time, and re-synchronize the units if necessary.

You can view either detailed synchronization information about the current unit
and its peer, or you can view general synchronization status on every
Configuration utility window.
112 IBM High Availability Solution for IBM FileNet P8 Systems

Viewing detailed synchronization status
You can view detailed configuration synchronization status, such as the internal
static self IP addresses that the two units use when synchronizing data, by
displaying the ConfigSync window of the Configuration utility. This window is
available from the Redundancy Properties window.

Table 5-4 lists and describes the status-related settings that the ConfigSync
window displays.

Table 5-4 Status information on the ConfigSync window

For additional information, refer to support.f5.com:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/big
ip9_0sys/9_0_xSystemMgmtGuide-13-1.html

5.3.5 Validate standby BIG-IP failover

After you set up and configure the standby BIG-IP, you need to validate the
active BIG-IP failing over or being manually failed over to the standby. Manual
failover can be used for upgrading BIG-IP software versions or for other BIG-IP
maintenance. Table 5-5 on page 114 summarizes the test methods for both
manual and disaster failover to validate the setup.

Status setting Description

ConfigSync Peer Displays the internal static self IP address that the BIG-IP
System uses to determine the peer unit for synchronization.

Status message Displays the state of the peer, that is, active or standby. May
also report the status as unknown if connectivity problems
exist.

Last Change (Self) Displays the day, date, and exact time that the configuration
date of the unit you are configuring was last changed.

Last Change (Peer) Displays the day, date, and exact time that the configuration
data of the peer unit was last changed.

Last ConfigSync Displays the day, date, and exact time that a user
synchronized the configuration data between the two units.
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 113

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html

Table 5-5 Test cases to validate BIG-IP standby failover

It is beyond the scope of this book to detail the testing procedure for standby
failover. For detailed information, refer to support.f5.com:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/big
ip9_0sys/9_0_xSystemMgmtGuide-13-1.html

5.4 Set up administrative partitions for P8

An important part of managing the BIG-IP System is configuring the extent to
which other BIG-IP System users can access various system objects. Access in
this case refers to performing certain actions, such as creating, viewing,
modifying, and deleting system objects. Examples of system objects that users
might want to access are virtual servers, load balancing pools, health monitors,
nodes, and user accounts.

If you have the Administrator or User Manager user role assigned to your BIG-IP
System user account, you can control other users’ access to objects by using a
feature known as administrative partitions. An administrative partition is a logical
container that you create, containing a defined set of BIG-IP System objects.
When a specific set of objects resides in a partition, you can then give certain
users the authority to view and manage the objects in that partition only, rather
than to all objects on the BIG-IP System. This gives a finer granularity of
administrative control.

Creating administrative partitions for P8 is optional. However, a significant
benefit to administrative partitions is that they allow you to place administrative
ownership of an application into the hands of the business units that actually run
the applications.

Figure 5-35 on page 115 shows an example of partitions that we create on the
IBM FileNet P8 BIG-IP System. Partition fnha_dba contains objects that pertain
to a DB2 cluster, which allows the DB2 administrators to manage its properties
themselves (note that only db2_pool, part of the fnha_dba partition is enabled for

Test case Test Expected result

Test 1 Manually failover via GUI
from active to standby.

Standby will take over traffic and change will
be visible in GUI. All systems should perform
as normal.

Test 2 Simulate disaster failover
by manually unplugging
the active BIG-IP

Standby will take over traffic and change will
be visible in GUI. All systems should perform
as normal.
114 IBM High Availability Solution for IBM FileNet P8 Systems

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html

deletion, a task only a manager or an administrator can perform), and partition a
local user account the BIG-IP System, called fnha_dba, who has the User
Manager access role.

Figure 5-35 Pools clearly distinguished by partition names

The steps to define a HA Administrative partition is as follows:

1. We create a new partition by selecting System → Partitions → Create, as
shown in Figure 5-36.

Figure 5-36 Define a HA Administrative Partition
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 115

2. Create a new user to use the access the partition created above. We do this
by selecting System → Users → Create, as shown in Figure 5-37 on
page 116.

Figure 5-37 Create a User in an Administrative Domain - DBA

3. Create two database nodes in the partition. These nodes are the database
servers we want to monitor. We do this by selecting Local Traffic →
Nodes → Create, as shown in Figure 5-38. Note that the two check boxes for
nodes, 9.30.188.110 and 9.30.188.80, are enabled while all other check
boxes are disabled for this user.

Figure 5-38 Create Nodes in the DBA Partition

4. Create a pool by selecting Local Traffic → Pools → Create, as shown in
Figure 5-39 on page 117.
116 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 5-39 Create a Pool for DBA Partition
 Chapter 5. Hardware load balancer implementation (F5 BIG-IP) 117

118 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 6. Web tier implementation

This chapter describes the Web tier setup for a highly available FileNet P8
environment.

We discuss the following topics:

� Introduction
� Hardware components
� Software components
� Failover test at the Web tier level
� Maintenance recommendations

6

© Copyright IBM Corp. 2009. All rights reserved. 119

6.1 Introduction

FileNet P8 provides Web interfaces that allow users to access and manage
content and processes in FileNet P8 systems. Workplace, as part of FileNet P8
Application Engine (AE), is an easy-to-use Web application that enables users to
interact with the FileNet P8 system.

The Web interfaces offer the following key features:

� Secure access to content management: By offering Lightweight Directory
Access Protocol (LDAP) authentication into the P8 systems.

� Wizard-driven content contribution: Eliminates entry errors (add or check-in)
and ensures accuracy with intuitive, easy-to-use content entry templates.

� Document review and approval workflow: Streamlines approval processes
and expedites Web content publishing through preconfigured process
templates that provide a common procedure for content approval and
publishing. Actively maintains audit trails to comply with regulatory mandates
and corporate governance standards.

� Comprehensive page and document management: Manages all types of
unstructured content (including paper documents, HTML, XML, rich media,
PDF, and e-mail) and complex content.

� Customized features: Based on user preferences, such as search templates,
paging, appearance, behavior, and security.

FileNet P8 Web interfaces can run within a WebSphere application server. We
recommend that you deploy the HTTP servers outside of a application server.
Decoupling the Web tier from the WebSphere application server layer allows for
better server manageability (for example, the HTTP servers can be located in
their own security zone, or DMZ) and for easier horizontal scalability (for
example, just add HTTP servers as needed).

We use a Web server farm for our high availability configuration. Web server
farms provided through hardware or software load-balancing technology enable
high availability at the Web server tier. A farm is a set of load-balanced servers
that are clones of each other, each actively providing the same service, with the
same applications and same binding to servers in the tiers beneath them. Farms
are best practice for server tiers that are relatively static in terms of content,
which makes it easy to maintain the servers as clones of each other.

The FileNet P8 Web-based components have been certified to operate within
Web and application server farms, such as IBM WebSphere clusters. These
types of farms provide for server redundancy with the added value of scalability,
because all of the servers in the farm are active. Application server farms can be
120 IBM High Availability Solution for IBM FileNet P8 Systems

combined with hardware-based load-balancing solutions, such as F5 Networks
BIG-IP load balancer or software-based solutions, such as IBM Load Balancer,
which is part of WebSphere Edge Components.

A load-balanced Web server farm provides both better availability and better
scalability than a single Web server. When a Web server fails, the load balancer
automatically detects the failure and redirects user requests to another server in
the farm, thereby keeping the service available. Administrators can increase Web
site performance and capacity by simply adding servers to the farm.

6.2 Hardware components

In our case study, we assume P8 system is accessed only by AE Workplace
Web applications from browsers which, in general, can be anywhere in the world.

We assume the firewalls, Domain Name System (DNS), and LDAP server
components are already highly available. We therefore do not repeat their
configuration in this book.

We use the following P8 Web tier hardware components:

� Two load balancers
� Two HTTP server nodes

Figure 6-1 on page 122 illustrates the Web tier components and their placement
in a DMZ.
 Chapter 6. Web tier implementation 121

Figure 6-1 Web tier topology

In our case study environment, we use the following nodes for Web servers:

� HTTP server 1 host name is fnl1.
� HTTP server 2 host name is fnl2.

6.2.1 Load balancers

For the Web tier, you can use a pair of software load balancers or a pair of
hardware load balancers to direct HTTP client access to HTTP servers in the
DMZ.

Because Process Engine requires a hardware load balancer, and we use BIG-IP
6800 system for the Process Engine farm, at the Web tier, we also use the
BIG-IP 6800 hardware load balancer for ease of setup and to take advantage of
the many benefits that the system has to offer. The BIG-IP 6800 system is a
port-based, multi-layer switch that supports virtual local area network (VLAN)
technology. Because hosts within a VLAN can communicate at the data-link
layer, a BIG-IP System reduces the need for routers and IP routing on the
network. These capabilities provide comprehensive and simplified traffic
122 IBM High Availability Solution for IBM FileNet P8 Systems

management and security for FileNet P8 components, such as the Web servers,
Content Engine servers, and Process Engine servers.

Chapter 5, “Hardware load balancer implementation (F5 BIG-IP)” on page 73
provides extensive coverage of the BIG-IP hardware load balancer. Refer to that
chapter for its features and capabilities, setup, and configuration.

6.3 Software components

The Web tier consists of the following software components:

� IBM HTTP Server Version 6.1.0.17
� Web server plug-ins for IBM WebSphere Application Server Version 6.1.0.17

As illustrated in Figure 6-1 on page 122, we use the F5 BIG-IP as the hardware
load balancer for the HTTP servers, and the HTTP servers serve as the load
balancer for AE using Web server plug-ins.

6.3.1 IBM HTTP Server system requirements

The IBM HTTP Server software is available along with IBM WebSphere
Application Server (although we install it on a separate host for our case study).

To support the basic installation of IBM HTTP Server, the minimum operating
system and hardware requirements for the application server must be met on the
Web server system. You can find the latest prerequisites at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

6.3.2 HTTP server and plug-in setup and management overview

For our case study, the IBM HTTP Servers and the WebSphere Application
Server Network Deployment that manage the IBM HTTP Servers run on
separate machines.

We assume that WebSphere Application Server Network Deployment is already
installed and configured on the FileNet P8 Application Engine nodes, and IBM
HTTP Server has to be installed on two machines, fnl1 and fnl2, in DMZ. We
describe the installation process performed on fnl1. The installation procedure for
fnl2 is the same.

Web servers are defined to the WebSphere Application Server. A Web server
can reside on a managed or unmanaged node. If located on a managed node in
a distributed server environment, a node agent is installed on the Web server
 Chapter 6. Web tier implementation 123

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27006921

system and belongs to a WebSphere Application Server administrative cell. The
administrative tools communicate with the Web server through the node agent. If
the Web server is located on an unmanaged node, the Web server is defined to
the cell, but it does not have a node agent running to manage the process. In
either case, the Web server definition allows you to generate the plug-in
configuration file for the Web server. We install Web server on an unmanaged
node.

Figure 6-2 illustrates a HTTP server topology.

Figure 6-2 HTTP server topology detail

6.3.3 Web tier component installation preparation

You can install all of the WebSphere Application Server components using the
X11 interface. For remote clients that use the ssh protocol to log in to AIX
machines, X11 forwarding must be enabled in order for the DISPLAY variable to
be defined. For our case study, on fnl1 and fnl2, we edit the
etc/ssh/config_sshd file and uncomment these two lines:

X11Forwarding yes
X11DisplayOffset 10

The client needs to be configured to perform X11 forwarding, as well (use ssh –X
for command line clients, or an option in a GUI dialog for clients, such as
PuTTY).

Note: Restart sshd after making the change:

stopsrc –s sshd
startsrc –s sshd
124 IBM High Availability Solution for IBM FileNet P8 Systems

IBM HTTP Server and WebSphere plug-in package
IBM HTTP Server V6 is bundled with WebSphere Application Server V6. The
administrative functionality is integrated into WebSphere Application Server to
provide remote administration through the administrative console. This enhanced
administrative function is only available for the IBM HTTP Server.

The IBM HTTP Server installation package is delivered as a CD or downloaded
as a tar file image.

We use the image file C88TMML.tar.gz (WebSphere Application Server Network
Deployment V6.1 Supplements for AIX 5L V5, 64-bit Support, Application Client,
HTTP Server, Web Server Plug-ins, Installation Factory, Migration Tool, IBM
Support Assistant and Update Installer, Multilingual).

The C88TMML.tar.gz file is approximately 390 MB. We place it in a temporary file
system.

Before starting the installation, we log in as root and issue the following
commands to untar the file from our temporary file system (for our case study, we
use /fnsw, although you will probably put the C88TMML.tar.gz file in a special
temporary directory):

gunzip C88TMML.tar.gz
mkdir C88TMML
cd C88TMML
tar -xvf ../C88TMML.tar

Fix Pack 17 installation package
We download Fix Pack 17 (6.1.0-WS-IHS-AixPPC64-FP0000017.pak file in our
case) to the directory /fnsw and untar it in the directory /fnsw/FP17.

Fix Pack 17 contains the fix pack installation utility called UpdateInstaller. This
utility is also included in WebSphere Application Server Network Deployment
V6.1 Supplements. Use the UpdateInstaller utility that comes with the fix pack to
install the fix pack.

On the download page for the fix pack, the Installation Instructions section has a
link to the appropriate version of UpdateInstaller. We download the
UpdateInstaller file (download.updii.61017.aix.ppc64.zip for our case study) to
the /fnsw directory, unzip it under /fnsw/fp17 directory, and install
UpdateInstaller:

1. Log in as root on fnl1.
 Chapter 6. Web tier implementation 125

2. Issue the following commands:

cd /fnsw/fp17/UpdateInstaller
./install

The default installation directory is /usr/IBM/WebSphere/UpdateInstaller.
We use the default.

6.3.4 IBM HTTP Server installation steps

To start the installation wizard, log in as root and issue the commands:

cd /fnsw/C88TMML/IHS
./install

Follow the wizard to install IBM HTTP Server on an unmanaged node running
IBM HTTP Server administration server:

1. Enter the installation location. The default is /usr/IBM/HTTPServer.

2. Enter the port value assignment for the HTTP daemon and for the HTTP
administration server daemon. The defaults are 80 for the HTTP daemon and
8008 for the administration server.

3. Enter the HTTP administrator user and password. Select the checkbox for
user creation if you need to create a user.

4. Enter administrator user and group to set up HTTP server administration.
Select the checkbox for user/group creation if you need to create them.

5. Choose to install the HTTP server plug-in. Enter the Web server name and
application server deployment management name.

6. Review the installation parameters in the installation summary window
(Figure 6-3 on page 127), and click Next to begin the installation.
126 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 6-3 Installation summary window

6.3.5 Web server plug-ins installation steps

Web server plug-ins for IBM WebSphere Application Server are packaged in the
same file with IBM HTTP Server. To start the installation wizard, issue these AIX
commands:

cd /fnsw/C88TMML/plugin
./install

The Web server plug-in installation provides a wizard that takes you through the
installation process. The wizard defines and installs the plug-in, configures the
Web server, and defines the Web server to WebSphere.

The wizard also creates a script file that you can copy to WebSphere Application
Server Network Deployment server to run against the WebSphere Application
Server Network Deployment server to define the Web server for the deployment
manager.

Follow these steps to install the plug-in:

1. Select IBM HTTP Server V6 or IBM HTTP Server V6.1.

2. Select Remote installation.

Enter an installation directory. By default, the location is
/usr/IBM/HTTPServer/Plugins. We use the default. We use <plugin_home>
to refer to the plug-in installation location on the following steps.
 Chapter 6. Web tier implementation 127

3. Enter the Web server configuration file and port. By default, the configuration
file is /usr/IBM/HTTPServer/conf/httpd.conf, and port 80 is used. We use
the default settings.

4. Enter a name for the Web server definition. We use p8websrv1, which is the
<Web_server_home> directory.

5. Select the location for the plug-in configuration file. By default, the location is
under the directory config in the plug-in installation directory
(<plugin_home>/config/<Web_server_name>/plugin-cfg.xml). We use the
default file name.

6. Enter the application server host name. We use fnl3.

7. Check the summary installation parameter window and start the installation if
the parameters are correct. The installation performs the following tasks:

a. Creates a temporary plug-in configuration file and places it in the specified
location.

b. Updates the Web server configuration file with the plug-in configuration,
including the location of the plug-in configuration file.

c. Generates a script to define the Web server and an unmanaged node to
WebSphere Application Server. The script is located in
<plug-in_home>/bin/configure<Web_server_name>.

8. At the end of the installation, start the HTTP administrator by using the
command adminctl start from the /usr/IBM/HTTPServer/bin directory.

9. Copy the script to the <was_home>/bin directory of the deployment manager
machine. Start the deployment manager and execute the script.

10.Run both the IBM HTTP Server and WebSphere Application Server plug-in
installations on fnl2, and run the generated script in the deployment manager
machine.

11.From AE, go to the WebSphere Application Server Network Deployment Web
Server administrator panel (Servers → Web Servers) to propagate the HTTP
Server plug-in from the WebSphere Application Server Network Deployment
administrator console. Click Propagate Plug-in from the Web servers
administrative panel. See Figure 6-4 on page 129.
128 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 6-4 WebSphere Application Server Network Deployment Web servers
administrative panel

6.3.6 Fix Pack 17 installation steps

Perform these steps to install Fix Pack 17:

1. At the end of the HTTP server configuration, stop both Web servers from the
AE administration console, and then, stop the IBM HTTP Server
administration server on fnl1 and fnl2 by issuing the commands:

cd /usr/IBM/HTTPServer/bin
adminctl stop

2. On both fn11 and fn12, install WebSphere Application Server Network
Deployment Fix Pack 17 by issuing these commands:

cd /usr/IBM/WebSphere/UpdateInstaller
./update.sh

3. To update WebSphere Application Server Network Deployment to
Fix Pack 17, enter the /fnsw/FP17 directory to be the directory containing fix
pack packages in the installation wizard panel.

4. Restart the IBM HTTP Server administrative server on both Web server
machines.

5. Restart the Web server from the AE Web server administrative console.

For more information about IBM HTTP Server installation and management, see
Chapter 8 of WebSphere Application Server V6 System Management &
Configuration Handbook, SG24-6451.
 Chapter 6. Web tier implementation 129

6.4 Failover test at the Web tier level

The Web tier faileover test involves these network components: F5 BIG-IP and
HTTP servers.

F5 BIG-IP failover test
Refer to 5.2.6, “Validate load balancing” on page 97 for the detailed failover test
results.

HTTP server failover test
There are two ways to test failure for one of the HTTP servers:

� Log in as root and issue sync; sync; halt -q from the command line.
� Stop the HTTP server from the WebSphere Application Server administrative

console.

The halt command is self-explanatory. Follow these steps from the WebSphere
Application Server Network Deployment administrative console to stop the HTTP
server:

1. Go to the WebSphere Application Server Network Deployment administrative
console by selecting Server → Web servers.

2. Select the Web server that you want to stop; see Figure 6-5.

3. Click Stop.

Figure 6-5 Web server stop panel
130 IBM High Availability Solution for IBM FileNet P8 Systems

Regardless the way that is used to simulate a node failure, the following steps
show the procedure to test the HTTP server down event:

1. Start the P8 system. Verify that from a browser, you can log into the AE
Workplace Web application. (This step applies to log in only. At this point, you
cannot actually perform tasks in Workplace, because the other components
are not installed yet.)

2. Simulate the failure for the first HTTP server.

3. Verify that a user can perform all the activities from a Web browser.

4. Restart the closed or halted HTTP server.

5. Simulate the failure for the second HTTP server.

6. Verify that a user can perform all the activities from Web browsers.

7. Restart the closed or halted HTTP server.

6.5 Maintenance recommendations

For maintenance, we recommend that you keep the software level of the HTTP
Server and Web server plug-ins for IBM WebSphere Application Server the
same as the software level of the WebSphere Application Server Network
Deployment administration server.
 Chapter 6. Web tier implementation 131

132 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 7. Application Engine
implementation

This chapter describes the high availability options for Application Engine and
our case study setup in relation to Application Engine. We also describe the
practical, step-by-step procedures that we use to implement high availability for
Application Engine.

We discuss the following topics:

� Introduction
� High availability options for Application Engine
� Design for the case study
� Setup for active/active Application Engine cluster (farm)
� High availability tests at the Application Engine level

7

© Copyright IBM Corp. 2009. All rights reserved. 133

7.1 Introduction

Application Engine (AE) is the presentation layer for the IBM FileNet P8 core
components: Process Engine (PE) and Content Engine (CE). Application Engine
hosts the Workplace or WorkplaceXT Web application, Workplace Java applets,
and custom Web applications. It is critical that you provide high availability for
Application Engine in the overall high availability of the IBM FileNet P8 solution.

For an overview of Application Engine and its components, refer to 2.4,
“Application Engine” on page 29.

7.2 High availability options for Application Engine

Application Engine must be highly available. If Application Engine fails, even if
Content Engine and Process Engine are still functional, users cannot access the
content or the workflow process within the IBM FileNet P8 solution. Application
Engine failure results in disruption to normal business operations.

Application Engine runs within a Java 2 Platform, Enterprise Edition (J2EE)
application server. You can exploit all the scalability and high availability options
that are available for a J2EE application server.

High availability options
The following options are available to make Application Engine highly available:

� Active/active cluster

In an active/active cluster (farm) configuration, two or more application server
instances are configured to share the same application’s workload. These
application server instances can reside on the same physical machine or
separate machines. You can front end the active/active cluster by using a
hardware load balancer and redirect the traffic over to any active instance.
In an active/active cluster with more than one instance available, the load
sharing is more effective and the hardware cost is more justifiable.

� Active/passive cluster

In an active/passive cluster, only one instance of the application server is
running. The specific node that hosts the application load in an active/passive
cluster is called the active node. The secondary node that can potentially host
the application load is called the passive node. In an active/passive cluster at
any point in time, there is only one node that is active to cater to the
application load.
134 IBM High Availability Solution for IBM FileNet P8 Systems

7.3 Design for the case study

For the case study that we implemented in this book, we choose the active/active
cluster configuration to make the Application Engine highly available.

Table 7-1 lists the case study environmental details.

Table 7-1 Application Engine case study setup

Figure 7-1 shows the Application Engine in an active/active cluster.

Figure 7-1 Application Engine in an active/active cluster (farm) configuration

Scenario Active/active cluster

Operating system IBM AIX 5.3 Technology Level 8
Service Pack 3: 5300-08-03-0831

Database IBM DB2 UDB 9.5 Fix Pack 1

Application server IBM WebSphere Application Server 6.1.017
IBM WebSphere Network Deployment 6.1.0.17

Hardware load balancer BIG-IP F5

CE farm
(active/active)

CE farm
(active/active)

Client 1

Client N

StorageStorage

RDBMSRDBMS

PE farm
(active/active)

PE farm
(active/active)

CSECSE

AE farmAE farm
 Chapter 7. Application Engine implementation 135

7.4 Setup for active/active Application Engine cluster
(farm)

This section shows the detailed steps taken to implement high availability for
Application Engine in our case study. We set up Application Engine in an
active/active clustered (farm) environment with Application Engine binaries and
the configuration installed in a shared, highly available file system. The system
setup, wherever necessary, also shows the windows from the standard
Application Engine installation, where certain changes are required to make
Application Engine highly available.

Table 7-2 shows the host names and IP addresses that are used in this
implementation. We use these host names and IP addresses from now on in this
chapter.

Table 7-2 System setup summary

7.4.1 Procedure for Application Engine cluster setup

To set up an Application Engine cluster, you must install and set up the
prerequisites, and you must perform the Application Engine installation. The
steps that we provide here are sequential in nature and need to be executed in
order.

Node Host name IP address

CE1 fnl10.svl.ibm.com 9.30.188.20

CE2 fnl11.svl.ibm.com 9.30.188.21

AE1 fnl3.svl.ibm.com 9.30.188.13

AE2 fnl4.svl.ibm.com 9.30.188.14

PE1 fnl20.svl.ibm.com 9.30.188.30

PE2 fnl21.svl.ibm.com 9.30.188.31

AE Virtual 9.30.188.90

P8CE (Virtual CE) p8ce.svl.ibm.com 9.30.188.91

P8PE (Virtual PE) P8PE.svl.ibm.com 9.30.188.92

Lightweight Directory
Access Protocol (LDAP)
server

fnl110.svl.ibm.com 9.30.188.120
136 IBM High Availability Solution for IBM FileNet P8 Systems

Installing and setting up the prerequisites
Installing and setting up the prerequisites include the installation of the
WebSphere Application Server Network Deployment software, the configuration
of the WebSphere Application Server Network Deployment environment, and the
setup of the Application Engine cluster.

For our case study, we perform the following steps to install and create the
active/active Application Engine cluster:

1. Install WebSphere Application Server Network Deployment 6.1.0.17 on AE1.

WebSphere Application Server Network Deployment only needs to be
installed on one of the nodes within a cluster. A nodeagent needs to be on
every node. A nodeagent is installed as part of the WebSphere Application
Server server.

At the WebSphere Application Server Network Deployment installation time,
avoid any cell, deployment manager, and application server definition. These
tasks are carried out subsequently.

From the WebSphere Application Server Network Deployment 6.1.0.0
installation wizard, we use the following options:

– No sample applications selected for install.

– The default installation directory chosen is /usr/IBM/WebSphere.

– No profile definition.

– No profile for deployment manager definition, which also means no
security definitions.

The summary panel (Figure 7-2 on page 138) from the installation program
shows the summary of choices that were selected. This window is the last
options window from the installation program.
 Chapter 7. Application Engine implementation 137

Figure 7-2 WebSphere Application Server Network Deployment 6.1.0.0 Installation
Summary panel

2. Apply WebSphere Application Server Network Deployment Fix Pack 17
without any special settings:

cd /usr/IBM/WebSphere/UpdateInstaller
./update.sh

3. Create the Network Deployment Manager profile.

In our setup, the fnl3 and fnl4 nodes participate in the Application Engine cell.
We define and start Network Deployment Manager on fnl3 by logging in as
root and issuing the following commands:

cd /usr/IBM/WebSphere/AppServer/bin
./manageprofiles.sh -create -profileName Dmgr1 -templatePath
/usr/IBM/WebSphere/AppServer/profileTemplates/dmgr -cellName AECell
-hostName fnl3
cd /usr/IBM/WebSphere/AppServer/profile/Dmgr1
./startManager.sh

4. Integrate WebSphere Application Server security with the Directory Server.
In Figure 7-3 on page 139, the WebSphere Application Server Administrative
console window shows that the administrative security is enabled.
138 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 7-3 Enabling Security with Directory Server Summary panel

5. Create WebSphere Application Server Nodes and WebSphere Application
Servers.

On both participating Application Engine servers included in the WebSphere
Application Server Network Deployment cell, create profiles and federate new
nodes to the deployment manager defined in fnl3 by issuing the following
commands:

cd /usr/IBM/WebSphere/AppServer/bin
./manageprofiles.sh -create -profileName server1 -templatePath
/usr/IBM/WebSphere/AppServer/profileTemplates/default -hostName
fnl3
cd /usr/IBM/WebSphere/AppServer/profiles/server1/bin
./addNode.sh fnl3

Run the following commands on node fnl4:

cd /usr/IBM/WebSphere/AppServer/bin
./manageprofiles.sh -create -profileName server2 -templatePath
/usr/IBM/WebSphere/AppServer/profileTemplates/default -hostName
fnl4
cd /usr/IBM/WebSphere/AppServer/profiles/server2/bin
./addNode.sh fnl3

Note: In the addNode.sh command, the host name argument (fnl3) is not
changed, because the host refers to where the WebSphere Application
Server Network Deployment Manager runs. In this case, it is fnl3.
 Chapter 7. Application Engine implementation 139

6. Align the ports for both application servers.

After the profiles are created and the nodes are added, these two application
servers can now be managed under the WebSphere Application Server
Network Deployment Manager administrative interface.

In our architecture, the Application Engine Web application is deployed on
both nodes as clones. Therefore, to allow all Application Engine instances to
communicate with other P8 components, these application servers have to
use the same ports on AIX machines.

Manually, align the port numbers through WebSphere Application Server
Network Deployment administrative console by selecting Application
server → <server_name> → Ports. Figure 7-4 shows the port numbers that
are used in our scenario.

Figure 7-4 Application Engine server port numbers

7. Define the WebSphere Application Server Network Deployment cluster for
the Application Engine application.

To deploy Application Engine on both nodes (fnl3 and fnl4), include them in
the WebSphere Application Server Network Deployment cluster definition.

The WebSphere Application Server Network Deployment administrative
console manages the cluster definition. From the administration console,
select Servers → Clusters → New to create a new cluster definition. Follow
the responses on the window, and accept the default values. Figure 7-5 on
page 141 shows the summary of settings for the cluster before it is created.
140 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 7-5 Cluster definition Summary panel

Application Engine installation and configuration
After the prerequisites are set up, perform the Application Engine installation and
configuration. Install the Application Engine software and any “hot” or important
fixes if required, install the Content Engine client and Process Engine client on
both Application Engine nodes, and configure both nodes.

Perform these steps for the Application Engine installation and configuration:

1. Install Application Engine 4.0.0.

For our case study, the shared Application Engine binaries and configuration
will be stored on a highly available file system mounted as the default IBM
FileNet P8 install location of /opt/FileNet. As a result, we accept all the
defaults on the installation panels, except these two options:

– Installation Type: We choose Custom install and select Workplace
Source Code component to be installed.

– J2EE Application Server and version: For Application Server, we choose
IBM WebSphere Application Server. For Version, we select 6.x.

Figure 7-6 on page 142 shows the user selections.
 Chapter 7. Application Engine implementation 141

Figure 7-6 Application Engine 4.0.0 User Selections panel

Figure 7-7 presents the installation summary window.

Figure 7-7 Application Engine 4.0.0 installation summary

Figure 7-8 on page 143 illustrates the installation success window.
142 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 7-8 Application Engine 4.0.0 installation success

2. Apply the Application Engine 4.0.1 hot fix.

For our case study, we use all the defaults on the installation panels.

3. Install Content Engine client 4.0.1-001 and Process Engine client 4.0.3.

For our case study, we use all the defaults and complete these client
installations successfully.

4. Enable Application Engine in high availability mode.

To enable Application Engine in high availability mode and make it aware of
both Content Engine nodes, change the WcmApiConfig.properties file at two
locations:

– /opt/FileNet/AE/CE_API/lib2

– /opt/FileNet/AE/Workplace/WEB-INF

You can also make this change when providing the Content Engine address
in the Application Engine installer panel instead of changing the files after the
fact.

In the WcmApiConfig.propertiesfile, for our case study, we make the
following change:

RemoteServerUrl =
cemp:corbaloc::fnl10.svl.ibm.com:19811,:fnl11.svl.ibm.com:19811/cell
/clusters/CECLUSTER/FileNet/Engine
RemoteServerUploadUrl =
cemp:corbaloc::fnl10.svl.ibm.com:19811,:fnl11.svl.ibm.com:19811/cell
/clusters/CECLUSTER/FileNet/Engine
 Chapter 7. Application Engine implementation 143

RemoteServerDownloadUrl =
cemp:corbaloc::fnl10.svl.ibm.com:19811,:fnl11.svl.ibm.com:19811/cell
/clusters/CECLUSTER/FileNet/Engine

5. Configure Application Engine for WebSphere.

Using the WebSphere Application Server Network Deployment administrative
console, we make the following changes:

– On both nodes, add the following line to the Generic Java virtual machine
(JVM™) argument:

-Djava.security.auth.login.config=/opt/FileNet/AE/CE_API/config/j
aas.conf.WebSphere

– Create a new custom property named client.encoding.override and set it
to UTF-8.

Figure 7-9 shows the window for creating the custom property.

Figure 7-9 Create a custom property for Application Engine

– Create another MIME type. Figure 7-10 on page 145 shows the MIME
type creation window.
144 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 7-10 Additional MIME type creation

6. Synchronize both nodes and restart both JVMs in the AECLUSTER.

7. Reset the security on both nodes for Internet Inter-ORB Protocol (IIOP).

For our case study, we perform the following steps using WebSphere
Application Server Network Deployment administrative console:

a. Go to Security → Secure administration → Applications →
Infrastructure → RMI/IIOP Security → CSIv2 inbound authentication.
Change the Client certificate authentication from Supported to Never.

b. Go to Security → Secure administration → Applications →
Infrastructure → RMI/IIOP Security → CSIv2 inbound transport.
Change the Transport from SSL-supported to TCP/IP.

c. Use the WebSphere Application Server administrative console to save the
configuration setting. Apply the Master configuration. Exit from the
WebSphere administrative console. Restart WebSphere Application
Server.

d. Verify that the Content Engine is up.

8. Copy the /opt/FileNet/Authentication/UTCryptoKeyFile.properties file to
each of the Application Engine nodes.

9. Use the deployment method that is described in IBM FileNet Installation and
Update Guide, GC31-5488, to redeploy the Application Engine to the cluster
AECLUSTER. Accept the default values.

10.Bootstrap the Application Engine server.
 Chapter 7. Application Engine implementation 145

7.5 High availability tests at the Application Engine level

After you complete the setup of each component in the high availability P8
environment, make sure that you perform component testing before continuing
with the rest of the implementation.

In this section, we discuss the failover tests at the Application Engine component
level. Table 7-3 shows the high availability tests that we performed for our case
study in the lab and the results of these tests.

Table 7-3 Application Engine component-level high availability test scenarios

7.5.1 Application Engine basic availability test

The basic test to see whether Application Engine is available is by testing the
Workplace application (with the assumption that the load balancer and IBM
HTTP Server are installed correctly and successfully). When launching the
Workplace application through the URL, if you get to the Workplace login
window, Application Engine is up and running. If you do not get to the login
window, Application Engine is not running.

Sr. No. Test Expected result Actual result

Test 1 Basic availability test:
Test the Workplace application by
going to the Workplace URL
http://9.30.188.90/Workplace.
Note: Use the Application Engine
virtual IP address for testing.

The URL works.
Response is from either
one of the Application
Engine nodes.

See 7.5.1,
“Application Engine
basic availability test”
on page 146.

Test 2 Node availability test 1:
Test the Workplace application while
Application Engine node 2 (AE2) is
down. Use the same URL as test 1.

The URL works.
Response is from AE1.

See 7.5.2,
“Application Engine
node availability test
1” on page 148.

Test 3 Node availability test 2:
Test the Workplace application while
Application Engine node 1 (AE1) is
down.

The URL works.
Response is from AE2.

See 7.5.3,
“Application Engine
node availability test
2” on page 149.

Note: Without the database and Content Engine, we only see and test the
login window. We get an error if we try to carry out the actual login operation.
146 IBM High Availability Solution for IBM FileNet P8 Systems

To launch the Workplace application, enter the following URL:

http://9.30.188.90/Workplace

Workplace is accessed.

The IP address that is used here needs to be the virtual IP address of the
Application Engine.

The WebSphere Application Server Network Deployment administrative console
shows that both nodes of AECLUSTER are up and running. See Figure 7-11.

Figure 7-11 WebSphere Application Server Network Deployment administrative console
showing both Application Engine nodes up

Figure 7-12 shows the Workplace login window after we enter:

http://9.30.188.90/Workplace

Figure 7-12 Workplace login window

This test concludes that Application Engine is up and running.
 Chapter 7. Application Engine implementation 147

7.5.2 Application Engine node availability test 1

In this test, bring down Application Engine node 2 (AE2) from the AECLUSTER.
We still can get the login window, because Application Engine node 1 (AE1) is
still up and running.

Figure 7-13 shows the WebSphere Application Server Network Deployment
administrative console. Notice that AE2 is down and AE1 is up.

Figure 7-13 WebSphere Application Server Network Deployment administrative console
showing node AE2 is down

When we use the URL to launch the Workplace application, 7.5.3, “Application
Engine node availability test 2” on page 149 shows that we can still access
Workplace.

Figure 7-14 Workplace login window when node AE2 is down
148 IBM High Availability Solution for IBM FileNet P8 Systems

7.5.3 Application Engine node availability test 2

In this test, bring down AE1 node. We still can access Workplace.

Figure 7-16 shows the WebSphere Application Server Network Deployment
administrative console window. Notice that AE1 is down and AE2 is up and
running.

Figure 7-15 WebSphere Application Server Network Deployment administrative console
showing node AE1 is down

When we try to launch the Workplace application through its URL, Figure 7-16
shows the Workplace login window. Even when the AE1 node is down, we can
still access Workplace. Therefore, Application Engine is still working.

Figure 7-16 Workplace login window when node AE1 is down
 Chapter 7. Application Engine implementation 149

150 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 8. Content Engine
implementation

This chapter describes the high availability (HA) options for Content Engine (CE)
and our case study setup in relation to it. We also discuss the practical,
step-by-step procedures that we use to implement high availability for Content
Engine.

We discuss the following topics:

� Introduction
� High availability options for Content Engine
� Case study design
� Setting up the active/active Content Engine cluster (farm)
� High availability tests at the Content Engine level

8

© Copyright IBM Corp. 2009. All rights reserved. 151

8.1 Introduction

Content Engine provides access, storage, and other management for content. It
is designed to handle the heavy demands of a large enterprise. Content Engine
is capable of managing enterprise-wide workflow objects, custom objects, and
documents by offering powerful and easy-to-use administrative tools. Using
these administrative tools, an administrator can create and manage the classes,
properties, storage, and metadata that form the foundation of an Enterprise
Content Management (ECM) system. It is critical to provide high availability for
Content Engine in the overall high availability of the IBM FileNet P8 solution.

For an overview of Content Engine, its features and architecture, refer to 2.2,
“Content Engine” on page 21.

8.2 High availability options for Content Engine

Content Engine is the central point of the IBM FileNet P8 repository. Content
Engine must be highly available. If Content Engine fails, users no longer have
access to existing content, and they cannot add new content. This inaccessibility
occurs from API-based programs, as well as from other components, such as the
Application Engine (AE) and Process Engine (PE). The importance of Content
Engine must be a key factor in creating any IBM FileNet P8 HA environment.

When Content Engine is unavailable, neither the content nor the processes can
be routed (although in certain cases, there are still operations that will succeed,
at least for users who are already logged in). In comparison, if a Process Engine
fails, the users can still ingest and retrieve content from the repository. If an
Application Engine fails, the Workplace application cannot be accessed;
however, the repository or Content Engine can still be accessed through a
custom, API-based application. In the case of a Content Engine failure, the entire
repository becomes inaccessible.

Because Content Engine is implemented as a Java 2 Platform, Enterprise
Edition (J2EE) application running within a J2EE application server, it can exploit
all the scalability and high availability options that are available for J2EE
application servers.

The following options are available for making Content Engine highly available:

� Active/active cluster

In an active/active cluster (farm) configuration, two or more application server
instances are configured to serve the same application workload. These
application server instances can reside on the same physical machine or
152 IBM High Availability Solution for IBM FileNet P8 Systems

separate machines. The active/active cluster can be front-ended by using a
load balancer. And, the traffic can be redirected over to any of the active
instances. In an active/active cluster, because there are more than one
instance available, the load sharing is more effective and the hardware cost is
more justifiable to the business.

� Active/passive cluster

In an active/passive cluster, only one instance of the application server is
running. The specific node that hosts the application load in an active/passive
cluster is called the active node. The secondary node that can potentially host
the application load is called the passive node. In an active/passive cluster at
any time, there is only one node active to cater to the application load.

The application metadata that is stored in a Content Engine database must also
be made highly available in both scenarios.

The file storage areas for Content Engine must be accessible to all Content
Engines in a P8 domain, whether those Content Engines are farmed or not.
Typically, the file storage areas are accessed in a shared network, such as
Common Internet File System (CIFS), Network File System (NFS), or Distributed
File Service (DFS).

In a high availability deployment, each file storage area must be deployed on
highly available storage that has built-in redundancy for all components, so that
the file storage area is not a single point of failure (for example, RAID arrays for
storage redundancy, redundant network heads, and redundant power supplies).

It is beyond the scope of this book to describe the details of providing highly
available storage. Refer to your storage vendor for more information.

8.3 Case study design

For our case study setup, we choose the recommended active/active cluster
(farm) configuration for making the Content Engine highly available. There are
two nodes running the Content Engines. Both nodes run the IBM AIX operating
system.

Table 8-1 shows the high availability environment details.

Table 8-1 Content Engine case study setup

Scenario Active/active cluster

Operating system IBM AIX 5.3 Technology Level 8 Service Pack 3:
5300-08-03-0831
 Chapter 8. Content Engine implementation 153

Figure 8-1 illustrates the Content Engine in an active/active cluster.

Figure 8-1 Content Engine in an active/active cluster (farm) configuration

8.4 Setting up the active/active Content Engine cluster
(farm)

This section shows the detailed steps taken to implement high availability for
Content Engine in our case study. We set up Content Engine in an active/active
cluster (farm) environment. The system setup, wherever necessary, also shows
the windows from the standard Content Engine installation, where certain
changes are required to make Content Engine highly available.

Database IBM DB2 UDB 9.5 Fix Pack 1

Application server IBM WebSphere Application Server 6.1.017
IBM WebSphere Network Deployment 6.1.0.17

Hardware load balancer BIG-IP F5

Scenario Active/active cluster

CE farm
(active/active)

CE farm
(active/active)

Client 1

Client N

StorageStorage

RDBMSRDBMS

PE farm
(active/active)

PE farm
(active/active)

CSE
(active/passive)

CSE
(active/passive)

AE farmAE farm
154 IBM High Availability Solution for IBM FileNet P8 Systems

Table 8-2 on page 155 shows the host names and IP addresses that are used in
this setup. We refer to these host names and IP addresses from now on in this
chapter.

Table 8-2 System setup summary

8.4.1 Procedure for the Content Engine cluster setup

To set up the Content Engine cluster, you have to install and set up the
prerequisites, perform the Content Engine installation and upgrade, install the
Process Engine client, and configure the Content Engine nodes. The steps we
provide here are sequential in nature and must be executed in order.

Installing and setting up the prerequisites
Installing and setting up the prerequisites include the installation and creation of
a cluster in a WebSphere Application Server Network Deployment environment.

For our case study, we perform the following steps to install and create the
Content Engine active/active cluster:

1. Install the CE database.

For details, refer to Chapter 12, “DB2 implementation” on page 369.

2. Install WebSphere Application Server Network Deployment 6.1.0.17.

Avoid any cell, deployment manager, and application server definition at
installation time. These tasks are carried out subsequently.

From WebSphere Application Server Network Deployment 6.1.0.0 installation
wizard, we use the following options:

Node Host name IP address

CE1 fnl10.svl.ibm.com 9.30.188.20

CE2 fnl11.svl.ibm.com 9.30.188.21

AE1 fnl3.svl.ibm.com 9.30.188.13

AE2 fnl4.svl.ibm.com 9.30.188.14

PE1 fnl20.svl.ibm.com 9.30.188.30

PE2 fnl21.svl.ibm.com 9.30.188.31

P8CE (Content
Engine virtual)

p8ce.svl.ibm.com 9.30.188.91

P8PE (PE virtual) P8PE.svl.ibm.com 9.30.188.92
 Chapter 8. Content Engine implementation 155

– No sample applications are selected for installation.
– The installation directory is the default: /usr/IBM/WebSphere
– No profile is defined.
– No profile for the deployment manager is defined. No security definitions

are defined.

The summary panel (Figure 8-2) from the installation program shows the
summary of the selections. This window is the last options window from the
installation program.

Figure 8-2 WebSphere Network Deployment 6.1.0.0 Installation Summary window

3. Apply the WebSphere Application Server Network Deployment fix pack
without special settings:

cd /usr/IBM/WebSphere/UpdateInstaller
./update.sh

4. Create the Network Deployment Manager profile.

In our setup, the nodes that participate in the Content Engine cell are fnl10
and fnl11. We define and start Network Deployment Manager on fnl10 by
logging in as root and issuing the following commands:

cd /usr/IBM/WebSphere/AppServer/bin
156 IBM High Availability Solution for IBM FileNet P8 Systems

./manageprofiles.sh -create -profileName Dmgr1 -templatePath
/usr/IBM/WebSphere/AppServer/profileTemplates/dmgr -cellName CECell
-hostName fnl10
cd /usr/IBM/WebSphere/AppServer/profile/Dmgr1
./startManager.sh

5. Integrate WebSphere Application Server security with the Directory Server.
In Figure 8-3, the WebSphere Application Server administrative console
window shows that the administrative security is enabled.

Figure 8-3 Enabling security with Directory Server

6. Create WebSphere Application Server nodes and WebSphere application
servers.

On both participating Content Engine servers included in the WebSphere
Application Server Network Deployment cell, create profiles and federate new
nodes to the deployment manager that was defined in fnl10 by issuing the
following commands:

cd $WASHOME/bin
./manageprofiles.sh -create -profileName server1 -templatePath
/usr/IBM/WebSphere/AppServer/profileTemplates/default -hostName
fnl10
cd $WASHOME/profiles/server1/bin
./addNode.sh fnl10

Run the following commands on node fnl11:

cd $WASHOME/bin
 Chapter 8. Content Engine implementation 157

./manageprofiles.sh -create -profileName server2 -templatePath
/usr/IBM/WebSphere/AppServer/profileTemplates/default -hostName
fnl11
cd $WASHOME/profiles/server2/bin
./addNode.sh fnl10

7. Align the ports for both application servers.

After the profiles are created and the nodes are added, the two application
servers can now be managed under the WebSphere Application Server
Network Deployment Manager administrative interface.

Because in our architecture, the Content Engine Web application is deployed
on both nodes as clones, these application servers must use the same ports
on the AIX machines to allow all Content Engine Web application instances to
communicate with other P8 components.

Manually align the port numbers through the WebSphere Application Server
Network Deployment administrative console by selecting Application
server → <server_name> → Ports. Figure 8-4 shows the port numbers that
are used in our scenario.

Figure 8-4 WebSphere Application Server port numbers that are used

8. Define the WebSphere Application Server Network Deployment cluster for
the Content Engine application.

Note: In the addNode.sh command, the host name argument (fnl10) is not
changed, because the host refers to where the WebSphere Application
Server Network Deployment Manager runs. In this case, it is fnl10.
158 IBM High Availability Solution for IBM FileNet P8 Systems

To deploy the Content Engine application on both nodes (fnl10 and fnl11),
include them in the WebSphere Application Server Network Deployment
cluster definition.

The WebSphere Application Server Network Deployment administrative
console manages the cluster definition. From the administrative console,
select Servers → Clusters → New to create a new cluster definition. Follow
the responses on the window and accept the default values. Figure 8-5 shows
the summary of the settings for the cluster before it is created.

Figure 8-5 Content Engine cluster definition Summary panel

Content Engine installation and upgrade
After the prerequisites are set up, you need to install and configure the Content
Engine nodes. You install the Content Engine software, verify that the installation
is successful, and upgrade the Content Engine software if required.

Installing Content Engine
Follow these steps to install Content Engine 4.0.0:

1. To install Content Engine 4.0.0, for our case study, we accept all the default
values until we get to the WebSphere Information window.
 Chapter 8. Content Engine implementation 159

2. Set up the WebSphere profile information. Figure 8-6 on page 160 shows our
setup.

Figure 8-6 Content Engine installation: WebSphere Profile information panel

3. Enter the WebSphere administrator user name and password. Figure 8-7
shows our setup.

Figure 8-7 Content Engine Installation panel for WebSphere Administrator Account
160 IBM High Availability Solution for IBM FileNet P8 Systems

4. Accept the defaults on the Global Configuration Database (GCD) Java
Naming and Directory Interface (JNDI) configuration and select DB2 on the
Configure Java Database Connectivity (JDBC™) window.

5. Set up the JDBC connection pools information. Figure 8-8 on page 161
shows our setup.

Figure 8-8 Content Engine installation: Configure JDBC Connection Pools panel

6. For the remaining installation windows (Specify Database user, Setup
Content Engine Bootstrap Properties, and GCD Master Key), enter
environment-specific values.

7. Figure 8-9 shows the summary window for the Content Engine installation.
Click Install to start the installation process.
 Chapter 8. Content Engine implementation 161

Figure 8-9 Content Engine Installation: Review Installation Summary panel

The Verify Installation window (Figure 8-10 on page 162) shows the
successful installation.

Figure 8-10 Content Engine Installation: Verify Installation panel

After the installation for Content Engine is complete, restart the nodes in the
CECLUSTER and the Network Deployment Manager, dmgr.

Confirm that the JDBC connection to the connection pool works.
162 IBM High Availability Solution for IBM FileNet P8 Systems

Log in to the WebSphere Application Server Administrative Console by using
user CEAdmin and check the following setup:

1. Select Resources → JDBC → JDBC providers → JDBC Provider For
GCD Datasource → Data sources → FNGCDDS. See Figure 8-11.

Figure 8-11 JDBC Connection to FNGCDDS

2. Select Resources → JDBC → JDBC providers → JDBC Provider For
GCD Datasource (XA) → Data sources → FNGCDDSXA. See Figure 8-12.

Figure 8-12 JDBC connection to FNGCDDSXA

Redeploy the FileNetEngine application from WebSphere. The target, by default,
is pointing to dmgr instead of CECLUSTER, which, for IBM FileNet P8 Version
4.5, is no longer necessary.
 Chapter 8. Content Engine implementation 163

Deploy the newly modified WebSphere EAR file for the Content Engine. The
modified file is called Engine-ws.ear file. Follow these steps to deploy the
Content Engine application:

1. From the WebSphere administrative console, navigate to Applications →
Install New Application.

From the EAR/WAR/JAR module page, perform these steps:

a. In the Remote file system, browse to the location of the new
Engine-ws.ear file, select it, and click Next.

b. Accept the default values, except in step 3 (of the WebSphere
Administrative console) deployment process, select both Engine-init.war
and FileNet CE-MP WebService, and set their values to default_host.

c. Save your changes to the master configuration.

2. Complete the post-deployment configuration on WebSphere 6.1.x:

a. From the WebSphere administrative console, navigate to Applications →
Enterprise Applications → FileNetEngine → Manage Modules →
FileNet P8 Connector → Resource Adapter → J2C connection
factories.

b. Click New to create a new J2EE Connector architecture (J2C) connection
factory.

c. Fill in the connection factory properties, and then, click Apply:

• Name: FileNetConnectionFactory
• JNDI Name: FileNet/Local/ConnectionFactory

d. Under Container-managed authentication, change the following three
entries to None, and click Apply:

• Container-managed authentication alias
• Authentication preference
• Mapping-configuration alias

e. Click Connection Pool Properties, enter the values for the following
properties, and then, click Apply:

• Max Connections: 100
• Min Connections: 10
• Save the changes to the master configuration.

Note: For Network Deployment configurations, deploy the Content Engine
application to all server instances and Web servers that will run the Content
Engine application.
164 IBM High Availability Solution for IBM FileNet P8 Systems

3. Continue from the WebSphere administrative console, change the class
loading, and update the detection settings:

a. Navigate to Applications → Enterprise Applications → FileNet
Engine → Class Loading and update detection.

b. Set the following configuration settings, and then, click Apply:

• Change the polling interval to 3 (seconds).

• Change the Class loader order to Classes loaded with application
class loader first.

• Change WAR class loader policy to Single class loader for
application.

• Save changes to the master configuration.

4. Continue from the WebSphere administrative console, change the FileNet
CEMP Web Service setting:

a. Navigate to Applications → Enterprise Applications →
FileNetEngine → Manage Modules → FileNet CEMP Web Service.

b. Change the class loader order to Classes loaded with application class
loader first.

c. Click Apply.

d. Save changes to the master configuration.

5. Stop and start the application server.

Verify the Content Engine installation
Always test whether Content Engine is running on both nodes before you
continue with the rest of the setup.

From a browser, enter the following URL:

http://<Content Engine host name>:19080/FileNet/Engine

For our case study, we use the following URL to verify whether the Content
Engine node 1 (CE1, fnl10) installation is successful:

http://fnl10.svl.ibm.com:19080/FileNet/Engine

Figure 8-13 shows that Content Engine is up and running on node CE1.
 Chapter 8. Content Engine implementation 165

Figure 8-13 Content Engine up and running on Node CE1

For our case study, we use the following URL to verify whether the Content
Engine node 2 (CE2, fnl11) installation is successful:

http://fnl11.svl.ibm.com:19080/FileNet/Engine

Figure 8-14 on page 166 shows that Content Engine is up and running on node
CE2.

Figure 8-14 Content Engine up and running on node CE2
166 IBM High Availability Solution for IBM FileNet P8 Systems

Upgrade Content Engine
Depending on the Content Engine version that you use, you might need to
upgrade it to the next level. For our case study, we upgrade Content Engine
4.0.0 to the next level, 4.0.1, and apply the fix pack.

Using the Content Engine Setup wizard, follow these steps for the Content
Engine upgrade:

1. Accept the default on the first two windows. Figure 2 on page 167 shows our
value for the Select Content Engine Server to Upgrade panel.

Figure 8-15 Content Engine 4.0.1 Install panel

2. Apply Fix Pack 4, CE4.0.1-004. Use the correct cell to apply the patch.
Figure 8-16 shows the panel from our setup.
 Chapter 8. Content Engine implementation 167

Figure 8-16 Content Engine 4.0.1-004 install panel

Process Engine client 4.0.3 installation
We need to install Process Engine (PE) client 4.0.3 according to IBM FIleNet P8
4.0 Installation and Upgrade Guide, GC31-5488. The following windows show
the Process Engine Client Updater. Other windows from the installation use the
default values. We include the windows here for completeness.

Figure 8-17 shows the update selection.

Figure 8-17 PE Client 4.0.3 updater for Content Engine: Product update window
168 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-18 shows the cell selection.

Figure 8-18 PE Client 4.0.3 Updater for Content Engine: Cell selection window

Copy the latest Content Engine application
The Engine-ws.ear file that is under the following directory is the most recent
Engine-ws.ear file:

/opt/FileNet/ContentEngine/lib/Dmgr1_CECell_fnl10CellManager01_dmgr

Copy the Engine-ws.ear file from that directory to the following directory:

/opt/FileNet/ContentEngine/lib/

Redeploy the Content Engine application
Because the Process Engine Client Updater updates and creates a new
Engine-ws.ear file, we have to redeploy the Content Engine (FileNetEngine)
application with the new file by uninstalling the old application, copying the
application file, and deploying the new application file.

Note: We documented all the steps that we have taken for our case study in
this book. Actually, there is at least one undeploy and redeploy cycle here that
can be skipped. There is no need to undeploy from dmgr and redeploy on the
cluster if you are going to turn around and redeploy again after running the
Process Engine Client installer.
 Chapter 8. Content Engine implementation 169

Uninstall the old Content Engine application
To uninstall the old Content Engine, log in to the WebSphere Application Server
Administrative console using the URL:

https://fnl10.svl.ibm.com:9044/ibm/console/logon.jsp

Figure 8-19 shows the FileNetEngine application uninstallation window.

Figure 8-19 Uninstalling Content Engine application: FileNetEngine

After the Content Engine application is uninstalled, save the master configuration
and fully synchronize both the nodes. Figure 8-20 on page 170 shows the
WebSphere Application Server Administrative console window after the nodes
are fully synchronized.

Figure 8-20 CECLUSTER nodes synchronized after CE is uninstalled

Deploy the new Content Engine application
After the new Content Engine application is copied into the proper directory,
perform the following steps to deploy the new Content Engine application. From
the WebSphere Application Server administrative console, select Enterprise
Application Install. We use the Remote Path location:

/opt/FileNet/ContentEngine/lib/Engine-ws.ear
170 IBM High Availability Solution for IBM FileNet P8 Systems

We deploy the Content Engine application:

1. Select the installation options.

Figure 8-21 on page 171 shows our setup for the Content Engine application
deployment.

Figure 8-21 Content Engine Application Deployment: Step 1

2. Map the modules to the servers.

Figure 8-22 on page 172 shows our setup for our case study.
 Chapter 8. Content Engine implementation 171

Figure 8-22 Content Engine Application Deployment: Step 2

3. Map the virtual hosts for the Web modules.

Figure 8-23 shows our setup for our case study.

Figure 8-23 Content Engine Application Deployment: Step 3

4. Review the summary of the settings, and click Finish.

Figure 8-25 on page 174 shows the summary of our case study setup.
172 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-24 Content Engine Application Deployment: Step 4

5. Save the master configuration.

Figure 8-25 on page 174 shows the output window while the Content Engine
application is being deployed.
 Chapter 8. Content Engine implementation 173

Figure 8-25 Content Engine Application Deployment: Output window
174 IBM High Availability Solution for IBM FileNet P8 Systems

Post-deployment configuration
Continuing following in the documentation (IBM FileNet P8 4.0 Installation and
Upgrade Guide, GC31-5488), we complete the post-deployment tasks for
WebSphere 6.1.x:

1. From the WebSphere Administration console, navigate to Applications →
Enterprise Applications → FileNetEngine → Manage Modules → FileNet
P8 Connector → Resource Adapter → J2C connection factories.

2. Click New to create a new J2C connection factory.

3. Enter the connection factory properties, and then, click Apply:

– Name: FileNetConnectionFactory
– JNDI Name: FileNet/Local/ConnectionFactory

4. Under the Container-managed authentication, change the following three
entries to None, and click Apply:

– Container-managed authentication alias
– Authentication preference
– Mapping-configuration alias

5. Click Connection Pool Properties, enter the values for the following
properties, and then, click Apply:

– Max Connections: 100
– Min Connections: 10

6. Save the changes to the master configuration.

7. From the WebSphere administrative console, navigate to Applications →
Enterprise Applications → FileNet Engine → Class Loading and update
detection.

8. Set the following configuration settings, and then, click Apply:

– Change the polling interval to 3 (seconds).

– Change the Class loader order to Classes loaded with application class
loader first.

– Change the WAR class loader policy to Single class loader for
application.

9. Save the changes to the master configuration.

10.From the WebSphere administrative console, navigate to Applications →
Enterprise Applications → FileNetEngine → Manage Modules → FileNet
CEMP Web Service.

11.Change the class loader order to Classes loaded with application class
loader first, and then, click Apply.

12.Save the changes to the master configuration.
 Chapter 8. Content Engine implementation 175

13.Synchronize the nodes fully.

14.Stop and start the application server (Network Deployment Manager, dmgr
node server).

Verify the setup
After the setup is complete, verify that both nodes in the CECLUSTER work
properly by visiting the URL http://<CE node>/FileNet/Engine in a browser.
Figure 8-26 shows node CE1 working.

Figure 8-26 Check to see that node CE1 is up and running after applying 4.0.1-004

Figure 8-27 on page 177 shows node CE2 working.
176 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-27 Check to see that node CE2 is up and running after applying 4.0.1-004

Installing the Content Search Engine client
After the Content Engine cluster set is complete, we proceed with installing
Content Search Engine (CSE) Client Updater on the Content Engine machines in
the Content Engine cluster.

We apply the CSE updater patch 4.0.1-003 with the defaults. Figure 8-28 on
page 178 shows the installation summary panel.

Note: When installing the CSE client on CE, it is not required that the CSE
server is installed first. The CSE client installer can still be run on the CE (even
if the remote CSE server is not installed yet), which installs the necessary
client for CE to connect to CSE.
 Chapter 8. Content Engine implementation 177

Figure 8-28 Content Engine CSE Client Updater 4.0.1-003 installation summary panel

After the installation is complete, the output looks similar to Figure 8-29.

Figure 8-29 Content Engine CSE Client Updater 4.0.1-003 installation complete panel

Because the CSE Client Updater also updates and creates a new Engine-ws.ear
file, we are required to redeploy the Content Engine (FileNetEngine) application
from the CECLUSTER again by uninstalling the old application and deploying the
new application. We use the WebSphere Application Server administrative
console. This process is similar to the steps that are shown in “Redeploy the
Content Engine application” on page 169.
178 IBM High Availability Solution for IBM FileNet P8 Systems

If you did not install CSE, there is no need to redeploy the Content Engine
application.

Deploy the Content Engine application
We deploy the Content Engine (FileNetEngine) application to the CECLUSTER.
Go to the WebSphere Application Server administrative console remote file
option, and select Engine-was.ear file. See Figure 8-30.

Figure 8-30 Content Engine deployment after CSE Client Updater: Select file

In the Preparing for the application installation panel (Figure 8-31 on page 180),
we keep the default selections.
 Chapter 8. Content Engine implementation 179

Figure 8-31 Content Engine deployment after CSE Client Updater: Preparation
180 IBM High Availability Solution for IBM FileNet P8 Systems

To perform the WebSphere Application Server deployment:

1. In the Install New Application window (Figure 8-32), we use the default
selection. In terms of the WebSphere Application Server deployment series,
this step is step 1.

Figure 8-32 Content Engine Deploy after CSE Client Updater: Step 1
 Chapter 8. Content Engine implementation 181

2. Map the modules to the servers. See Figure 8-33 for our setup.

Figure 8-33 Content Engine Deploy after CSE Client Updater: Step 2
182 IBM High Availability Solution for IBM FileNet P8 Systems

3. Provide the options to perform the Enterprise JavaBeans (EJB) deployment.
See Figure 8-34 for our setup.

Figure 8-34 Content Engine Deploy after CSE Client Updater: Step 3
 Chapter 8. Content Engine implementation 183

4. Provide the JavaServer Pages (JSP™) reloading options for Web modules.
See Figure 8-35 for our setup.

Figure 8-35 Content Engine Deploy after CSE Client Updater: Step 4
184 IBM High Availability Solution for IBM FileNet P8 Systems

5. Map the shared libraries. See Figure 8-36 for our setup.

Figure 8-36 Content Engine Deploy after CSE Client Updater: Step 5
 Chapter 8. Content Engine implementation 185

6. Provide the JNDI names for the beans. See Figure 8-37 for our setup.

Figure 8-37 Content Engine Deploy after CSE Client Updater: Step 6
186 IBM High Availability Solution for IBM FileNet P8 Systems

7. Map the EJB reference to the beans. See Figure 8-38 for our setup.

Figure 8-38 Content Engine Deploy after CSE Client Updater: Step 7
 Chapter 8. Content Engine implementation 187

8. Map the virtual hosts to the modules. See Figure 8-39 for our setup.

Figure 8-39 Content Engine Deploy after CSE Client Updater: Step 8
188 IBM High Availability Solution for IBM FileNet P8 Systems

9. Map the context root to the modules. See Figure 8-40 for our setup.

Figure 8-40 Content Engine Deploy after CSE Client Updater: Step 9
 Chapter 8. Content Engine implementation 189

10.Review the summary with all the settings, and click Finish. Figure 8-41 shows
the summary of our setup.

Figure 8-41 Content Engine Deploy after CSE Client Updater: Step 10
190 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-42 shows the output from our setup while the Content Engine
application is deployed.

Figure 8-42 Content Engine Successful deployment after CSE Client Updater

11.Save the configuration to the master configuration.
 Chapter 8. Content Engine implementation 191

Synchronize the nodes
This is a post-installation task for WebSphere 6.1.x. We describe this procedure
in “Post-deployment configuration” on page 175.

We bring the cluster up as shown in Figure 8-43. This step completes the setup.

Figure 8-43 Content Engine after deployment with both nodes up and running

8.5 High availability tests at the Content Engine level

After you complete the setup of each component in the high availability P8
environment, make sure that you perform component testing before continuing
with the rest of the implementation.

In this section, we discuss the failover tests at the Content Engine component
level. Table 8-3 on page 193 shows the high availability tests that we performed
for our case study in the lab and the results of these tests.
192 IBM High Availability Solution for IBM FileNet P8 Systems

Table 8-3 Content Engine-level high availability test scenarios

8.5.1 Content Engine basic availability test

The basic test to see whether Content Engine is available is by going to the
following URL:

http://9.30.188.91:19080/FileNet/Engine

The IP address used here must be the virtual IP address of Content Engine.

Use the load balancer console to show the Content Engine node’s status. In our
case, we use the BIG-IP F5 as the load balancer. Figure 8-44 on page 194
shows the application status from the BIG-IP F5 console window (as it monitors).

Sr. no. Test Expected result Actual result

Test 1 Basic availability test:
Test the Content Engine using the
following URL:
http://9.30.188.91:19080/FileNet/Eng
ine
Note, use the Content Engine virtual IP
address for testing.

The URL works.
Response is from either
one of the Content
Engine nodes.

See 8.5.1, “Content
Engine basic
availability test” on
page 193.

Test 2 Node availability test 1: Test the Content
Engine while Content Engine node 1
(CE1) is down.
Use the previous test’s URL.

The URL works.
Response is from CE2.

See 8.5.2, “Node
availability test 1”
on page 195.

Test 3 Node availability test 2: Test the Content
Engine while Content Engine node 2
(CE2) is down.
Use the same URL.

The URL works.
Response is from CE1.

See 8.5.3, “Node
availability test 2”
on page 197.

Test 4 High Availability Test:
Test the Content Engine with two
simultaneous connections.
Use the same URL.

The URL works.
Responses are from
both Content Engine
nodes.

See 8.5.4, “Load
balance test” on
page 199.
 Chapter 8. Content Engine implementation 193

Figure 8-44 Content Engine application status as shown by BIG-IP F5 console window

Figure 8-45 shows the application status from the WebSphere Application Server
Network Deployment administrative console window. Notice that both nodes are
up and running.

Figure 8-45 Content Engine application status as seen from WebSphere Application Server Network
Deployment administrative Console window

The Content Engine Application, when accessed from the virtual IP address,
shows that the service request was sent to the first node, CE1, which responded.
See Figure 8-46 on page 195.
194 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-46 Response for the Content Engine application URL

8.5.2 Node availability test 1

In this test, we bring down one Content Engine node (CE1) and use the same
Content Engine virtual IP address to see whether the URL is being serviced.

Figure 8-47 on page 196 from the WebSphere Application Server Network
Deployment administrative console shows that node CE1 is down.
 Chapter 8. Content Engine implementation 195

Figure 8-47 Content Engine node CE1 is down as seen from WebSphere Application Server administrative
console

The same result is reflected by the BIG-IP F5 console window (Figure 8-48).

Figure 8-48 Content Engine node CE1 is down as reflected by BIG-IP F5 console

Figure 8-49 on page 197 shows the output from the Content Engine URL that is
accessed when node CE1 is down. Server2 is up and running. That is, Content
Engine node 2, CE2, responded and serviced this request.
196 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-49 Content Engine URL output when Content Engine node CE1 is down

8.5.3 Node availability test 2

In this test, we shut down Content Engine node 2 (CE2) and access the Content
Engine URL. As in the previous test, Content Engine node CE2 is down as seen
from the WebSphere Application Server Network Deployment administrative
console (Figure 8-50 on page 198).
 Chapter 8. Content Engine implementation 197

Figure 8-50 Content Engine node CE2 is down as seen from WebSphere Application Server administrative
console

From the BIG-IP F5 console monitor, CE2 is marked as down, as well. See
Figure 8-51.

Figure 8-51 Content Engine node CE2 is down as reflected by the BIG-IP F5 console

Figure 8-52 on page 199 shows, as expected, the request is now serviced by
Content Engine node 1, server1.
198 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-52 Content Engine URL output when Content Engine node CE2 is down

8.5.4 Load balance test

This test shows that both Content Engine nodes are simultaneously accessible
when two separate requests are sent over to the Content Engine URL and both
requests are serviced at the same time by separate Content Engine nodes.

The following two windows show that both Content Engine nodes are up and
running. The first window is from the WebSphere Application Server Network
Deployment administrative console (Figure 8-53 on page 200) and the second
window is from the BIG-IP F5 console (Figure 8-54 on page 200).
 Chapter 8. Content Engine implementation 199

Figure 8-53 Both Content Engine nodes available to service requests as seen from WebSphere Application
Server Network Deployment

Figure 8-54 Both Content Engine nodes are marked available by BIG-IP F5 console

Figure 8-55 on page 201 shows both Content Engine nodes servicing the
requests simultaneously.
200 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 8-55 Both Content Engine nodes servicing the requests simultaneously
 Chapter 8. Content Engine implementation 201

202 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 9. Process Engine
implementation

This chapter describes the high availability options for Process Engine and our
case study setup in relation to it. We also describe the practical, step-by-step
procedures that we use to implement high availability for Process Engine.

We discuss the following topics:

� Introduction
� High Availability options for Process Engine
� Design for the case study
� Setup for active/active Process Engine cluster (farm)
� High availability tests at the Process Engine level

9

© Copyright IBM Corp. 2009. All rights reserved. 203

9.1 Introduction

FileNet P8 Process Engine (PE) lets you create, modify, manage, analyze, and
simulate business processes (also referred to as workflows). These workflows
are performed by applications, enterprise users, and external users, such as
partners and customers. It is critical to provide high availability for Process
Engine in the overall high availability of the IBM FileNet P8 solution.

For an overview of Process Engine, refer to 2.3, “Process Engine” on page 26.

9.2 High Availability options for Process Engine

As Process Engine (PE) stores the information about the workflow process,
when PE is unavailable, neither IBM FileNet P8 Application Engine (AE) nor IBM
FileNet P8 Content Engine (CE) can retrieve any workflow process-related data.
All the processes in the system remain at their current state until AE or CE can
reconnect to PE and continue the work.

The aim of making PE highly available is to make it available to run and service
the requests (from either AE or CE) even if one of the PEs in the farm or cluster is
unavailable.

PE can be made highly available in one of two ways:

� Active/active cluster:

An active/active cluster (farm) is a configuration where multiple PE servers
are available to service a request. Each machine in a highly available
configuration is called a node. In an active/active cluster, in case a node goes
down or is unavailable, the requests are routed automatically to the other
available nodes. A hardware-based load balancer is needed for balancing the
load that is sent to the nodes. Depending on the load balancer, the load can
be sprayed on the nodes using various algorithms, such as round-robin and
least connections.

� Active/passive cluster:

An active/passive cluster is a configuration where an active PE server is
available to service client (AE or CE) requests. The passive node is running in
a listening mode. The second node is always synchronized with the active
node in terms of application configuration and application data. In the case of
a failure in the active node, the passive node assumes the responsibility and
becomes the active node. In this scenario, all the subsystems are defined as
resources for the cluster that, in case of a node failure, fail over to the passive
node. The cluster services are provided by operating system vendors, for
204 IBM High Availability Solution for IBM FileNet P8 Systems

example, IBM PowerHA for AIX (HACMP - formerly IBM High Availability
Cluster Multi-Processing).

The application data is stored in a Process Engine database, which is also made
available in a highly available mode in both scenarios.

9.3 Design for the case study

For our case study setup, we choose the recommended active/active cluster
(farm) configuration for making the Process Engine highly available. There are
two nodes running the Process Engines. Both nodes run the IBM AIX operating
system.

All the PEs in a farm share the same database instance. The individual machines
do not know about each other nor do they communicate in any way, except for
isolated region initialization, transfer of configuration, and transfer of process
definitions. That is, when a workflow process or a configuration is transferred, all
of the machines in the farm are notified to update their configuration with the
information of the newly transferred workflow process. The server, which can be
any of the servers in the farm, that received the transfer remote procedure call
(RPC) is the one that communicates with the other servers. It finds the other
servers by looking at the database for the names and addresses of the other
servers and then sends them a message (if they are active). Each server checks
the database for a transfer in process when the server starts up.

All servers in the PE farm must have the same hardware word size and word
boundaries, as well as they must have the same byte order (big-endian as
opposed to little-endian).

Each machine in the PE farm is an exact replica of the other machines and, as
such, is capable of carrying out all possible PE transactions. Additionally, each
server in the farm is actively participating in handling the workload. Therefore,
even if one of the PE machines in the farm goes down, all of the other machines
continue to actively process work. Thus, the PE systems as a whole remain up
as an active/active, highly available configuration.

All the servers in a PE farm can be managed from one Process Task Manager.

Figure 9-1 on page 206 shows the PE farm in an active/active mode.
 Chapter 9. Process Engine implementation 205

Figure 9-1 PE in an active/active cluster (farm) configuration

9.4 Setup for active/active Process Engine cluster (farm)

This section shows the system setup that is necessary for PE to run an
active/active cluster (farm). The operating system that is used for all of the
machines in the PE farm is the IBM AIX operating system.

Table 9-1 on page 207 shows the host names and IP addresses that are used in
the setup. We reference these host names and IP addresses from now on in this
chapter.

CE farm
(active/active)

CE farm
(active/active)

Client 1

Client N

StorageStorage

RDBMSRDBMS

PE farm
(active/active)

PE farm
(active/active)

CSE
(active/passive)

CSE
(active/passive)

AE farmAE farm
206 IBM High Availability Solution for IBM FileNet P8 Systems

Table 9-1 System setup summary

9.4.1 Procedure for PE active/active cluster (farm) setup

Most of these steps, both prerequisites and the actual installation steps, are the
same steps that are described in IBM FileNet P8 4.0 Installation and Upgrade
Guide, GC31-5488. We include them here for ease of reference and for the
completeness of our setup. In certain cases, there are specific options that are
used for creating the active/active PE farm.

The steps that we provide here are sequential in nature and need to be executed
in order.

Installing and setting up the prerequisites
The prerequisite installation includes installing DB2 client instances on the PE
nodes, cataloging the database node and the database, creating the appropriate
file systems, and creating raw partitions.

For our case study, we perform the following steps before installing PE:

1. Install the PE database.

For details, refer to Chapter 12, “DB2 implementation” on page 369.

2. Install the IBM DB2 Client instance on both nodes.

It is mandatory to install the DB2 Version 8 Client instance, even if the
database server is DB2 Version 9.x. We use DB2 for Linux, UNIX and
Windows Server Version 9.5 Fix Pack 1.

Node Host name IP address

CE1 fnl10.svl.ibm.com 9.30.188.20

CE2 fnl11.svl.ibm.com 9.30.188.21

AE1 fnl3.svl.ibm.com 9.30.188.13

AE2 fnl4.svl.ibm.com 9.30.188.14

PE1 fnl20.svl.ibm.com 9.30.188.30

PE2 fnl21.svl.ibm.com 9.30.188.31

P8CE (Content
Engine virtual)

p8ce.svl.ibm.com 9.30.188.91

P8PE (PE virtual) P8PE.svl.ibm.com 9.30.188.92
 Chapter 9. Process Engine implementation 207

3. After the installation is complete, catalog the database node and the
database, for example:

db2 catalog tcpip node dbnode remote 9.30.188.79 server 50010
db2 catalog database vwdbha at node dbnode

Figure 9-2 shows the cataloged database information on PE1.

Figure 9-2 PE database information

4. Create two file systems, /fnsw and /fnsw/local, on each node. Each of these
file systems can be small, for example, 2 GB.

5. Create two raw partitions on each node. Each of these raw partitions are 64
MB. Use the following command to create the raw partitions:

/usr/sbin/mklv -y ‘fn_sec_db0’ -t raw datavg 64M
/usr/sbin/mklv -y ‘fn_sec_rl0’ -t raw datavg 64M

Figure 9-3 shows the two raw partitions that are created.

Figure 9-3 Raw partitions that are created for PE

db2v8cli@fnl20[/home/db2v8cli]db2 connect to vwdbha user f_sw
Enter current password for f_sw:

Database Connection Information
Database server = DB2/AIX64 9.5.1
SQL authorization ID = F_SW
Local database alias = VWDBHA

Note: The database machine’s virtual IP address is used while cataloging
the node.

fnl20.svl.ibm.com(root)/fnsw> lsvg -l datavg
datavg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT
POINT
datalv jfs 319 319 1 open/syncd /data
loglv01 jfslog 1 1 1 open/syncd N/A
fn_sec_db0 raw 1 1 1 open/syncd N/A
fn_sec_rl0 raw 1 1 1 open/syncd N/A

Note: Make sure that the names of the raw partitions are exactly the same
as specified. They must be fn_sec_db0 and fn_sec_rl0.
208 IBM High Availability Solution for IBM FileNet P8 Systems

6. The network settings on both nodes must match with those network settings
recommended in the IBM FileNet P8 4.0 Installation and Upgrade Guide,
GC31-5488. We recommend that these settings are included during the initial
boot sequence so that they are set across the reboot. Use the file
/etc/tunables/nextboot to store these settings.

Process Engine installation
After the prerequisites are set up, you need to install and configure the Process
Engine nodes.

Follow these steps to install and configure Process Engine:

1. Install PE on the first node.

Install PE on the first node of the farm using the detailed steps that are
provided in IBM FileNet P8 4.0 Installation and Upgrade Guide, GC31-5488:

– Make sure that you write down the name of the Network Clearinghouse
domain. This name must be different on each node.

– On the Java API Assembly installation window, where it asks for the
Content Engine API Configuration, make sure that the Content Engine’s
virtual name is used. Figure 9-4 shows the CE virtual name that is used in
our configuration.

Figure 9-4 CE virtual name used during PE installation

2. Configure the load balancer.

After the installation is complete on Node 1, proceed with the load balancer
configuration. For our case study, we perform these steps:

a. Configure the F5 BIG-IP hardware load balancer. Define the PE virtual
server, PE pool, and PE monitors for both nodes on ports 32776 and
 Chapter 9. Process Engine implementation 209

32777. For detailed configuration steps, refer to Chapter 5, “Hardware
load balancer implementation (F5 BIG-IP)” on page 73.

b. For each PE node, set the hardware load balancer virtual IP name to the
IP address of that PE node.

Figure 9-5 shows the file content of the /etc/hosts file from the PE1 node
with IP address 9.30.188.30.

Figure 9-5 PE1 node /etc/hosts file snippet

Figure 9-6 shows the relevant content of the /etc/hosts file from the PE2
node with IP address 9.30.188.31.

Figure 9-6 PE2 node /etc/hosts file snippet

c. Modify the /etc/hosts files on each node for CE and AE to include the
proper PE IP address. On all nodes, refer to PE by using that PE’s virtual
IP address. In our case, it is P8PE.svl.ibm.com.

Figure 9-7 shows the relevant file content for the CE and AE nodes.

Figure 9-7 CE and AE nodes and /etc/hosts file snippet

Virtual IP for F5 load balancer.
9.30.188.91 p8ce.svl.ibm.com p8ce
Here we point the virtual IP to itself.
9.30.188.30 P8PE.svl.ibm.com P8PE

Virtual IP for F5 load balancer.
9.30.188.91 p8ce.svl.ibm.com p8ce
Here we point the virtual IP to itself.
9.30.188.31 P8PE.svl.ibm.com P8PE

THE LOAD BALANCER SETUP
9.30.188.91 p8ce.svl.ibm.com p8ce
9.30.188.92 P8PE.svl.ibm.com P8PE
END

Important: Verify that the name resolution configuration file
(nsswitch.conf) is configured so that it resolves host names using the
local host’s file first.
210 IBM High Availability Solution for IBM FileNet P8 Systems

3. Install PE on the second node.

Use the instructions that are provided in IBM FileNet P8 4.0 Installation and
Upgrade Guide, GC31-5488. Make sure that you write down the name of the
Network Clearinghouse and that the name is different than the name of the
first node.

4. Add the virtual name and property on PE node 1.

After the second PE node is installed, complete the following steps on the first
node of the PE farm.

Use the information that is provided in the “Configure Process Task Manager”
section of the IBM FileNet P8 Platform Installation and Upgrade Guide,
GC31-5488, to perform these tasks:

a. Using the Process Task Manager (vwtaskman) on the server’s node, add
the virtual name of the hardware load balancer. See Figure 9-8.

Figure 9-8 Process Task Manager with the virtual name of the hardware load
balancer

b. Use the Process Task Manager, at the Process Engine level, and select
the Advanced tab. Add the following property:

vworbbroker.endPoint = giop:tcp:P8PE.svl.ibm.com:32777

Note that the virtual name is used. See Figure 9-9 on page 212.

Note: These steps are only required on the first node of the PE farm.
 Chapter 9. Process Engine implementation 211

Figure 9-9 Process Task Manager: Add property

Verifying the Process Engine installation
The Process Engine installation is complete. Verify that it starts and runs. For our
case study, we can see that both nodes appear in the Process Task Manager as
shown in Figure 9-10.

Figure 9-10 Process Task Manager: Showing both PE nodes

Content Engine client installation
After installing and configuring Process Engine software on both nodes, you
need to install the Content Engine Client Updater on both PE nodes:

1. Use the following command to install Content Engine Client Updater 4.0.1 for
AIX from the /data/software/CE_Client directory for the first PE node:

./CEClientUpdater-4.0.1.AIX.bin
212 IBM High Availability Solution for IBM FileNet P8 Systems

Make sure to select the PE component to be updated. See Figure 9-11.

Figure 9-11 CE Client Updater on PE nodes

Figure 9-12 shows that the CE Client Updater installation is successful.

Figure 9-12 CE Client Updater installed successfully

2. Repeat the same Content Engine Client Updater step for the second PE
node.
 Chapter 9. Process Engine implementation 213

After the CE Client Updater is successfully installed, the installation for PE is
complete.

9.5 High availability tests at the Process Engine level

After you complete the setup of each component in the high availability P8
environment, make sure that you perform component testing before continuing
with the rest of the implementation.

In this section, we discuss the failover tests at the Process Engine component
level. Table 9-2 shows the high availability tests that we performed for our case
study in the lab and the results of these tests.

Table 9-2 Process Engine-level high availability test scenarios

9.5.1 Process Engine basic availability test

To conduct this test, we look at the console of the F5 load balancer. The F5 load
balancer monitors the nodes in each pool. If it does not find the node responsive,

Test
scenario
number

Test Expected result Actual result

Test 1 Basic availability test:
Test the Process Engine using the
following URL:
http://9.30.188.92:32776/IOR/ping
Note: Use the Process Engine virtual
IP address for testing.

The URL works.
Response is from either
of the Process Engine
nodes.

See 9.5.1, “Process
Engine basic availability
test” on page 214.

Test 2 Node availability test 1:
Test the Process Engine while PE1 is
down.
Use the same URL as test 1.

The URL works.
Response is from PE2.

See 9.5.2, “Node
availability test 1” on
page 216.

Test 3 Node availability test 2:
Test the Process Engine while PE2 is
down.
Use the same URL as test 1.

The URL works.
Response is from PE1.

See 9.5.3, “Node
availability test 2” on
page 217.

Test 4 High Availability Test:
Test the Process Engine with two
simultaneous connections.
Use the same URL as test 1.

The URL works.
Responses are from
both PE nodes.

See 9.5.4, “High
availability test” on
page 218.
214 IBM High Availability Solution for IBM FileNet P8 Systems

that is, if the application is not responding on that node on the specified port, the
F5 marks the node unreachable or unavailable.

Figure 9-13 shows the F5 console window showing that both PE nodes are
available.

Figure 9-13 F5 console window showing both PE nodes available

Figure 9-14 shows the response from pinging the PE URL. In this case, the
request is sent over to the PE2 node (fnl21.svl.ibm.com).

Figure 9-14 PE URL ping response: The request is sent over to the PE2 node
 Chapter 9. Process Engine implementation 215

9.5.2 Node availability test 1

In this test, we bring down one PE node, PE1 (IP: 9.30.188.30). We expect that
the URL ping request will be served by PE2.

Figure 9-15 Figure 9-14 shows that the PE is brought down on PE node1.

Figure 9-15 PE1 is brought down

Figure 9-16 shows the F5 console showing PE1 is stopped.

Figure 9-16 F5 console showing PE1 is down
216 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 9-17 shows the URL ping response when PE1 is stopped. In this case,
PE2 (fnl21.svl.ibm.com) served the URL ping request.

Figure 9-17 PE ping response from PE farm with PE node 1 down

9.5.3 Node availability test 2

This test is similar to test 2; however, this time we stop PE2 and bring PE1 back
up (using the Process Task Manager).

Figure 9-18 shows that PE2 is stopped.

Figure 9-18 PE2 is brought down

Figure 9-19 on page 218 shows F5 console showing PE2 is stopped.
 Chapter 9. Process Engine implementation 217

Figure 9-19 F5 console window showing PE2 is down

Figure 9-20 shows the URL ping response from PE farm when node2 is stopped.
In this case, PE1 (fnl20.svl.ibm.com) responded from the URL ping request.

Figure 9-20 Ping response from PE farm when PE node2 is stopped

9.5.4 High availability test

For this test, we test with more than one simultaneous connections to the PE
farm and try to see whether we can see connections being load balanced across
both nodes.
218 IBM High Availability Solution for IBM FileNet P8 Systems

In Figure 9-21, the console window shows that both PE nodes are available to
service requests.

Figure 9-21 Both PE nodes are available

Figure 9-22 shows the requests being sent over to both PE nodes.

Figure 9-22 Requests being sent over to both PE nodes in the farm
 Chapter 9. Process Engine implementation 219

220 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 10. Content Search Engine
implementation

This chapter describes a Content Search Engine (CSE) high availability strategy,
our case study installation, and the practical, step-by-step, procedures that we
use to implement the solution. In addition, we also describe updating the Content
Engine server farm to use a highly available Content Search Engine.

We discuss the following topics:

� Introduction
� Content Search Engine high availability strategy
� Design for the case study
� Installing and configuring the CSE components
� High availability tests at the CSE level
� Troubleshooting the Content Search Engine

10
© Copyright IBM Corp. 2009. All rights reserved. 221

10.1 Introduction

The IBM FileNet P8 platform relies on Autonomy’s K2 Enterprise technology for
its content-based retrieval (CBR) functionality. This functionality is also referred
to as the Content Search Engine, which is not to be confused with the IBM
FileNet P8 Content Engine.

The K2 Enterprise Search Engine’s main function is to search, classify, and
personalize large bodies of enterprise information for content-based search
capabilities. Indexing is the process of ingesting and storing content (including
CBR-enabled string properties of the document and any annotations) and
building the appropriate data structures that support the querying of that content.
To accomplish this task, Content Engine (CE) servers send indexing requests to
the Content Search Engine, which, in turn, stores indexing data in collections for
a particular object store. A collection is a separate file system that stores the
references to all indexed documents and a list of all words contained within the
text of the documents. In general, collections are much smaller than the total size
of the documents that they represent.

For CBR-enabled objects, the indexing is performed asynchronously in batches
when the objects are added to the object store. Therefore, newly added content
is not immediately available for searches, and users can experience a delay in
time before the documents can be searched through CBR.

All FileNet P8 clients, such as Workplace, communicate with the Content Search
Engine through Content Engine, which manages the search operations and the
creation and deletion of indexes.

The K2 Getting Started Guide Version 6.0 is available at this Web site:

http://www.sassafras.com/hrl/6.0/upgrade.html

This guide describes the K2 Distributed Deployment brokered architecture
concepts, such as parallel querying, failover, and collection mirroring.

Figure 10-1 on page 223 illustrates a typical P8 core environment with the CSE
component. The CSE configuration described in this chapter has all of the K2
services running on the same logical partition (LPAR).

Note: Autonomy refers to the various Content Search Engine services as
servers.
222 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.sassafras.com/hrl/6.0/upgrade.html

Figure 10-1 Basic P8 architecture with a Content Search Engine component

For additional information about Content Search Engine, refer to 2.6, “Content
Search Engine” on page 36.

10.2 Content Search Engine high availability strategy

To achieve high availability, eliminating single points of failure in the Content
Search Engine is the critical consideration behind any strategy. Single points of
failure encompass both hardware and software components. You can implement
the K2 brokered distributed server architecture, active-passive clustering, or a
combination of both to provide horizontal scalability and fault tolerance across an
Autonomy K2 Enterprise domain. Brokering Content Engine requests across
multiple search and index servers can improve both query performance and
simultaneous user response times.

For document ingestion, IBM requires that each K2 Index server must host its
collections directories on locally attached storage (direct-attached or storage
area network (SAN)). Index servers hosting their collections directories on
network-attached storage (NAS), which is accessed through the Network File
System (NFS), is not supported. However, sharing these same collections
directories to multiple K2 Search Servers, through NFS, is supported. It is
important to note that a shared file system or “CSE temporary directory” is

StorageStorage
PE farm

(active/active)

CE farm
(active/active)

AE farm

CSE
(active/passive)

Client N

Client 1

RDBMS
 Chapter 10. Content Search Engine implementation 223

required for CSE. Both the Content Engine (all nodes within the farm) and
Content Search Engine servers must have access to this file system. As the CSE
indexes documents, temporary files are created as content is passed from the
Content Engine to Content Search Engine.

The Autonomy K2 domain supporting P8 is controlled by a single instance of the
K2 Master Administration server. The Master Administration Server manages
communications across the K2 domain, creates new collections directories as
needed, and is used to perform ongoing administration. This service can only run
on a single host and, thus, constitutes a single point of failure in the system.
Therefore, this component must be configured in an active/passive clustered
configuration.

10.3 Design for the case study

For our case study setup, we use an active/passive IBM PowerHA for AIX
(HACMP - formerly IBM High Availability Cluster Multi-Processing) cluster
configuration for making the Content Search Engine highly available. Two nodes,
running identical versions of the IBM AIX operating system, are used to configure
an active/passive cluster. Only the currently active node runs the CSE software,
providing all the K2 services to the Content Engine farm.

Figure 10-2 on page 225 illustrates how the CSE cluster and CE farm are
configured. The K2 Dispatcher process can only run on a single Content Engine
server.

Note: If the machine hosting the K2 Master Administration Server stops
responding, or the Master Administration Server is otherwise unavailable, new
content can still be ingested by the P8 Content Engine. When the Master
Administration Server becomes available again, indexing operations resume
automatically.

The exception to this rule is a situation where a collection directory is full and a
new collection ID cannot be assigned. In this case, new documents cannot be
added to the CE. The CE running the K2 Dispatcher Queue logs errors while
the CSE is down.
224 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-2 Highly available CSE cluster servicing a P8 Content Engine farm

10.4 Installing and configuring the CSE components

The following section describes how to install and configure the Autonomy K2
software in an HACMP clustered environment.

10.4.1 System prerequisites

Before installing the Autonomy Content Search Engine software, configure and
install AIX and HACMP according to IBM guidelines. Additionally, you must
install an identical (supported) version of Java for the CSE on each node.
 Chapter 10. Content Search Engine implementation 225

Run the following commands on each node to ensure that the operating systems
and HACMP/Java file set levels are identical:

oslevel
lslpp -L *cluster.*
lslpp -L *Java*

The Content Engine servers are considered as K2 clients of the Autonomy K2
Master Server. The P8 Content Engine servers communicate directly with the K2
Broker server as a K2 Java API client. This communication uses an AIX user
account to serve as the security link between the two systems. The K2 users and
group have to be created on both nodes of the CSE cluster, and it is important to
keep the K2 user and group IDs the same across all of the CSE servers.

For our use case configuration, we also created the K2 users and group on each
Content Engine server. We keep the K2 user and group IDs the same across all
of the servers.

In general, this uniformity is not a requirement as long as you configure the
Content Engine’s Verity Domain Configuration tab with the correct user name
and password for the K2 user on Content Search Engine. You must also make
sure that the NFS permissions on the shared file system (the Content Search
Engine’s temporary directory) allow access to both Content Engine and Content
Search Engine.

File system creation
Before installing the CSE software, you must create the file systems. You must
create these file systems in the shared volume group that will be controlled by
HACMP.

For our case study, we create a shared volume group called csevg. Figure 10-3
shows the logical volumes and file systems that are contained inside the csevg
shared volume group.

Figure 10-3 List logical volume groups

root@fnl41:/opt/verity>lsvg -l csevg
csevg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
cseloglv jfs2log 1 1 1 open/syncd N/A
csedata1lv jfs2 80 80 1 open/syncd /opt/verity/collections
csedata2lv jfs2 16 16 1 open/syncd /opt/verity
csedata3lv jfs2 16 16 1 open/syncd /opt/verity/tmp
226 IBM High Availability Solution for IBM FileNet P8 Systems

Virtual IP address and host name creation
Create a virtual IP address and corresponding host name for the Content Search
Engine. Update the local /etc/hosts file on both nodes of the cluster and on all
Content Engine servers.

Figure 10-4 shows the CSE name (k2cse.svl.ibm.com) and IP address as
configured in the /etc/hosts file on the case study servers.

Figure 10-4 Content of the /etc/hosts file

Table 10-1 on page 228 lists the configuration attributes, which are used in our
case study, for the active/passive Content Search Engine cluster.

Tip: Make sure that the default system umask is set to 022 before creating the
underlying mount points and mounting the file systems. If the default umask is
not set to 022, the K2usr account will experience permission problems when
attempting to access the mounted file systems.

more /etc/hosts
#CSE - P8 - service address - pub net 9.30.188.0/24
9.30.188.77 k2cse.svl.ibm.com k2cse

9.30.188.51 fnl41.svl.ibm.com fnl41 c2
10.0.3.51 fnl41-hs03.svl.ibm.com fnl41-hs03
10.0.4.51 fnl41-hs04.svl.ibm.com fnl41-hs04
10.0.5.51 fnl41-hs05.svl.ibm.com fnl41-hs05
10.254.240.51 fnl41-hmcp.svl.ibm.com fnl41-hmcp
#
9.30.188.52 fnl42.svl.ibm.com fnl42 c3
10.0.3.52 fnl42-hs03.svl.ibm.com fnl42-hs03
10.0.4.52 fnl42-hs04.svl.ibm.com fnl42-hs04
10.0.5.52 fnl42-hs05.svl.ibm.com fnl42-hs05
10.254.240.52 fnl42-hmcp.svl.ibm.com fnl42-hmcp
 Chapter 10. Content Search Engine implementation 227

Table 10-1 Active/passive Content Search Engine server’s attributes

Table 10-2 on page 229 lists the configuration attributes, which are used in our
case study, for the active/active Content Engine servers.

Attribute Active node Passive node

Host name fnl41.svl.ibm.com fnl42.svl.ibm.com

IP address 9.30.188.51 9.30.188.52

Virtual IP address 9.30.188.77 N/A

AIX version 5.3.0.0 5.3.0.0

HACMP version 5.4.1 with latest PTFs 5.4.1 with latest Program
Temporary Fixes (PTFs)

JAVA version Java SE Runtime
Environment (JRE™) 1.5.0
64 bit

JRE 1.5.0 64 bit

CSE version CSE 4.0.1-003 N/A

K2 version 6.1.4 N/A

Default umask 022 022

Shared volume group csevg N/A

Shared file systems /opt/verity
/opt/verity/tmp
/opt/verity/collections

N/A

Exported file system
(shared to all CE servers)

/opt/verity/tmp N/A

Remote mounts (NFS) fnl45:/CEFileStore
/opt/FileNet/FileStore

fnl45:/CEFileStore
/opt/FileNet/FileStore
228 IBM High Availability Solution for IBM FileNet P8 Systems

Table 10-2 Active/active Content Engine servers’ attributes

10.4.2 Installing Autonomy K2 on IBM AIX 5.3.0

After the system prerequisites are met, you can install the Autonomy K2
software. Install the software using the K2 Operating System User account
(k2usr) on the active node of the cluster. Because the Autonomy software is
installed on a shared file system, it is not necessary to perform any installation
steps on the passive node. Because the Autonomy software stores dynamic
configuration data in various directories throughout the /opt/verity file system,
it is not possible to install the product locally on each node of the cluster. Unlike
other products, such as Image Services, the binary and configuration directories
are not logically separated.

The installation process does not make any updates to the AIX Object Data
Manager (ODM). However, you must perform certain prerequisite steps on both
nodes of the cluster. The installation steps described next are not intended to
replace the standard installation procedures that are detailed in the IBM P8
Platform Installation and Upgrade Guide. Rather, we include these installation
steps to enhance the existing procedures for installing the product in a clustered
environment.

You can download the IBM P8 Platform Installation and Upgrade Guide from this
Web site:

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

Attribute Content Engine 1 Content Engine 2

Host name fnl10.svl.ibm.com fnl11.svl.ibm.com

IP address 9.30.188.20 9.30.188.21

CSE client version P8CSE-4.0.1-003 P8CSE-4.0.1-003

Remote mounts (NFS)
(storage area directory)

(K2 temp directory)

fnl45:/CEFileStore
/opt/FileNet/FileStore

k2cse:/opt/verity/tmp
/opt/verity/tmp

fnl45:/CEFileStore
/opt/FileNet/FileStore

k2cse:/opt/verity/tmp
/opt/verity/tmp

Important: When upgrading and applying fix packs to the CSE software in the
future, we recommend that you perform the installation steps on the cluster
node where the software was originally installed.
 Chapter 10. Content Search Engine implementation 229

Follow these steps to install Autonomy K2 software:

1. Create the following user accounts and group on both nodes of the cluster:

– K2 Operating System User
– K2 Security User
– K2 Security Group

You must create the exact same user on both nodes. Create the same
password for the same user account on each node.

For our case study, we create these users and this group:

– k2usr (for K2 Operating System User)
– k2sec (for K2 Security User)
– k2secgrp (for K2 Security Group)

Verify that the user accounts are identical by comparing the outputs of the
following command:

grep k2usr /etc/passwd
k2usr:!:1000:214::/home/k2usr:/usr/bin/ksh
grep k2sec /etc/passwd
k2sec:!:1001:214::/home/k2sec:/usr/bin/ksh
grep k2secgrp /etc/group
k2secgrp:!:214:k2usr,k2sec

2. Ensure that the shared file systems are mounted on the active node and that
they have the following ownership and permissions:

df -k | grep verity
/dev/csedata2lv 4194304 2742488 35% 17351 6% /opt/verity
/dev/csedata1lv 20971520 11733584 45% 126 1%
/opt/verity/collections
/dev/csedata3lv 4194304 4192936 1% 14 1% /opt/verity/tmp
ls -l /opt | grep verity
drwxr-xr-x 8 k2usr k2secgrp 4096 Oct 02 16:50 verity
ls -l /opt/verity
drwxrwxr-x 5 k2usr k2secgrp 4096 Oct 10 08:49
collections
drwxr-xr-x 2 k2usr k2secgrp 256 Sep 19 14:08 lost+found
drwxrwxr-x 6 k2usr k2secgrp 256 Oct 09 16:44 tmp

Tip: When creating the logical volume for /opt/verity/collections, refer
to the Autonomy K2 documentation for proper sizing and capacity planning
considerations.
230 IBM High Availability Solution for IBM FileNet P8 Systems

3. Install Content Search Engine Version 4.0.0 general availability (GA) as
described in the IBM P8 Platform Installation and Upgrade Guide:

a. Execute Task 11, “Install and Configure Content Search Engine” (see the
AIX platform section of the IBM P8 Platform Installation and Upgrade
Guide):

$ cd /opt/verity
$ gzip -d K2-AIX.tar.gz
$ tar -xvf K2-AIX.tar

b. Edit the main K2 configuration file. When editing
/opt/verity/config.vncf, use the virtual name of the CSE cluster. Do not
use the server’s host name when replacing the <myLocalHostName> and
<myMasterHostName> variables.

Example 10-1 shows our config.vncf file content.

Example 10-1 Config.vncf content snippet

[K2]
Components= k2admin odbcgateway key k2services k2serviceconfig k2dashboard sse
k2doc
DataDir= /opt/verity/data
HostName= k2cse.svl.ibm.com
WebServerType= b
JavaHome= /usr/java5_64
AddDataDir1=
AddDataDir1Access= r
AddDataDir2=
AddDataDir2Access= r
AddDataDir3=
AddDataDir3Access= r
AddDataDir4=
AddDataDir4Access= r
AddDataDir5=
AddDataDir5Access= r
AddDataDir6=
AddDataDir6Access= r
CreateWarningLog=yes

[K2Admin]
Alias= k2cse.svl.ibm.com
Host= k2cse.svl.ibm.com
Description=
Email=
SMTPHost=
Port= 9950
Mode= Master
MasterHost= k2cse.svl.ibm.com
MasterPort= 9950
NTServiceName= K2 6.1.1 Administration Server
 Chapter 10. Content Search Engine implementation 231

Authenticate= yes
ServiceNotify= no
JobNotify= no

[K2ServiceConfig]
cmdline1= reset "k2cse.svl.ibm.com" default_value 50 100 y y y exit
cmdline2= ritypeset doc 1 "Contains the profiles of documents in a collection"
default_value default_value default_value y exit
cmdline3= ritypeset query 1 "Reserved type used in K2 APIs" default_value
default_value default_value y exit
cmdline4= ritypeset user 1 "Contains the profiles of a group of sample users"
default_value default_value default_value y exit
cmdline5= rityperelset doc query u 1 default_value y exit
cmdline6= rityperelset user query u 1 default_value y exit
cmdline7= rityperelset user doc u 1 50 y exit
cmdline8= rityperelset doc query r 1 50 y exit
cmdline9= rityperelset user query r 1 50 y exit
cmdline10= rityperelset doc doc r 1 50 y exit
cmdline11= rityperelset user doc r 1 50 y exit
cmdline12= rityperelset doc user r 1 50 y exit
cmdline13= styleset 1 "Def_FileSystem_Secure" filesys default_value "Default
secure File System style files" y exit
cmdline14= styleset 1 "Def_FileSystem" filesys default_value "Default File System
style files" y exit
cmdline15= styleset 1 "Def_HTTP_Secure" Web default_value "Default secure HTTP
style files" y exit
cmdline16= styleset 1 "Def_HTTP" Web default_value "Default HTTP style files" y
exit
cmdline17= styleset 1 "Def_FileSystem_PushAPI" filesys default_value "Default
File System style files to be used with ODK Collection Indexing API" y exit
cmdline18= serverset 1 "_docserver" 9948 "K2 Documentation and Samples Server." y
y y default_value "k2cse.svl.ibm.com" "/opt/verity/k2/common" default_value 200 2
n 300000 900000 default_value default_value default_value y exit
cmdline19= servercpuset "_docserver" 0 0 y exit
cmdline20= profileset "_docserver" "_docserver_prfsvc" 1 1 default_value
default_value s uni/en Def_FileSystem Def_HTTP default_value default_value
default_value default_value y exit
cmdline21= profilenetset "_docserver" "_docserver_prfsvc" 1 "_docserver_prfnet"
default_value default_value 1 n y exit
cmdline22= querylogset "_docserver" s y default_value 1024 default_value
default_value default_value default_value default_value default_value
default_value default_value default_value default_value default_value
default_value default_value default_value default_value default_value
default_value default_value default_value default_value default_value
default_value default_value default_value default_value default_value y
cmdline23= spiderset k2cse.svl.ibm.com indexer1 default_value 9801 9899
k2cse.svl.ibm.com_spider default_value 9800 y exit
cmdline24= collset k2cse.svl.ibm.com k2_doccoll 1 default_value f Def_FileSystem
0 default_value "K2 Documentation Collection" default_value default_value y exit
cmdline25= indexvdkset k2cse.svl.ibm.com k2_doccoll c n default_value
default_value default_value default_value default_value default_valueuni/en
default_value default_value default_value default_value default_value y exit
cmdline26= indexattach k2_doccoll c "_docserver" 1 2 2 y exit
232 IBM High Availability Solution for IBM FileNet P8 Systems

cmdline27= riset k2cse.svl.ibm.com k2_doccoll 1 doc uni default_value
default_value y exit
cmdline28= risourceset k2cse.svl.ibm.com k2_doccoll k2_doccoll 1 default_value
default_value y exit
cmdline29= indexattach k2_doccoll r "_docserver" 1 2 default_value y exit
cmdline38= wsadd "k2cse.svl.ibm.com" "_docserver" 20 1
"/opt/verity/k2/_rs6k43/bin/k2server" "-alias _docserver" y exit
cmdline40= wsadd "k2cse.svl.ibm.com" k2cse.svl.ibm.com_spider 20 1
"/opt/verity/k2/_rs6k43/bin/k2spider_srv" "-port 9800 -controller" y exit
cmdline41= adminsignal "k2cse.svl.ibm.com" 4 y exit

[K2Dashboard]
VirtualDir= k2_dashboard
WebServerType= t
WebServerHostName= k2cse.svl.ibm.com
WebServerPort= 9990
SSL= no
WebSiteName= No websites

4. Update the k2usr and k2sec users environment by adding the following
environment variables to /home/k2usr/.profile and /home/k2sec/.profile
on the active node. Uncomment any commands that display mail messages
to the command prompt (the $MAIL section). Example 10-2 shows the k2usr
user’s .profile file (/home/k2usr/.profile) with the updated environment
variables (shown under the “settings for K2” comment).

Example 10-2 The k2usr .profile file (/home/k2usr/.profile)

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:$HOME/bin:/usr/bin/X11:/sbin:/home/k2usr:.

export PATH

#if [-s "$MAIL"] # This is at Shell startup. In normal
#then echo "$MAILMSG" # operation, the Shell checks
#fi # periodically.

##########################
settings for K2
##########################

JAVA_HOME=/usr/java5_64
PATH=$PATH:/opt/verity/k2/_rs6k43/bin:/usr/java5_64/bin:/opt/verity/k2/common
LIBPATH=$LIBPATH:/opt/verity/k2/_rs6k43/bin
VERITY_CFG=/opt/verity/k2/common/verity.cfg

export JAVA_HOME
export PATH
export LIBPATH
export VERITY_CFG
 Chapter 10. Content Search Engine implementation 233

5. Run the K2 post-installation script. After this step completes, the Autonomy
K2 product will be installed and started. Verify that the K2 start and stop
scripts are working properly after running the post-installation script:

$ cd /opt/verity
$ /opt/verity/k2/_rs6k43/bin/vconfig -cfg "/opt/verity/config.vncf"
-dir "/opt/verity" -verbose -log log.txt

Stop the K2 services:

$ /opt/verity/k2/_rs6k43/bin/k2adminstop

Make sure that all the K2 processes have stopped:

$ ps -ef | grep k2

Start the K2 services:

$ /opt/verity/k2/_rs6k43/bin/k2adminstart

6. Access the K2 Dashboard, and configure Autonomy K2 for content-based
retrieval. Refer to Task 11, step 10 in the IBM P8 Platform Installation and
Upgrade Guide. After these steps complete, the K2 Dashboard shows all the
K2 servers in the Running state (Figure 10-5 on page 235 for our case study).

Note: HACMP File Collection is used to keep the .profile files on both
nodes synchronized on an ongoing basis. Any changes to these files are
automatically replicated to the other node.

Tip: If the vendor-supplied stop script (k2adminstop) does not shut down
the k2admin process and all child processes, you must create a custom
script to manually end the k2 processes. Example 10-5 on page 240 shows
an example script.
234 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-5 K2 Services status

7. As the root user, change the permissions and ownership on the vspget file.
This change is necessary, so that the K2 software can run as k2usr instead of
root.

As the k2usr, stop the K2 software:

$ k2adminstop

Run the following commands as root:

chown root:k2secgrp /opt/verity/k2/_rs6k43/bin/vspget
chmod 770 /opt/verity/k2/_rs6k43/bin/vspget
chmod +s /opt/verity/k2/_rs6k43/bin/vspget

As the k2usr, stop the K2 software:

$ k2adminstart

If the file ownership and permissions are incorrect on this file, the k2usr is
unable to log in as administrator to the K2 Ticket Server, and an error
message displays in the K2 Dashboard.

Figure 10-6 on page 236 shows the error that is displayed on the K2 Admin
console if vspget has incorrect ownership and file permissions.
 Chapter 10. Content Search Engine implementation 235

Figure 10-6 Error message

The Ticket Server log file displays the following error if the vspget file has
incorrect ownership and permissions:

$ cat /opt/verity/data/services/k2cse_TicketServer/log/status.log
2008-09-22 19:44:41 Fatal: Root Privileges are needed by vspget
2008-09-22 19:44:41 Status: [K2TkSvc]User k2usr login as admin
failed

8. Back up the /opt/verity file system, and install the Content Search Engine
Service Pack 4.0.1.

9. Install the latest Hot Fix Pack for the CSE (P8CSE-4.0.1-004), and verify the
update by checking the status of the K2 servers in the K2 Dashboard. Check
the K2 status log for errors:

$ more /opt/verity/data/host/log/status.log

10.Update the verity.cfg file to add the new collections path. Use the next
available alias for the Content Engine. Restart the K2 application after the
update.

The following example shows the updated /opt/verity/verity.cfg file:

alias6=path1
mapping6=/opt/verity/collections
dirmode6=rw

Tip: Check the ownership and permissions of the vspget file after you
complete all of the CSE upgrade and fix pack activities.
236 IBM High Availability Solution for IBM FileNet P8 Systems

Validating the installation
At this point, the Autonomy K2 software is fully functional and ready for use.
Perform the following steps to validate the environment:

1. Create a collection, and index a document.

Example 10-3 indexes the verity.cfg file to a collection called Test. Use the
rcvdk utility to perform a null search on the new document, and then, view the
document’s contents.

Example 10-3 Indexing the verity.cfg file

$ mkvdk -collection Test /opt/verity/k2/common/verity.cfg
mkvdk - Verity, Inc. Version 6.1.4
Initializing dataset 00000001.ddd, index 00000001.did
Totals (1 documents): 5 para 2 sent 238 word (1680 Kb used)
Optimizing database layout
(214 ms) Indexed 1 docs into Test/parts/00000001
Writing partition index data
mkvdk done

$ rcvdk Test
rcvdk Verity, Inc. Version 6.1.4
Attaching to collection: Test
Successfully attached to 1 collection.
Type 'help' for a list of commands.
RC> s
Search update: finished (100%). Retrieved: 1(1)/1.
RC> v
1: /opt/verity/k2/common/verity.cfg
[Master Admin Server]
host=k2cse.svl.ibm.com
port=9950
[Admin Server]
alias=k2cse.svl.ibm.com
host=k2cse.svl.ibm.com
port=9950
[Launch]
launch1=mmc
launch2=k2server
launch3=k2broker
.....rest of document is displayed.....
RC> quit

2. Remove the Test collection.

$ mkvdk -collection Test -purge
 Chapter 10. Content Search Engine implementation 237

If necessary, update the Content Engine servers with the latest P8CSE client
version. You can verify the fix pack dependencies between the CSE and CE
servers in the Fix Packs and Compatibility Matrices document, which you can
download from this Web site:

http://www.ibm.com/support/docview.wss?uid=swg27010422

In our case study, the Content Engine server farm was built before the CSE
cluster. The CSE client was applied to both Content Engine servers during the
initial installation. Upon completion of the CSE cluster installation, and depending
upon the version of the CSE that is being used, the CSE client software on each
Content Engine might require an upgrade (see the compatibility matrix from the
product documentation). In our case setup, we updated the CSE client software
on both Content Engine servers to P8CSE-4.0.1-003.

Tips: You can obtain the current version of the CSE client that is installed on
the Content Engine servers from the Content Engine installation directory.

Example:

cat /opt/FileNet/ContentEngine/lib/k2_Version.txt
P8CSE-4.0.1-003 K2.jar Verity Version 6.1.4 dated April 30th, 2008

Important: After applying the appropriate fix packs on the CSE and CE
servers, verify that the k2.jar files are identical on all of the servers.

Content Engine Servers:

ls -l
/usr/IBM/WebSphere/AppServer/profiles/server1/installedApps/CECell/F
ileNetEngine.ear/APP-INF/lib/k2.jar
-rw-r--r-- 1 root system 2429374 Sep 26 15:42 k2.jar

Autonomy K2 Server:

ls -l /opt/verity/k2/jars/k2.jar
-rwx------ 1 k2usr k2secgrp 2429374 Sep 26 15:42 k2.jar
238 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.ibm.com/support/docview.wss?uid=swg27010422

10.4.3 Configure an HACMP resource group for CSE

After the Autonomy K2 software is installed and validated, it can be placed under
the control of HACMP. This section describes the steps that are necessary to
configure CSE within HACMP.

A single HACMP resource group is required for the CSE cluster. This group
contains a shared volume group to host the shared file systems, a service IP
label used by the Autonomy K2 software, and a CSE application server resource.

Three custom scripts are created to manage the K2 application within HACMP.
These scripts are used by the cluster software to stop, start, and monitor the K2
application. Describing the details of installing and configuring HACMP
topologies is outside the scope of this book. You can obtain these steps and
other best practices at the following links:

� IBM PowerHA for AIX (HACMP) library:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?top
ic=/com.ibm.cluster.hacmp.doc/hacmpbooks.html

� Implementing High Availability Cluster Multi-Processing (HACMP) Cookbook,
SG24-6769

http://www.redbooks.ibm.com/abstracts/sg246769.html

Use the following steps to configure CSE within HACMP:

1. Create the start, stop, and monitor shell scripts that HACMP calls to manage
the Content Search Engine. There are many possible ways to write the scripts
to accomplish the function.

Note: When upgrading the CSE client software on each Content Engine, the
patch introduces a new Engine-ws.ear file. Therefore, the original file must be
backed up, then undeployed. The new Engine-ws.ear file contained in the
P8CSE-4.0.1-003 Fix Pack is then deployed (see the Fix Pack readme file for
further details).

For additional information about Content Engine and CSE dependencies and
compatibility, refer to the following documents at this Web site

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422:

� IBM FileNet P8 Hardware and Software Requirements Guide

� Fix Packs and Compatibility Matrices
 Chapter 10. Content Search Engine implementation 239

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.hacmp.doc/hacmpbooks.html
http://www.redbooks.ibm.com/abstracts/sg246769.html
http://www.redbooks.ibm.com/abstracts/sg246769.html

The following scripts were implemented successfully in our lab environment.
We provide them here as examples for your reference:

– Example 10-4 shows the start script for CSE.

The script first checks to ensure that the /opt/FileNet/FileStore NFS is
mounted before running k2adminstart. If the file system is not mounted,
the script exits with a status=1, and K2 is not started.

Example 10-4 Start script

root@fnl41:/root>cat /opt/FileNet/ha_scripts/cse_start.sh

#!/bin/ksh

CEFS="/opt/FileNet/FileStore"

echo "Checking if the CE filestore is mounted ..."
mount | grep -w "$CEFS"
if [$? -ne 0]; then echo "ERROR: FileStore not mounted!!!!\n Exiting
without starting CSE!"; exit 1 ; fi

echo "Starting Content Search Engine"

###
Run the K2 start script
###
su - k2usr "-c /opt/verity/k2/_rs6k43/bin/k2adminstart"

exit 0

– Example 10-5 shows the stop script for CSE.

The script first stops the k2admin process, and then, the remaining k2usr
child processes. After these processes are stopped, Catalina Tomcat is
stopped.

Example 10-5 Stop script

root@fnl41:/root>cat /opt/FileNet/ha_scripts/cse_stop.sh

#!/bin/ksh
DATA_DIR="/opt/verity/data"
The process ID is kept in the k2admin.pid file under
$DATA_DIR/host/log
PLATFORM="_rs6k43"
VERITY_DIR="/opt/verity"
VERITY_LOG="$DATA_DIR/host/log"
VERITY_BIN="$VERITY_DIR/k2/$PLATFORM/bin"
VERITY_COMMON="$VERITY_DIR/k2/common"
VERITY_CFG="/opt/verity/k2/common/verity.cfg"
240 IBM High Availability Solution for IBM FileNet P8 Systems

PATH=$VERITY_BIN:$PATH; export PATH
LIBPATH=$VERITY_BIN:$LIBPATH;export LIBPATH
TOMCAT_HOME="/opt/verity/appserver"; export TOMCAT_HOME
CATALINA_HOME="/opt/verity/appserver"; export CATALINA_HOME
if [-z "$JAVA_HOME"]; then
JAVA_HOME="/usr/java5_64"; export JAVA_HOME
fi

echo "Stopping Content Search Engine"

pidk2adm=`cat $VERITY_LOG/k2admin.pid`
if [`ps -e | grep "k2admin" | grep $pidk2adm | grep -v grep | grep -v
k2adminstop | wc -l ` -gt 0]; then
if [[$pidk2adm != ""]]; then kill -HUP "$pidk2adm" ; fi
fi

sleep 10

pidsk2=`ps -fu k2usr | grep "$pidk2adm" | grep -v "k2admin" | grep -v
grep | awk '{print $2}'`
for i in $pidsk2
do
kill -9 $i
done
if [`ps -e | grep "k2admin" | grep $pidk2adm | grep -v grep | grep -v
k2adminstop | wc -l ` -gt 0]; then
if [[$pidk2adm != ""]]; then kill -9 "$pidk2adm" ; fi
fi

sleep 10
if [-f $VERITY_DIR/appserver/bin/catalina.sh]; then
 $VERITY_DIR/appserver/bin/catalina.sh stop -force >/dev/null
fi

if [`ps -p "$pidk2adm $pidsk2" 2>/dev/null |tail +2 |wc -l` -ne 0]
 then
 echo "K2 processes still running!!!!\nCheck the application status!!!"
fi

exit 0

– Monitor script for CSE.

The monitor script checks to see if the following seven critical K2 server
processes are running:

/opt/verity/k2/_rs6k43/bin/k2admin
/opt/verity/k2/_rs6k43/bin/k2index -ualias k2cse_IndexServer
/opt/verity/k2/_rs6k43/bin/k2server -ualias k2cse_SearchServer
 Chapter 10. Content Search Engine implementation 241

/opt/verity/k2/_rs6k43/bin/k2server -ualias _docserver
/opt/verity/k2/_rs6k43/bin/k2ticket -ualias k2cse_TicketServer
/opt/verity/k2/_rs6k43/bin/k2broker -ualias k2cse_BrokerServer
/opt/verity/k2/_rs6k43/bin/k2spider_srv

Example 10-6 shows the monitor script. If the k2admin process is not
running, the script exits with a status code=1, which causes HACMP to
attempt to restart the K2 application. If any of the other six processes are
not running, HACMP logs the error but does not attempt to restart the
application. This logic allows for the possibility that any of these six child
processes might periodically need to be stopped and started. For
example, an administrator might make a change to one of the K2 servers
using the K2 Dashboard. After the change, the service has to be restarted.
However, it is important to know if one of the processes goes down
unexpectedly. In this case, the error is logged, and ideally, an
administrator is notified.

Example 10-6 Monitor script

root@fnl41:/root>cat /opt/FileNet/ha_scripts/cse_mon.sh

#!/bin/ksh
DATA_DIR="/opt/verity/data"
The process ID is kept in the k2admin.pid file under
$DATA_DIR/host/log
PLATFORM="_rs6k43"
VERITY_DIR="/opt/verity"
VERITY_LOG="$DATA_DIR/host/log"
VERITY_BIN="$VERITY_DIR/k2/$PLATFORM/bin"
VERITY_COMMON="$VERITY_DIR/k2/common"
VERITY_CFG="/opt/verity/k2/common/verity.cfg"

PATH=$VERITY_BIN:$PATH; export PATH
LIBPATH=$VERITY_BIN:$LIBPATH;export LIBPATH
TOMCAT_HOME="/opt/verity/appserver"; export TOMCAT_HOME
CATALINA_HOME="/opt/verity/appserver"; export CATALINA_HOME
if [-z "$JAVA_HOME"]; then
JAVA_HOME="/usr/java5_64"; export JAVA_HOME
fi

#Predefine variables for service monitoring with HACMP
NUM_EXPECTED_PROCS=7
LOGFILE=/opt/FileNet/ha_scripts/cse_mon.log

pidk2adm=`cat $VERITY_LOG/k2admin.pid`
pidcat=`ps -fu k2usr | grep catalina | grep -v grep | awk '{print $2}'`
pidsk2=`ps -fu k2usr | grep "$pidk2adm" | grep -v k2admin|grep -v grep |
awk '{print $2}'`
242 IBM High Availability Solution for IBM FileNet P8 Systems

if [`ps -e | grep "k2admin" | grep $pidk2adm | grep -v grep | grep -v
k2adminstop | wc -l ` -eq 0]; then
logger -i -p notice -t $0 "cse_mon: No k2admin process found!"
exit 1
fi

if [`ps -p "$pidcat $pidsk2" 2>/dev/null |tail +2 |wc -l` -ne
${NUM_EXPECTED_PROCS}]
 then

 echo "Number of expected procs is $NUM_EXPECTED_PROCS" > $LOGFILE
 echo "Number of k2 processes running is not the same as the number of
expected processes !!!!" >> $LOGFILE
 echo "Status of the K2 server process currently running:" >> $LOGFILE
 echo
"===
==========================" >> $LOGFILE
 ps -p "$pidcat $pidsk2" >> $LOGFILE 2>/dev/null
 echo
"===
==========================" >> $LOGFILE
 logger -i -p notice -t $0 -f $LOGFILE

fi

exit 0

Before incorporating the start, monitor, and stop scripts into HACMP, ensure
that they can be successfully run (as root) from the command line.

Run cse_mon.sh while K2 is up and running. An exit status=0 indicates that
the script detected all of the processes running:

root@fnl41:/opt/FileNet/ha_scripts>./cse_mon.sh
root@fnl41:/opt/FileNet/ha_scripts>echo $?
0

Stop the K2 processes. The cse_mon.sh script returns an Exit status=1:

root@fnl41:/opt/FileNet/ha_scripts>./cse_stop.sh
Stopping Content Search Engine
root@fnl41:/opt/FileNet/ha_scripts>ps -ef | grep k2
 root 839704 1077348 2 14:34:20 pts/1 0:00 grep k2
root@fnl41:/opt/FileNet/ha_scripts>./cse_mon.sh
root@fnl41:/opt/FileNet/ha_scripts>echo $?
1

Example 10-7 on page 244 shows the K2 processes starting after issuing the
start script. We can verify if all the processes have successfully started using
the ps -ef | grep k2 command.
 Chapter 10. Content Search Engine implementation 243

Example 10-7 Run start script

root@fnl41:/opt/FileNet/ha_scripts>./cse_start.sh
Checking if the CE filestore is mounted ...
fnl45.svl.ibm.com /CEFileStore /opt/FileNet/FileStore nfs3 Oct 09
14:13 bg,soft,intr,sec=sys,ro
Starting Content Search Engine
SUCCESS: Created with process ID: 897094
 Please use the k2adminstop script to terminate process
Using CATALINA_BASE: /opt/verity/appserver
Using CATALINA_HOME: /opt/verity/appserver
Using CATALINA_TMPDIR: /opt/verity/appserver/temp
Using JAVA_HOME: /usr/java5_64

root@fnl41:/opt/FileNet/ha_scripts>ps -ef | grep k2
 k2usr 532550 897094 0 14:34:48 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2server -ualias _docserver
 root 622696 1077348 2 14:35:04 pts/1 0:00 grep k2
 k2usr 835684 897094 0 14:34:50 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2ticket -ualias k2cse_TicketServer
 k2usr 839720 897094 0 14:34:49 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2broker -ualias k2cse_BrokerServer
 k2usr 897094 1 1 14:34:43 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2admin
 k2usr 925788 897094 3 14:34:50 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2spider_srv -controller -port 9800 -recover
-workpath /opt/verity/data/host/spider
 k2usr 954590 897094 0 14:34:52 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2index -ualias k2cse_IndexServer
 k2usr 1064982 1 309 14:34:47 pts/1 0:21 /usr/java5_64/bin/java
-Dverity.configuration=/opt/verity/k2/common/verity.cfg
-DVERITY_VCOMPONENTS_CONFIG=/opt/verity/k2/vcomponents/config -Xmx1g
-Xms1024M -Xmx1024M
-Djava.endorsed.dirs=/opt/verity/appserver/common/endorsed -classpath
/usr/java5_64/lib/tools.jar:/opt/verity/appserver/bin/bootstrap.jar:/opt/ve
rity/appserver/bin/commons-logging-api.jar
-Dcatalina.base=/opt/verity/appserver -Dcatalina.home=/opt/verity/appserver
-Djava.io.tmpdir=/opt/verity/appserver/temp
org.apache.catalina.startup.Bootstrap start
 k2usr 1069162 897094 1 14:34:51 pts/1 0:00
/opt/verity/k2/_rs6k43/bin/k2server -ualias k2cse_SearchServer

The catalina servlet container component of the CSE application runs the K2
Dashboard application. Catalina can be stopped and started independently of
the K2 servers and is not required to be up and running to service CE
indexing and retrieval operations. Therefore, the K2 Dashboard is not
considered a critical process that needs to be highly available. If this process
is down, HACMP logs the error, but it does not restart it.
244 IBM High Availability Solution for IBM FileNet P8 Systems

Example 10-8 shows the catalina process running on the active node of the
cluster.

Example 10-8 Catalina process

$ ps -ef | grep catalina
k2usr 839682 1 /usr/java5_64/bin/java
-Dverity.configuration=/opt/verity/k2/common/verity.cfg -
DVERITY_VCOMPONENTS_CONFIG=/opt/verity/k2/vcomponents/config -Xmx1g
-Xms1024M -Xmx1024M -
Djava.endorsed.dirs=/opt/verity/appserver/common/endorsed -classpath
/usr/java5_64/lib/tools.jar:/opt/verity/appserver/bin/bootstrap.jar:/opt/ve
rity/appserver/bin/commons-logging-api.jar -
Dcatalina.base=/opt/verity/appserver -Dcatalina.home=/opt/verity/appserver
-Djava.io.tmpdir=/opt/verity/appserver/temp
org.apache.catalina.startup.Bootstrap start

You can stop and start the K2 Dashboard (as k2usr) using the following
commands:

$ /opt/verity/appserver/bin/catalina.sh stop
$ /opt/verity/appserver/bin/catalina.sh start

Figure 10-7 on page 246 illustrates a successful logon to the K2 Application
Server (K2 Dashboard) after running the catalina.sh start command.
 Chapter 10. Content Search Engine implementation 245

Figure 10-7 K2 Services in the Running state

2. Create a new HACMP resource group with the configuration attributes as
shown in bold in Example 10-9.

Example 10-9 HACMP resource group

root@fnl41:/root> clshowres

Resource Group Name cse_rg
Participating Node Name(s) fnl41 fnl42
Startup Policy Online On First
Available Node
Fallover Policy Fallover To Next
Priority Node In The List
Fallback Policy Never Fallback
Site Relationship ignore
Dynamic Node Priority
Service IP Label k2cse
Filesystems ALL
Filesystems Consistency Check fsck
Filesystems Recovery Method sequential
Filesystems/Directories to be exported (NFSv2/NFSv3) /opt/verity/tmp
Filesystems/Directories to be exported (NFSv4)
Filesystems to be NFS mounted
246 IBM High Availability Solution for IBM FileNet P8 Systems

Network For NFS Mount
Filesystem/Directory for NFSv4 Stable Storage
Volume Groups csevg
Concurrent Volume Groups
Use forced varyon for volume groups, if necessary false
Disks
GMVG Replicated Resources
GMD Replicated Resources
PPRC Replicated Resources
ERCMF Replicated Resources
SVC PPRC Replicated Resources
Connections Services
Fast Connect Services
Shared Tape Resources
Application Servers cse_app_srv
Highly Available Communication Links
Primary Workload Manager Class
Secondary Workload Manager Class
Delayed Fallback Timer
Miscellaneous Data
Automatically Import Volume Groups false
Inactive Takeover
SSA Disk Fencing false
Filesystems mounted before IP configured true
WPAR Name
Run Time Parameters:
Node Name fnl41
Debug Level high
Format for hacmp.out Standard
Node Name fnl42
Debug Level high
Format for hacmp.out Standard

3. Configure the /opt/verity/tmp directory as an exported file system.

The temporary directory has to be accessed by all of the Content Engine
Servers in the farm. This file system is exported through NFS when HACMP
brings the resource online. Each Content Engine server requires that this file
system is added to its /etc/filesystems file so that it is mounted at boot
time.

Example:

root@fnl41:> exportfs
/opt/verity/tmp
-sec=sys:krb5p:krb5i:krb5:dh,rw,access=fnl10:fnl11:p8ce,root=fnl10:f
nl11:p8ce
 Chapter 10. Content Search Engine implementation 247

4. Both the active and passive nodes of the CSE cluster need to have the
Content Engine FileStore directory added to their respective
/etc/filesystems file. If you use filestores, it is mandatory that this file
system is mounted in order for CSE indexing and searching operations to
work properly. Otherwise, search operations will succeed and return
references to documents, but you will not be able to retrieve the documents to
which they refer. This file system is mounted at boot time and therefore is not
an HACMP resource. The HACMP start script for the K2 application checks to
determine if the /opt/FileNet/FileStore NFS is mounted before starting the
application. If the file system is not mounted, an error is logged, and HACMP
does not attempt to start the application. In this scenario, operator
intervention is required to investigate the problem, get the file system
mounted, and manually bring the resource (cse_app_srv) online.

Example of the /etc/filesystems entry for CSE active and passive nodes:

/opt/FileNet/FileStore:
 dev = /CEFileStore
 vfs = nfs
 nodename = fnl45.svl.ibm.com
 mount = true
 options = bg,soft,intr,sec=sys,ro
 account = false

root@fnl41:> df -k|grep FileNet
fnl45.svl.ibm.com:/CEFileStore
15859712 15569860 2% 13877 1% /opt/FileNet/FileStore

10.4.4 Configure an HACMP application server for CSE

Perform these steps to configure an HACMP application server for CSE:

1. Create an HACMP Application Server resource.

This resource places the CSE software under the control of HACMP. HACMP
is responsible for the stopping, starting, and monitoring of the application. The
HACMP’s Custom Application Monitor provides detailed configuration
information about how HACMP monitors the health of the application and
what automatic actions will be initiated if the resource is determined to be
offline. If HACMP detects that the CSE software is down, the desired behavior
is to restart the CSE on the same node. Assuming all other resources are
online, a full resource group failover to the passive node is not necessary.

Note: HACMP exports /opt/verity/tmp and grants read-write access for
root to all of the Content Engine Servers in the farm.
248 IBM High Availability Solution for IBM FileNet P8 Systems

Create an application server called “cse_app_srv” for the Content Search
Engine. A custom application monitor, cse_app_mon, is also required. This
monitor uses a custom shell script to monitor the critical K2 processes.

Figure 10-8 shows the CSE HACMP Application Server attributes that are
configured in the AIX System Management Interface Tool (SMIT).

Figure 10-8 Application server configuration for Content Search Engine

Figure 10-9 shows the CSE HACMP custom application monitor attributes
configured in the AIX System Management Interface Tool.

Figure 10-9 Custom Application Monitor for the Content Search Engine

After the application server and application monitor resources are created, a
basic working cluster configuration is in place.

2. Run the cldisp command to validate the application and topology settings as
shown in Example 10-10 on page 250.
 Chapter 10. Content Search Engine implementation 249

Example 10-10 Validate application and topology settings

root@fnl41:/root>cldisp

Cluster: cse
 Cluster services: active
 State of cluster: up
 Substate: stable

#############
APPLICATIONS
#############
 Cluster cse provides the following applications: cse_app_srv
 Application: cse_app_srv
 cse_app_srv is started by /opt/FileNet/ha_scripts/cse_start.sh
 cse_app_srv is stopped by /opt/FileNet/ha_scripts/cse_stop.sh
 Application monitor of cse_app_srv: cse_app_mon
 Monitor name: cse_app_mon
 Type: custom
 Monitor method: user
 Monitor interval: 60 seconds
 Hung monitor signal: 9
 Stabilization interval: 60 seconds
 Retry count: 3 tries
 Restart interval: 396 seconds
 Failure action: notify
 Notify method:
 Cleanup method: /opt/FileNet/ha_scripts/cse_stop.sh
 Restart method: /opt/FileNet/ha_scripts/cse_start.sh
 This application is part of resource group 'cse_rg'.
 Resource group policies:
 Startup: on first available node
 Fallover: to next priority node in the list
 Fallback: never
 State of cse_app_srv: online
 Nodes configured to provide cse_app_srv: fnl41 {up} fnl42 {up}
 Node currently providing cse_app_srv: fnl41 {up}
 The node that will provide cse_app_srv if fnl41 fails is: fnl42
 Resources associated with cse_app_srv:
 Service Labels
 k2cse(9.30.188.77) {online}
 Interfaces configured to provide k2cse:
 fnl41-bt1 {up}
 with IP address: 10.10.10.51
 on interface: en2
 on node: fnl41 {up}
 on network: net_pub_1 {up}
 fnl42-bt1 {up}
 with IP address: 10.10.10.52
 on interface: en2
 on node: fnl42 {up}
 on network: net_pub_1 {up}
 Shared Volume Groups:
 csevg
250 IBM High Availability Solution for IBM FileNet P8 Systems

#############
TOPOLOGY
#############
 cse consists of the following nodes: fnl41 fnl42
 fnl41
 Network interfaces:
 fnl41_vpath0_01 {up}
 device: /dev/vpath0
 on network: net_diskhb_01 {up}
 fnl41-hs03 {up}
 with IP address: 10.0.3.51
 on interface: en3
 on network: net_priv_1 {up}
 fnl41-bt1 {up}
 with IP address: 10.10.10.51
 on interface: en2
 on network: net_pub_1 {up}
 fnl42
 Network interfaces:
 fnl42_vpath0_01 {up}
 device: /dev/vpath0
 on network: net_diskhb_01 {up}
 fnl42-hs03 {up}
 with IP address: 10.0.3.52
 on interface: en3
 on network: net_priv_1 {up}
 fnl42-bt1 {up}
 with IP address: 10.10.10.52
 on interface: en2
 on network: net_pub_1 {up}
root@fnl41:/root>

3. Configure HACMP File Collection to keep the CSE user profiles and
application scripts synchronized across the active/passive nodes:

– /home/k2usr/.profile
– /home/k2sec/.profile
– /opt/FileNet/ha_scripts/cse_start.sh
– /opt/FileNet/ha_scripts/cse_stop.sh
– /opt/FileNet/ha_scripts/cse_mon.sh

Figure 10-10 on page 252 shows the file collection settings for the CSE
custom scripts.
 Chapter 10. Content Search Engine implementation 251

Figure 10-10 File collection settings for CSE cluster scripts

Figure 10-11 on page 253 shows the file collection settings for the K2 users.
252 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-11 File collection configuration for the Autonomy K2 user profiles

10.4.5 Updating the Content Engine Server farm

In a highly available Content Engine farm, only one server at a time can be
selected to work the content-based retrieval (CBR) dispatcher queue. This
process runs as a background thread within the CE Java 2 Platform, Enterprise
Edition (J2EE) application. This component is responsible for submitting index
requests to the K2 domain for processing. The Enable Dispatcher property must
be set for one of the Content Engine servers using the IBM FileNet Enterprise
Manager. The remaining CE servers in the farm must have this property
disabled.

If the CE hosting the K2 CBR dispatcher queue fails and cannot restart, another
server in the farm must be manually reconfigured to resume operations (for
versions prior to Version 4.5). In this situation, the administrator enables the CBR
dispatcher queue on one of the surviving CEs in the farm. After the CE is
enabled, the ongoing batch indexing operations resume automatically. If an
administrator submitted a manual index job earlier, the manual operation will not
resume after the CE is enabled. The administrator has to manually delete these
 Chapter 10. Content Search Engine implementation 253

jobs from the Index jobs list control and resubmit them after the dispatcher queue
is up and running again.

For pre-4.0.1-004 versions of the Content Engine, the CBR dispatcher
represents a single point of failure (SPOF) requiring manual intervention after the
hosting CE fails. Starting from Version 4.0.1, index jobs automatically recover.
Starting from Version 4.5, the dispatcher automatically starts on another working
Content Engine server. The Content Engine picks one of the CBR-enabled
servers that is up and running to perform the dispatcher function.

See the “Configure CBR” section of ECM Help and the P8 Platform Installation
Guide for detailed procedures about how to configure and enable CBR. All of the
P8 product documentation can be found at the following Web site:

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

Before configuring content-based retrieval within IBM FileNet Enterprise
Manager, validate that each Content Engine server has a supported version of
the P8CSE client installed. Also, ensure that all CE servers in the farm have the
K2 temp directory mounted. Add this NFS mount to the /etc/filesystems file on
each Content Engine server.

Perform these steps to update the CE servers:

1. Add the remote K2 temp directory on each Content Engine server to
/etc/filesystems.

The following example shows our filesystems file content:

root@fnl10[/root] tail /etc/filesystems
/opt/verity/tmp:
 dev = "/opt/verity/tmp"
 vfs = nfs
 nodename = k2cse
 mount = true
 type = verity
 options = bg,soft,intr,sec=sys
 account = false

root@fnl10[/root] df -k|grep verity
k2cse:/opt/verity/tmp 2097152 2096468 1% 14 1% /opt/verity/tmp

2. Configure the K2 domain configuration information in IBM FileNet Enterprise
Manager.

Use the virtual name of the CSE cluster when specifying the Hostname for
the K2 Master Admin Server Information.
254 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

Figure 10-12 shows our setup information. The k2usr account is used for the
K2 Username.

Figure 10-12 K2 Domain Configuration pointing to the virtual name of CSE cluster

3. From the K2 Server tab, select the Broker that is created during the K2
installation. Figure 10-13 on page 256 also shows that the Enable Dispatcher
option is selected by default.
 Chapter 10. Content Search Engine implementation 255

Figure 10-13 Select the configured Broker

4. Because the K2 Dispatcher can only run on one Content Engine at a time, it
must be disabled at the server level for all remaining servers in the farm.
Figure 10-14 on page 257 shows that server2 does not have the Enable
Dispatcher option selected. You must clear the check mark from the “Override
inherited settings” check box before you can deselect Enable Dispatcher.
Therefore, only one CE server runs the K2 Dispatcher process.
256 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-14 K2 Dispatcher disabled on all other CE servers

If the K2 Dispatcher is enabled on more than one CE server in the CE farm and
you use a version prior to 4.5, the following error is logged in the P8 CE server
log:

2008-09-23T12:27:56.305Z 5BB85BB8 CBR - ERROR The CBR dispatcher was
not started for full text indexing because it is enabled for more than
one server on site 'Initial Site'. Disable the CBR dispatcher for all
but one server, and then restart all Content Engine and Content Search
Engine servers

If you use Version 4.5, this error message does not occur, because the
dispatcher is auto-assigned.
 Chapter 10. Content Search Engine implementation 257

If the CE farm is configured properly, with only one server, running the K2
Dispatcher, the following messages are logged in the CE server log file when
running the Dispatcher:

2008-10-10T00:48:01.462Z 4E3C4E3C CSTG - INFO ContentQueueDispatcher
[FNOS] Session Id={BB811FC1-3ECA-4C9D-8BF1-1BF7BC713739}

2008-10-10T00:48:01.489Z 567F567F CBR - INFO Starting CBR queue
dispatching for FNOS

10.4.6 Configuring document classes and properties for CBR

Before users can perform content-based searches, you must use the FileNet
Enterprise Manager to configure the individual CE object store components for
content-based retrieval. Each object store that is configured to support CBR
requires the creation of full-text indexes. A CE full-text index area is represented
by an IndexArea object in the CE database and contains the name of the file
system that is used to hold the full text indexing data. The CBR Enabled option
for the class definitions and property templates is grayed out until an Index Area
is created. See Figure 10-15 on page 259.

Important: If the CE server that is running the K2 Dispatcher process
(ContentQueueDispatcher) fails and is unable to be brought back online, this
service must be manually reconfigured to run one of the surviving CE servers
in the farm. Use IBM FileNet Enterprise Manager, and select the Enable
Dispatcher option at the server level for one of the surviving CE servers. Be
sure to disable the Dispatcher option at the server level on the failed node.

For Version 4.5, the system automatically fails over the K2 Dispatcher queue
from a failed node to a working server in the CE farm. No manual
reconfiguration is required.
258 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-15 Unable to select the CBR Enabled property

For detailed information about creating index areas and configuring CBR, see
the IBM P8 Platform Installation and Upgrade Guide and ECM Help.

For our case study, we use the following procedures to create an index area and
configure CBR for a Document Class:

1. Set the object store Default Locale to en-us (English) as shown in
Figure 10-16 on page 260.
 Chapter 10. Content Search Engine implementation 259

Figure 10-16 CBR Locale for the FileNet operating system (FNOS) object store

Figure 10-17 shows the error that is returned if you attempt to create a new
Index Area before setting the default locale.

Figure 10-17 Error returned if default locale is not set

2. Create a new Index Area.

From IBM FileNet Enterprise Manager:

a. Select Sites → Index Areas → New Index Area (see Figure 10-18 on
page 261).
260 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-18 Creating a new index area

b. Fill in the properties for the new index area (Figure 10-19).

The File system root directory is the collections directory (on the CSE
cluster) that is created for this Index Area. The temporary directory is the
NFS mount from the CE to the CSE that is created in 10.4.5, “Updating the
Content Engine Server farm” on page 253.

c. In Figure 10-19, click Create Index Area.

Figure 10-19 Add new index area dialog box
 Chapter 10. Content Search Engine implementation 261

Figure 10-20 illustrates the newly created index area. It is online and ready for
use.

Figure 10-20 ITSO Index Area configured for the FNOS object store

Figure 10-21 shows the General attributes of the ITSO Index Area.

Figure 10-21 General Properties of the new index area ITSO

When the new index area is created, it connects to the CSE cluster and
creates the new K2 collection. The Index Area Collections tab (Figure 10-22
on page 263) shows the name of the newly created collection.
262 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-22 Newly created collection

Figure 10-23 on page 264 shows the newly created collection as seen from
the K2 Dashboard.
 Chapter 10. Content Search Engine implementation 263

Figure 10-23 New K2 Collection (Index) as seen from the K2 Dashboard

3. Configure the classes and properties for CBR using the FileNet Enterprise
Manager.

Table 10-3 lists the objects that were configured for our case study.

Table 10-3 Objects that were configured for CBR

Document class Property template

Book Document Title

BookAuthor

BookISBN

BookTitle
264 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-24 shows the Book document class with the CBR Enabled option
checked.

Figure 10-24 CBR-enabled document class named Book

Figure 10-25 on page 266 shows the BookAuthor property enabled for CBR on
the Book document class.
 Chapter 10. Content Search Engine implementation 265

Figure 10-25 To enable Property Definitions for CBR, select the property and check CBR Enabled

After the previous steps are complete, you can add new documents to the
document class, and you can validate basic indexing and searching operations.

10.4.7 Validate basic indexing and searching operations

Before performing failover testing of the CSE cluster, conduct a basic indexing
and search operation to ensure that CSE works properly. A basic test consists of
adding a new document from Workplace to a CBR-enabled document class, and
validating that you can retrieve the document from the K2 Dashboard,
Workplace, and IBM FileNet Enterprise Manager.

Follow these steps to perform a basic test:

1. Add a new document to the Book document class from Workplace:

a. Browse to FNOS object store’s CBR Docs folder (Figure 10-26 on
page 267) and click Add Document.
266 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-26 Add a new document to the CBR Docs folder

b. Select the Book document class from the FNOS object store. See
Figure 10-27.

Figure 10-27 Choose the CBR-enabled Book document class

c. Fill in the property values for the new document. See Figure 10-28 on
page 268.
 Chapter 10. Content Search Engine implementation 267

Figure 10-28 Assign the property values to the new document

d. Accept the default security settings. See Figure 10-29.

Figure 10-29 Click Next to accept the default security policy

Important: In order for a document to be CBR searchable, it must be a
major-version document. Otherwise, Workplace does not display the
document during a CBR search. Minor-versioned documents can be
promoted to major version to make them CBR searchable.
268 IBM High Availability Solution for IBM FileNet P8 Systems

e. Select a file to add to the Book document class. See Figure 10-30.

Figure 10-30 Browse to a file and click Finish to add the new document

f. Click OK to add the new document. See Figure 10-31.

Figure 10-31 Confirm the addition of the new document

Figure 10-32 shows the newly added document

Figure 10-32 The newly added document
 Chapter 10. Content Search Engine implementation 269

Figure 10-33 Shows the logging information that is produced by the K2
Dispatcher process when a CBR enabled document is added to the
Content Engine. Trace logging must be enabled via FileNet Enterprise
Manager.

The trace logs for our CE farm are located in:

CE1:

/usr/IBM/WebSphere/AppServer/profiles/server1/p8_server_trace_log

CE2:

/usr/IBM/WebSphere/AppServer/profiles/server2/p8_server_trace_log

Figure 10-33 Trace logging showing the activity of the K2 Dispatcher process

Figure 10-34 Shows the “Trace Control” tab for CE1. Check Search to
enable tracing for all CE searches (including CBR).

Figure 10-34 To enable tracing for CE searches, check the Search Subsystem
270 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-35 shows that tracing is enabled for server1 for the CBR
subsystem.

Figure 10-35 Tracing is set for the CBR, CFS Daemon, and CFS Import Agent

Figure 10-36 on page 272 shows a second document that is added to the
Book document class. Note the yellow icon next to the document title. This
document is not added as a major version, and therefore, it will not be
returned when performing content-based retrievals. Note also that the
Major Version attribute for this type of document is equal to 0. Only
documents with Major Version equal to 1 will be returned when performing
CBR searches from Workplace (if they satisfy the CBR search criteria).
 Chapter 10. Content Search Engine implementation 271

Figure 10-36 Document was not added as a major version

To promote a document version, right-click the document and select
Promote Version from the context menu (Figure 10-37).

Figure 10-37 Promoting a document to major version=1

2. Use the Workplace Search Designer to create a search template for the Book
document class. See ECM Help for details about how to create a new search
template.

For our case study, we create a search template called CBR ITSO Book
Search3. See Figure 10-38 on page 273.
272 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-38 Select a search template to perform CBR searches

3. Perform a CBR search from Workplace.

For our case study, we perform a search on the word “Insourced.”
Figure 10-39 shows that the document (which we added earlier) is found.

Figure 10-39 A document was found

Figure 10-40 on page 274 shows the document that is found with the
searched word “Insourced” highlighted.
 Chapter 10. Content Search Engine implementation 273

Figure 10-40 The word Insourced is found in the document

If CBR Search tracing is enabled in FileNet Enterprise Manager, all user CBR
requests are logged. Figure 10-41 shows the log entries for a search on
“Insourced,” showing that 1 row was returned. The “where” clause on the select
statement limits the results that are displayed to the user to only those results
with a “VersionStatus=1.”

Figure 10-41 Logging details produced in the p8_server_trace_log of a CBR search

4. You can further verify the successful addition of the new document by
performing the same CBR search from the K2 Dashboard. See Figure 10-42
on page 275.
274 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-42 The same document search performed from the K2 Dashboard

5. You can also perform the same search from IBM FileNet Enterprise Manager
(right-click the object store that you want to search and select New →
Search). After the Content Engine Query Builder window is displayed, click
View → SQL View menu. Figure 10-43 on page 276 shows how to use the
Content Engine Query Builder search utility to build a search query.

See the “Run CBR Query” section of ECM Help for more information about
performing CBR searches within FileNet Enterprise Manager.
 Chapter 10. Content Search Engine implementation 275

Figure 10-43 CBR search for Insourced performed in FileNet Enterprise Manager

Figure 10-44 shows that the same document is found containing the word
Insourced in the Book document class.

Figure 10-44 CBR Search Query Status from within FileNet Enterprise Manager

10.5 High availability tests at the CSE level

After you have validated the basic indexing and searching operations, you can
perform failover testing of the CSE cluster. You can repeat the steps described in
10.4.7, “Validate basic indexing and searching operations” on page 266 after
failovers to validate that the CSE services work properly. Repeated testing and
276 IBM High Availability Solution for IBM FileNet P8 Systems

validation ensure that the highly available Content Search Engine cluster is
operationally ready. The following sections give examples of how to test both the
CSE cluster and CE Dispatcher Queue process.

10.5.1 CSE planned failover and failback procedures

The first test is a planned or graceful failover of the Content Search Engine. After
the CSE cluster resources are switched over to the passive node, perform the
basic indexing and search operations.

To perform graceful failover, follow these steps:

1. Use smitty to bring the CSE resource group offline on the active node
(Figure 10-45).

Figure 10-45 Bring the cse_rg resource group offline

2. Perform a CBR search from Workplace. Because the CSE is down, an error
message appears as shown in Figure 10-46 on page 278. This error message
might also display during failover within the CSE cluster.
 Chapter 10. Content Search Engine implementation 277

Figure 10-46 Error message when performing a CBR search while the CSE is down

3. Use smitty to bring the CSE back online on the passive node (Figure 10-47 on
page 279).
278 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-47 Bring the CSE resource group online on the passive node

4. After the CSE resource group is online on the passive node, perform the
basic index and search operations to validate the functionality of the Content
Search Engine.

5. Use smitty to fail the CSE back to the other node by clicking Move the
resource group to another Node / Site. After this task completes, perform
the basic search and index operations again.

10.5.2 CSE unplanned failover and failback procedures

Although system failures and cluster takeover tests can be simulated in a
number of ways, we provide the following procedure as a starting point for your
testing. Conduct an unplanned or ungraceful failure of the CSE by performing the
these steps:

1. Force the shutdown of the currently active CSE node without gracefully
stopping any running processes or applications:

sync;sync;sync;reboot -q
 Chapter 10. Content Search Engine implementation 279

2. After the takeover of the resource group completes, perform the basic
searching and indexing operations again. Also, ensure that the rebooted node
successfully joins the cluster as it comes back online.

Repeated testing of both planned and unplanned failures, along with basic index
and search validation, validates that the Content Search Engine runs reliably in
the HACMP active/passive environment. This type of configuration protects the
CSE against server failures with minimal disruption to the users.

10.5.3 Content Engine failures: K2 Dispatcher Queue

As described in 10.4.5, “Updating the Content Engine Server farm” on page 253,
the K2 Dispatcher Queue can only run on a single Content Engine. Additionally,
the current CE architecture does not automatically fail over the K2 Dispatcher
Queue if the server running this function fails (for versions prior to Version 4.5).
In this scenario, an administrator has to manually move this function to another
CE in the farm by using the FileNet Enterprise Manager. Component testing
needs to include moving this function to another CE in the farm, followed by the
basic index and search operations. Moving the K2 Dispatcher Queue from one
CE to another CE does not require restarting the CE J2EE application.

Perform the following steps to move the K2 Dispatcher Queue from one CE to
another CE:

1. Open up the properties for the failed server that was running the K2
Dispatcher and clear the check mark in the Enable Dispatcher option. See
Figure 10-48 on page 281.

Note: The K2 Dispatcher Queue logs errors while the CSE is down. You
can view these errors in the Content Engine error log.

For our case study, the log file for CE1 is located in the
/usr/IBM/WebSphere/AppServer/profiles/server1/FileNet/server1/p8_
server_error.log file.
280 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 10-48 Deselect the “Enable Dispatcher” check box on the failed CE server

2. Open up the properties for one of the working CE servers in the CE farm, and
enable the K2 Dispatcher Queue by selecting the Enable Dispatcher option.
Depending on your inherited settings, you might have to select “Override
inherited settings” first. After the K2 Dispatcher Queue thread has been
enabled, check the CE error log for the following messages:

2008-10-08 09:34:33,312 INFO [CBRDispatcher_FNOS_#9] - Starting CBR
queue dispatching for FNOS
2008-10-08 09:34:33,314 INFO [CBRDispatcher_FNOS_#9] - FNOS
({A52594C3-3413-4DA5-B406-00F82CC6978A}) is enabled

3. Perform basic index and search operations to ensure that the K2 Dispatcher
Queue has successfully migrated.
 Chapter 10. Content Search Engine implementation 281

10.6 Troubleshooting the Content Search Engine

This section provides troubleshooting quick references (in no particular order) to
use when debugging the CE and the CSE:

� The Autonomy K2 Dashboard URL launches successfully after the
k2adminstart script has been run. Example:

http://k2cse.svl.ibm.com:9990/verity_dashboard/main.jsp

� The Autonomy K2 servers (processes) log all of their activity in separate
directories. Example:

/opt/verity/data/host/log/status.log
/opt/verity/data/services/_docserver/log/status.log
/opt/verity/data/k2cse_IndexServer/log/status.log
/opt/verity/data/k2cse_TicketServer/log/status.log

� In order to obtain the current version of the CSE client on the Content Engine,
run these commands:

$ cd /opt/FileNet/ContentEngine/lib
$ cat k2_Version.txt

� The CE server trace and error logs are located in these files:

/usr/IBM/WebSphere/AppServer/profiles/server1/FileNet/server1/p8_ser
ver_error.log

/usr/IBM/WebSphere/AppServer/profiles/server1/FileNet/server1/p8_ser
ver_trace.log

� In addition to using the K2 Dashboard, you can run the following command
line utilities on the CSE to search the collections directories:

$ rcvdk
$ rck2

� What if a Workplace search does not return any documents? You might want
to ask the following questions:

– Is CSE running on the active node of the cluster?

– Have you waited long enough and adjusted the wait interval?

– Have you enabled CBR on the document class that you are searching?

– Is your collections directory listed in /opt/verity/k2/common/verity.cfg?

– Do you need to re-index?

– Do you see any activity in the CE trace log (tracing must be enabled)?

– Can you perform the same search from the K2 Dashboard?
282 IBM High Availability Solution for IBM FileNet P8 Systems

– Can you perform the same search using the rcdvk command line utility?

– Can you perform the same search from FileNet Enterprise Manager?

– Did you check the K2 Search server log file?

– Are all of the necessary file systems mounted?
 Chapter 10. Content Search Engine implementation 283

284 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 11. Image Services
implementation

This chapter describes the high availability options for Image Services (IS) and
the requirements for planning and implementing a highly available cluster for IS.
In addition, we provide the practical, step-by-step procedures that we use to
install IS in an existing IBM PowerHA for AIX cluster. IBM PowerHA for AIX was
previously known as IBM High Availability Cluster Multi-Processing (HACMP).
We also briefly discuss the required steps to make an existing IS part of a new
HACMP cluster.

We discuss the following topics:

� High availability options for Image Services
� Installing IS in a high availability environment
� High availability test for IS cluster
� IS maintenance in HACMP clusters

11
© Copyright IBM Corp. 2009. All rights reserved. 285

11.1 High availability options for Image Services

This section discusses high availability options for Image Services (IS). It
describes the prerequisites and the principle of operation of an active/passive
high availability cluster with IS.

For an overview of Image Services, refer to 2.5, “Image Services and CFS-IS” on
page 32.

11.1.1 High availability for Image Services

IBM FileNet Image Services (IS) stores and manages an enterprise-level volume
of fixed content from multiple sources. It can either work stand-alone, or it can
represent the base of the Image Manager component of an IBM FileNet P8
system.

Due to the business-critical nature of the content stored on IS systems, demand
for high availability (HA) solutions is increasing. IS systems can be made highly
available by creating active/passive HA clusters (asymmetric clusters), that is,
one cluster server (node) runs IS, while another node is idle standby. If the active
node fails, IS is started on the idle standby node. IS systems cannot be farmed
for HA purposes, because there can be only one active “Root/Index” server per
domain.

An active/passive HA cluster with IS requires the following components:

� Two cluster nodes running a cluster software (for example, HACMP)
� Shared storage for IS, as well as Magnetic Storage and Retrieval (MSAR)
� A common local or remote database (for example, DB2)
� A regular and an additional HA IS license

You create a cluster by installing and configuring high availability cluster software
on all participating nodes. When operational, the cluster presents a virtual IP
address, which is bound to the currently active cluster node, to the clients. This
node is also the owner of all of the resources that are needed to run IS, such as
shared disks, IS file systems, and so on.

The HA cluster is useful for planned downtime (maintenance) and for unplanned
downtime (for example, due to failure) of a cluster node. The takeover can be
initiated manually or automatically in case of a failure.
286 IBM High Availability Solution for IBM FileNet P8 Systems

11.1.2 IS cluster takeover example

In our example, during normal operation, only node 1 runs IS, while node 2 is idle
standby.

The active node is the owner of the virtual IP address (service address), the
shared disks (including shared volume groups with logical volumes and file
systems), and the application (IS).

Figure 11-1 illustrates a typical active/passive cluster configuration for IS.

Figure 11-1 Typical active/passive cluster configuration for IS

When a software or hardware failure occurs on node 1 that cannot be corrected
(for example, by restarting IS), the cluster fails over all resources that are
required to run IS to node 2 of the cluster. See Figure 11-2 on page 288.

• AIX / HACMP
• DB2 client
• IS /fnsw

• AIX / HACMP
• DB2 client
• IS /fnsw

• IS /fnsw/local
• IS /backup
• IS MSAR

Shared
SAN disks

Node 1
(active)

Node 2
(idle standby)

IS client

• IS service address
• Image Services

LAN

SAN SAN
 Chapter 11. Image Services implementation 287

Figure 11-2 Node 2 replaces node 1 in the case of a failure

As illustrated in Figure 11-2, IS starts on node 2 of the cluster, minimizing the
downtime of the IS system from a client’s perspective.

For our case study, we use HACMP on AIX as the high availability cluster
software.

11.1.3 High availability considerations for IS

It is important to note that HA solutions do not provide 100% uptime as fault
tolerant environments. They are designed to keep the application running (for
example, by replacing a failed network interface card (NIC)) and to make it
available again as soon as possible in the case of a failure. For example, HA
solutions can restart the application on the same node or fail the application over
to another node. In case of a takeover, the application is unavailable until
restarted by the cluster on the standby node.

An HA system must have no single point of failure (SPOF) that can make the
system unavailable. The system design must try to eliminate SPOFs that are not
covered by the cluster, typically by providing redundant components. HA clusters
take care of one SPOF, that is, two failures at the same time might not be
recoverable depending on the nature of the failures. Failures of SPOFs, such as
shared disks or remote databases, cannot be fixed by the cluster.

Table 11-1 on page 289 lists several typical SPOFs and possible solutions.

• AIX / HACMP
• DB2 client
• IS /fnsw

• AIX / HACMP
• DB2 client
• IS /fnsw

• IS /fnsw/local
• IS /backup
• IS MSAR

Shared
SAN disks

Node 1
(failed)

Node 2
(active)

IS client

• IS service address
• Image Services

LAN

SAN SAN
288 IBM High Availability Solution for IBM FileNet P8 Systems

Table 11-1 Selected SPOFs and common remedies

For the reliable operation of an HA cluster, it is imperative - but unfortunately
often neglected - to plan and exercise cluster takeover tests and training
sessions for cluster administrators. We also recommend that you employ a
clustered test system so critical maintenance tasks can be practiced without
affecting production.

At times, clients seek to use the nonproductive idle standby node as a test, or
even as a production system. We discourage using the standby node for other
than the intended purpose, that is, being the standby in the case of a takeover.

These problems can occur when the standby node is also in use:

� IS and applications on the standby node have (or might have in the future)
contradictory prerequisites (patches, OS level, settings, and so on).

� Testing on the standby node might render the server unable to start IS, for
example, because of stopped processes, blocked ports, corrupted shared
memory, untested dependencies/patches, and so on.

� In the case of a takeover, the performance of the standby node might not be
sufficient to run both applications. Stopping the interfering application might
not always work as desired.

In particular, the backup node must not be used as a test or production IS
system. Because two IS systems cannot run on the same server at a time, the IS
on the backup node must be stopped at takeover time. This task at least
prolongs the downtime, or even inhibits the takeover, if there is a problem with
stopping the IS.

Finally, note that HA and disaster recovery (DR) requirements and concepts are
not identical. Trying to combine HA and DR in a single solution can compromise
either availability, disaster recovery, or both.

SPOF Possible solution

Power failure Redundant circuits and UPSs

Server failure HA cluster (multiple nodes)

Network failure Redundant network infrastructure

Network adapter failure Redundant NICs + HA cluster

Disk failure Redundant/mirrored disks

Disk controller failure Redundant controllers/multipathing

Database failure HA (clustered) database
 Chapter 11. Image Services implementation 289

11.2 Installing IS in a high availability environment

This section describes the steps that are necessary to install IS in an existing
HACMP cluster for the case study that we set up for this book. We also briefly
describe the steps to make an existing IS part of a new HACMP cluster.

11.2.1 IS HA support and documentation

Image Services provides documentation and support for Microsoft Cluster
Service (MSCS) and Veritas Cluster Server (VCS). Clients have also
successfully implemented IS on IBM HACMP (AIX) clusters, Sun Solaris Cluster
(Solaris), and HP Serviceguard (HP-UX).

We recommend the following IS documentation that we used for this project:

� IBM FileNet Image Services, Version 4.1, Microsoft Cluster Server Installation
and Upgrade Procedures for Windows Server, GC31-5531-01

� IBM FileNet Image Services, Version 4.1, VERITAS Cluster Server and
VERITAS Volume Replicator Guidelines, GC31-5545

� IBM FileNet Image Services, Version 4.1, Installation and Configuration
Procedures for AIX/6000, GC31-5557-01

� IBM FileNet Image Services, Version 4.1, Release Notes, GC31-5578-03

� IBM FileNet P8 Content Federation Services for Image Services, Version 4.0,
Guidelines, GC31-5484-01

� IBM FileNet Image Services, Hardware and Software Requirements,
GC31-5609-04

� IBM FileNet Image Services, OSAR Cable Tool, 2008-07-22

IS by itself is not “cluster-aware,” that is, IS does not directly communicate with
the cluster software. It can, however, be easily integrated into HA clusters as a
“Generic Service” (MSCS) or by means of start, stop, and monitor scripts.

IS has been designed to run in HA cluster environments. Provisions have been
made so that current logons are carried over and “most” users stay connected
during a cluster takeover. Certain processes require logging in again (for
example, current IDM Find queries) or require the user to repeat the last work
performed (for example, re-scan the last batch with Capture Professional).
Recent upgrade wizards for installing IS patches and release updates support
updating the second node of an IS cluster.

IS supports (as of IS Version 4.1.2) remote clustered databases. Previous
versions were unable to reconnect to the database if it had been restarted or if a
290 IBM High Availability Solution for IBM FileNet P8 Systems

remote clustered database had failed over to another node. Only “combined” IS
Servers (Root-Index-MSAR/Optical Storage and Retrieval (OSAR) are supported
with HA clusters. Any additional application server needs to be restarted
whenever the Root/Index server is started or fails over to another cluster node,
which prolongs the takeover and endangers the availability of the IS system.

To find a suitable and supported HA configuration for IS, consult the IS IBM
FileNet Image Services, Version 4.1, Installation and Configuration Procedures
for AIX/6000, GC31-5557-01, IBM FileNet Image Services, ISRA, and Print
Hardware and Software Requirements, GC31-5609-04, and the IBM FileNet
Image Services, OSAR Cable Tool, 2008-07-22. The IS IBM FileNet Image
Services, Version 4.1, Release Notes, GC31-5578-03, IBM FileNet Image
Services, Version 4.1, Microsoft Cluster Server Installation and Upgrade
Procedures for Windows Server, GC31-5531-01, and IBM FileNet Image
Services, Version 4.1, VERITAS Cluster Server and VERITAS Volume
Replicator Guidelines, GC31-5545, also contain valuable information regarding
supported configurations.

Note these support limitations:

� Maximum number of cluster nodes (currently, two)
� Combined or dual-server IS (currently, combined only)
� Local or remote database (for example, DB2 remote only)
� Support of virtualization technologies (for example, logical partition (LPAR)

with MSAR only)

For this case study, we choose a two-node HACMP cluster with a remote
(clustered) DB2 database.

11.2.2 Fresh installation of IS on HACMP

The installation of IS on the HACMP cluster follows these steps:

1. Plan the system layout and parameters.

2. Verify the prerequisites and cluster resources.

3. Install the DB2 client on node 1.

4. Install the general availability (GA) IS, IS Service Pack (SP), and IS Fix Pack
(FP) on node 1.

5. Switch cluster resources over to cluster node 2.

6. Install the DB2 client on node 2.

7. Install the GA IS, IS SP, and IS FP on node 2.

8. Test the IS installation and cluster takeover behavior.
 Chapter 11. Image Services implementation 291

IS installation planning
The preferred way to install IS in an HA environment is to set up the HA cluster
first and then to install IS with the cluster, providing all of the resources that are
necessary to run IS.

The cluster controls the following resources that are required by IS:

� Virtual IP address (service address)

� Access to shared disks, including:

– Volume groups
– Logical volumes
– File systems

We configure IS to use the shared IP address instead of an address that is bound
to an individual server. HACMP moves this service address to the node where IS
will be started.

The HA installation of IS uses both local and shared disks. The local disks on
each cluster node contain the /fnsw file system with all of the subdirectories,
except for the /fnsw/local subdirectory. Table 11-2 lists the important
subdirectories located in the/fnsw file system.

Table 11-2 Selected subdirectories of /fnsw file system

IS also modifies selected files on the local rootvg directory during installation,
such as /etc/inittab, /etc/services, and the AIX Object Data Manager (ODM)
(Software Vital Product Data (SWVPD)).

The configuration and log files of IS are kept in the /fnsw/local file system, so
this file system must be located on a shared disk. Table 11-3 on page 293 lists
the important subdirectories that are located in the/fnsw/local file system.

Directory Use/Remark

/fnsw/bin IS binaries

/fnsw/client Optional: IS Toolkit (ISTK) default location

/fnsw/dev Links to DB datasets and OSAR drivers

/fnsw/etc The serverConfig file, for example

/fnsw/lib Shared objects in shobj and a link to the database (client), for
example, db2lib or oracle, for example

/fnsw/procs One file per IS process that is running
292 IBM High Availability Solution for IBM FileNet P8 Systems

Table 11-3 Selected subdirectories of /fnsw/local

The shared disks also have to contain the file systems that are used for MSAR
(for example, /msar1) so that the MSAR surface files are available after takeover
on the standby node.

The backup directory for Enterprise Backup and Restore (EBR) backups (for
example, /backup) and any other directory that is needed by the application must
also be placed on the shared disks. Do not modify the EBR sample scripts in the
/fnsw/lib/ebr directory. Make sure that you use them in their original directory.

We recommend that you use this distribution and not place the /fnsw file system
on the shared disk for several reasons:

� In the case of a takeover, the cluster has to unmount the shared file systems.
If an IS process stops, the /fnsw file system cannot be unmounted, and the
cluster takeover might not work.

� Update wizards must be run on all cluster nodes, because they might update
or modify local files that are required for takeover functionality.

� A shared /fnsw file system can have unforeseen side effects, for example,
aixterm does not start with the IS provided .Xdefaults file, because the
/fnsw/etc/FileNet_i.bmp file is missing on the inactive node.

Table 11-4 on page 294 lists the basic parameters that we choose to set up IS
with HACMP for this book. The HACMP installation requires further configuration
parameters, but the table sufficiently describes our setup.

Directory Use/Remark

/fnsw/local/logs IS log files, for example, elogs, perf, EBR, and log

/fnsw/local/sd Various configuration files, for example:
conf_db/IMS_*.cdb (IS configuration database),
NCH_db0 (IS Network Clearing House (NCH) database),
snt.chkpt (Scalar numbers from permanent DB), and
checkpoint.osa (OSAR checkpoint file)
 Chapter 11. Image Services implementation 293

Table 11-4 IS parameters for the book

Parameter Node 1 Node 2

Hostname fnl43.svl.ibm.com fnl44.svl.ibm.com

IP address (persistent address) 9.30.188.53 9.30.188.54

Local Volume Group (VG) rootvg rootvg

OS version AIX 5.3.0
(08-03-0831)

AIX 5.3.0
(08-03-0831)

HA version HACMP 5.4.1.3 HACMP 5.4.1.3

IS
Resource
Group
(RG)

IS service
address

9.30.188.78
Alias: fnis.svl.ibm.com
fnis-filenet-nch-server

Shared VG fnvg

Application
Server (AS)

fnis_app_srv

AS start script /opt/FileNet/ha_scripts/fnis_start.sh

AS stop script /opt/FileNet/ha_scripts/fnis_stop.sh

AS monitor script /opt/FileNet/ha_scripts/fnis_mon.sh

IS version IS 4.1.2.18

ISTK version ISTK 4.1.2.18 (optional)

Home directory /fnsw /fnsw

Network Clearing
House (NCH)
domain

FNIS:FileNet

Remote
database

Host name fnl70.svl.ibm.com fnl100.svl.ibm.com

IP address 9.30.188.80 9.30.188.110

Service address 9.30.188.79
Alias: fndb2.svl.ibm.com

DB version DB2 9.5.1

Home directory /opt/IBM/db2/V9.5 /opt/IBM/db2/V9.5

Database name INDEXDB
294 IBM High Availability Solution for IBM FileNet P8 Systems

All cluster nodes must be on the same software level, that is, AIX, HACMP, DB2
client, and IS/ISTK must be the same version, including patch levels.

Although we definitely recommend identical cluster nodes (from a hardware
perspective), the cluster nodes are not required to be completely identical unless
an OSAR is connected to the cluster. In that case, the Small Computer System
Interface (SCSI) adapters that are used on all nodes must provide the exact
same hardware path (bus, slot, and so on). Otherwise, the OSAR is recognized
as a separate library on each cluster node. Changing the IS configuration
(Configuration Database (CDB)) during takeovers is not supported and is a risk
to the availability of IS on the standby node.

It is extremely important that the user ID (UID) and group ID (GID) of the IS
application owner (fnsw) are identical on both cluster nodes. If the IDs are not
identical, IS will not work properly after a takeover, because it is no longer the
owner and, therefore, cannot access its own files.

Cluster configuration for IS
Before the IS installation starts, you must configure the cluster resources and
make them available. The HACMP Resource Group (RG) controls the service
address and the shared volume group with the raw logical volumes and file
systems. The IS installation also requires common users and groups and a local
/fnsw file system on each of the cluster nodes.

HACMP resource group
We configure the HACMP cluster to provide the resources required to run IS as
shown in Table 11-5.

Table 11-5 HACMP configuration for IS

HACMP parameter Book lab installation

Resource group (RG) fnis_rg

Participating nodes fnl43 fnl44

Service address 9.30.188.78

Application server (AS) fnis_app_srv

AS start script /opt/FileNet/ha_scripts/fnis_start.sh

AS stop script /opt/FileNet/ha_scripts/fnis_stop.sh

AS monitor script /opt/FileNet/ha_scripts/fnis_mon.sh

Volume group (VG) fnvg
 Chapter 11. Image Services implementation 295

You can verify the HACMP configuration with the cldisp command as shown in
Example 11-1.

Example 11-1 HACMP cluster info

cd /usr/es/sbin/cluster/utilities
cldisp
Cluster: fnis
 Cluster services: active
 State of cluster: up
 Substate: stable

#############
APPLICATIONS
#############
 Cluster fnis provides the following applications: fnis_app_srv
 Application: fnis_app_srv
 fnis_app_srv is started by /opt/FileNet/ha_scripts/fnis_start.sh
 fnis_app_srv is stopped by /opt/FileNet/ha_scripts/fnis_stop.sh
 Application monitor of fnis_app_srv: fnis_app_srv
 Monitor name: fnis_app_mon
 Type: custom
 Monitor method: user
 Monitor interval: 60 seconds
 Hung monitor signal: 9
 Stabilization interval: 120 seconds
 Retry count: 3 tries
 Restart interval: 594 seconds
 Failure action: fallover
 Cleanup method: /opt/FileNet/ha_scripts/fnis_stop.sh
 Restart method: /opt/FileNet/ha_scripts/fnis_start.sh
 This application is part of resource group 'fnis_rg'.
 Resource group policies:
 Startup: on home node only
 Fallover: to next priority node in the list
 Fallback: never
 State of fnis_app_srv: online
 Nodes configured to provide fnis_app_srv: fnl43 {up} fnl44 {up}
 Node currently providing fnis_app_srv: fnl43 {up}
 The node that will provide fnis_app_srv if fnl43 fails is: fnl44
 Resources associated with fnis_app_srv:
 Service Labels
 fnis(9.30.188.78) {online}
 Interfaces configured to provide fnis:
 fnl43-bt1 {up}
 with IP address: 10.10.10.53
 on interface: en2
 on node: fnl43 {up}
 on network: net_pub_1 {up}
 fnl44-bt1 {up}
 with IP address: 10.10.10.54
 on interface: en2
 on node: fnl44 {up}
296 IBM High Availability Solution for IBM FileNet P8 Systems

 on network: net_pub_1 {up}
 Shared Volume Groups:
 fnvg

#############
TOPOLOGY
#############
 fnis consists of the following nodes: fnl43 fnl44
 fnl43
 Network interfaces:
 fnl43_vpath0_01 {up}
 device: /dev/vpath0
 on network: net_diskhb_01 {up}
 fnl43-hs03 {up}
 with IP address: 10.0.3.53
 on interface: en3
 on network: net_priv_1 {up}
 fnl43-bt1 {up}
 with IP address: 10.10.10.53
 on interface: en2
 on network: net_pub_1 {up}
 fnl44
 Network interfaces:
 fnl44_vpath0_01 {up}
 device: /dev/vpath0
 on network: net_diskhb_01 {up}
 fnl44-hs03 {up}
 with IP address: 10.0.3.54
 on interface: en3
 on network: net_priv_1 {up}
 fnl44-bt1 {up}
 with IP address: 10.10.10.54
 on interface: en2
 on network: net_pub_1 {up}

You can use these additional commands to view the HACMP cluster
configuration and status:

� /usr/es/sbin/cluster/utilities/cltopinfo
� /usr/es/sbin/cluster/utilities/cllsres
� /usr/es/sbin/cluster/utilities/clshowres
� /usr/es/sbin/cluster/clstat -ao
� /usr/es/sbin/cluster/utilities/clRGinfo -v
� /usr/es/sbin/cluster/utilities/clRGinfo -m
 Chapter 11. Image Services implementation 297

For the installation of IS, we disable all application server (AS) scripts on both
nodes by adding exit 0 as the second line of the following scripts. The first line
must be the shebang (“#!”), which is the magic number of shell scripts. The
monitor script fails if you use anything else for the first line, for example, exit 0.

See Example 11-2 on page 298:

� /opt/FileNet/ha_scripts/fnis_start.sh
� /opt/FileNet/ha_scripts/fnis_stop.sh
� /opt/FileNet/ha_scripts/fnis_mon.sh

The scripts are not required and actually cause problems during installation. If
the scripts do not exist, you must create them later when IS is completely
installed.

Example 11-2 Disabled AS scripts for IS installation

#!/bin/ksh
exit 0
[...]

Users and groups
The ID of the IS groups (GID) and users (UID) must be identical on all cluster
nodes. You can create the users and groups by using Cluster-Single Point Of
Control (C-SPOC) to achieve the uniqueness of the IDs on both cluster nodes. It
is a good practice to choose one of the cluster nodes for all HACMP-related
changes and to synchronize the cluster “one way” only at all times.

To add the group and user ID, using smitty:

smitty hacmp

Click System Management (C-SPOC) → HACMP Security and Users
Management → Groups in an HACMP cluster → Add a Group to the
Cluster.

You must leave the Group ID field blank to have C-SPOC generate the ID.

Click System Management (C-SPOC) → HACMP Security and Users
Management → Users in an HACMP cluster → Add a User to the Cluster.

You must leave the User ID field blank to have C-SPOC generate the ID.

Alternatively, you can create the groups and users manually on each node with
specific unique IDs that are not used on any node. See Example 11-3.
298 IBM High Availability Solution for IBM FileNet P8 Systems

Example 11-3 Manual creation of users and groups

cut -d ":" -f 3 /etc/group | sort -n
[...]
211
212
4294967294

lsgroup -a id ALL | awk '$2~"id=300|id=301|id=302" {print $1}'
No groups returned: GIDs 300-302 are available on this node

mkgroup id=300 fnusr
mkgroup id=301 fnop
mkgroup id=302 fnadmin

cut -d ":" -f 3 /etc/passwd | sort -n
[...]
227
228
4294967294

lsuser -a id ALL | awk '$2~"id=300" {print $1}'
No users returned: UID 300 is available in this node

mkuser pgrp=fnusr groups=fnadmin,fnop home=/home/fnsw gecos="FileNet
IS Admin" id=300 fnsw

Also, you must make the user root (UID 0) part of the newly created fnusr and
fnadmin groups.

IS service address
The IS service address is configured as an IP alias, which HACMP IP address
takeover (IPAT) moves together with the IS resource group.

IPAT using IP aliases is the default when HACMP networks are configured in
SMIT, for example, the public network, that is shared with the clients:

smitty hacmp

Click Extended Configuration → Extended Topology Configuration →
Configure HACMP Networks → Change/Show a Network in the HACMP
Cluster.

Enter these values:

� Network Name: net_pub_1
 Chapter 11. Image Services implementation 299

� Network Type: ether
� Netmask: 255.255.255.0
� Enable IP Address Takeover via IP Aliases: Yes
� Network attribute: Public

IPAT using IP aliasing is faster and more reliable with cluster takeovers than
IPAT using IP address replacement. However, IPAT using IP address
replacement is required with certain types of networks that cannot process
Address Resolution Protocol (ARP) cache updates and that require a Hardware
Address Takeover (HWAT) of the NIC’s hardware or Media Access Control
(MAC) address. HWAT was often used with the old IS client, WorkForce Desktop
(WFD). For descriptions of the two types of IPAT, refer to HACMP for AIX,
Planning Guide, Version 5.4.1, SC23-4861-10.

With IPAT using IP aliasing, the IS service address alias (9.30.188.78) can be
brought up on any of the boot interfaces that are defined for the cluster. If the
current network interface card (NIC) fails, HACMP will move the alias with an
adapter swap to another interface. If the whole node fails, HACMP will move the
alias as part of the resource group to the standby node. Example 11-4 shows the
IS service address (9.30.188.78) as an alias to the boot interface en2 of node
fnl43.

Example 11-4 IS service address as an IP alias

ifconfig en2
en2:
flags=1e080863,480<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GR
OUPRT,64BIT,CHECKSUM_OFFLOAD(ACTIVE),CHAIN>
 inet 10.10.10.53 netmask 0xffffff00 broadcast 10.10.10.255
 inet 9.30.188.53 netmask 0xffffff00 broadcast 9.30.188.255
 inet 9.30.188.78 netmask 0xffffff00 broadcast 9.30.188.255
 tcp_sendspace 262144 tcp_recvspace 262144 rfc1323 1

Local file system /fnsw
We create the /fnsw file system with 1 GB in the local rootvg directory on each
cluster node as shown in Example 11-5.

Example 11-5 Creation of local /fnsw file system

lsvg rootvg | grep "PP SIZE"
VG STATE: active PP SIZE: 128
megabyte(s)

mklv -y fn_fnsw -t jfs2 rootvg 8 # 8PP*128MB/PP=1GB
fn_fnsw
300 IBM High Availability Solution for IBM FileNet P8 Systems

crfs -v jfs2 -d fn_fnsw -m /fnsw -Ay -p rw -a agblksize=4096
File system created successfully.
1048340 kilobytes total disk space.
New File System size is 2097152

mount /fnsw

Shared volume group fnvg
The shared volume group (VG) fnvg was created as an “enhance concurrent
capable” volume group on shared storage area network (SAN) disks to speed up
the takeover process. A unique major number (100) was chosen for the VG to
enable NFS mounts on this VG in the HACMP cluster. An identical free major
number was determined on all cluster nodes by issuing lvlstmajor on each
node.

Example 11-6 shows that major number 50 is used, but for example, 100 is
available on this node.

Example 11-6 Querying available major numbers on each node

cd /etc
lvlstmajor
39..49,51...

The VG can be simultaneously created on both cluster nodes using C-SPOC:

smitty hacmp

Click System Management (C-SPOC) → HACMP Concurrent Logical Volume
Management → Concurrent Volume Groups → Create a Concurrent Volume
Group.

Enter these values:

� Node Names: fnl43 and fnl44
� VOLUME GROUP name: fnvg
� Physical partition SIZE in megabytes: 256
� Volume group MAJOR NUMBER: 100
� Enhanced Concurrent Mode: True

After creation, we turn off the Quorum and change the VG, so it does not
automatically vary on when the server is started. HACMP takes care of the

Note: Do not forget to mount /fnsw immediately on each cluster node.
Otherwise, the /fnsw/local mount point will be created in the / (root) file
system later, not in /fnsw.
 Chapter 11. Image Services implementation 301

volume group when active. We had to run the chvg command on the other cluster
node later, as well. See Example 11-7.

Example 11-7 Disabling auto varyon and turning off the Quorum of fnvg

varyonvg -c fnvg # vary on fnvg in concurrent mode
chvg -an -Qn fnvg # disable auto vary on and turn off Quorum
0516-1804 chvg: The quorum change takes effect immediately.

Vary on the shared VG in concurrent mode on the current node as shown in
Example 11-8.

Example 11-8 Enhanced capable volume group fnvg

lsvg fnvg | grep Concurrent
Concurrent: Enhanced-Capable Auto-Concurrent: Disabled
VG Mode: Concurrent

Shared logical volumes in fnvg
On the shared VG fnvg, logical volumes (LVs) were created for file systems
(FSs) and for the raw partitions that are required by IS. Table 11-6 lists the
shared logical volumes that were created.

Table 11-6 Shared logical volumes in fnvg

LV Type Size Mount point

fnvg_jfs2log jfs2log 256 MB (1PP x 256 MB/PP) N/A

fn_local jfs2 2048 MB (8PP x 256
MB/PP)

/fnsw/local

fn_msar1 jfs2 10 GB (40PP x 256 MB/PP) /msar1

fn_backup jfs2 5 GB (20PP x 256 MB/PP) /backup

fn_sec_db0 raw 256 MB (1PP x 256 MB/PP) N/A

fn_sec_rl0 raw 256 MB (1PP x 256 MB/PP) N/A

fn_perm_db0 raw 2048 MB (8PP x 256
MB/PP)

N/A

fn_perm_rl0 raw 1024 MB (4PP x 256
MB/PP)

N/A

fn_trans_db0 raw 2048 MB (8PP x 256
MB/PP)

N/A
302 IBM High Availability Solution for IBM FileNet P8 Systems

We recommend that you add all of the file systems on shared VG fnvg to a
common mount group of the same name (fnvg) to facilitate mounting all file
systems manually. The FSs will not be mounted with a mount -a command,
because they have been deactivated for auto mounting.

You can create the LVs on the shared VG using C-SPOC:

smitty hacmp

Click System Management (C-SPOC) → HACMP Logical Volume
Management → Shared Logical Volumes → Add a Shared Logical Volume.

Enter these values:

� VOLUME GROUP name: fnvg (RG fnis_rg)
� PHYSICAL VOLUME names: vpath0
� Logical volume NAME: fn_local
� Number of LOGICAL PARTITIONS: 8
� Logical volume TYPE: jfs2

Example 11-9 shows the logical volumes that were created.

Example 11-9 Logical volumes

lsvg -l fnvg
fnvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT
POINT
fnvg_jfs2log jfs2log 1 1 1 closed/syncd N/A
fn_local jfs2 8 8 1 closed/syncd N/A
fn_msar1 jfs2 40 40 1 closed/syncd N/A
fn_backup jfs2 20 20 1 closed/syncd N/A
fn_sec_db0 raw 1 1 1 closed/syncd N/A
fn_sec_rl0 raw 1 1 1 closed/syncd N/A
fn_perm_db0 raw 8 8 1 closed/syncd N/A
fn_perm_rl0 raw 4 4 1 closed/syncd N/A
fn_trans_db0 raw 8 8 1 closed/syncd N/A
fn_trans_rl0 raw 4 4 1 closed/syncd N/A
fn_cache0 raw 64 64 1 closed/syncd N/A

fn_trans_rl0 raw 1024 MB (4PP x 256
MB/PP)

N/A

fn_cache0 raw 16 GB (64PP x 256 MB/PP) N/A

LV Type Size Mount point
 Chapter 11. Image Services implementation 303

The shared file systems can be created in the previously defined LVs using
C-SPOC. All shared file systems must have auto mount disabled, because
HACMP will control on which node an FS is mounted. AIX must not try to mount
the shared file systems during startup from /etc/filesystems. FSs created with
C-SPOC will automatically have the correct “mount = false” stanza in
/etc/filesystems:

smitty hacmp

Click System Management (C-SPOC) → HACMP Logical Volume
Management → Shared File Systems → Enhanced Journaled File
Systems → Add an Enhanced Journaled File System on a Previously
Defined Logical Volume.

Enter these values:

� LOGICAL VOLUME name: fn_local (nodes fnl43 and fnl44)
� MOUNT POINT: /fnsw/local

The matching JFS log (fnvg_jfs2log) is automatically being used by cl_crfs.

To manually add the file system to the fnvg mount group (and to disable the auto
mount of the FS), enter # chfs -An -u fnvg /fnsw/local.

When all logical volumes and file systems have been created, the FSs can be
mounted, and the shared VG is ready for the IS installation. In the future,
HACMP will vary on/off the VG and mount/unmount all FSs in that VG.

Example 11-10 shows the shared VG fnvg in our system.

Example 11-10 Shared VG fnvg with all LVs and FSs

mount -t fnvg
lsvg -l fnvg
fnvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT
POINT
fnvg_jfs2log jfs2log 1 1 1 open/syncd N/A
fn_local jfs2 8 8 1 open/syncd
/fnsw/local

Note: Before file systems are created in the next step, you must initialize the
journaled file system (JFS) log, or AIX will create a new JFS log LV. To
initialize the JFS log, enter:

logform /dev/fnvg_jfs2log
304 IBM High Availability Solution for IBM FileNet P8 Systems

fn_msar1 jfs2 40 40 1 open/syncd
/msar1
fn_backup jfs2 20 20 1 open/syncd
/backup
fn_sec_db0 raw 1 1 1 closed/syncd N/A
fn_sec_rl0 raw 1 1 1 closed/syncd N/A
fn_perm_db0 raw 8 8 1 closed/syncd N/A
fn_perm_rl0 raw 4 4 1 closed/syncd N/A
fn_trans_db0 raw 8 8 1 closed/syncd N/A
fn_trans_rl0 raw 4 4 1 closed/syncd N/A
fn_cache0 raw 64 64 1 closed/syncd N/A

Whenever the HACMP configuration has been changed on one cluster node, the
changes must be synchronized to the other cluster node with “cldare”:

smitty hacmp

Click Extended Configuration → Extended Verification and
Synchronization.

Image Services installation
After planning and setting up the HACMP cluster, you can install IS on each
cluster node.

AIX prerequisites for IS
According to the IBM FileNet Image Services, Version 4.1, Installation and
Configuration Procedures for AIX/6000, GC31-5557-01, documentation, the
following prerequisites were checked:

� AIX oslevel and kernel bitmode

� AIX software bundles required for IS:

– App-Dev

� AIX filesets required for IS:

– bos.adt.debug
– bos.adt.libm
– bos.adt.base
– bos.adt.lib
– bos.perf.perfstat
– X11.fnt.iso1

Note: The IS installation generally follows the standard installation manual.
The following section only highlights the configuration steps that are required
for the cluster and that differ from the documented procedure.
 Chapter 11. Image Services implementation 305

� Simple Network Management Protocol (SNMP) daemon Version 1 (Version 3
is not supported.)

� Size of paging space

� Time zone setting

� Maximum number of processes per user

� Real memory allowed for MBUFS

IS uses ports that are officially registered with the Internet Assigned Numbers
Authority (IANA):

http://www.iana.org/assignments/port-numbers

Unfortunately, certain programs occupy the ports that are required by IS, so
Image Services cannot start properly and fails to communicate with its clients. To
work around this issue, you must modify the network options (no) of AIX as
shown in Example 11-11.

Example 11-11 Ephemeral ports in /etc/tunables/nextboot

no -po tcp_ephemeral_high=65535
no -po tcp_ephemeral_low=42767
no -po udp_ephemeral_high=65535
no -po udp_ephemeral_low=42767

no -a | grep ephemeral
 tcp_ephemeral_high = 65535
 tcp_ephemeral_low = 42767
 udp_ephemeral_high = 65535
 udp_ephemeral_low = 42767

Certain programs, however, start even before /etc/tunables/nextboot takes
effect and block the ports that are needed by IS, for example, rpc.ttdbserver
(inetd) and dtlogin (Common Desktop Environment (CDE)). A work-around for
this problem is to add the no parameters also to /etc/rc.dt (if CDE is installed)
or create a suitable entry in /etc/rc.d/. See Example 11-12.

Example 11-12 Ephemeral ports in /etc/rc.dt

vi /etc/rc.dt
[...]
IBM FileNet Image Services ephemeral ports
/usr/sbin/no -o tcp_ephemeral_high=65535
/usr/sbin/no -o tcp_ephemeral_low=42767
/usr/sbin/no -o udp_ephemeral_high=65535
/usr/sbin/no -o udp_ephemeral_low=42767
306 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

IBM FileNet Image Services End
[...]

AIX honors the port reservations for IS and reflects the reserved names and
ports in its /etc/services file. Unfortunately, IS installers sometimes fail if the
entry reads filenet-tms instead of tms. Therefore, we advise you to comment
out existing filenet-tms, filenet-rpc, and filenet-nch entries in
/etc/services before the IS installation starts. See Example 11-13.

Example 11-13 The /etc/services file with ports added by the IS installer

egrep "32768|32769|32770" /etc/services
filenet-tms 32768/tcp # Filenet TMS
filenet-tms 32768/udp # Filenet TMS
filenet-rpc 32769/tcp # Filenet RPC
filenet-rpc 32769/udp # Filenet RPC
filenet-nch 32770/tcp # Filenet NCH
filenet-nch 32770/udp # Filenet NCH
tms 32768/tcp
cor 32769/tcp
nch 32770/udp

You can use the rmsock command to find a process that is using the IS port. See
Example 11-14 for an example of a process blocking IS port 32768.

Example 11-14 Process blocking IS port 32768

netstat -Aan | grep 3276 | grep tcp
f100020003932b98 tcp4 0 0 *.32768 *.*
LISTEN
f100020003940b98 tcp4 0 0 *.32769 *.*
LISTEN

rmsock f100020003932b98 tcpcb
The socket 0x3932808 is being held by proccess 827454 (rpc.ttdbserver).

Just before the IS installation, the NCH entry for IS domain FNIS:FileNet was
added to /etc/hosts. This entry points to the (virtual) IS service address, which
the HACMP Resource Group provides. By using the highly available service
address for IS, the clients will connect to the correct (active) node of the cluster.

Example 11-15 NCH entry in /etc/hosts

vi /etc/hosts
[...]
9.30.188.78 fnis.svl.ibm.com fnis fnis-filenet-nch-server
 Chapter 11. Image Services implementation 307

[...]

In Example 11-15, these fields are defined this way:

� fnis.svl.ibm.com / fnis: Host name / alias for IS service address
� fnis-filenet-nch-server: IP alias for IS NCH domain “FNIS:FileNet”

See IBM FileNet Image Services, Version 4.1, System Administrator’s
Companion for UNIX, GC31-5544-00, for details about how to convert the NCH
domain name to a host name.

DB2 client installation
IS uses the DB2 client to connect to the remote clustered DB2 server. The DB2
client has to be installed locally on each cluster node. While the DB2 server is
running DB2 9.5.1 (64 bit), the client must run a 32-bit database instance,
because IS uses 32-bit libraries to access the DB2 client.

The client is configured to talk to the DB2 server shown in Table 11-7.

Table 11-7 DB2 database parameters

On the DB2 server side (fndb2.svl.ibm.com), the database users were created
and granted permissions as shown in Example 11-16.

Example 11-16 DB2 server database user creation

mkuser pgrp=p8_igrp groups=p8_igrp,staff home="/data/db2/f_sw" id=303 f_sw
mkuser pgrp=p8_igrp groups=p8_igrp,staff home="/data/db2/f_maint" id=304
f_maint
mkuser pgrp=p8_igrp groups=p8_igrp,staff home="/data/db2/f_sqi" id=305 f_sqi
mkuser pgrp=p8_igrp groups=p8_igrp,staff home="/data/db2/f_open" id=306
f_open

su - p8inst

Parameter Node 1 Node 2

Hostname fnl70.svl.ibm.com fnl100.svl.ibm.com

IP address 9.30.188.80 9.30.188.110

Service address 9.30.188.79
Alias: fndb2.svl.ibm.com

DB name INDEXDB

DB version DB2 9.5.1 (64 bit)

Tablespace for IS USERSPACE1
308 IBM High Availability Solution for IBM FileNet P8 Systems

$ db2

db2 => grant createtab, bindadd, connect on database to user f_sw
DB20000I The SQL command completed successfully.
db2 => grant createtab, bindadd, connect on database to user f_sqi
DB20000I The SQL command completed successfully.
db2 => grant createtab, bindadd, connect on database to user f_open
DB20000I The SQL command completed successfully.
db2 => grant dbadm on database to f_maint
DB20000I The SQL command completed successfully.

db2 => quit
DB20000I The QUIT command completed successfully.

$ db2set DB2_SNAPSHOT_NOAUTH=on

Example 11-17 shows the DB2 server configuration settings that are required to
configure the DB2 client.

Example 11-17 DB2 server configuration

su - p8inst
$ db2 list node directory

 Node Directory

 Number of entries in the directory = 1

Node 1 entry:

 Node name = DB2_B
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = fnl70
 Service name = 50010

$ db2 list db directory

 System Database Directory

 Number of entries in the directory = 10
[...]
Database 8 entry:

 Database alias = INDEXDB
 Database name = INDEXDB
 Local database directory = /data/db2/p8_inst
 Database release level = c.00
 Comment =
 Directory entry type = Indirect
 Chapter 11. Image Services implementation 309

 Catalog database partition number = 0
 Alternate server hostname = 9.30.188.80
 Alternate server port number = 50010
[...]

$ db2 connect to indexdb

 Database Connection Information

 Database server = DB2/AIX64 9.5.1
 SQL authorization ID = P8INST
 Local database alias = INDEXDB

$ db2 list tablespaces

 Tablespaces for Current Database

 Tablespace ID = 0
 Name = SYSCATSPACE
 Type = Database managed space
 Contents = All permanent data. Regular table space.
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 1
 Name = TEMPSPACE1
 Type = System managed space
 Contents = System Temporary data
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 2
 Name = USERSPACE1
 Type = Database managed space
 Contents = All permanent data. Large table space.
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 3
 Name = SYSTOOLSPACE
 Type = Database managed space
 Contents = All permanent data. Large table space.
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 4
 Name = SYSTOOLSTMPSPACE
 Type = System managed space
 Contents = User Temporary data
 State = 0x0000
310 IBM High Availability Solution for IBM FileNet P8 Systems

 Detailed explanation:
 Normal

During the DB2 9.5 Client installation, we only choose the default settings.

Example 11-18 on page 311 shows how to start the DB2 client installation
wizard.

Example 11-18 Starting the DB2 client installation wizard

umask 022
export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')
export DB2INSTANCE="fnsw" # avoid "_" in instance owner names!
cd /instsrc/DB2/95/DB2_RTC_V95_AIX
db2setup
[...]

Figure 11-3 shows the DB2 client installation options that we choose.

Figure 11-3 Summary of the DB2 client installation options
 Chapter 11. Image Services implementation 311

After the installation completed, we configure the connection to the DB2 cluster
server, and we create the local DB2 database catalog on each node. See
Example 11-19.

Example 11-19 Creation of DB2 database catalog

su - fnsw

$ db2 catalog tcpip node FNDB2 remote fndb2.svl.ibm.com server 50010
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

$ db2 catalog database INDEXDB as INDEXDB at node FNDB2
DB20000I The CATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

$ db2 terminate
DB20000I The TERMINATE command completed successfully.

$ db2 list node directory
 Node Directory

 Number of entries in the directory = 1

Node 1 entry:

 Node name = FNDB2
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = fndb2.svl.ibm.com
 Service name = 50010

$ db2 list database directory
 System Database Directory

 Number of entries in the directory = 1

Database 1 entry:

 Database alias = INDEXDB
 Database name = INDEXDB
 Node name = FNDB2
 Database release level = c.00
 Comment =
 Directory entry type = Remote
 Catalog database partition number = -1
 Alternate server hostname = 9.30.188.79
 Alternate server port number = 50010
312 IBM High Availability Solution for IBM FileNet P8 Systems

Image Services installation
Image Services normally requires three installations. For example:

� Image Services 4.1.0 General Availability (GA)
� Image Services 4.1.0 Service Pack 2 (SP on top of GA) IS 4.1.2
� Image Services 4.1.2 Fix Pack 3 (FP on top of SP) IS 4.1.2 FP 3

For this book, IS 4.1.2 (4.1.2.18, no FP) was installed using the SP installation
wizard only. This Service Pack installs IS even without an existing GA installation.
A Fix Pack was not available for this release.

In Example 11-20, we use the SP installation wizard to install IS 4.1.2.

Example 11-20 Installing IS 4.1.2

mount -t fnvg # make sure the target file systems are mounted
mount | grep fnsw
 /dev/fn_fnsw /fnsw jfs2 Sep 24 10:04
rw,log=/dev/hd8
 /dev/fn_local /fnsw/local jfs2 Sep 25 11:26
rw,log=/dev/fnvg_jfs2log

export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')
cd /instsrc/IM/IS412-18
is_4.1.2_aix.bin

InstallShield Wizard
Initializing InstallShield Wizard...
Preparing Java(tm) Virtual Machine...
Running InstallShield Wizard...

Figure 11-4 shows the installation summary of IS on our lab system.
 Chapter 11. Image Services implementation 313

Figure 11-4 Summary of the IS installation options

When the setup wizard completes, the installation is verified by checking the log
files as shown in Example 11-21.

Example 11-21 Check the installation log

grep copied /fnsw/local/logs/install/4.1.2/IS_4.1.2.log
Thu Oct 02 21:52:37 PDT 2008 1162 files of 1162 have been copied
to the target

grep Exit /fnsw/local/logs/install/4.1.2/IS_4.1.2.log
Thu Oct 02 21:53:04 PDT 2008 Exit status: SUCCESS
Thu Oct 02 21:53:04 PDT 2008 Exit code, message, and explanation:
SUCCESS(0): The IS Installer has successfully installed Image Services
4.1.2. For additional information on the installation, please review
the Install log at /fnsw/local/logs/install/4.1.2/IS_4.1.2.log , and
check the CSS Web site at http://www.css.filenet.com for additional
information regarding this release.

Immediately after the IS installation, all IS-related entries in /etc/inittab must
be disabled, because IS must not be started by AIX at boot time, but by HACMP,
when the current node becomes active.

Example 11-22 shows the entries disabled using the following command:

vi /etc/inittab
314 IBM High Availability Solution for IBM FileNet P8 Systems

Example 11-22 Disabled IS entries in /etc/inittab

:: IBM FileNet Image Services disabled for HACMP
:: rcfn:234:wait:/bin/sh /etc/rc.initfnsw </dev/console >/dev/console 2>&1
:: rcfnext:2:once:/etc/rc.fnext 2>&1 | alog -tboot >/dev/console 2>&1
:: rcfnodd:2:wait:/etc/rc.fnodd 2>&1 | alog -tboot >/dev/console 2>&1
:: rcsingle:1:wait:/etc/rc.single 2>&1 | alog -tboot >/dev/console 2>&1
:: dupip:2:wait:/fnsw/etc/dupip
:: IBM FileNet Image Services End

The profile of the fnsw user (and optionally also of the root user) must be updated
to include the environment variable required for IS as shown in Example 11-23.

Example 11-23 Modification of fnsw’s .profile for IS

su - fnsw
/fnsw/etc/inst_templates

. ~/.profile # or “exit” and “login” to activate .profile

env | grep DB2
DB2_HOME=/home/fnsw/sqllib
DB2INSTANCE=fnsw
DB2_INST=fnsw

The profiles of fnsw ($HOME/.*) must match on all cluster nodes to make sure that
IS starts with the same environment.

Image Services configuration
The first step to configure IS is to run fn_setup as fnsw user as shown in
Example 11-24. There is no cluster-related parameter in this part of the
configuration.

Example 11-24 IS configuration with fn_setup

su - fnsw
export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')

fn_setup

Note: The best way to disable inittab entries is by adding a colon (:) in front of
the line, or by changing the action to “off” instead of “once” or “wait”.

The IS installer creates an entry rcfn with # as a first character, but this action
will not comment out the line. This entry must also be disabled by adding a
colon (:).
 Chapter 11. Image Services implementation 315

Is this the NCH server (1=yes, 2=no) [1]:
Enter NCH server name []: FNIS:FileNet
Enter system serial number [0]: 110012345
Enter the relational database type configured on this server
 (0=None, 1=Oracle, 2=DB2) [0]: 2
Enter the relational database home directory [/home/fnsw/sqllib]:
 This is the setup configuration:
 NCH server name: FNIS:FileNet
 SSN: 110012345
 Relational database type: db2
 Relational database home: /home/fnsw/sqllib
Do you want to continue (y/n) [y]: y
fn_setup: Creating file /fnsw/local/setup_config
fn_setup: Creating file /fnsw/local/sd/root_station
fn_setup: Creating file /fnsw/local/ssn
fn_setup: Creating file /fnsw/local/sd/nch_domain
fn_setup: Changing permission on FileNET IS software and databases
fn_setup: Creating file /fnsw/local/sd/NCH_db0
fn_setup: Running "/fnsw/bin/fn_util initnch"
fn_util: creating NCH database.
fn_setup: Running "/fnsw/bin/nch_update FNIS:FileNet"
fn_setup: Installing Image Services license.
Successfully installed license data !
fn_setup: Changing permission on FileNET IS software and databases

The fn_setup program also installs the Universal SLAC Key (license code) into
the IS NCH database. Because this key works on any server, there is no longer a
dedicated “HA/DR” license key required for IS to run on separate hosts.

If the system had an optical storage library (OSAR) connected, the fnsod.install
script must be run on AIX and Solaris servers after all IS service packs (SPs) and
fix packs (FPs) have been applied:

/fnsw/bin/fnsod.install

The IS Configuration Editor (fn_edit) has to be used on node 1 of the cluster only,
because its configuration files (/fnsw/local/sd/conf_db/IMS_*.cdb) are located
on the shared disks and will be switched over to the standby node by HACMP.
Example 11-25 shows the IS configuration with fn_edit.

Example 11-25 IS configuration with fn_edit

su - fnsw
$ export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')

$ fn_edit

$ fn_build -a
316 IBM High Availability Solution for IBM FileNet P8 Systems

The only cluster-related entry in fn_edit really is the IP address in the Network
Addresses tab (see Figure 11-5).

Figure 11-5 HACMP service address that is used for IS

IS requires links in /fnsw/dev/1 that point to shared logical volumes in /dev,
which will be used as raw devices for Multi-Keyed File (MKF) databases and
document cache. See Table 11-8 on page 317.

The links might be realized as soft links (ln -s) or through the character device file
using the major and minor number of the raw device (mknod). The soft links are
the preferred way to link to the raw devices and need to be created with the
fn_util mk_links command.

The links to OSAR A (osara) and OSAR A drive 1 and 2 (odda*) only exist when
an OSAR is attached to the system, and fnsod.install has been run previously.

Table 11-8 Local links from /fnsw/dev/1 to shared raw devices

Local link Shared LV/Device Use

/fnsw/dev/1/sec_db0 /dev/rfn_sec_db0 Security database

/fnsw/dev/1/sec_rl0 /dev/rfn_sec_rl0 Security redo log

/fnsw/dev/1/permanent_db0 /dev/rfn_perm_db0 Permanent database

/fnsw/dev/1/permanent_rl0 /dev/rfn_perm_rl0 Permanent redo log

/fnsw/dev/1/transient_db0 /dev/rfn_trans_db0 Transient database

/fnsw/dev/1/transient_rl0 /dev/rfn_trans_rl0 Transient redo log

/fnsw/dev/1/cache0 /dev/rfn_cache0 Document cache

/fnsw/dev/1/osara /dev/fnsod.5,0,4,0 OSAR “A” Robotic Arm

/fnsw/dev/1/odda1 /dev/fnsod.5,0,3,0 OSAR “A” Drive 1

/fnsw/dev/1/odda2 /dev/fnsod.5,0,2,0 OSAR “A” Drive 2
 Chapter 11. Image Services implementation 317

The links to the databases and OSAR drivers in /fnsw/dev/1 are created locally
with fn_util mk_links and also have to be created on the standby node later,
because this directory is located on the local disks (in /fnsw). See
Example 11-26.

Example 11-26 Creation of links in /fnsw/dev/1

su - fnsw
$ fn_util mk_links
fn_util: done

$ ls -l /fnsw/dev/1
total 0
lrwxrwxrwx 1 fnsw fnusr 15 Oct 02 22:18 cache0@ -> /dev/rfn_cache0
lrwxrwxrwx 1 fnsw fnusr 17 Oct 02 22:18 permanent_db0@ ->
/dev/rfn_perm_db0
lrwxrwxrwx 1 fnsw fnusr 17 Oct 02 22:18 permanent_rl0@ ->
/dev/rfn_perm_rl0
lrwxrwxrwx 1 fnsw fnusr 16 Oct 02 22:18 sec_db0@ -> /dev/rfn_sec_db0
lrwxrwxrwx 1 fnsw fnusr 16 Oct 02 22:18 sec_rl0@ -> /dev/rfn_sec_rl0
lrwxrwxrwx 1 fnsw fnusr 18 Oct 02 22:18 transient_db0@ ->
/dev/rfn_trans_db0
lrwxrwxrwx 1 fnsw fnusr 18 Oct 02 22:18 transient_rl0@ ->
/dev/rfn_trans_rl0

The link to the DB2 client is also local to rootvg and has to be created on the
standby node, as well. See Example 11-27.

Example 11-27 Creating link to DB2 client

su - fnsw
$ fn_util linkrdb
fn_util: done

$ ls -l /fnsw/lib/shobj/db2lib
lrwxrwxrwx 1 fnsw fnusr 23 Oct 02 22:19 /fnsw/lib/shobj/db2lib@ ->
/home/fnsw/sqllib/lib32/

After configuring the DB2 passwords, the database has to be initialized, which
creates the IS tables. This task must only be done one time from node 1 of the
cluster. See Example 11-28.

Example 11-28 Initialization of the DB2 database

su - fnsw
$ fn_setup_rdb -f # make DB passwords known to IS
--
fn_setup_rdb - Install version
--
Upgrade IS. Running fn_migrate ...
318 IBM High Availability Solution for IBM FileNet P8 Systems

Running fn_build -a
RDBMS type: DB2
Please enter the f_maint user password (note: password will not echo):
Please enter the f_maint user password again for verification:
Please enter the f_sw user password (note: password will not echo):
Please enter the f_sw user password again for verification:
Please enter the f_sqi user password (note: password will not echo):
Please enter the f_sqi user password again for verification:
Please enter the f_open user password (note: password will not echo):
Please enter the f_open user password again for verification:
fn_util: Special RDB password file is created
fn_util: done
Successfully verifying logons for the above users.
Execution complete.

fn_util init # This will create or replace (DELETE) existing objects!
[...]

If the system requires an adapted configuration for the Pooled Process Manager
(PPM), you must modify /fnsw/etc/serverConfig now. This configuration file is
also located on the local disks of node 1 and must be copied over to node 2 later:

vi /fnsw/etc/serverConfig

IS Toolkit installation
We install the IS Toolkit (ISTK) 4.1.2 locally on each IS cluster node, because it
might be useful for creating a customer-specific application monitor. The ISTK is
optional, but it might also be required for applications, such as DART, HPII, MRII,
BatchIt, and for customer-created applications that act as a client for IS. See
Example 11-29.

Example 11-29 Installation of the IS Toolkit

export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')
cd /instsrc/IM/ISTK412-18/
./istk_4.1.2_aix.bin

InstallShield Wizard
Initializing InstallShield Wizard...
Preparing Java(tm) Virtual Machine...
Running InstallShield Wizard...

more /fnsw/client/logs/install/4_1_2/install_ISTK_Runtime_log.txt

rm -r /fnsw/client_backup

If you install and use ISTK, start and stop it with the IS application server scripts.
 Chapter 11. Image Services implementation 319

Because ISTK is installed locally (in /fnsw/client), it does not interfere with the
IS takeover. However, because it is a client to IS, it will be affected by the
takeover and must be restarted with IS.

ISTK applications and IS are often started on the same node (by the IS start
script), because usually when IS needs to fail over to the standby node, there is a
problem, and ISTK also might not work properly any longer. Then again, ISTK
might be started on the “inactive” node to create a form of load balancing and an
active (IS)/active (ISTK) cluster. This approach works only if each node has a
local copy of the /fnsw file system.

CFS-IS configuration
We configure Content Federation Services for IS (CFS-IS), so that the Content
Engine (CE) of the P8 system can use IS as a repository and IS can federate
new documents to CE.

The CFS-IS documentation, IBM FileNet P8 Content Federation Services for
Image Services, Version 4.0, Guidelines, GC31-5484, states that “IS systems
with remote clustered databases are not supported.” This statement is
out-of-date and no longer true with IS 4.1.2, as shown in this book.

We create the following configuration in Xapex for CFS-IS:

� Security:

– User: CFSADMIN
– Group: CFSRMGRP
– Max. Logons: 100

� Media family:

– Tranlog 1: CFSTEST_T_M_8G (Tranlog) — MSAR a (/msar1)
– Primary: CFSTEST_P_M_8G (Primary) — MSAR a (/msar1)

� Document class

– Class Name: Contracts

� Indexes

– LastName: IS: String (25), key — CE: String (26)
– FirstName: IS: String (25) — CE: String (26)
– SSN: IS: String (11), key — CE: String (12)
– Income: IS: Numeric — CE: Float
– Approver: IS: String (25), key — CE: String (26)
– Approval: IS: String (2), key — CE: String (3)

One of the first steps of the CFS-IS configuration is to run the IS Record
Management (RM) utility, as shown in Example 11-30.
320 IBM High Availability Solution for IBM FileNet P8 Systems

Example 11-30 CFS-IS RM configuration

su - fnsw
SEC_rm_config

Image Services Record Management Configuration Utility

Command line options:

 d Display current configuration settings
 e Edit configuration settings
 s Save configuration settings
 p Print Menu
 q Quit

Enter command => d

Current Image Services Configuration:
Record Security Level : READ_ONLY
RM Group : UNDEFINED
RM Log Level : MINIMAL

Current User Selected Configuration:
Record Security Level : READ_ONLY
RM Group : UNDEFINED
RM Log Level : MINIMAL

Enter command => e

Edit Record Level Security

s READ_ONLY
w APPEND_ONLY
n NO_CHANGE
Enter Record Level Security [READ_ONLY] => n

Edit Record Manager Group

Enter Record Manager Group Name [UNDEFINED] => CFSRMGRP

Edit Activity Log Level

m MINIMAL
v VERBOSE
Enter Activity Log Level [MINIMAL] => m

Enter command => s

Saving Record Management control table information...
SEC_rm_config: Record Management settings have been successfully updated

Enter command => d

Current Image Services Configuration:
 Chapter 11. Image Services implementation 321

Record Security Level : NO_CHANGE
RM Group : CFSRMGRP
RM Log Level : MINIMAL

Current User Selected Configuration:
Record Security Level : NO_CHANGE
RM Group : CFSRMGRP
RM Log Level : MINIMAL

Enter command => q

Exiting...

On the Content Engine (CE), we add the NCH entry fnis-filenet-nch-server to
C:\WINDOWS\system32\drivers\etc\hosts on both CE servers.

In Enterprise Manager (EM) on the CE, we create the document class Contracts
as a sub-class of FNIS (IS system), which is again a sub-class of the Image
Services parent document class by using Image Services → FNIS →
Contracts.

After we configure CFS-IS on both IS and CE, we start the CFS Agents for
Import and Export of documents (in EM on the CE).

The CFS-IS error log is located on each of the CE servers:

cd /usr/IBM/WebSphere/AppServer/profiles/server1/FileNet/server1/
pg p8_server_error.log

For troubleshooting, CFS-IS tracing can be (temporarily) enabled in EM for the
whole system, click Enterprise Manager [FNHA] → Properties → Trace
Control.

You can also enable tracing individually for each server (for example, server1) by
clicking Enterprise Manager [FNHA] → Sites → Initial Site [Default] → Virtual
Servers → fnl10Node01 → server1 → Properties → Trace Control.

Enable tracing for the CFS Daemon and the CFS Import Agent.

The trace log that is created on the CE server is p8_server_trace.log:

cd /usr/IBM/WebSphere/AppServer/profiles/server1/FileNet/server1/
pg p8_server_trace.log

CFS-IS was tested as part of the IS takeover tests and did not show a problem
when IS was restarted due to the takeover.
322 IBM High Availability Solution for IBM FileNet P8 Systems

Cluster node 2 installation
You must repeat the installation and configuration steps that were performed on
node 1 of the IS cluster on node 2, but certain steps (such as initializing the
database) can be omitted.

Running all installers (DB2 client and Image Services GA/SP/FP) again on the
standby node is the only way to ensure that all scripts are run and that all
changes to the local system (for example, modifications to AIX Object Data
Manager (ODM) and /etc/services) are made, that are required to start IS. We
cannot predict the type of modifications that current or future installation wizards
will make.

Switch cluster resources to standby node
In our lab, the IS resource group was switched to node 2 with HACMP, so the
required resources (particularly IS service address and volume group) were
available on the standby node for the installations.

These application server (AS) scripts were still disabled on both nodes, so IS
was not started on node 2 by the takeover:

� /opt/FileNet/ha_scripts/fnis_start.sh
� /opt/FileNet/ha_scripts/fnis_stop.sh
� /opt/FileNet/ha_scripts/fnis_mon.sh

Because the IS stop script was disabled on node 1, IS had to be brought down
manually for the HACMP takeover as shown in Example 11-31.

Example 11-31 Stopping IS manually on node 1

su - fnsw
$ initfnsw -y stop # terminate IS

$ killfnsw -yASD # clean up remaining processes

umount -t fnvg # verify /fnsw/local can be unmounted

With the IS application down, the resource group can be moved to the standby
cluster node:

smitty hacmp

Click System Management (C-SPOC) → HACMP Resource Group and
Application Management → Move a Resource Group to Another Node /
Site → Move Resource Groups to Another Node.
 Chapter 11. Image Services implementation 323

Enter these values:
� Resource Group: fnis_rg
� Destination Node: fnl44
� tesxt

You can monitor the takeover process can be monitored on both nodes with this
command:

tail -f /var/hacmp/log/hacmp.out

After the takeover completes, the IS resource group fnis_rg and the IS service
address fnis must be up on node 2. See Example 11-32.

Example 11-32 Verifying the HACMP cluster state after takeover

cd /usr/es/sbin/cluster
clstat -ao

 clstat - HACMP Cluster Status Monitor

Cluster: fnis (1222565798)
Sun Nov 2 10:06:59 PST 2008
 State: UP Nodes: 2
 SubState: STABLE

 Node: fnl43 State: UP
 Interface: fnl43-bt1 (2) Address: 10.10.10.53
 State: UP
 Interface: fnl43_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnl43-hs03 (1) Address: 10.0.3.53
 State: UP

 Node: fnl44 State: UP
 Interface: fnl44-bt1 (2) Address: 10.10.10.54
 State: UP
 Interface: fnl44_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnis (2) Address: 9.30.188.78
 State: UP
 Interface: fnl44-hs03 (1) Address: 10.0.3.54
 State: UP
 Resource Group: fnis_rg State: On line

ifconfig -a | grep 9.30.188.78
324 IBM High Availability Solution for IBM FileNet P8 Systems

 inet 9.30.188.78 netmask 0xffffff00 broadcast 9.30.188.255

mount | grep fnvg
 /dev/fn_local /fnsw/local jfs2 Nov 02 09:03
rw,log=/dev/fnvg_jfs2log
 /dev/fn_msar1 /msar1 jfs2 Nov 02 09:03
rw,log=/dev/fnvg_jfs2log
 /dev/fn_backup /backup jfs2 Nov 02 09:03
rw,log=/dev/fnvg_jfs2log

Installation steps on node 2
When the IS service address and fnvg volume group are available on node 2,
you must repeat all of the installation steps from node 1 on the standby node.

With the following exceptions, you must repeat all of the steps in “Image Services
installation” on page 305:

� You must make a backup of the latest IS Configuration Database (CDB) in
/fnsw/local/sd/conf_db in advance.

� DB2 server users already exist and are not required to be created again.

� You are not required to run the IS Configuration Editor (fn_edit) again. If the
latest CDB file is missing, restore it from the previous backup. You do have to
run the steps following fn_build again.

� You must not initialize the databases another time with fn_util init.

The /fnsw/etc/serverConfig file was created locally on node 1 during the initial
installations. It might be copied over from node 1 to node 2 so that it does not
have to be created another time.

The following files from node 1 might be copied partially or with extreme care to
node 2. Use the IS-related entries only:

� /etc/hosts
� /etc/inittab
� /etc/tunables/nextboot
� /etc/rc.dt

IS cluster scripts for HACMP
IS is integrated into the HACMP resource group (RG) fnis_rg by means of the
application server (AS) fnis_app_srv. The AS uses the following start, stop, and
monitor scripts to control the IS application:

� /opt/FileNet/ha_scripts/fnis_start.sh # Start script
� /opt/FileNet/ha_scripts/fnis_stop.sh # Stop script
� /opt/FileNet/ha_scripts/fnis_mon.sh # Monitor script
 Chapter 11. Image Services implementation 325

The HACMP application server and its monitor are created using SMIT.

For this book, we choose to restart IS three times, and then, initiate a takeover to
the standby node, if the application monitor still declares IS is not working. A
restart count of 3 is the default. However, in a production environment, it might
be better to switch to the other node already after one unsuccessful restart of IS.
If one restart does not fix the problem, chances are another two restarts will not
fix the problem either. However, a takeover is the last chance for the cluster to
make IS available again.

Use this command:

smitty hacmp

Click Extended Configuration → Extended Resource Configuration →
HACMP Extended Resources Configuration → Configure HACMP
Application Servers → Configure HACMP Application Servers → Add an
Application Server.

Enter these values:

� Server Name: fnis_app_srv
� Start Script: /opt/FileNet/ha_scripts/fnis_start.sh
� Stop Script: /opt/FileNet/ha_scripts/fnis_stop.sh

Use this command:

smitty hacmp

Click Extended Configuration → Extended Resource Configuration →
HACMP Extended Resources Configuration → Configure HACMP
Application Servers → Configure HACMP Application Monitoring →
Configure Custom Application Monitors → Add a Custom Application
Monitor.

Enter these values:

� Monitor Name: fnis_app_mon
� Application Servers to Monitor: fnis_app_srv
� Monitor Mode: Long-running monitoring
� Monitor Method: /opt/FileNet/ha_scripts/fnis_mon.sh
� Monitor Interval: 60 # run fnis_mon.sh every 60 seconds
� Stabilization Interval: 120 # wait 60 seconds before monitoring IS
� Restart Count: 3 # restart IS 3 times on this node before takeover
� Action on Application Failure: fallover
326 IBM High Availability Solution for IBM FileNet P8 Systems

After the application server is defined, it must be integrated into the IS resource
group using this command:

smitty hacmp

Click Extended Configuration → Extended Resource Configuration →
HACMP Extended Resource Group Configuration → Change/Show
Resources and Attributes for a Resource Group.

Enter these values:

� Resource Group Name: fnis_rg
� Participating Nodes (Default Node Priority): fnl43 fnl44
� Startup Policy: Online On Home Node Only
� Fallover Policy: Fallover To Next Priority Node In The List
� Fallback Policy: Never Fallback
� Service IP Labels/Addresses: fnis
� Application Servers: fnis_app_srv
� Volume Groups: fnvg

The modified HACMP configuration must be synchronized to the other node:

smitty hacmp

Click Extended Configuration → Extended Verification and
Synchronization.

IS start script
The start script will bring up IS on the active cluster node, either when the
resource group is coming online, or after a takeover on the standby node.

The IS start script, in addition to obviously starting Image Services, performs
additional tasks to make sure that IS can be started properly. Otherwise, the
restart or takeover of the application server will not help to make IS highly
available.

The start script must not assume that the stop script has been run successfully
(for example, on another node), so the start script also has to perform initial
“cleanup”.

We recommend for the AS start script:

� Add an entry to the errlogger AIX log, sys_log IS log, and a proprietary log.
Log entries that include the current host name facilitate troubleshooting.
Because the IS elog is located on the shared VG, it can be difficult to tell
which node wrote the log entries in /fnsw/local/logs/elogs/elog*.
 Chapter 11. Image Services implementation 327

� Set permissions on IS database files in the shared VG (chown, chmod, and
/fnsw/bin/fn_setup -d /). The LV permissions can get lost, when for
example, the HACMP “lazy update” feature imports the VG after changes.

� Stop IS (initfnsw -y stop) and end any existing IS process (killfnsw
-ADSy, kill -15, and kill -9). Because /fnsw is available on the standby
node as well, IS processes might have been started and can stop and prevent
the takeover of IS. Most IS commands on the inactive cluster node will stop.
You need to end these IS commands before you can start IS on this node in
the case of a takeover.

� Unlock databases after failed backups (EBR_orreset, EBR_ulmk). End the
backup mode, if the takeover occurred during a database backup.

� Remove the IS Guard File (killfnsw -y -r). Failed processes can leave the
/fnsw/etc/killfnsw guard file, which prevents IS from starting on that node.

� Reset the SCSI bus if an OSAR is attached (with a C program).

� If applicable, start local, site-controlled databases and DB listeners. Also
check the DB connection before IS tries to connect.

� Start Image Services (initfnsw start).

� Time out and terminate stopped commands started by the script.

� Make the script reentrant, so that it can be called another time. The start
script must not stop and restart IS, if it is already running.

� Return a meaningful exit code in case of errors (0 = success).

The script must time out processes that it started. A way to catch stopped
processes is to start them in the background and end them after a predefined
time as shown in Example 11-33.

Example 11-33 Monitoring commands in the cluster script

yes "" | su - fnsw -c "initfnsw -y status" 2>/dev/null & # start
command in background
PID=$!

typeset -i TIMEOUT=60 # wait 60 seconds for the command to complete
while [[TIMEOUT=$TIMEOUT-1 -gt 0]]; do
 ps -p $PID >/dev/null 2>&1 || break
 sleep 1
done

ps -p $PID >/dev/null 2>&1 # if process still exists, kill it
if [[$? -eq 0]]; then
 kill $PID
 sleep 3
328 IBM High Availability Solution for IBM FileNet P8 Systems

 ps -p $PID >/dev/null 2>&1
 if [[$? -eq 0]]; then
 kill -9 $PID
 fi
fi

HACMP runs the cluster scripts as the root user. IS-related commands, which
require IS environment variables to be set, must be started with su - fnsw -c.
Because the IS-provided profile for fnsw asks for user input (TERM), the yes ““
command answers these questions with a (blank) line feed. We also recommend
that you disable any user input in any .profile, but at least in the .profile of the
fnsw user.

Example 11-34 shows a basic start script (fnis_start.sh) that was used for the
book lab.

Example 11-34 HACMP start script /opt/FileNet/ha_scripts/fnis_start.sh

#!/bin/ksh

echo "Starting FileNet Image Services"
su - fnsw -c "sys_log \"HACMP Starting IS on node $(uname -n)\""

cd /fnsw/dev/1
chown fnsw:fnusr sec_* permanent_* transient_* cache*
chmod 0660 sec_* permanent_* transient_* cache*

yes "" | su - fnsw -c "initfnsw -y stop" 2>/dev/null
sleep 15
yes "" | su - fnsw -c "killfnsw -yADS" 2>/dev/null
sleep 3
yes "" | su - fnsw -c "killfnsw -yADS" 2>/dev/null
sleep 3
yes "" | su - fnsw -c "initfnsw start" 2>/dev/null

exit 0

IS stop script
The stop script brings down IS on the active cluster node, either when the node
or resource group is going offline, or just before a takeover occurs.

The IS stop script - similar to the start script - needs to perform additional tasks to
make sure that IS is stopped completely. Otherwise, the takeover can fail, for
example, because a file system cannot be unmounted if a stopped IS process is
blocking it.
 Chapter 11. Image Services implementation 329

We recommend for the AS stop script:

� Add an entry to the errlogger AIX log, sys_log IS log, and a proprietary log.

� Remove the IS Guard File (killfnsw -y -r).

� Stop Image Services (initfnsw -y stop).

� End any remaining IS process (killfnsw -ADSy, kill -15, and kill -9). The
files in /fnsw/procs might also help to find remaining IS processes.

� If applicable, end any IS client process, for example, ISTK clients
(/fnsw/client/bin/wal_purge), COLD (/fnsw/bin/cold_3770), or
DART/HPII/MRII.

� End any process owned by fnsw or fnusr or any ISTK user, plus all vl -t
processes (kill -15 or kill -9). With X/CDE, aixterm -e might run vl -t
processes that can easily be missed and have to be ended separately.

� If applicable, stop local, site-controlled databases and DB listeners.

� End any process accessing and blocking a shared file system (fuser -ku
/dev/fn_fnsw). Remember to use the LV device for fuser, not the file system,
to catch processes in all subdirectories of the FS, as well.

� Remove the shared memory that owned by fnsw or fnusr (ipcs and ipcrm).

� Unload unused shared libraries (slibclean).

� Time out and terminate stopped commands that were started by the script.

� Make the script reentrant, so that it can handle being called another time. The
stop script might try to stop IS again (as a “clean” script), even if IS is already
stopped.

� Return a meaningful exit code in case of errors (0 = success).

We recommend that you add code for troubleshooting to the stop script (such as
calling /fnsw/bin/ipc_tool or /fnsw/support/911) to collect data that will be lost
when IS is terminated, but to disable this code for normal cluster operation. In the
case of a failure, a reliable restart or takeover of IS is usually more important
than collecting debug information.

Example 11-35 shows a basic stop script called fnis_stop.sh that was used for
the book lab.

Example 11-35 HACMP stop script /opt/FileNet/ha_scripts/fnis_stop.sh

#!/bin/ksh

echo "Stopping FileNet Image Services"

Try to stop IS gracefully
330 IBM High Availability Solution for IBM FileNet P8 Systems

yes "" | su - fnsw -c "sys_log \"HACMP Stopping IS on node $(uname
-n)\"" 2>/dev/null

Terminate remaining IS processes
yes "" | su - fnsw -c "initfnsw -y stop" 2>/dev/null
sleep 15
yes "" | su - fnsw -c "killfnsw -yADS" 2>/dev/null
sleep 3
yes "" | su - fnsw -c "killfnsw -yADS" 2>/dev/null

Kill all processes of user fnsw or group fnusr
for PID in $(ps -ef | awk '$1=="fnsw" {print $2}'); do
 echo "Killing process $PID ($(ps -p $PID -o comm | tail -1)) ..."
 kill $PID
 sleep 3
 ps -p $PID >/dev/null 2>&1
 if [[$? -eq 0]]; then
 kill -9 $PID
 fi
done

Clean up shared memory
ipcs -s | awk '$5=="fnsw"||$6=="fnusr" {system("ipcrm -s "$2)}'
ipcs -q | awk '$5=="fnsw"||$6=="fnusr" {system("ipcrm -q "$2)}'
ipcs -m | awk '$5=="fnsw"||$6=="fnusr" {system("ipcrm -m "$2)}'

slibclean

exit 0

IS monitor script
The IS monitor script tells HACMP if the application server is still working, or if a
restart or takeover of the IS resource group is required.

Monitoring Image Services can be extremely tricky, because IS has many
processes that are configurable in number, or start on demand only. A running
process does not guarantee IS is still working properly and can be accessed by
clients. The TM_daemon process, for example, rarely ends when IS stops.
Therefore, we recommend that you use an HACMP Custom Application Monitor
(a monitor shell script) instead of a Process Application Monitor. A Process
Application Monitor is not flexible enough to handle changing numbers of
processes and also cannot “talk” to IS to see if it is actually working.
 Chapter 11. Image Services implementation 331

The IS monitor script needs to cover all of the components of the IS server, such
as network, databases, security, and document retrieval. Here are suggestions
for what the monitor can cover, even though several suggestions might not apply
in all IS configurations:

� Add an entry to the errlogger AIX log, sys_log IS log, and a proprietary log if
a failure is detected.

� Verify that IS core processes are running, for example, TM_daemon,
COR_Listen, NCH_daemon, bes_commit, or ds_init. 0 to n instances of a
process might be running, depending on the configuration of IS. A
sophisticated monitor can check the CDB for the number of processes
configured.

The process files in /fnsw/procs can also be used to find current processes.
However, this approach is undocumented, and dead processes will
immediately be removed from the directory by IS, so it cannot be used to
search for missing processes.

� Verify that additional “client” IS processes are running, such as COLD, DART,
HPII, MRII, and customer applications that are based on ISTK.

� Check if the DB client can connect to the database and if the DB is available.
For DB2, commands, such as db2 connect to, can be used.

� Check if IS can connect to the Index database (GDBcheckdb -1).

� Log on to IS with fnlogon or an ISTK application. Create a small ISTK
application that logs on, retrieves a document, and logs off. The
test_logon_is.exe program is only available in ISTK on Windows.

� Verify ServiceProcess:System:System is logged in using “SEC_tool” - “who”.

� Query the Security, Permanent, and Transient DB with MKF_tool. For
example:

echo “select docs doc_id=$MonitorDocID\nquit" | MKF_tool

� Prefetch a test document into page cache, for example, with docfetch -s
$MonitorDocID.

� Find and retrieve the prefetched document in page cache. For example:

echo "list 1 $(ssn) $MonitorDocID 1\nquit" | CSM_tool
echo "objecttofile 1 $(ssn) $MonitorDocID 1

/fnsw/local/tmp/$MonitorDocID.1.obj\nquit" | CSM_tool

� Query the NCH database with nch_tool or MKF_tool. For example:

echo "defaultdomain\nquit" | nch_tool

� Allow the administrator to manually stop and start IS on the command line
(initfnsw stop / initfnsw start) without reporting an IS failure. The IS
332 IBM High Availability Solution for IBM FileNet P8 Systems

commands /fnsw/local/sd/ims_stop and /fnsw/local/sd/ims_start can
be used to record the IS state in a file, which is queried by the monitor.

� If one test fails, skip the remaining tests to avoid unnecessary stopped
processes.

� Time out and terminate stopped commands that were started by the script.

� Make the script reentrant, so that it can handle being called another time.

� Return a meaningful exit code in case of errors (0 = success).

The initfnsw status command is not sufficient to decide if IS is actually
running. In fact, this command often stops when IS has a problem, so do not use
this command for monitoring. Several of the tools that are used here are not
meant for production and are not supported for use in scripts, but then, they
might be the only supported way to access MFK databases or cache, for
example. Use with caution.

The monitor script must complete within the “Monitor Interval” configured, or
preferably well before that. Many of the IS tools suggested for monitoring might
also stop when IS has a problem. These commands must be timed by the script.
Otherwise, HACMP will terminate the IS application monitor if the script does not
respond within the “Monitor Interval”. The monitor must also not be run too
frequently to avoid problems caused by the monitor itself, such as stopped IS
tools or performance implications.

For the monitor script, it might be useful to know the name of the latest IS
configuration database (CDB) file. See Example 11-36.

Example 11-36 Finding the current (latest) CDB file

IS_CDB_FILE=$(find /fnsw/local/sd/conf_db -name "IMS_*.cdb" \
 -exec basename \{} ".cdb" \; |awk '/IMS_[1-9]*[0-9]$/ \
 { CDB= substr($0,5,length); if(CDB>MAXCDB) MAXCDB=CDB } END \
 { printf("IMS_%s.cdb", MAXCDB) }')

You can query the CDB to discover if a certain service is configured. See
Example 11-37.

Example 11-37 Check CDB if Batch Services are configured

CDB_SERVER_ID=$(echo "identity" | cdb_tool | cut -f2 -d ' ')
CDB_SVC_INDEX=$(echo "find server_services
server_id=${CDB_SERVER_ID}\nget u batch_serv" | cdb_tool)

You can also receive the number of processes configured from the CDB. See
Example 11-38.
 Chapter 11. Image Services implementation 333

Example 11-38 Query CDB for number of ds_notify processes

CDB_DOMAIN_ID=$(echo "identity" | cdb_tool | cut -f1 -d ' ')
CDB_DSNOTIFY_PROCS=$(echo "find system_appl_serv
domain_id=${CDB_DOMAIN_ID}\nget u ds_notify" | cdb_tool)

Example 11-39 shows a basic monitor script called fnis_mon.sh that was used
for the book lab.

Example 11-39 HACMP monitor script /opt/FileNet/ha_scripts/fnis_mon.sh

#!/bin/ksh

MonitorUser="HAMonitorUser"
MonitorPWD="HAMonitorPwd"
MonitorDocID="100074"
ISFaulted=0

Verify core IS processes are running
PROC_TEST=0
for PROC in TM_daemon COR_Listen ilk_daemon NCH_daemon MKF_writer \
 MKF_clean SEC_daemon CSM_daemon INXbg DOCs INXs INXu SECs
do
 ps -eo comm | grep $PROC | grep -v $$ >/dev/null
 if [[$? -ne 0]]; then
 PROC_TEST=1
 fi
done
[[$PROC_TEST -ne 0]] && ISFaulted=1

Logon to IS with fnlogon
if [[ISFaulted -eq 0]]; then
 yes "" | su - fnsw -c "echo \"${MonitorUser}\n${MonitorPWD}\n\n\nexit\" | \
 fnlogon;cd" 2>/dev/null | grep "fnlogon: executing" >/dev/null
 LOGON_TEST=$?
 [[$LOGON_TEST -ne 0]] && ISFaulted=1
fi

Verify ServiceProcess in SEC_tool
if [[ISFaulted -eq 0]]; then
 yes "" | su - fnsw -c "echo \"who\nquit\" | SEC_tool" 2>/dev/null | \
 grep "ServiceProcess:System:System" >/dev/null
 SEC_TEST=$?
 [[$SEC_TEST -ne 0]] && ISFaulted=1
fi

Prefetch a document into page cache
if [[ISFaulted -eq 0]]; then
 yes "" | su - fnsw -c "docfetch -s $MonitorDocID" 2>/dev/null | \
334 IBM High Availability Solution for IBM FileNet P8 Systems

 grep "$MonitorDocID retrieved" >/dev/null
 PREFETCH_TEST=$?
 [[$PREFETCH_TEST -ne 0]] && ISFaulted=1
fi

Return status of tests
if [[$ISFaulted -ne 0]]; then
 exit 1 # IS may have a problem
else
 exit 0 # IS is running
fi

Automatic synchronization
As a last step, when IS is installed and configured on all cluster nodes, you must
add local scripts and configuration files to an HACMP File Collection. This way,
HACMP keeps local files in sync between cluster nodes. To set up a File
Collection, see “HACMP File Collection” on page 362.

11.2.3 Integrating an existing IS into HACMP

You can convert an existing IS system to an HACMP cluster.

However, we prefer a fresh installation of both cluster nodes (and a later
migration of existing data), because it requires less downtime, and the cluster
can be tested in more detail before being taken into production.

The following high-level steps are necessary to reconfigure the original server as
node 1 and to install IS on node 2 of the new cluster:

1. Install and configure HACMP on both cluster nodes.

2. Make sure that UID and GID of the IS users and groups match on both nodes.

3. Move the /fnsw/local, /msar1, and /backup file systems to the shared disks
of the cluster. Disable the auto varyon of the shared VG, and disable auto
mount of the shared file systems on both nodes.

4. Change the IP address of IS to the service address of the RG. Alternatively,
use the existing IS address as the service address.

5. Disable the autostart of IS from /etc/inittab.

Moving file systems to a SAN
The files in the /fnsw/local file system can be copied to a separate mount point
on the shared VG, and then, the shared file system is mounted in place of the
existing local FS. If the old and new file system cannot be mounted concurrently,
 Chapter 11. Image Services implementation 335

the /fnsw/local file system must be backed up and restored, for example, with
the tar command. See Example 11-40.

Example 11-40 Copying /fnsw/local to a shared file system

cd /fnsw/local
tar cvf - . | (cd /shared/fnsw/local; tar xf -)

To disable the auto mount of the shared file systems and to add the file system to
the fnvg mount group (and FS), enter # chfs -An -u fnvg /fnsw/local.

Matching UID/GID between nodes
The user ID (UID) and group ID (GID) of the fnsw user and the root user must be
identical between all cluster nodes. If an ID has to be changed to make the
nodes match, the permissions of all of the files that are owned by fnsw have to be
updated. For native IS files, use fn_setup -d /. You can change other files (for
example, in /msar) by using find. See Example 11-41.

Example 11-41 Updating permissions on IS files

fn_setup -d /
fn_setup: using configuration value to set the relational database type
fn_setup: using configuration value to set the relational database home
fn_setup: Creating file /fnsw/local/setup_config
fn_setup: Changing permission on FileNET IS software and databases

ls -l /msar1/*.dat
-rw-rw---- 1 500 600 40871936 Oct 26 03:10
/msar1/003000.dat
-rw-rw---- 1 500 600 40871936 Oct 26 03:10
/msar1/003002.dat

find /msar1 -user 500 -exec chown fnsw {} \;
find /msar1 -group 600 -exec chgrp fnusr {} \;

ls -l /msar1/*.dat
-rw-rw---- 1 fnsw fnusr 40871936 Oct 26 03:10
/msar1/003000.dat
-rw-rw---- 1 fnsw fnusr 40871936 Oct 26 03:10
/msar1/003002.dat

HACMP service address for IS
To change the IP address of Image Services, use the IS Configuration Editor
(fn_edit). See Example 11-42.
336 IBM High Availability Solution for IBM FileNet P8 Systems

Example 11-42 IS network reconfiguration

su - fnsw
$ export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')

$ fn_edit

$ fn_build -a

Figure 11-6 shows the IP address of IS in the Network Addresses tab.

Figure 11-6 HACMP service address that is used for IS

In rare cases, you must rebuild the NCH database to change all IP addresses in
the DB. Perform the following steps:

1. Stop IS: initfnsw -y stop ; sleep 10 ; killfnsw -ADSy

2. Initialize the NCH DB: rm /fnsw/local/sd/NCH_db0 ; fn_util initnch

3. Install the Software License Access Control (SLAC) key: lic_admin -f
/fnsw/local/SLAC/uisora.key

4. Start IS: initfnsw start

5. Register WFL queues with NCH: WQS_tool → allowupdates → qnch * *

11.2.4 Connecting optical storage libraries

For this book, we only used MSAR storage libraries, which were the easiest and
by far most flexible way to add storage to a clustered IS system.

Clients, who really have to connect an optical library to their HACMP cluster,
must watch various dependencies that are out of the scope for this book. The
following list summarizes several of the considerations that are necessary to
connect a shared OSAR to the cluster:

� A shared OSAR is connected to both nodes using a singe SCSI bus.
 Chapter 11. Image Services implementation 337

� “Y” cables (also know as “V” cables) or “inline-terminated” cables must be
used, so the bus can be disconnected from a failed node for maintenance and
is still operational.

� Each node requires a unique SCSI ID on its SCSI adapter, for example, node
1 = SCSI ID 5 and node 2 = SCSI ID 6.

� Avoid SCSI ID 7 altogether (if possible), because this SCSI ID 7 is the default
ID for SCSI adapters when a server boots in maintenance mode. If a cluster
node is booted in maintenance mode, and SCSI ID 7 is used on another node
on the same bus, the node to be booted must be disconnected from its Y
cable first; otherwise, there are two conflicting SCSI IDs 7.

� When assigning SCSI IDs, observe the SCSI priorities:
7 > 6 > 5 > 4 > 3 > 2 > 1 > 0 > 15 > 14 > 13 > 12 > 11 > 10 > 9 > 8
In practice, the following assignment is optimal with wide SCSI addressing,
which is available since IS Version 4.1.1 on AIX (provided that all devices
support wide SCSI). Because all drives share a common SCSI bus,
performance might be limited by the bus transfer speed:

– SCSI Bus 1 (Priority: SCSI adapter > Arm > Drive):

• SCSI ID 7: N/C (default for server maintenance mode)
• SCSI ID 6: Node 2 SCSI adapter
• SCSI ID 5: Node 1 SCSI adapter
• SCSI ID 4: OSAR Robotic Arm
• SCSI ID 3: OSAR Drive # 1
• SCSI ID 2: OSAR Drive # 2
• SCSI ID 1: OSAR Drive # 3
• SCSI ID 0: OSAR Drive # 4
• SCSI ID 15: OSAR Drive # 5
• SCSI ID 14: OSAR Drive # 6
• SCSI ID 13: OSAR Drive # 7
• SCSI ID 12: OSAR Drive # 8
• SCSI ID 11: OSAR Drive # 9
• SCSI ID 10: OSAR Drive # 10

� Narrow SCSI addressing requires to use two SCSI busses for libraries with
more than four drives. In that case, a complete separate SCSI bus is
required, including all SCSI adapters, cables, and terminators:

– SCSI Bus 1 (Priority: SCSI adapter > Arm > Drive):

• SCSI ID 7: Not used (default for server maintenance mode)
• SCSI ID 6: Node 2 SCSI adapter
• SCSI ID 5: Node 1 SCSI adapter
• SCSI ID 4: OSAR Robotic Arm
• SCSI ID 3: OSAR Drive # 1
• SCSI ID 2: OSAR Drive # 2
338 IBM High Availability Solution for IBM FileNet P8 Systems

• SCSI ID 1: OSAR Drive # 3
• SCSI ID 0: OSAR Drive # 4

– SCSI Bus 2 (if applicable):

• SCSI ID 6: Node 2 SCSI adapter
• SCSI ID 7: Node 1 SCSI adapter (use ID 5 if fewer than 10 drives)
• SCSI ID 5: OSAR Drive # 5
• SCSI ID 4: OSAR Drive # 6
• SCSI ID 3: OSAR Drive # 7
• SCSI ID 2: OSAR Drive # 8
• SCSI ID 1: OSAR Drive # 9
• SCSI ID 0: OSAR Drive # 10

� Each SCSI bus must be terminated on both ends (only). You might need to
remove SCSI terminators on SCSI adapters, if the adapters are not auto
terminating.

� If SCSI expanders, such as the Paralan MM16, are used on the shared SCSI
bus, you might need to disable internal terminators.

� You must carefully watch the maximum length of the SCSI bus. All cables and
devices (including the OSAR and all Y-cables) contribute to the total bus
length.

� As of IS 4.1.1, all platforms support the logical unit number (LUN) mode,
including the 64-bit AIX platform. However, performance of LUN mode SCSI
is evidently inferior to target mode SCSI.

� HP optical libraries do not support LUN mode in clustered environments.

� Consult IBM FileNet Image Services, OSAR Cable Tool, 2008-07-22, when
planning a supported configuration.

� Refer to IBM FileNet Image Services, Version 4.1, Release Notes,
GC31-5578-03, which also contains important information regarding the
clustering of OSARs.

� Whenever an updated fnsod driver is installed (for example, by an IS patch),
you must run the /fnsw/bin/fnsod.install command on all cluster nodes.

� Use extreme caution when planning to extend shared busses with SCSI
expanders (for example, from Paralan, Apcon, Blackbox, and so on). Only a
few models handle the optical library SCSI command set correctly, in
particular when returning sense data in case of a failure. The stability and the
performance of the attached storage library is impaired with increasing cable
length.

Figure 11-7 illustrates the connection of a shared OSAR with HACMP.
 Chapter 11. Image Services implementation 339

Figure 11-7 Connection of a shared OSAR with HACMP

SCSI-attached optical libraries usually also require special handling during
HACMP cluster takeovers.

SCSI reserves might exist and have to be broken when starting a resource group
on a cluster node, for example, by issuing a SCSI reset. With HACMP, the
cl_scdiskreset command in /usr/es/sbin/cluster/events/utils can be used
to reset the SCSI bus. On HP-UX, Image Services provides a busreset and
devreset command in /fnsw/bin.

A SCSI bus reset can also be initiated from a small C program calling:

� ioctl (ScsiDevice, SIOC_RESET_BUS, 0) on HP-UX
� ioctl (ScsiDevice, RESET_ALL, 0) on the Solaris platform

An alternative way of connecting a shared OSAR is to place the device in
between the cluster nodes, in the middle of the SCSI chain, as shown in
Figure 11-8.

may need to

disable termination

Node 1
(active)

Node 2
(idle standby)

Y-cable

Terminator

Y-cable

short
cable

(internal)
Terminator

SCSI ID 5

SCSI ID 6

Optical Library

long
cable

SCSI IDs
4, 3, 2, 1, 0

(4: robotic arm)
340 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 11-8 Shared OSAR in between the cluster nodes

11.3 High availability test for IS cluster

This section describes the tests that were performed for our case study to verify
that the clustered IS is in fact highly available and is capable of resuming
operations after a failure.

11.3.1 Restart and takeover tests

You must test the HACMP functionality after every change to the cluster, as well
as at fixed intervals, for example, once every six months.

The takeover tests need to include IS server and IS client application tests. For
the most part, IS users stay connected and are not required to log on again after
IS has been restarted on the standby node. Users, who were only running an
IDM Find query, might be required to restart. Batches that were in the process of
being scanned with Capture Professional usually have to be deleted and
re-scanned after a takeover.

may need to

disable termination

Node 1
(active)

Node 2
(idle standby)

Optical Library

Y-cable

Terminator

SCSI ID 5

SCSI ID 6

Y-cable

Terminator

SCSI IDs
4, 3, 2, 1, 0

(4: robotic arm)
 Chapter 11. Image Services implementation 341

Other applications, such as the IS Resource Adapter (ISRA), P8 Content
Federation Services for IS (CFS-IS), and customer applications (for example,
based on ISTK or ISRA) must be tested, and their reaction to the HACMP
takeover (or IS restart for that matter) needs to be noted.

The following cluster tests were carried out successfully at our lab. With every
test, the client connections from IDM Desktop (IDM-DT) and from the P8 Content
Engine (CE) through CFS-IS were tested.

Takeover caused by node failure
Table 11-9 on page 343 details the automatic takeover test that we performed.
342 IBM High Availability Solution for IBM FileNet P8 Systems

Table 11-9 Cluster test 1: Automatic takeover

Example 11-43 shows the test result.

Example 11-43 Cluster test 1: Automatic takeover

clstat -ao

 clstat - HACMP Cluster Status Monitor

Cluster: fnis (1222565798)

Test 1 Prerequisites/Instructions Verification/Remark

Test Both HACMP cluster nodes (fnl43 and fnl44) are active. The IS resource
group is online on fnl43, and the IS application server is running. The active
cluster node fnl43 is powered off so the HACMP cluster will initiate a takeover
of the resource group fnis_rg from node fnl43 to node fnl44.
The IS application server fnis_app_srv is stopped. The shared file systems
are unmounted. The volume group fnvg is varied off and then varied on at
node fnl44, where the file systems are mounted, and IS is restarted using the
service address that moved with the IS resource group.

Initial
status

HACMP is started on nodes fnl43 and fnl44:
smitty hacmp

System Management (C-SPOC) → Manage
HACMP Services → Start Cluster Services

IS is running on node fnl43 (“primary node”):
smitty hacmp

System Management (C-SPOC) → HACMP
Resource Group and Application
Management → Bring a Resource Group
Online

clstat -ao

lsvg -o
mount
ifconfig -a

initfnsw status
IS client tests

Test
case

Power off node fnl43 to make HACMP takeover
the IS resource group automatically back to node
fnl44. Both nodes must have the HACMP
services started, or the failback will not succeed:
sync; sync; halt -q

tail -f
/var/hacmp/log/hacmp.
out
vl

Result HACMP is started on cluster node fnl43, node
fnl44 is powered down.
IS is running on node fnl44 (“standby node”).

clstat -ao
initfnsw status
IS client tests

After
care

Power on node fnl43 and make sure that HACMP
is running.

clstat -ao
 Chapter 11. Image Services implementation 343

 State: UP Nodes: 2
 SubState: STABLE

 Node: fnl43 State: UP
 Interface: fnl43-bt1 (2) Address: 10.10.10.53
 State: UP
 Interface: fnl43_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnis (2) Address: 9.30.188.78
 State: UP
 Interface: fnl43-hs03 (1) Address: 10.0.3.53
 State: UP
 Resource Group: fnis_rg State: On line

 Node: fnl44 State: UP
 Interface: fnl44-bt1 (2) Address: 10.10.10.54
 State: UP
 Interface: fnl44_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnl44-hs03 (1) Address: 10.0.3.54
 State: UP

sync; sync; halt -q # This will stop the node close to power off!

clstat -ao

 clstat - HACMP Cluster Status Monitor

Cluster: fnis (1222565798)

 State: UP Nodes: 2
 SubState: STABLE

 Node: fnl43 State: DOWN
 Interface: fnl43-bt1 (2) Address: 10.10.10.53
 State: DOWN
 Interface: fnl43_vpath0_01 (0) Address: 0.0.0.0
 State: DOWN
 Interface: fnl43-hs03 (1) Address: 10.0.3.53
 State: DOWN

 Node: fnl44 State: UP
 Interface: fnl44-bt1 (2) Address: 10.10.10.54
 State: UP
 Interface: fnl44_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnis (2) Address: 9.30.188.78
 State: UP
 Interface: fnl44-hs03 (1) Address: 10.0.3.54
 State: UP
 Resource Group: fnis_rg State: On line
344 IBM High Availability Solution for IBM FileNet P8 Systems

pg /var/hacmp/log/hacmp.out
[...]
Terminating processes...
Initializing FileNet software...
Starting index database...
Starting permanent database...
Starting transient database...
Starting security database...
Starting Courier...
Starting NCH_daemon...
Starting the Security Daemon...
Optimizing SEC database...please wait...
Starting INXbg...
Starting INXu...
Starting document services...
Starting batch entry services...
Starting print services...
Startup of FileNet software initiated. See event log for detailed status.
[...]

su - fnsw
initfnsw status

Software status for host 'fnl43.svl.ibm.com' (operating system = AIX):
 Software started since 11/09/08 20:58:12

Manual move of IS resource group
Table 11-10 on page 346 details our second test, manual takeover.
 Chapter 11. Image Services implementation 345

Table 11-10 Cluster test 2: Manual takeover

Example 11-44 on page 347 shows the test result.

Test 2 Prerequisites/Instructions Verification/Remark

Test Both HACMP cluster nodes (fnl43 and fnl44) are active. The IS resource
group is online on fnl44, and the IS application server is running. The IS
resource group fnis_rg is moved manually with C-SPOC from node fnl44 to
node fnl43. The IS application server fnis_app_srv is stopped. The shared
file systems are unmounted. The volume group fnvg is varied off and then on
at node fnl43, where the file systems are mounted, and IS is restarted using
the service address that moved with the IS resource group.

Initial
status

HACMP is started on nodes fnl43 and fnl44:
smitty hacmp

System Management (C-SPOC) → Manage
HACMP Services → Start Cluster Services

IS is running on node fnl44 (“standby node”):
smitty hacmp

System Management (C-SPOC) → HACMP
Resource Group and Application
Management → Bring a Resource Group
Online

clstat -ao

lsvg -o
mount
ifconfig -a

initfnsw status
IS client tests

Test
case

Move IS resource group manually from node
fnl44 to node fnl43:
smitty hacmp

System Management (C-SPOC) → HACMP
Resource Group and Application
Management → Move a Resource Group to
Another Node / Site → Move Resource
Groups to Another Node

tail -f
/var/hacmp/log/hacmp.
out
vl

Result HACMP is started on cluster nodes fnl43 and
fnl44.
IS is running on node fnl43 (“primary node”).

clstat -ao
initfnsw status
IS client tests

After
care

N/A (cluster is ready for production) N/A
346 IBM High Availability Solution for IBM FileNet P8 Systems

Example 11-44 Cluster test 2: Manual takeover

clstat -ao

 clstat - HACMP Cluster Status Monitor

Cluster: fnis (1222565798)

 State: UP Nodes: 2
 SubState: STABLE

 Node: fnl43 State: UP
 Interface: fnl43-bt1 (2) Address: 10.10.10.53
 State: UP
 Interface: fnl43_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnl43-hs03 (1) Address: 10.0.3.53
 State: UP

 Node: fnl44 State: UP
 Interface: fnl44-bt1 (2) Address: 10.10.10.54
 State: UP
 Interface: fnl44_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnis (2) Address: 9.30.188.78
 State: UP
 Interface: fnl44-hs03 (1) Address: 10.0.3.54
 State: UP
 Resource Group: fnis_rg State: On line

smitty hacmp

System Management (C-SPOC) → HACMP Resource Group and Application
Management → Move a Resource Group to Another Node / Site → Move Resource
Groups to Another Node

or

cd /usr/es/sbin/cluster/utilities
clRGmove -s false -m -i -g fnis_rg -n fnl43

Attempting to move resource group fnis_rg to node fnl43.

Waiting for the cluster to process the resource group movement request..........

Waiting for the cluster to stabilize..............

Resource group movement successful.
Resource group fnis_rg is online on node fnl43.

Cluster Name: fnis
 Chapter 11. Image Services implementation 347

Resource Group Name: fnis_rg
Node State
---------------------------- ---------------
fnl43 ONLINE
fnl44 OFFLINE

clstat -ao

 clstat - HACMP Cluster Status Monitor

Cluster: fnis (1222565798)

 State: UP Nodes: 2
 SubState: STABLE

 Node: fnl43 State: UP
 Interface: fnl43-bt1 (2) Address: 10.10.10.53
 State: UP
 Interface: fnl43_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnis (2) Address: 9.30.188.78
 State: UP
 Interface: fnl43-hs03 (1) Address: 10.0.3.53
 State: UP
 Resource Group: fnis_rg State: On line

 Node: fnl44 State: UP
 Interface: fnl44-bt1 (2) Address: 10.10.10.54
 State: UP
 Interface: fnl44_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnl44-hs03 (1) Address: 10.0.3.54
 State: UP

pg /var/hacmp/log/hacmp.out
[...]
Terminating processes...
Initializing FileNet software...
Starting index database...
Starting permanent database...
Starting transient database...
Starting security database...
Starting Courier...
Starting NCH_daemon...
Starting the Security Daemon...
Optimizing SEC database...please wait...
Starting INXbg...
Starting INXu...
Starting document services...
Starting batch entry services...
Starting print services...
Startup of FileNet software initiated. See event log for detailed status.
348 IBM High Availability Solution for IBM FileNet P8 Systems

[...]

su - fnsw
initfnsw status

Software status for host 'fnl43.svl.ibm.com' (operating system = AIX):
 Software started since 11/09/08 20:58:12

Restart of IS by monitor
Table 11-11 details the third test of triggering an IS restart by a monitor.

Table 11-11 Cluster test 3: Restart of IS triggered by a monitor

Test 3 Prerequisites/Instructions Verification/Remark

Test Both HACMP cluster nodes (fnl43 and fnl44) are active. The IS resource
group is online on fnl43, and the IS application server is running. One of the
processes watched by the IS application server monitor is ended to force a
restart of IS on node fnl43. The IS application server fnis_app_srv is stopped
and restarted. No takeover to node fnl44 will occur.

Initial
status

HACMP is started on nodes fnl43 and fnl44:
smitty hacmp

System Management (C-SPOC) → Manage
HACMP Services → Start Cluster Services

IS is running on node fnl43 (“primary node”):

smitty hacmp

System Management (C-SPOC) → HACMP
Resource Group and Application
Management → Bring a Resource Group
Online

clstat -ao

lsvg -o
mount
ifconfig -a

initfnsw status
IS client tests

Test
case

End the SEC_daemon process:

ps -ef | grep SEC_daemon | grep -v
$$
kill -9 <PID>

tail -f
/var/hacmp/log/hacmp.
out
vl

Result IS is restarted on the current node (fnl43), and no
takeover occurs.

clstat -ao
initfnsw status
IS client tests

After
care

N/A (cluster is ready for production)
 Chapter 11. Image Services implementation 349

Example 11-45 shows the test result.

Example 11-45 Cluster test 3: Restart of IS triggered by a monitor

cd /usr/es/sbin/cluster/utilities
clRGinfo -v

Cluster Name: fnis

Resource Group Name: fnis_rg
Startup Policy: Online On Home Node Only
Fallover Policy: Fallover To Next Priority Node In The List
Fallback Policy: Never Fallback
Site Policy: ignore
Node State
---------------------------- ---------------
fnl43 ONLINE
fnl44 ONLINE

clRGinfo -m
--
Group Name State Application state Node
--
fnis_rg ONLINE fnl43
 fnis_app_srv ONLINE MONITORED

cat /var/hacmp/log/clappmond.fnis_app_mon.fnis_rg.log
Nov 10 02:27:50: read_config: Called [Server=fnis_app_mon]
Nov 10 02:27:50: read_config: MONITOR_TYPE="user"
Nov 10 02:27:50: read_config: RESOURCE_GROUP="fnis_rg"
Nov 10 02:27:50: read_config: MONITOR_METHOD="/opt/FileNet/ha_scripts/fnis_mon.sh"
Nov 10 02:27:50: read_config: MONITOR_INTERVAL=60.
Nov 10 02:27:50: read_config: HUNG_MONITOR_SIGNAL=9.
Nov 10 02:27:50: monitor_by_polling: Called
 method="/opt/FileNet/ha_scripts/fnis_mon.sh"
 interval=60
 mode=(0)Nov 10 02:27:50: monitor_by_polling: Output from monitoring method is
in: /var/hacmp/log/clappmond.fnis_app_mon.fnis_rg.monitor.log

ps -ef | grep run_clappmond | grep -v $$
 root 827570 1511630 0 02:27:50 - 0:00 run_clappmond -sport 1000
-result_node fnl43 -script_id 0 -command_id 10 -command fnis_app_mon -environment
?FAIL_COUNT=0??CLUSTER_VERSION=9??GS_NODEID=1??APPLICATION_SERVER=fnis_app_mon??MISC_DAT
A=??GROUPNAME=fnis_rg??RESOURCE_GROUP=fnis_rg??RESTART_METHOD=/opt/FileNet/ha_scripts/fn
is_start.sh??CLEANUP_METHOD=/opt/FileNet/ha_scripts/fnis_stop.sh??NOTIFY_METHOD=??MONITO
R_METHOD=/opt/FileNet/ha_scripts/fnis_mon.sh??FAILURE_ACTION=fallover??RESTART_INTERVAL=
594??HUNG_MONITOR_SIGNAL=9??RESTART_COUNT=1??STABILIZATION_INTERVAL=120??MONITOR_INTERVA
L=60??INSTANCE_COUNT=0??PROCESS_OWNER=??PROCESSES=??MONITOR_TYPE=user??HACMP_VERSION=__P
E__??PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin??ODMDIR=/etc/es/objrepos??
LC_FASTMSG=true??PING_IP_ADDRESS=
??LOCALNODEID=fnl43??LOCALNODENAME=fnl43??CM_CLUSTER_NAME=fnis??CM_CLUSTER_ID=1222565798
?

350 IBM High Availability Solution for IBM FileNet P8 Systems

/opt/FileNet/ha_scripts/fnis_mon.sh ; echo $?
0

ps -ef | grep SEC_daemon | grep -v $$
 fnsw 1368254 1 0 02:26:26 - 0:00 SEC_daemon

kill -9 1368254

/opt/FileNet/ha_scripts/fnis_mon.sh ; echo $?
1

pg/var/hacmp/log/clstrmgr.debug
[...]
Mon Nov 10 02:31:58 GetRmCtrlMsg: Called, state=ST_STABLE
Mon Nov 10 02:31:58 GetRmCtrlMsg: RM_ExitStatus msg received, status=2, RP=fnis_app_mon
Mon Nov 10 02:31:58 ResGroupList::monitorExit(): monitor fnis_app_mon, resource id 10,
pid 737480, exi
t status 2
Mon Nov 10 02:31:58 ResourceGroup::monitorExit(fnis_rg)
Mon Nov 10 02:31:58 ResourceList::monitorExit(5)
Mon Nov 10 02:31:58 Resource::monitorExit(fnis_app_mon)
Mon Nov 10 02:31:58 AppmonList::monitorExit: looking for monitor with name fnis_app_mon
and pid 737480
Mon Nov 10 02:31:58 monitor 0 is fnis_app_mon, pid 737480
Mon Nov 10 02:31:58 Appmon::clappmondExit(fnis_app_mon): Called, monitorState 11, exit
status 2
Mon Nov 10 02:31:58 umt::addAction() Called
Mon Nov 10 02:31:58 clappmondExit(fnis_app_mon): retries left (1 of 1), setting
OnlineMonitorFailed
Mon Nov 10 02:31:58 Appmon::setAppState: setting application fnis_app_mon(10) state 8
Mon Nov 10 02:31:58 setAppState: Running FSM with NEW_EVENT
Mon Nov 10 02:31:58 FSMrun: started (0) for transition [ST_STABLE][EV_NEW_EVENT]
Mon Nov 10 02:31:58 FSMrun: running state = ST_STABLE, FSM-event = EV_NEW_EVENT
Mon Nov 10 02:31:58 handleNewEvent: Called, state=ST_STABLE, new
event=TE_SERVER_RESTART, new node=1
[...]

pg /var/hacmp/log/hacmp.out
[...]
Nov 10 02:31:59 EVENT START: server_restart fnl43 10 fnis_app_mon
[...]
HACMP Event Summary
Event: TE_SERVER_RESTART
Start time: Mon Nov 10 02:31:59 2008
End time: Mon Nov 10 02:32:32 2008
[...]
Terminating processes...
Initializing FileNet software...
Starting index database...
Starting permanent database...
Starting transient database...
Starting security database...
Starting Courier...
 Chapter 11. Image Services implementation 351

Starting NCH_daemon...
Starting the Security Daemon...
Optimizing SEC database...please wait...
Starting INXbg...
Starting INXu...
Starting document services...
Starting batch entry services...
Starting print services...
Startup of FileNet software initiated. See event log for detailed status.
[...]

/opt/FileNet/ha_scripts/fnis_mon.sh ; echo $?
0

11.3.2 Database reconnect test

As of Version 4.1.2, IS supports remote clustered databases and will reconnect
to the database after a database cluster takeover. This new feature is extremely
helpful in creating highly available IS and DB2 systems. Previous IS versions
were unable to reconnect to the database if it had been restarted or a takeover
had occurred, so IS had to be recycled to be able to connect to the database
again.

The database reconnect feature is enabled by default in IS Version 4.1.2. You
also can enable the database reconnect feature by creating additional database
parameters in fn_edit:

fn_edit

Click Procedures → Add Relational Database Object.

Table 11-12 on page 353 lists the database reconnect parameters in fn_edit.

Note: The manual takeover (test 2) and application failure (test 3) are of
greater significance than the node failure (test 1). In test 2 and test 3, HACMP
has to bring down all resources cleanly, before they can be used again on the
standby node. If a resource cannot be freed (for example, a shared file system
cannot be unmounted), the takeover of the whole resource group will fail. If the
current node is simply powered off (test 1), all resources are free and can be
moved to the other node.
352 IBM High Availability Solution for IBM FileNet P8 Systems

Table 11-12 Database reconnect parameters in fn_edit

In Example 11-46, the IS Configuration Editor (fn_edit) is started to add the
database reconnect parameters by clicking the Procedures tab.

Example 11-46 Database reconnect configuration in fn_edit

su - fnsw
$ export DISPLAY=$(who am i|awk '{gsub("\\(|\\)",""); print $NF":0"}')

$ fn_edit

$ fn_build -a

Figure 11-9 shows the additional (optional) db_reconnect_* parameters in the
Relational Databases tab, RDB Objects subtab of fn_edit.

Figure 11-9 DB reconnect configuration in fn_edit

The database reconnect tests were carried out with and without the
db_reconnect_* entries in fn_edit, with the same results: IS does in fact
reconnect after a takeover of the database, but it also logs errors in the IS elog.

Object name Location Default Remark

db_reconnect_disabled 0 0 1 disables reconnects

db_reconnect_timeout 600 600 Retries up to 10 minutes

db_reconnect_interval 10 10 Retries every 10 seconds
 Chapter 11. Image Services implementation 353

For the tests, an IDM Find query was started, and a takeover of the database
cluster was forced (by stopping the current database node with halt -q). In most
cases, the current query had to be repeated after the reconnect.

The IS elog did not show the expected <121,0,41> DBMS is not available
errors, but reported <121,9,30108> DB2 SQL30108N: A connection failed but
has been re-established. See Example 11-47.

Example 11-47 Database reconnect tests with a DB2 cluster

vl # more /fnsw/local/logs/elogs/elog$(date +"%Y%m%d")
[...]
2008/10/26 02:05:14.873 121,9,30108 <fnsw> INXbg -s IndexServer (1200182.1.28
0x125036.1) ... [SERIOUS]
Error in GDBD_exec: SQLExecute, STMT 65537 (&20073170) (../src/GDBD.c, VERSION 4.1.1.0,
@3394).
SQLSTATE = 08506, NativeError = -30108,
ErrorMsg = '[IBM][CLI Driver][DB2/AIX64] SQL30108N A connection failed but has been
re-established. The hostname or IP address is "9.30.188.80" and the service name or port
number is "50010". Special registers may or may not be re-attempted (Reason code = "1").
SQLSTATE=08506'

2008/10/26 02:05:25.487 121,9,30108 <fnsw> INXs (1282302.1.97 0x1390fe.1) ... [SERIOUS]
Error in GDBD_exec: SQLExecute, STMT 65537 (&20025730) (../src/GDBD.c, VERSION 4.1.1.0,
@3394).
SQLSTATE = 08506, NativeError = -30108,
ErrorMsg = '[IBM][CLI Driver][DB2/AIX64] SQL30108N A connection failed but has been
re-established. The hostname or IP address is "9.30.188.80" and the service name or port
number is "50010". Special registers may or may not be re-attempted (Reason code = "1").
SQLSTATE=08506'
[...]

Depending on the current state of the IDM Desktop client and the current communication
between IS and DB2, there where different errors in the IS elog:

[...]
2008/10/26 02:49:33.594 90,0,12 <fnsw> INXs (1118330.1.97 0x11107a.1) ...
query: SELECT
f_docnumber,f_docclassnumber,f_entrydate,f_archivedate,f_deletedate,f_retentbase,f_reten
tdisp,f_retentoffset,f_pages,f_doctype,f_accessrights,f_docformat,f_doclocation,f_ce_os_
id,f_accessrights_rd,f_accessrights_wr,f_accessrights_ax,a31,a32,a33,a34,a35,a36 FROM
doctaba WHERE f_docnumber = :DOC err:30108
[...]

or, in other cases:

[...]
2008/10/26 02:05:25.487 155,209,215 <fnsw> COR_Listen -pt -s32769 -t3600 -d100
(934098.1029.61 0xe40d2.405) ... [WARNING]
COR got Error in Ocor_snd, code=0

2008/10/26 02:05:25.488 155,209,217 <fnsw> INXs (1282302.1.97 0x1390fe.1) ... [WARNING]
cor_PutPacket: connection terminated prematurely
354 IBM High Availability Solution for IBM FileNet P8 Systems

2008/10/26 02:05:25.488 155,209,217 <fnsw> INXs (1282302.1.97 0x1390fe.1) ... [WARNING]
cor_PutPacket failed to 9.146.118.195 [1786]

2008/10/26 02:05:25.488 155,209,217 <fnsw> INXs (1282302.1.97 0x1390fe.1) ...
INXs: network error in parse_call
[...]

11.4 IS maintenance in HACMP clusters

The following section provides help with administering IS in an HA environment.
It discusses controlling, updating, and troubleshooting IS with an HACMP cluster.

11.4.1 Managing IS as a cluster resource

The Image Services administrator has to realize the particularities of a clustered
IS system for day-to-day administrative tasks and for system maintenance.

IS is controlled by HACMP. If the IS application is stopped manually (with
initfnsw stop), the application monitor will detect a failure and either restart IS
or take over the resource group. You can prevent this result in these ways:

� C-SPOC must be used to start or stop the IS application, not the initfnsw
command.

� The HACMP application monitor must be suspended before IS is stopped
manually.

� The HACMP application monitor must not return a failure (exit <> 0) if IS has
been stopped manually, that is, purposefully by the administrator.

You can bring the IS resource group (fnis_rg) online and offline with C-SPOC:

smitty hacmp

System Management (C-SPOC) → HACMP Resource Group and
Application Management → Bring a Resource Group / Bring a Resource
Group Offline

Enter these values:

� Resource Group to Bring Online/Offline: fnis_rg
� Node On Which to Bring Resource Group Online/Offline: fnl43
 Chapter 11. Image Services implementation 355

When HACMP cluster services are stopped on the active cluster node, the IS
resource group can be placed in one of these states:

� Brought offline (IS is stopped, and the resource group is brought offline.)

� Moved (IS is stopped, the resource group is moved, and IS is started on
another node.)

� Unmanaged (Cluster services terminate, and IS keeps running on this node.)

When HACMP cluster services are started on a node, IS will not start
automatically, and it will not be failed back (moved) to this node, because of the
configuration settings in SMIT:

smitty hacmp

Click Extended Configuration → Extended Resource Configuration →
HACMP Extended Resource Group Configuration → Change/Show a
Resource Group.

Enter these values:

� Resource Group Name: fnis_rg
� Participating Nodes (Default Node Priority): fnl43 fnl44
� Startup Policy: Online On Home Node Only
� Fallover Policy: Fallover To Next Priority Node In The List
� Fallback Policy: Never Fallback

If an HACMP takeover is required, but you do not want the IS application started
automatically on the standby node, disable the IS application server (AS) start
script by adding exit 0 as the second line of the start script on both nodes. You
must disable monitoring if IS is not started by the start script. Leave the stop
script as is, because it is required for a successful takeover:

vi /opt/FileNet/ha_scripts/fnis_start.sh

Change the start script as shown in Example 11-48.

Example 11-48 Disabling the AS start script for maintenance

#!/bin/ksh
exit 0
[...]

You can suspend and resume the application monitor (fnis_app_mon) for the IS
application server (fnis_app_srv) with C-SPOC:

smitty hacmp
356 IBM High Availability Solution for IBM FileNet P8 Systems

Click System Management (C-SPOC) → HACMP Resource Group and
Application Management → Suspend/Resume Application Monitoring →
Suspend Application Monitoring / Resume Application Monitoring.

You can also disable the IS application monitor by adding exit 0 as the second
line of the script. The monitor fails if the first line is not the shebang (“#!”) magic
number.

Do not forget to re-enable the cluster scripts on all nodes after maintenance.

11.4.2 Overview of local and shared resources

Whenever maintenance is required with an IS cluster, it can either affect local or
shared resources, or both.

It is extremely important to know the (possible) consequences of changes, for
example, applying a patch, and to act upon them appropriately in the cluster. In
general, everything that is changed on the local node has to be changed on the
other node, as well. Changes to shared resources (for example, the /fnsw/local
file system), have to be made from one of the cluster nodes only.

The IS Multi-Keyed File (MKF) Databases use both local and shared resources.
The links to the data files are local (in /fnsw/dev/1) so they have to be kept in
sync on both nodes, for example, when a database is expanded with a new data
file. The data file raw devices (logical volumes) are shared on volume group fnvg.

Local IS resources
Changes to local resources have to be made on both cluster nodes, for example,
by running an update wizard on one node after the other, or by changing a
configuration file on both nodes simultaneously.

IS install or update wizards for release updates or patches (SP/FP) must be run
on both cluster nodes. If an OSAR is attached, you must run the fnsod.install
script (AIX/Solaris only) after the installers to install the device drivers.

Table 11-13 lists the local resources that are updated for IS on the installation
process.

Table 11-13 Local resources modified for IS

Local resource IS reference Updated by

/etc/group AIX groups (fnusr, fnop,
fnadmin, and so forth)

AIX, IS (GA) installer

/etc/passwd AIX users (fnsw and so forth) AIX, IS (GA) installer
 Chapter 11. Image Services implementation 357

/etc/security/limits User process resource limits
(fsize, nofiles, and so forth)
{optional}

Manually for IS (GA)
installation

/etc/filesystems Definition of file systems and
attributes (auto mount, mount
group, FS log, and so forth)

AIX, HACMP

/etc/hosts Host name to IP address
resolution

Manually for IS (GA)
installation

/etc/resolv.conf Domain name-server
definitions {optional}

Manually for IS (GA)
installation

/etc/netsvc.conf Ordering of name resolution
services {optional}

Manually for IS (GA)
installation

/etc/services Socket and protocol
definitions (tsm, cor, nch, and
so forth)

IS (GA) installer,
maybe IS update wizard

/etc/rc.dt
alt: /etc/rc.d/...

CDE start script - also requires
network options to be set

Manually with vi after IS
installation

/etc/inittab Auto start IS processes at
system boot time - IS entries
must be deactivated with HA

IS (GA) installer,
maybe IS update wizard.
Manually with vi after IS
installation

/etc/tunables/nextboot Configuration of network
options (particularly IS
ephemeral ports)

Manually with no -po
after IS installation

/etc/snmpd.conf Configuration file for snmpd
(fnpd entry)

IS (GA) installer,
maybe IS update wizard

AIX ODM (SWVPD, CuDv,
HACMP)

LVM information (PV, LV, and
so forth)

AIX, HACMP

IS (FileNet)
ISMP (InstallShield) filesets

IS (GA) installer, IS
update wizard

OSAR devices fnsod.install

HACMP configuration HACMP, distributed with
SMIT (cldare)
→ no sync necessary

Local resource IS reference Updated by
358 IBM High Availability Solution for IBM FileNet P8 Systems

/home/fnsw/sqllib
in combination with
/opt/IBM/db2/V9.5

DB2 home directory
($DB2_HOME) and
DB2 client installation

DB2 client installer

/fnsw/bin IS binaries IS (GA) installer, IS
update wizard, individual
IS fixes

/fnsw/dev/1 Links to DB data sets (for
example, sec_db0, sec_rl0)
and OSAR drivers (osara,
odda1)

Manually with fn_util
mk_links during IS
installation and for
maintenance later

/fnsw/etc/serverConfig PPM request handler process
configuration file

Manually with vi after IS
installation and for
maintenance later

/fnsw/etc/killfnsw IS Guard File {temporary}
Internal flag that prevents IS
from starting or stopping.

IS at start/stop

/fnsw/etc/
local_permission_table

Custom IS permission table,
complementing /fnsw/etc/
permission_table

Manually with vi after IS
installation and for
maintenance later

/fnsw/lib/shobj Shared IS libraries IS (GA) installer, IS
update wizard, individual
fixes

/fnsw/lib/shobj/db2lib
or
/fnsw/lib/shobj/oracle

A link to the database (client) Manually with fn_util
linkrdb during IS
installation

/fnsw/procs One (temporary) file per IS
process

IS at run time, will be
rebuilt at IS restart
→ no sync necessary

/fnsw/client IS Toolkit (ISTK) default
location {optional}

ISTK (GA) installer, ISTK
update wizard, individual
ISTK fixes

/fnsw/client/
cor_backoff_config

ISTK courier configuration
{optional}

Manually with vi after
ISTK installation

$HOME/.profile
(particularly for fnsw)

User’s start script with IS
environment variables

Manually with
inst_templates
during IS installation and
updates

Local resource IS reference Updated by
 Chapter 11. Image Services implementation 359

Because the /fnsw/local file system is not mounted on the inactive cluster node,
IS might create subdirectories in the /fnsw/local mount point. If, for example, an
IS command is issued on the standby node by mistake, a log file might be
created in /fnsw/local/logs. This directory will be over-mounted (and hidden)
by the /fnsw/local file system when the node takes over the IS resource group.

The administrator needs to avoid starting IS processes on the standby node and
occasionally delete any files and subdirectories in /fnsw/local on this node.

The crontab entries of each node must be made “cluster ready”. Certain
applications called from crontab require shared resources from the resource
group. You must only start these programs on the active node. The easiest way
to start shell scripts selectively on the IS node only is to test for the existence of
the /fnsw/local/sd/conf_db directory at the start of the script. This way the
script can be run on all nodes, but will only continue on the active node. See
Example 11-49.

Example 11-49 Executing a cron job on the active cluster node only

if [[! -d /fnsw/local/sd/conf_db]]; then
 echo "Error: /fnsw/local not mounted. Inactive cluster node?"
 exit 2
fi

Shared IS resources
Changes to shared resources must be made on the currently active cluster node
only, that is, the node where the IS resource group is running at the moment.

The IS configuration editor (fn_edit), for example, saves its configuration files to
/fnsw/local/sd/conf_db, which is located on the shared VG.

Table 11-14 on page 361 highlights only a few important examples of files that
are located in the /fnsw/local file system of the shared VG fnvg.

/dev/fnsod.* OSAR devices {optional},
linked from:
/fnsw/dev/1/osar*
/fnsw/dev/1/odd*

Manually with
fnsod.install and fn_util
mk_links during IS
installation and for
maintenance later

/fnsw/sd/nocons Flag file to stop console output
{optional}

Manually with touch after
IS installation

Local resource IS reference Updated by
360 IBM High Availability Solution for IBM FileNet P8 Systems

Table 11-14 Shared resources modified for IS

Shared resource IS reference Updated by

/fnsw/local/
filenet.podf

IS Programmable Object Data
File (PODF) for IS security

Manually with fn_pso_*
tools during IS
installation and for
maintenance later

/fnsw/local/sd/
NCH_db0

NCH (MKF) database IS at run time and
configuration

/fnsw/local/sd/
snt.chkpt

Scalar numbers from
Permanent DB

IS at run time (IS
start/stop) and manually
for maintenance

/fnsw/local/sd/
checkpoint.osa

OSAR checkpoint file IS at run time (if an
OSAR is configured)

/fnsw/local/sd/
fnsod.foreign

OSAR driver exclude file
{optional}

Manually with vi during
IS installation and for
maintenance later

/fnsw/local/sd/
snmp.conf

SNMP configuration file Manually with vi during
IS installation and for
maintenance later

/fnsw/local/sd/
perf_mon.script

IS statistics configuration
copied from /fnsw/lib/perf
and modified

Manually with vi during
IS installation and for
maintenance later

/fnsw/local/sd/
rdbup.bin

IS Index DB user passwords Manually with
fn_setup_rdb during IS
installation and with
Xapex for maintenance
later

/fnsw/local/sd/
conf_db/IMS_*.cdb

IS configuration database
(highest-numbered file)

IS configuration editor
fn_edit during IS
installation and for
maintenance later

/fnsw/local/sd/
stop_cold.txt

COLD stop flag file
{temporary}

Manually with touch, will
be deleted when IS starts

/fnsw/local/sd/1/
perflog

IS performance data IS at run time (if “Collect
Statistics” is configured)

/fnsw/local/sd/1/
FNSHMSEGSZ

IS shared memory segment
size configuration

Manually with vi during
IS installation and for
maintenance later
 Chapter 11. Image Services implementation 361

Most of the (optional and undocumented) flag files for IS or for IS patches or
debug modules also reside on the shared file system. These files are examples:

� /fnsw/local/sd/cor_backoff_config
� /fnsw/local/sd/no_build.txt
� /fnsw/local/sd/1/cpu_bind
� /fnsw/local/sd/1/bind_debug
� /fnsw/local/sd/1/max_tli_elog
� /fnsw/local/trigger/no_hint

HACMP File Collection
You can automate the task of keeping local files in sync between cluster nodes
by using the File Collection feature of HACMP. All files in the File Collection are
automatically synchronized to the other node, when changed (by default, every
10 minutes). Use C-SPOC to configure a File Collection for IS:

smitty hacmp

Click System Management (C-SPOC) → HACMP File Collection
Management → Manage File Collections → Add a File Collection.

Enter these values:

� File Collection Name: filenet
� Propagate files during cluster synchronization?: no
� Propagate files automatically when changes are detected?: yes

/fnsw/local/sd/1/
msar_identify_disable

Disable MSAR identify
process {optional}

Manually with vi during
IS installation

/fnsw/local/logs IS log files, for example, elogs,
perf, EBR, or log

IS at run time and during
installs or updates

/msar1 MSAR target directory IS at run time

/backup (EBR) backup target directory IS EBR backup/restore

/dev/rfn_*, for example:
/dev/rfn_sec_*
/dev/rfn_perm_*
/dev/rfn_trans_*
/dev/rfn_cache*

Raw devices for MKF DBs and
cache, linked from:
/fnsw/dev/1/sec_*
/fnsw/dev/1/permanent_*
/fnsw/dev/1/transient_*
/fnsw/dev/1/cache*

IS at run time

Shared resource IS reference Updated by
362 IBM High Availability Solution for IBM FileNet P8 Systems

Click System Management (C-SPOC) → HACMP File Collection
Management → Manage Files in File Collections → Add Files to a File
Collection.

Enter these values:

� File Collection Name: filenet
� New File: At least add the files in Table 11-15

Table 11-15 lists local files that need to be synchronized by HACMP.

Table 11-15 HACMP File Collection for IS

Collection file Owner Remark

/etc/hosts AIX

/etc/services AIX

/etc/snmpd.conf AIX

/etc/snmpdv3.conf AIX optional, IS uses SNMPv1

/etc/rc.net AIX

/etc/inetd.conf AIX

/usr/es/sbin/cluster/netmon.cf HACMP

/usr/es/sbin/cluster/etc/clhosts HACMP

/usr/es/sbin/cluster/etc/rhosts HACMP

/usr/es/sbin/cluster/etc/clinfo.rc HACMP

/opt/FileNet/ha_scripts/fnis_start.sh HACMP/IS IS cluster start script

/opt/FileNet/ha_scripts/fnis_stop.sh HACMP/IS IS cluster stop script

/opt/FileNet/ha_scripts/fnis_mon.sh HACMP/IS IS cluster monitor script

/fnsw/etc/serverConfig IS PPM configuration

/fnsw/etc/local_permission_table IS custom permission_table

/home/fnsw/.profile AIX/IS Profile of fnsw user

Note: You must enter the collection file names with an absolute path (start
with a /). Symbolic links in /fnsw/dev/1 and raw devices and OSAR drivers in
/dev cannot be synchronized with an HACMP File Collection.
 Chapter 11. Image Services implementation 363

The HACMP configuration is stored in the local AIX Object Data Manager
(ODM), but it is automatically copied to the other cluster node, when the HACMP
Verification and Synchronization is run from SMIT (cldare):

smitty hacmp

Click Extended Configuration → Extended Verification and
Synchronization.

11.4.3 IS update procedures with HACMP

Patches for Image Services typically come in the form of service packs (SP) or fix
packs (FP) that are packaged in an installation wizard. Problem Management
Records (PMRs) sometimes produce individual fixes that consist of single files.

These minor release patches usually do not require you to update the Index
database (DB2 or Oracle) or any of the MKF databases, but to simply replace
binaries in /fnsw and /fnsw/local and perhaps run additional scripts.

IS major release updates usually require you to update the Index DB in advance,
or they will update the database as part of the procedure. This action obviously
has to be done only one time, during the update of the first node.

There is no rolling update with IS clusters. You must apply updates to all cluster
nodes at the same time.

We recommend the following sequence to update IS in a cluster:

� Cluster node 1:

a. Suspend HACMP application monitoring for IS (smitty hacmp).

b. Disable the IS start script on both nodes by adding a line exit 0 on top.

c. Stop all IS clients, and clear ISTK shared memory (wal_purge).

d. Stop Image Services (initfnsw -y stop and killfnsw -ADSy),
verify /fnsw/procs is empty, and end the remaining processes and purge
/fnsw/procs.

e. Create a full backup of IS:

• AIX backup (bootable) of rootvg, for example, with mksysb
(both nodes, optional for minor releases and single patches)

• Backup of Index DB (DB2) on the remote database server

• EBR backup of MKF DBs (Security/Permanent/Transient DB) and
Cache
364 IBM High Availability Solution for IBM FileNet P8 Systems

• A savevg backup of fnvg or (at least) tar archive of /fnsw and
/fnsw/local

f. Update the Index DB version of the (remote) server and the (local) client, if
required.

g. Run the SP/FP installation wizard or copy a single patch to target
directory.

h. Run fnsod.install, if the patch includes an updated /fnsw/bin/fnsod driver.

i. Verify or revert any changes to local resources:

• /fnsw/etc/serverConfig
• /fnsw/etc/permission_table
• /fnsw/lib/perf/reports
• /fnsw/lib/perf/perf_mon.script
• /fnsw/support/911
• /etc/inittab {All IS-related entries in inittab must be disabled.}

j. Move IS resource group to node 2; IS must not start automatically.

� Cluster node 2:

a. Stop Image Services (initfnsw -y stop and killfnsw -ADSy). Just in
case, verify that /fnsw/procs is empty, end the remaining processes, and
purge /fnsw/procs.

b. Update the Index DB version of the (local) client, if required.

c. Run the SP/FP installation wizard, or copy a single patch to the target
directory. If necessary, update any files in the /fnsw/local file system
another time from node 2 of the cluster. If the wizard does not allow you to
update IS another time “to the same level”, you can alternatively delete the
local /fnsw part of the IS installation and all traces of previous updates (log
files and ODM). Now, you can start a fresh installation on node 2, instead
of an IS update. Remember not to run fn_edit or to initialize the
databases on this cluster node.

d. Run fnsod.install, if the patch includes an updated /fnsw/bin/fnsod driver.

e. Verify or revert any changes to local resources:

• /fnsw/etc/serverConfig
• /fnsw/etc/permission_table
• /fnsw/lib/perf/reports
• /fnsw/lib/perf/perf_mon.script
• /fnsw/support/911
• /etc/inittab {All IS-related entries in inittab must be disabled.}

f. Move the IS resource group to node 1; IS must not start automatically.
 Chapter 11. Image Services implementation 365

g. Start IS manually with initfnsw start, and perform system and
application tests.

h. Re-enable the IS start script on both nodes by removing exit 0 from
line 1.

i. Resume HACMP application monitoring for IS (smitty hacmp).

j. Perform cluster tests, and move IS resource group to node 2, and then, to
node 1.

k. Restart all IS clients, return to production mode.

Cluster and application tests are mandatory after every change to the IS
installation or environment, such as AIX, HACMP, or DB2. Changes that affect
the IS configuration (in the database) only might be transparent and require less
effort.

11.4.4 Troubleshooting and log files

To troubleshoot problems in a highly available Image Services system, you must
analyze both the IS error logs (elogs) and the cluster logs. To verify the status of
a clustered IS, you must check both the cluster and IS.

Requesting status information
You can check the current status of IS in an HACMP cluster with the clstat -ao
(HACMP) and initfnsw status (IS) command.

HACMP status
The most useful command for an overview of the cluster configuration is the
/usr/es/sbin/cluster/utilities/cldisp command.

You can verify the current status of the cluster with the
/usr/es/sbin/cluster/clstat -ao command.

The clstat command shows if nodes and interfaces are up or down and if the IS
resource group is online and on which node (for example, fnl43). The Cluster
Information Daemon (clinfoES) must be running for clstat to work. See
Example 11-50.

Example 11-50 Running clstat for the current cluster status

cd /usr/es/sbin/cluster
clstat -ao

clstat - HACMP Cluster Status Monitor

366 IBM High Availability Solution for IBM FileNet P8 Systems

Cluster: fnis (1222565798)
Sun Nov 9 20:41:40 PST 2008
 State: UP Nodes: 2
 SubState: STABLE

 Node: fnl43 State: UP
 Interface: fnl43-bt1 (2) Address: 10.10.10.53
 State: UP
 Interface: fnl43_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnis (2) Address: 9.30.188.78
 State: UP
 Interface: fnl43-hs03 (1) Address: 10.0.3.53
 State: UP
 Resource Group: fnis_rg State: On line

 Node: fnl44 State: UP
 Interface: fnl44-bt1 (2) Address: 10.10.10.54
 State: UP
 Interface: fnl44_vpath0_01 (0) Address: 0.0.0.0
 State: UP
 Interface: fnl44-hs03 (1) Address: 10.0.3.54
 State: UP

Image Services status
You can view the status of IS with the # /fnsw/bin/initfnsw status command.

Because the initfnsw command does not always correctly report if IS is actually
working (or if it is stopped or inaccessible by clients), we recommend that you
also look at the IS error log by using this command: # /fnsw/bin/vl.

Log files for troubleshooting
Table 11-16 on page 368 lists the log files that can be consulted in the case of
HA-related problems with IS.
 Chapter 11. Image Services implementation 367

Table 11-16 HA-related log files for IS

Log file/Command Owner Use

errpt [-a] AIX AIX system log

/var/hacmp/log/hacmp.out
old: /tmp/hacmp.out

HACMP Event script log, including IS
application server start/stop

/var/hacmp/log/clutils.log HACMP HACMP utility log, including
File Collection propagation

/var/hacmp/log/clstrmgr.debug[.long]
old: /tmp/clstrmgr.debug

HACMP [Detailed] HACMP cluster
manager daemon log

/var/hacmp/log/cspoc.log
old: /tmp/cspoc.log

HACMP C-SPOC command log

/var/hacmp/log/clappmond.fnis_app_mo
n.fnis_rg.log

HACMP IS application monitor log

/var/hacmp/log/clappmond.fnis_app_mo
n.fnis_rg.monitor.log

HACMP Output of IS application
monitor (usually empty)

/var/hacmp/clcomd/clcomd.log HACMP HACMP cluster
communication daemon log

/var/hacmp/clcomd/clcomddiag.log HACMP Cluster communication
daemon trace log

/var/hacmp/clverify/clverify.log HACMP DARE synchronization log

/var/ha/log/* HACMP HACMP topology and group
services log files

/fnsw/local/logs/elogs/elog$(date
+"%Y%m%d")

IS IS errorlog (elog)
View with vl command

/fnsw/local/logs/TM_daemon/TM_daemon
.log

IS IS TM_daemon log

/fnsw/client/logs/wal$(date
+"%Y%m%d")

ISTK ISTK error log
368 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 12. DB2 implementation

Content Engine and Process Engine have their own databases. In addition,
Image Services also has its own database. To ensure the high availability of an
IBM FileNet P8 solution, we must ensure that the database component is also
highly available.

This chapter describes the following topics:

� DB2 high availability strategies for FileNet P8
� Setting up DB2 high availability for FileNet P8
� High availability tests for DB2
� Maintenance and upgrade recommendations for DB2

12
© Copyright IBM Corp. 2009. All rights reserved. 369

12.1 DB2 high availability strategies for FileNet P8

This section provides an overview of DB2 high availability (HA) strategies for
FileNet P8. For a FileNet environment, the database server is a key functional
component. The Content Engine (CE), the Process Engine (PE), and Image
Services (IS) use the database server for storing data.

The DB2 high availability scenario for a FileNet environment that we consider in
this section is based on an active/passive cluster. In a scenario of two nodes,
only one DB2 server is available for client access. The second DB2 server is not
active, because it is a hot standby server. It is activated only when the primary
node fails.

The DB2 9.5 High Availability (HA) feature supports the IBM Data Server with
cluster management software, such as IBM PowerHA for AIX, formerly IBM High
Availability Cluster Multi-Processing (HACMP), IBM Tivoli System Automation for
Multiplatforms, and Microsoft Windows Server® Cluster. In DB2 9.5, IBM Tivoli
System Automation for Multiplatforms Base Component is integrated with IBM
Data Server on AIX and Linux as part of the DB2 High Availability feature. When
you install DB2 9.5 on AIX or Linux, you have the option to install this feature,
which automatically installs IBM Tivoli System Automation for Multiplatforms.
The DB2 High Availability Configuration Utility (db2haicu) provided by DB2 for
configuring DB2 with IBM Tivoli System Automation for Multiplatforms greatly
simplifies the clustering configuration.

The DB2 High Availability feature enables the database manager to automatically
request cluster manager configuration changes whenever you perform certain
database manager instance configuration and administration operations. The
DB2 cluster manager API defines a set of functions that enables the database
manager to communicate configuration changes to the cluster manager.

The DB2 Data Server High Availability and Disaster Recovery (HADR) feature
provides data replication, which can be used (together with clustering software,
such as IBM Tivoli System Automation for Multiplatforms or HACMP) to provide
high availability. HADR protects against data loss by replicating data changes
from a source database, called the primary, to a target database, called the
standby.

For more details about DB2 HA strategies, refer to High Availability, Scalability,
and Disaster Recovery for DB2 on Linux, UNIX, and Windows, SG24-7363.
370 IBM High Availability Solution for IBM FileNet P8 Systems

12.1.1 Database considerations for FileNet P8

The following FileNet components use the database layer for their functionality:

� Content Engine (CE):

CE is the major component of the FileNet P8 application, and it requires two
repositories: Global Configuration Database (GCD), which stores global
system configuration information for all servers in the IBM FileNet P8 domain,
and the object store, which stores the objects in an IBM FileNet P8
environment. There can be one or multiple object stores. Each object store
manages a database (CE database) for metadata. Each object store can
have one or more storage areas that represent the physical storage area
location.

� Process Engine (PE):

PE uses a database for storing all process-related data.

� Image Services (IS):

IS uses a database to store metadata for the documents that are archived in
IS, such as document classes and document properties, called indexes.
During normal operations, the index database updates are synchronized with
the permanent database, which is called Multi-Keyed File (MFK), in IS that
stores the storage locations of the documents.

In a DB2 environment, databases can share an instance or can have a dedicated
instance for each database. The IBM FileNet P8 components can be configured
in both shared and dedicated configurations. When choosing the database
configuration, you might take into consideration a few factors: the estimated size
and load of the databases, the requirements of the CE, PE, and IS components,
as well as maintenance and backup of the databases. Refer to the requirements
of each component for the version you are installing.

In a larger environment, consider using separate systems for each FileNet
component’s databases.

Note: The file storage areas for Content Engine must be deployed on
highly available storage that has built-in redundancy for all components.
Refer to your storage vendor for details.
 Chapter 12. DB2 implementation 371

This list contains several recommendations and restrictions for DB2 databases in
a FileNet P8 environment:

� Use separate Content Engine and Process Engine databases for ease of
maintenance and support.

� Use Database Managed Space (DMS) for user and user temporary
tablespaces for both Content Engine and Process Engine.

� The Content Engine Global Configuration Database (GCD) and every object
store must have dedicated databases.

� Process Engine supports only the remote DB2 database. A database is local
if it is installed on the same machine with Content Engine or Process Engine.
A database is remote if it is on a separate server from the component using
that database.

� If you plan to use the region recovery feature of Process Engine, each region
configured for recovery must reside in a dedicated data, binary large object
(BLOB), and index tablespace, which is separate from the default data
tablespace.

� Process Engine setup allows only alphanumeric and underscore characters
for database, tablespace, and user names.

� Starting with Image Services Version 4.1.2, remote database reconnect is
supported; thus, DB2 can be used as a remote database server for IS in an
HA configuration.

For more details regarding the DB2 database configuration for FileNet, refer to
FileNet P8 Version 4 Installation and Upgrade Guide, GC31-5488.

12.1.2 Scenarios for DB2 high availability

There are many ways to implement DB2 high availability for the FileNet
application. Because software and hardware technologies vary across platforms,
you can consider various options for creating a highly available DB2 solution that
performs well. A broader discussion about DB2 high availability solutions is
beyond the scope of this section. For more details about this topic, refer to High
Availability, Scalability, and Disaster Recovery for DB2 on Linux, UNIX, and
Windows, SG24-7363.

For the DB2 HA scenario in a FileNet environment, we present two options:

� DB2 in a shared storage environment with HA clustering software
� DB2 in a non-shared storage environment using HADR
372 IBM High Availability Solution for IBM FileNet P8 Systems

DB2 in a shared storage environment using HA software
DB2 in a shared storage environment using HA software is a typical
active/passive cluster based on a single copy of data, which is activated on the
node running DB2. You implement this option based on a system clustering
software, such as HACMP or Tivoli System Automation for Multiplatforms.

In the HA cluster solution, the physical database is stored on a shared storage
system. Only one system owns and manages the shared disk storage at a time. If
there is a failure on the server, the database server processes can be moved
from the machine to a backup system. To accomplish this task, the cluster
software moves all the necessary resources to the standby system. These
resources include the disk resources of the physical database, the network
resources, and the database server resources, including the code and the
configuration files.

Because there is only one image of the database on the shared disk, there is no
need to synchronize the data with other copies.

Figure 12-1 shows a shared storage scenario for DB2.

Figure 12-1 DB2 in a shared storage environment
 Chapter 12. DB2 implementation 373

You have to consider a few aspects regarding the cluster resources for the DB2
database:

� Storage resource: It refers to the disks, raw devices, or file systems that are
used by DB2 to hold the database environment, which consists of these
components:

– DB2 code: It is the location where DB2 software is installed. Typically, it is
located on the local disks of each node. For DB2 Version 8, the code is
installed in a predefined location. Staring from DB2 Version 9, you can
define the location for the DB2 installation.

– Database instance: The database files for an instance are common to all
nodes of the cluster; thus, they need to be placed on the shared storage.

� Network resource: A virtual IP address resource can be used for the client
access to the database. In case of a failure, the IP address is activated on the
standby node, so the clients do not need to change their connection
configuration. For an environment using multiple DB2 instances, you can use
multiple virtual IP addresses.

� Database server resource: It usually consists of scripts to start, stop, and
monitor the instance and database. The cluster software uses these scripts to
monitor the database environment and transparently fail the active node over
to the standby node in case the active node fails.

When a failure is detected, ownership of the storage is moved from the primary
system to the standby system. The network resources are moved, as well.
Finally, the database server resources are started on the standby node and the
database is made available as shown in Figure 12-2 on page 375.
374 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 12-2 DB2 failure in a shared storage scenario

After a failover, DB2 always performs crash recovery, because the database was
not shut down properly. During the crash recovery, the database engine
processes the log files, making sure that all committed transactions are written to
the disk and that the uncommitted transactions are rolled back. The time that is
required to perform this operation depends on the amount of open work in the
database logs at the point of failure. The failover process duration can vary,
depending on the number of transactions that need to be processed from the
logs.

When a failure occurs on the primary system, all applications are disconnected,
and a communication error is returned to the application. When the database
becomes available on the standby system, the application simply needs to
reconnect to the database, and then, it can continue to work as before. The DB2
automatic client reroute (ACR) feature can be used to automatically route or
reconnect the client connection to the active database instance. With the ACR,
DB2 will route application connections to the failover server, and there is no need
for the applications to reconnect. The ACR function is supported by DB2 Version
8.2 and later.
 Chapter 12. DB2 implementation 375

In a basic, two-node hot-standby configuration, the resources of the two nodes
do not need to be identical. Because the standby node is used only in failover or
maintenance cases, it can be configured with less CPU and memory.

The basic hot-standby scenario can be extended to a mutual takeover
configuration where both servers are actively hosting separate databases. Each
machine is prepared to take over the workload of its peer node in the event of a
failure.

Table 12-1 summarizes the advantages and disadvantages of a shared disk
environment in an HA environment, compared with other HA solution options,
including options that we do not discuss in this book. For more details, refer to
Implementing high availability with DB2 9.5 at this Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0807wright/

Table 12-1 Shared storage advantages and disadvantages

DB2 in a non-shared storage system with HADR
This scenario is based on the DB2 High Availability Disaster Recovery (HADR)
feature. The DB2 HADR is a high performance database replication system that
is based on the DB2 logging mechanism. An HADR scenario consists of two
independent systems, a primary and a standby. The primary system serves the
client connections, performs the transactional work, and replicates the database
changes to the standby system. In a HADR configuration, each node runs its own
DB2 instance and database on its own storage. See Figure 12-3 on page 377.

Note: In an environment that supports partitioning, such as System p, the
resources of logical partitions can be dynamically changed at the failover time
with or without the assistance of the clustering software.

Advantages Disadvantages

� Database copies are always
consistent.

� No changes to the application or to
the client are needed.

� No user interaction is needed to
detect and initialize failover.

� There is no performance
degradation due to HA solution
design.

� Extra software is needed to create and
configure the solution.

� Data is not duplicated, providing less
redundancy.

� External storage is required that must
meet certain HA standards.

� There are distance limitations due to
storage requirements.
376 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0807wright/

Figure 12-3 Both DB2 nodes in a non-shared storage scenario using HADR

HADR supports three synchronization modes:

� Synchronous

The log write is considered successful only when the data was written to both
the primary’s and standby’s log files. This mode guarantees no data loss as
long as the HADR replication pair is active.

� Near-synchronous

In this mode, the log write is successful when the primary’s log buffer has
been written to log files on the primary and an acknowledgement is received
that the log buffer has been received on the standby. This mode is the default
option.

� Asynchronous

In this mode, a log write is successful when logs have been written to the disk
on the primary and log data has been delivered to the TCP/IP layer. In case of
a failure, transactions in the log’s files that have not been sent to the standby
system cannot be recovered, and data loss can occur.
 Chapter 12. DB2 implementation 377

Choosing the synchronization mode depends on various factors, such as the
database log generation rate and the network bandwidth. Configuring various
aspects of your database system, including network bandwidth, CPU power, and
buffer size, can improve the performance of your HADR databases.

For the highest level of data replication protection, we recommend using the
synchronous mode for configuring DB2 in a highly available solution for FileNet.
For further details concerning the HADR synchronization modes, consult the
DB2 documentation.

In the event of a failure, the standby’s role can be switched to primary with a
single command. To automate the takeover roles for the HADR database pair in
case the primary node fails, you can use a clustering software, such as IBM
Tivoli System Automation for Multiplatforms or HACMP. A DB2 HA with HADR
consists of these cluster resources:

� Network resources: A virtual IP address can be used to facilitate the client
access to the database. In case of a failure, the IP address is moved to the
standby system, and the clients do not need to change the connection
configuration.

Automatic Client Reroute (ACR) is an alternative feature, which enables DB2
clients to reconnect automatically to the standby system on an alternate IP
address configuration. In that case, a virtual IP address is not required.

� Database server resources: These resources refer to the methods that are
used by the cluster software to start, stop, and monitor database environment
on a system and to enable the client access to the database in the failover
cases. Consider these resource types:

– Database instance resource: The database instance in this case runs on
each node of the cluster at the same time. In case of a failure, the
database instance is already activated on the standby node, so this
resource is local to each node. It does not move to another node, such as
in the shared environment case.

– HADR resource: This resource is created in the cluster to manage the
HADR relationship between the primary and the standby databases.

In case of a failure on the primary node, the virtual IP address is moved to the
standby node and the standby databases are switched to the primary role. See
Figure 12-4 on page 379.
378 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 12-4 DB2 failover in a non-shared storage scenario

DB2 HADR also increases the availability by allowing you to perform database
code rolling upgrades. The roles of the primary and the standby can be switched
at will as long as they are in a synchronized state. In the event that you want to
perform a system maintenance task, an upgrade, or a DB2 fix installation, you
can turn the HADR off.

The DB2 HADR feature provides advantages and disadvantages for an HA
environment. Table 12-2 on page 380 lists several of them.
 Chapter 12. DB2 implementation 379

Table 12-2 HADR advantages and disadvantages

12.2 Setting up DB2 high availability for FileNet P8

This section describes the procedure of using the DB2 High Availability feature
for FileNet P8 in an high availability environment. For our case study, we
implement the DB2 HA features, HADR and integrated IBM Tivoli System
Automation for Multiplatforms, for the FileNet P8 DB2 environment.

12.2.1 The lab environment

Before setting up the DB2 HA environment, we start by planning the cluster
infrastructure.

For our case study in the lab, we use the following configuration:

� AIX 5.3 Technology Level 8, with RSCT Version 2.4.9

� DB2 Enterprise Server Edition Version 9.5, Fix Pack 1

� IBM Tivoli System Automation for Multiplatforms Version 2.2 provided in
DB2 9.5

� Two System p nodes or logical partitions (LPARs) with appropriate memory,
CPU, and storage resources (see DB2 requirements in the DB2 product
manual)

Figure 12-5 on page 381 illustrates our HADR configuration.

Advantages Disadvantages

� Database copies are always
consistent.

� No changes to application or client
are needed.

� Installation and maintenance are
easy.

� Failover automation is ready to use
and available for AIX and Linux.

� The impact on performance is
negligible.

� You have the ability to perform DB2
fix pack rolling upgrades.

� There are additional server and
storage requirements.

� The standby system is not currently
available for database operations.

� Non-logged operations are not
replicated.

Note: For the HADR, the primary and the standby databases are independent
databases that usually reside on separate storage devices.
380 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 12-5 HADR configuration in our lab environment

Each DB2 server for FileNet P8 contains one instance (p8inst) for all of the
databases that are used by the FileNet components:

� Content Engine databases:

– Global Configuration Database (FNGCDDB)
– One object store database (FNOS)

� Process Engine database: VWDBHA

� Image Services database: INDEXDB

We use two networks in the cluster configuration:

� A public network that is used for client communication with the database
servers

� A private network for HADR replication traffic

fnl100-hs04:en3
10.0.4.110

fnl100:en2
9.30.188.110

fnl70:en2
9.30.188.80

fnl70-hs04:en3
10.0.4.80

Primary Server
NODE A

ACR

FNGCDDB

FNOS

VWDBHA

INDEXDB

CE

PE

IS

P8inst

HADR Domain

Standby Server
NODE B

FNGCDDB

FNOS

VWDBHA

INDEXDB

CE

PE

IS

P8inst

Port 50018

Port 50017

Port 50020

Port 50016

Port 50010Port 50010
 Chapter 12. DB2 implementation 381

Table 12-3 shows the host names and the IP addresses for the public and private
interfaces on each node.

Table 12-3 Host name and IP addresses

HADR data replication feature works at the database level. For each database
pair that is involved in an HADR relationship, a pair of TCP/IP ports is required
for communication. In our case study, we use the same port number on both
servers. Each port number has an associated service name in the /etc/services
file. Table 12-4 describes the TCP/IP port configuration for HADR
communication.

Table 12-4 HADR ports and service names for FileNet DB2 databases

In an HADR pair, one system is the primary system (fnl100) that holds the active
databases currently accessed by the clients for their database operations. The
other system is the standby system (fnl70) and has a passive role. Each
database has a standby copy on the standby system. To replicate, for each
database pair, we have set the HADR synchronization mode (HADR_SYNCMODE) to
SYNC.

Each DB2 server has a TCP/IP port number to communicate with the clients. In
our case study, we use 50010 for both nodes. You might also consider using
separate ports, because DB2 instances on primary and standby nodes work
independently of each other.

We use the ACR feature on the DB2 server to enable automatic recovery for the
client connection in case of primary server failure. A Virtual IP address is not a
requirement when using the ACR feature and is not used in our environment.

Host name HADR role Interface: Public IP Interface: Private IP

fnl100 Primary en2:9.30.188.110 en3:10.0.4.110

fnl70 Standby en0:9.30.188.80 en3:10.0.4.80

FileNet component Database name Service name Port number

Image Services INDEXDB p8_INDEX 50016

Content Engine FNOS p8_FNOS 50017

Content Engine FNGCDDB p8_GCD 50018

Process Engine VWDBHA p8_VWDBHA 50020
382 IBM High Availability Solution for IBM FileNet P8 Systems

To integrate HADR with the IBM Tivoli System Automation for Multiplatforms
cluster, we use the db2haicu tool available in DB2 9.5. The tool configures the
cluster by defining the resource groups, resources, equivalencies, and
relationships and uses the IBM Tivoli System Automation for Multiplatforms
policy scripts, which are provided with DB2, to control the application resources.

12.2.2 Prepare the DB2 setup

Before installing DB2 Enterprise Server, perform these steps:

1. Make sure that the hardware and software requirements are met. For details,
refer to the IBM Web site:

http://www.ibm.com/software/data/db2/9/sysreqs.html

2. Create the required user IDs and group.

Table 12-5 shows the required users and groups for the DB2 instance that we
create.

The integrated IBM Tivoli System Automation for Multiplatforms configuration
tool, db2haicu, which is provided by DB2, uses underscore (_) as part of the
naming convention for resource and resource group. We recommend not
using underscore in your DB2 instance name to avoid possible conflict with
db2haicu.

Table 12-5 Users for DB2 instance

Table 12-6 on page 384 shows the users that are specific to the FileNet
application from our environment.

Note: DB2 Version 9 requires the 64-bit kernel of the AIX system.

User Group Home directory Description

p8inst p8_igrp /data/db2/p8inst DB2 instance owner

p8_finst p8_ifgrp /data/db2/p8_finst Fenced user
 Chapter 12. DB2 implementation 383

http://www.ibm.com/software/data/db2/9/sysreqs.html

Table 12-6 Users for FileNet P8 components

3. Create and verify the disk space that is required to accommodate the DB2
installation and the FileNet databases.

For our case study, we use the following layout:

– The DB2 installation directory is /opt/IBM/db2/V9.5_FNP8. We reserve
2 GB of free space in the /opt file system. The DB2 9.5 Installation Guide
also recommends to have 2 GB of free space in /tmp for the installation
process.The installation guide is available from the online information
center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

– The DB2 instance and user home directories are located in /data/db2.

– The DB2 Enterprise Server Edition installation kit is located in the directory
/data/db2/software.

– For the databases, we use the /data file system on each database node
containing the database instance and the databases with free space of 30
GB.

4. Reserve the TCP/IP ports that are required for the instance and HADR
configuration. For our environment, see the allocated ports in Table 12-4 on
page 382.

User Group Home directory Description

p8_ce p8_igrp /data/db2/p8_ce CE runtime user

f_sw p8_igrp /data/db2/f_sw PE and IS runtime user

f_maint p8_igrp /data/db2/f_maint PE and IS maintenance user

f_sqi p8_igrp /data/db2/f_sqi IS user

f_open p8_igrp /data/db2/f_open IS user
384 IBM High Availability Solution for IBM FileNet P8 Systems

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

12.2.3 Install DB2 server

Use the following guidelines to install and verify the DB2 Server installation for
FileNet on both nodes:

� Locate the installation media. Copy the DB2 installation package to a local file
system, and unpack it in the desired directory. Allocate at least 2 GB for the
archive and the uncompressed files.

� Install the DB2 software. Content Engine, Process Engine, and Image
Services require 64-bit instances on the UNIX® servers. A single instance
can be shared by all of the FileNet components.

� When the installation has finished, check the status report or go to the /tmp
directory to verify that the DB2 installation logs did not contain any errors.

Make note of the TCP/IP port numbers that are assigned to the instance or
instances. They are required for the DB2 client configuration.

The following procedure details the steps that we performed to install the DB2
Server for the FileNet applications:

1. As the root user, change the directory to where the DB2 installation package
is located and launch the db2setup program. A Welcome window is displayed
as shown in Figure 12-6.

Figure 12-6 DB2 setup: Welcome window
 Chapter 12. DB2 implementation 385

2. Select Install a product, and then select Installing DB2 Enterprise Server
Edition Version 9.5. The DB2 setup window is launched. See Figure 12-7.

Figure 12-7 DB2 setup menu
386 IBM High Availability Solution for IBM FileNet P8 Systems

3. Accept the license agreement. See Figure 12-8.

Figure 12-8 License agreement
 Chapter 12. DB2 implementation 387

4. Choose the installation type. We choose Typical: 980 - 1180 MB. See
Figure 12-9.

Figure 12-9 Selecting the installation type
388 IBM High Availability Solution for IBM FileNet P8 Systems

5. In the installation action step, we choose the option to install the product and
create the response file as shown in Figure 12-10.

Figure 12-10 Select the response file
 Chapter 12. DB2 implementation 389

6. Figure 12-11 shows our installation directory. Note that starting with DB2 9.5,
you can change the installation directory to a user-defined directory.

Figure 12-11 Select the installation directory

7. In the next window, we choose the option to install the IBM Tivoli System
Automation for Multiplatforms component. See Figure 12-12 on page 391.
The IBM Tivoli System Automation for Multiplatforms version to be installed
depends on the DB2 version and the fix pack that are currently being
installed. We recommend using the IBM Tivoli System Automation for
Multiplatforms version that shipped with the DB2 package.

When installing the IBM Tivoli System Automation for Multiplatforms
component, a prerequisite verification is performed first. Then, the setup
program installs the IBM Tivoli System Automation for Multiplatforms
packages and policies that are shipped with the current version of DB2. You
can perform this step later using the scripts that are provided with the DB2
package. For more details about the manual IBM Tivoli System Automation

Note: We recommend applying the latest DB2 fix pack supported by the
FileNet components for an updated version of the IBM Tivoli System
Automation for Multiplatforms and policy scripts.
390 IBM High Availability Solution for IBM FileNet P8 Systems

for Multiplatforms installation procedure, see 12.2.6, “Integrating DB2 HADR
and IBM Tivoli System Automation for Multiplatforms” on page 401.

Figure 12-12 IBM Tivoli System Automation for Multiplatforms install menu
 Chapter 12. DB2 implementation 391

8. In the instance setup step (Figure 12-13), we choose not to create the
instance, because we create the instance in a later step.

Figure 12-13 Instance creation
392 IBM High Availability Solution for IBM FileNet P8 Systems

9. The next window summarizes the options and prepares to perform the
installation as shown in Figure 12-14.

Figure 12-14 Installation summary

12.2.4 DB2 configuration for FileNet P8

In this section, we detail the configuration of the DB2 instance, databases, and
the required tablespaces for the FileNet components that are installed in our
environment.

Table 12-7 on page 394 lists the databases and their associated user-defined
tablespaces for our environment.
 Chapter 12. DB2 implementation 393

Table 12-7 Databases, user, and temp tablespaces

We use a default configuration with one data tablespace for PE. If region
recovery is used, an additional data, BLOB, and index tablespace for each region
is required for recovery.

Use the following steps to configure the DB2 for FileNet:

1. Check that the DB2 communication protocol is TCP/IP. See Example 12-1.

Example 12-1 DB2 communication protocol

p8inst@fnl100 $db2set -all
[i] DB2COMM=tcpip
[g] DB2SYSTEM=fnl100
[g] DB2INSTDEF=p8inst

2. Create the DB2 instances for CE, PE, and IS, if they do not already exist. CE,
PE, and IS require a 64-bit instance on a UNIX server. Each of the engines
can have its own instance, or they can share an instance. In our environment,
we use a single DB2 instance for all of the FileNet components.

Example 12-2 shows how we create the database instance.

Example 12-2 Creating the database instance

p8inst@fnl100 $cd /opt/IBM/db2/V9.5_FNP8/instance
p8inst@fnl100 $./db2icrt -a SERVER -s ese -p 50010 -u p8_finst
p8inst
DBI1070I Program db2icrt completed successfully.

FileNet component Databases System
page size

Tablespaces Size (MB)

Content Engine FNGCDDB 32 KB GCD_TS
USRTMP1

256
50

FNOS 32 KB CEDATA_TS
USRTMP1

800
50

Process Engine VWDBHA 8 KB VWDATA_TS
USRTMP1

300
50

Image Services INDEXDB 32 KB USERSPACE1 200

Note: The port 50010 is used for client connection to the database. It is
identified by the database configuration parameter SVCENAME.
394 IBM High Availability Solution for IBM FileNet P8 Systems

3. Create the CE, PE, and IS databases and their associated tablespaces.

We create the databases and the tablespaces that are listed in Table 12-7 on
page 394. We use Database Managed Space (DMS) tablespaces for each
defined user space and user temporary space.

Example 12-3 shows how we create the databases and tablespaces for the
Content Engine.

Example 12-3 Creating the databases and the tablespaces for CE

create database FNGCDDB automatic storage yes on
'/data/db2/p8inst/p8inst/NODE0000/FNGCDDB' dbpath on
'/data/db2/p8inst/p8inst/NODE0000/FNGCDDB' alias FNGCDDB using
codeset utf-8 territory us collate using system pagesize 32768

create tablespace gcd_ts managed by database using (file
'/data/db2/p8inst/p8inst/NODE0000/FNGCDDB/gcd_ts/C00.CAT' 256M)"
create user temporary tablespace usrtmp1 managed by database using
(file '/data/db2/p8inst/p8inst/NODE0000/FNGCDDB/usrtmp1/C00.CAT'
50M)"

create database FNOS automatic storage yes on
'/data/db2/p8inst/p8inst/NODE0000/FNOS' dbpath on
'/data/db2/p8inst/p8inst/NODE0000/FNOS' alias FNOS using codeset
utf-8 territory us collate using system pagesize 32768

create tablespace p8_ce managed by database using (file
'/data/db2/p8inst/p8inst/NODE0000/FNOS/cedata_ts/C00.CAT' 800M)
create user temporary tablespace usrtmp1 managed by database using
(file '/data/db2/p8inst/p8inst/NODE0000/FNOS/usrtmp1/C00.CAT' 50M)

For any database to be used by Content Engine object store, update the
database configuration parameter APPLHEAPSZ. Set the value to at least 2560.

Example 12-4 shows how to configure and check the database configuration
parameter APPLHEAPSZ.

Example 12-4 Update the parameter APPLHEAPSZ

p8inst@fnl100 $db2 update db cfg for fnos using APPLHEAPSZ 2560
DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.

p8inst@fnl100 $db2 get db cfg for fnos | grep APPLHEAPSZ
Default application heap (4KB) (APPLHEAPSZ) = 2560
 Chapter 12. DB2 implementation 395

Example 12-5 shows how we create the database and tablespaces for the
Process Engine.

Example 12-5 Creating the database and the tablespaces for PE

create database VWDBHA automatic storage yes on
'/data/db2/p8inst/p8inst/NODE0000/VWDBHA' dbpath on
'/data/db2/p8inst/p8inst/NODE0000/VWDBHA' alias VWDBHA using codeset
utf-8 territory us collate using system pagesize 8192

create tablespace vwdata_ts managed by database using (file
'/data/db2/p8inst/p8inst/NODE0000/VWDBHA/vwdata_ts/C00.CAT' 300M)
create user temporary tablespace usrtmp1 managed by database using
(file '/data/db2/p8inst/p8inst/NODE0000/VWDBHA/usrtmp1/C00.CAT' 50M)

Example 12-6 shows how we create the database for Image Services. We
use the default tablespace USERSPACE1 for the IS configuration. No
additional tablespaces are defined at this time.

Example 12-6 Creating the database for Image Services

create database INDEXDB automatic storage yes on
'/data/db2/p8inst/p8inst/NODE0000/INDEXDB' dbpath on
'/data/db2/p8inst/p8inst/NODE0000/INDEXDB' alias INDEXDB using
codeset utf-8 territory us collate using system pagesize 32768

12.2.5 Setting up HADR

We set up the HADR for each database that is used in the FileNet configuration.
In our scenario, we created databases for the CE, PE, and IS components.

HADR requires that both the primary server and the standby server have the
same database configuration. For this purpose, we recommend that you set up
the standby system by restoring the database from a backup image of the
primary system.

We perform these steps to set up the HADR:

1. Set the required database configuration parameters.

Activate the log archiving mode for the databases. See Example 12-7.

Example 12-7 Activating the database log archiving on disk

db2 update db cfg for fngcddb using LOGARCHMETH1
'DISK:/data/db2/p8inst/archive'
396 IBM High Availability Solution for IBM FileNet P8 Systems

db2 update db cfg for fnos using LOGARCHMETH1
'DISK:/data/db2/p8inst/archive'
db2 update db cfg for vwdbha using LOGARCHMETH1
'DISK:/data/db2/p8inst/archive'
db2 update db cfg for indexdb using LOGARCHMETH1
'DISK:/data/db2/p8inst/archive'

Set the LOGINDEXBUILD parameter to ON to ensure that the complete
information for index creation, recreation, and reorganization is logged, as
well as shipped to the standby database during HADR replication. See
Example 12-8.

Example 12-8 Enable LOGINDEXBUILD for HADR database

db2 update db cfg for fngcddb using LOGINDEXBUILD ON
db2 update db cfg for fnos using LOGINDEXBUILD ON
db2 update db cfg for vwdbha using LOGINDEXBUILD ON
db2 update db cfg for indexdb using LOGINDEXBUILD ON

2. For each database, perform an offline database backup on the primary
system and restore the backup to the standby system.

Example 12-9 shows how we take an offline backup of the database fngcddb
on the primary system fnl100. Make sure that you write down the timestamp
of the database backup, because you must use it as an input parameter for the
restore process.

Example 12-9 Backup up the fngcddb database on the primary system

db2 deactivate db fngcddb
DB20000I The DEACTIVATE DATABASE command completed successfully.

db2 backup db FNGCDDB to /data/db2/p8inst/backup

Backup successful. The timestamp for this backup image is :
20081002173801

cd /data/db2/p8inst/backup
ls -l *20081002173801*
-rw------- 1 p8inst p8_igrp 234958848 Oct 02 17:38
FNGCDDB.0.p8inst.NODE0000.CATN0000.20081002173801.001

We copy the backup image using the scp command to our standby system
fnl70 to the /data/db2/p8inst/backup directory. The database is then
restored as shown in Example 12-10 on page 398.
 Chapter 12. DB2 implementation 397

Example 12-10 Restore fngcddb database on the standby system fnl70

db2 restore db FNGCDDB from /data/db2/p8inst/backup taken at
20081002173801 replace history file
DB20000I The RESTORE DATABASE command completed successfully.

3. Configure the Automatic Client Reroute feature for each database.

In our case study, on the primary server fnl100, we define the alternate server
as fnl70. On the standby server fnl70, we define the alternate server as
fnl100. See Example 12-11.

Example 12-11 Configure the automatic client reroute

On primary server fnl100:
db2 update alternate server for database fngcddb using hostname
fnl70 port 50010
db2 update alternate server for database fnos using hostname fnl70
port 50010
db2 update alternate server for database vwdbha using hostname fnl70
port 50010
db2 update alternate server for database indexdb using hostname
fnl70 port 50010

On standby server fnl70:
db2 update alternate server for database fngcddb using hostname
fnl100 port 50010
db2 update alternate server for database fnos using hostname fnl100
port 50010
db2 update alternate server for database vwdbha using hostname
fnl100 port 50010
db2 update alternate server for database indexdb using hostname
fnl100 port 50010

4. Set up the HADR parameters for each database.

Example 12-12 on page 399 illustrates how to configure the HADR-related
database configuration parameter using the FileNet CE Global Configuration
Database (fngcddb) on the primary system fnl100, as an example.

Set the HADR_PEER_WINDOW configuration parameter to a large enough
value to ensure that the peer state is kept long enough for the standby
machine to take over the HARD primary role. In our environment, 300
seconds is sufficient to ensure the peer state is kept long enough for the
standby machine to take over the HARD primary role.
398 IBM High Availability Solution for IBM FileNet P8 Systems

Example 12-12 Set up HADR parameters on primary node fnl100

db2 update db cfg for fngcddb using HADR_LOCAL_HOST 10.0.4.110
db2 update db cfg for fngcddb using HADR_LOCAL_SVC p8_GCD
db2 update db cfg for fngcddb using HADR_REMOTE_HOST 10.0.4.80
db2 update db cfg for fngcddb using HADR_REMOTE_SVC p8_GCD
db2 update db cfg for fngcddb using HADR_REMOTE_INST p8inst
db2 update db cfg for fngcddb using HADR_SYNCMODE SYNC
db2 update db cfg for fngcddb using HADR_TIMEOUT 120
db2 update db cfg for fngcddb using HADR_PEER_WINDOW 300

Example 12-13 shows the HADR configuration parameter setup on the
fngcddb database of the standby system fnl70.

Example 12-13 Set up HADR parameters on standby system fnl70

db2 update db cfg for fngcddb using HADR_LOCAL_HOST 10.0.4.80
db2 update db cfg for fngcddb using HADR_LOCAL_SVC p8_GCD
db2 update db cfg for fngcddb using HADR_REMOTE_HOST 10.0.4.110
db2 update db cfg for fngcddb using HADR_REMOTE_SVC p8_GCD
db2 update db cfg for fngcddb using HADR_REMOTE_INST p8inst
db2 update db cfg for fngcddb using HADR_SYNCMODE SYNC
db2 update db cfg for fngcddb using HADR_TIMEOUT 120
db2 update db cfg for fngcddb using HADR_PEER_WINDOW 300

5. Activate the HADR relationship.

On each database, start the HADR on the standby system first, and then, on
the primary system. In Example 12-14 on page 400, we activate the HADR on
the fngcddb database.

Notes: The HADR_LOCAL_SVC and HADR_REMOTE_SVC are the ports
that are used by HADR for the primary and standby servers. The value for
the HADR_LOCAL_SVC parameter of both the primary and the standby
systems cannot be the same as the value of SVCENAME on their
respective nodes. Issue the db2 get dbm cfg command to get the service
name value of the instance.

The name that we choose is shown in Table 12-4 on page 382 and was
added previously to the /etc/services file.
 Chapter 12. DB2 implementation 399

Example 12-14 Activate the HADR relationship

On the standby machine fnl70:
db2 deactivate db fngcddb
db2 start hadr on db fngcddb as standby

On the primary machine fnl100:
db2 deactivate db fngcddb
db2 start hadr on db fngcddb as primary

Check the HADR status for each database using the db2pd utility on both the
primary and standby servers as shown in Example 12-15. The Role field
shows primary for fnl100 and standby for fnl70. Check also the state of the
HADR relationship in the db2pd output, which needs to be Peer and the
status of the connection needs to be Connected.

Example 12-15 Checking the HADR status

HADR status on primary system fnl100:

p8inst@fnl100 $db2pd -db fngcddb -hadr

Database Partition 0 -- Database FNGCDDB -- Active -- Up 0 days 02:25:55

HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Peer Sync 0 0

ConnectStatus ConnectTime Timeout
Connected Fri Oct 24 16:16:02 2008 (1224890162) 120

PeerWindowEnd PeerWindow
Fri Oct 24 17:39:02 2008 (1224895142) 300

LocalHost LocalService
10.0.4.110 p8_GCD

RemoteHost RemoteService RemoteInstance
10.0.4.80 p8_GCD p8inst

PrimaryFile PrimaryPg PrimaryLSN
S0000038.LOG 943 0x000000001BF3772D

StandByFile StandByPg StandByLSN
S0000038.LOG 943 0x000000001BF3772D

HADR status on standby system fnl70:
p8inst@fnl70 $db2pd -db fngcddb -hadr

Database Partition 0 -- Database FNGCDDB -- Active -- Up 0 days 01:19:08
400 IBM High Availability Solution for IBM FileNet P8 Systems

HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Standby Peer Sync 0 0

ConnectStatus ConnectTime Timeout
Connected Fri Oct 24 16:16:02 2008 (1224890162) 120

PeerWindowEnd PeerWindow
Fri Oct 24 17:40:02 2008 (1224895202) 300

LocalHost LocalService
10.0.4.80 p8_GCD

RemoteHost RemoteService RemoteInstance
10.0.4.110 p8_GCD p8inst

PrimaryFile PrimaryPg PrimaryLSN
S0000038.LOG 943 0x000000001BF3772D

StandByFile StandByPg StandByLSN
S0000038.LOG 943 0x000000001BF3772D
p8inst@fnl70 $

12.2.6 Integrating DB2 HADR and IBM Tivoli System Automation for
Multiplatforms

DB2 9.5 provides the DB2 High Availability Instance Configuration Utility
db2haicu to facilitate IBM Tivoli System Automation for Multiplatforms
configuration for DB2. You can use db2haicu to configure IBM Tivoli System
Automation for Multiplatforms with DB2 in both shared disk and HADR
environments.

Prepare the IBM Tivoli System Automation for Multiplatforms
cluster environment
Perform the following steps to prepare the cluster configuration:

1. Install the IBM Tivoli System Automation for Multiplatforms code and policies.

If the IBM Tivoli System Automation for Multiplatforms code was not installed
along with the DB2 installation process, you can manually install it from the
installation package:

a. As a root user, change the current directory to
<DB2_installation_package>/db2/aix/tsamp

b. Run prereqSAM from the directory to verify the installation prerequisites for
IBM Tivoli System Automation for Multiplatforms installation.
 Chapter 12. DB2 implementation 401

c. Run the script installSAM to install IBM Tivoli System Automation for
Multiplatforms.

d. Apply the IBM Tivoli System Automation for Multiplatforms policies for
DB2 by running the script db2cptsa, which is located in the directory
<DB2_installation_package>/db2/aix/install. The DB2 scripts for the
cluster are installed in the directory /usr/sbin/rsct/sapolicies/db2.

2. Synchronize the date and time on the cluster nodes.

You need to synchronize the time and dates on the standby and the primary
nodes as closely as possible. This synchronization is absolutely critical to
ensure a smooth failover during primary node failures. We recommend using
an external Network Time Protocol (NTP) server and configuring the NTP on
both cluster nodes. For more details, consult the NTP documentation for your
platform.

3. Configure secure shell (SSH).

Secure shell is used in our environment for remote command execution for
the root user across the cluster nodes. For IBM Tivoli System Automation for
Multiplatforms cluster configuration with ssh, we set up root access between
nodes without prompting for a password.

Perform the following steps for a quick SSH setup:

a. Log on as the root on one node of the cluster.

b. Generate a public key/private key pair:

#ssh-keygen -t rsa

When prompted for input, press Enter. Do not enter a passphrase.

c. To enable the new key pair for use with ssh, execute the following
commands:

#cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

#chmod 644 ~/.ssh/authorized_keys

d. Use the ssh-keyscan utility to gather the public host key for each cluster
host. Substitute the IP addresses in the commands with your IP
addresses.

#ssh-keyscan -t rsa fnl100,9.30.188.110,fnl70,9.30.188.80 >>
~/.ssh/known_hosts

e. Copy the ~/.ssh directory from the local host to all hosts in the cluster.
Assuming the SSH setup was performed on fnl100 node, we copy the
directory to fnl70 node:

#scp -p ~/.ssh fnl70:~/.ssh
402 IBM High Availability Solution for IBM FileNet P8 Systems

f. Test that password-less ssh is now enabled. We run the ssh command to
cross-check the remote execution of a command without prompting in
Example 12-16.

Example 12-16 Test ssh execution between cluster nodes without prompting

root@fnl100 # ssh fnl70 ssh fnl100 date
Sun Nov 2 05:21:10 PST 2008

4. Perform the initial configuration:

On all nodes, set the environment variable CT_MANAGEMENT_SCOPE (peer
domain scope). All IBM Tivoli System Automation for Multiplatforms users
need to permanently set CT_MANAGEMENT_SCOPE to 2 in the root profile:

#vi /.profile
export CT_MANAGEMENT_SCOPE=2

On each cluster node, run the preprpnode command as root to prepare the
local node for joining the domain:

preprpnode fnl100 fnl70

We recommend that you configure the netmon.cf file on each cluster node.
This configuration is needed to help Reliable Scalable Cluster Technology
(RSCT) services (IBM Tivoli System Automation for Multiplatforms
infrastructure) distinguish between adapter and network failure in a single
adapter per node per network (equivalency class) configuration. The
netmon.cf file is used if broadcast ping is disabled on the system. In this file,
supply IBM Tivoli System Automation for Multiplatforms with the IP addresses
that are used for the quorum device. This file must contain the IP addresses
that can be pinged from both nodes as shown in Example 12-17. The IP
addresses that you can choose are the default gateway or the other servers in
your system. When the heartbeat stops, IBM Tivoli System Automation for
Multiplatforms pings these addresses to determine whether it is a network
interface failure or a partner node failure. In Example 12-17, we select the IP
addresses 9.30.188.1(default gateway) and other two hosts on the network:
9.30.188.51 and 9.30.188.53.

Example 12-17 Adding hosts on the network in the netmon.cf file

cat /usr/sbin/cluster/netmon.cf
9.30.188.1
9.30.188.51
9.30.188.53
 Chapter 12. DB2 implementation 403

Configure the TSA cluster using db2haicu
Perform these steps to configure the IBM Tivoli System Automation for
Multiplatforms cluster using the db2haicu utility:

1. Before running db2haicu, start the DB2 instances on both nodes, and check
the HADR status using the db2pd command. The pairs must be in the Peer
state before proceeding.

2. Run db2haicu as database owner user. You must first run the db2haicu utility
on the standby instance, and then, on the primary instance for the
configuration to complete.

Example 12-18 shows that we invoke db2haicu on the standby node fnl70,
create the peer domain, and add the nodes in the domain.

Example 12-18 Creating the peer domain and adding the cluster nodes

p8inst@fnl70: $db2haicu
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the
utility called db2pd to query the status of the cluster domains you
create.

For more information about configuring your clustered environment
using db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
p8inst. The cluster configuration that follows will apply to this
instance.

db2haicu is collecting information on your current setup. This step
may take some time as db2haicu will need to activate all databases
for the instance to discover all paths ...
When you use db2haicu to configure your clustered environment, you
create cluster domains. For more information, see the topic
'Creating a cluster domain with db2haicu' in the DB2 Information
Center. db2haicu is searching the current machine for an existing
active cluster domain ...
db2haicu did not find a cluster domain on this machine. db2haicu
will now query the system for information about cluster nodes to
create a new cluster domain ...
404 IBM High Availability Solution for IBM FileNet P8 Systems

db2haicu did not find a cluster domain on this machine. To continue
configuring your clustered environment for high availability, you
must create a cluster domain; otherwise, db2haicu will exit.

Create a domain and continue? [1]
1. Yes
2. No
1
Create a unique name for the new domain:
p8db2
Nodes must now be added to the new domain.
How many cluster nodes will the domain p8db2 contain?
2
Enter the host name of a machine to add to the domain:
fnl70
Enter the host name of a machine to add to the domain:
fnl100
db2haicu can now create a new domain containing the 2 machines that
you specified. If you choose not to create a domain now, db2haicu
will exit.

Create the domain now? [1]
1. Yes
2. No
1
Creating domain p8db2 in the cluster ...
Creating domain p8db2 in the cluster was successful.

3. Configure the network quorum device for the cluster. In our case study, we set
the default gateway on the public network as the quorum device. See
Example 12-19.

Example 12-19 Setting the quorum device

You can now configure a quorum device for the domain. For more
information, see the topic "Quorum devices" in the DB2 Information
Center. If you do not configure a quorum device for the domain, then
a human operator will have to manually intervene if subsets of
machines in the cluster lose connectivity.

Configure a quorum device for the domain called p8db2? [1]
1. Yes
2. No
1
The following is a list of supported quorum device types:
 Chapter 12. DB2 implementation 405

 1. Network Quorum
Enter the number corresponding to the quorum device type to be used:
[1]
1
Specify the network address of the quorum device:
9.30.188.1
Configuring quorum device for domain p8db2 ...
Configuring quorum device for domain p8db2 was successful.

4. Configure the network interfaces for the cluster for both the public and the
private (HADR) networks. See Example 12-20.

Example 12-20 Configure the network interfaces

The cluster manager found 6 network interface cards on the machines
in the domain. You can use db2haicu to create networks for these
network interface cards. For more information, see the topic
'Creating networks with db2haicu' in the DB2 Information Center.

Create networks for these network interface cards? [1]
1. Yes
2. No
1
Enter the name of the network for the network interface card: en0 on
cluster node: fnl100
1. Create a new public network for this network interface card.
2. Create a new private network for this network interface card.
Enter selection:
2
Are you sure you want to add the network interface card en0 on
cluster node fnl100 to the network db2_private_network_0? [1]
1. Yes
2. No
2
Enter the name of the network for the network interface card: en1 on
cluster node: fnl70
1. Create a new public network for this network interface card.
2. Create a new private network for this network interface card.
Enter selection:
2
Are you sure you want to add the network interface card en1 on
cluster node fnl70 to the network db2_private_network_0? [1]
1. Yes
2. No
2

406 IBM High Availability Solution for IBM FileNet P8 Systems

Enter the name of the network for the network interface card: en3 on
cluster node: fnl70
1. Create a new public network for this network interface card.
2. Create a new private network for this network interface card.
Enter selection:
2
Are you sure you want to add the network interface card en3 on
cluster node fnl70 to the network db2_private_network_0? [1]
1. Yes
2. No
1
Adding network interface card en3 on cluster node fnl70 to the
network db2_private_network_0 ...
Adding network interface card en3 on cluster node fnl70 to the
network db2_private_network_0 was successful.
Enter the name of the network for the network interface card: en3 on
cluster node: fnl100
1. db2_private_network_0
2. Create a new public network for this network interface card.
3. Create a new private network for this network interface card.
Enter selection:
1
Are you sure you want to add the network interface card en3 on
cluster node fnl100 to the network db2_private_network_0? [1]
1. Yes
2. No
1
Adding network interface card en3 on cluster node fnl100 to the
network db2_private_network_0 ...
Adding network interface card en3 on cluster node fnl100 to the
network db2_private_network_0 was successful.
Enter the name of the network for the network interface card: en0 on
cluster node: fnl70
1. db2_private_network_0
2. Create a new public network for this network interface card.
3. Create a new private network for this network interface card.
Enter selection:
2
Are you sure you want to add the network interface card en0 on
cluster node fnl70 to the network db2_public_network_0? [1]
1. Yes
2. No
1
Adding network interface card en0 on cluster node fnl70 to the
network db2_public_network_0 ...
 Chapter 12. DB2 implementation 407

Adding network interface card en0 on cluster node fnl70 to the
network db2_public_network_0 was successful.
Enter the name of the network for the network interface card: en2 on
cluster node: fnl100
1. db2_public_network_0
2. db2_private_network_0
3. Create a new public network for this network interface card.
4. Create a new private network for this network interface card.
Enter selection:
1
Are you sure you want to add the network interface card en2 on
cluster node fnl100 to the network db2_public_network_0? [1]
1. Yes
2. No
1
Adding network interface card en2 on cluster node fnl100 to the
network db2_public_network_0 ...
Adding network interface card en2 on cluster node fnl100 to the
network db2_public_network_0 was successful.

5. Continue the setup by configuring the cluster manager parameter in DB2 and
registering the local instance to IBM Tivoli System Automation for
Multiplatforms. See Example 12-21.

Example 12-21 Configure the cluster parameter in DB2 and the DB2 instance in TSA

Retrieving high availability configuration parameter for instance
p8inst ...
The cluster manager name configuration parameter (high availability
configuration parameter) is not set. For more information, see the
topic "cluster_mgr - Cluster manager name configuration parameter"
in the DB2 Information Center. Do you want to set the high
availability configuration parameter?
The following are valid settings for the high availability
configuration parameter:
 1.TSA
 2.Vendor
Enter a value for the high availability configuration parameter: [1]
1
Setting a high availability configuration parameter for instance
p8inst to TSA.
Adding DB2 database partition 0 to the cluster ...
Adding DB2 database partition 0 to the cluster was successful.
408 IBM High Availability Solution for IBM FileNet P8 Systems

6. In the next step, you are asked to configure the HADR databases in the
cluster. At this time, will you receive a message indicating that the
configuration needs to be switched on the primary node as shown in
Example 12-22.

Example 12-22 Ending the first phase of cluster configuration on the standby node

Do you want to validate and automate HADR failover for the HADR
database FNGCDDB? [1]
1. Yes
2. No
1
Adding HADR database FNGCDDB to the domain ...
The cluster node 10.0.4.110 was not found in the domain. Please
re-enter the host name.
fnl100
The cluster node 10.0.4.80 was not found in the domain. Please
re-enter the host name.
fnl70
Adding HADR database FNGCDDB to the domain ...
The HADR database FNGCDDB has been determined to be valid for high
availability. However, the database cannot be added to the cluster
from this node because db2haicu detected this node is the standby
for the HADR database FNGCDDB. Run db2haicu on the primary for the
HADR database FNGCDDB to configure the database for automated
failover.

..........
All cluster configurations have been completed successfully.
db2haicu exiting ...

7. Run db2haicu on the primary node fnl100, and register the instance to the
cluster domain as shown in Example 12-23.

Example 12-23 Configuring cluster parameter and DB2 instance on the primary node

p8inst@fnl100: $db2haicu
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the
utility called db2pd to query the status of the cluster domains you
create.
 Chapter 12. DB2 implementation 409

For more information about configuring your clustered environment
using db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
p8inst. The cluster configuration that follows will apply to this
instance.

db2haicu is collecting information on your current setup. This step
may take some time as db2haicu will need to activate all databases
for the instance to discover all paths ...
When you use db2haicu to configure your clustered environment, you
create cluster domains. For more information, see the topic
'Creating a cluster domain with db2haicu' in the DB2 Information
Center. db2haicu is searching the current machine for an existing
active cluster domain ...
db2haicu found a cluster domain called p8db2 on this machine. The
cluster configuration that follows will apply to this domain.

Retrieving high availability configuration parameter for instance
p8inst ...
The cluster manager name configuration parameter (high availability
configuration parameter) is not set. For more information, see the
topic "cluster_mgr - Cluster manager name configuration parameter"
in the DB2 Information Center. Do you want to set the high
availability configuration parameter?
The following are valid settings for the high availability
configuration parameter:
 1.TSA
 2.Vendor
Enter a value for the high availability configuration parameter: [1]
1
Setting a high availability configuration parameter for instance
p8inst to TSA.
Adding DB2 database partition 0 to the cluster ...
Adding DB2 database partition 0 to the cluster was successful.

8. In the next step, add each HADR database to the cluster domain as shown in
Example 12-24 for the fngcddb database.

Example 12-24 Adding the HADR database to the cluster domain

Do you want to validate and automate HADR failover for the HADR
database FNGCDDB? [1]
1. Yes
410 IBM High Availability Solution for IBM FileNet P8 Systems

2. No
1
Adding HADR database FNGCDDB to the domain ...
The cluster node 10.0.4.80 was not found in the domain. Please
re-enter the host name.
fnl70
The cluster node 10.0.4.110 was not found in the domain. Please
re-enter the host name.
fnl100
Adding HADR database FNGCDDB to the domain ...
Adding HADR database FNGCDDB to the domain was successful.
............
All cluster configurations have been completed successfully.
db2haicu exiting ...

9. After adding an HADR database, you can set up a Virtual IP address for the
database. We do not configure a virtual address, because we use ACR for our
setup. Finish the db2haicu setup on the primary node after adding all of the
FileNet HADR databases to the cluster domain.

At the end of the configuration, the cluster resources are configured and in an
active status in the cluster. The status of the resource groups can be queried
using the lssam command as indicated in Example 12-25. For each DB2
instance, note the Online status on each node. For the HADR pairs, note the
Online status on the primary node and the Offline status on the standby node.

Example 12-25 Checking the Resource groups status using lssam

root@fnl100 # lssam
Online IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
 Chapter 12. DB2 implementation 411

Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

Resource groups topology
After you run the db2haicu tool successfully on both of the standby and primary
instances, the setup is complete.The resource groups and the resources that are
created are detailed in Table 12-8.

Table 12-8 Resource groups and resources

Figure 12-15 on page 413 illustrates the relationships among the resource
groups.

Resource group Resource Description

db2_p8inst_fnl100_0-rg db2_p8inst_fnl100_0-rs DB2 instance fnl100

db2_p8inst_fnl70_0-rg db2_p8inst_fnl70_0-rs DB2 instance fnl70

db2_p8inst_p8inst_FNGCDDB-rg db2_p8inst_p8inst_FNGCDDB-rs FNGCDDB database

db2_p8inst_p8inst_FNOS-rg db2_p8inst_p8inst_FNOS-rs FNOS database

db2_p8inst_p8inst_INDEXDB-rg db2_p8inst_p8inst_INDEXDB-rs INDEXDB database

db2_p8inst_p8inst_VWDBHA-rg db2_p8inst_p8inst_VWDBHA-rs VWDBHA database
412 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 12-15 Resource group relationship

12.3 High availability tests for DB2

This section describes the tests that were performed for DB2 high availability for
FileNet P8 configuration in our lab environment.

12.3.1 Test case description

For our environment, we perform the following tests:

� Simulate a DB2 software crash.

We simulate the DB2 instance crash by renaming the db2star2 binary that is
used when starting the DB2 instance and issuing the db2_kill command
against the instance on the primary node, fnl100. The expected result of the
primary instance failure is that the standby system fnl70 takes over the
primary role, and the DB2 clients are automatically reconnected to the new

db2_p8inst_fnl100_0-rg
DB2 Resource :
db2_p8inst_fnl100_0-rs
Instance: p8inst
Partition #: 0

db2_p8inst_fnl70_0-rg
DB2 Resource:
db2_p8inst_fnl70_0-rs
Instance: p8inst
Partition #: 0

DB2 Primary Resource Group DB2 Standby Resource Group

en2: fnl100
9.30.188.110

en0: fnl70
9.30.188.80

Public network equivalency

Private network equivalency

en3: fnl100-hs04
10.0.4.110

en3: fnl70-hs04
10.0.4.80

Cluster node equivalency

Node: fnl100 Node: fnl70

HADR Resource Group

db2_p8inst_p8inst_<DBNAME>-rg
HADR resource
db2_p8inst_p8inst_<DBNAME>-rs
Database: <DBNAME>
 Chapter 12. DB2 implementation 413

server by ACR. The HADR cluster resources are activated on the new
primary server, fnl70.

� Simulate a primary node failure.

We simulate a node failure by halting the primary node fnl100 using the
halt -q command on AIX. The HADR cluster resources are taken over to the
standby node fnl70, and the databases are activated for client access.

� Simulate a network interface failure.

We simulate a network interface failure on the public network on the primary
node by bringing the interface down using the ifconfig command. Because
we have defined a dependency between the DB2 instances on each node
and the public network equivalency, we expect that this event is determined
to be the primary instance failure and a takeover on the standby system
results.

For each test, we perform the indicated operations to simulate the failure and
provide the steps performed in our environment to reintegrate the failed node or
resources back in the cluster.

For determining the cluster status, use the lssam command. For checking the
HADR status, use the db2pd command. For our environment, we created a
sample script, which greps the summary information status from the db2pd
output, listed in Example 12-26.

Example 12-26 Sample script for checking the HADR status

#!/bin/ksh

DBNAME=$1
DBs="fngcddb indexdb fnos vwdbha"

if [[$DBNAME == ""]]; then
 echo "Usage: $0 <DBNAME|all>"
 exit 0
fi

if [[$DBNAME == "all"]]; then
for i in $DBs
do
echo "Summary status for $i:"
db2pd -db $i -hadr | grep -p Role
done

else
db2pd -db $DBNAME -hadr | grep -p Role
fi
414 IBM High Availability Solution for IBM FileNet P8 Systems

Initial state of the cluster
The initial state of the cluster for each test assumes that the primary system for
HADR is fnl100 and that the standby system is fnl70. The DB2 instances are
started, and the HADR pairs are active in Peer state. Use lssam to determine the
cluster state as shown in Example 12-27.

Example 12-27 Cluster initial state

root@fnl100 # lssam
Online IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

We check the HADR pair status using the script that is provided in
Example 12-26 on page 414. The result of running the script on the primary and
standby servers is displayed in Example 12-28.

Example 12-28 Checking the HADR pair status

On primary node fnl100:
p8inst@fnl100 $checkhadr.sh all
Summary status for fngcddb:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Peer Sync 0 0

Summary status for indexdb:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
 Chapter 12. DB2 implementation 415

Primary Peer Sync 0 0

Summary status for fnos:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Peer Sync 0 0

Summary status for vwdbha:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Peer Sync 0 0

On standby node fnl70:
p8inst@fnl70 $checkhadr.sh all
Summary status for fngcddb:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Standby Peer Sync 0 0

Summary status for indexdb:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Standby Peer Sync 0 0

Summary status for fnos:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Standby Peer Sync 0 0

Summary status for vwdbha:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Standby Peer Sync 0 0

12.3.2 Performing the tests

Here, we provide the test details and results.

DB2 instance crash
On the primary node fnl100, we move the db2star2 program and stop the DB2
processes by using the db2_kill command as shown in Example 12-29 on
page 417.
416 IBM High Availability Solution for IBM FileNet P8 Systems

Example 12-29 DB2 instance failure on primary node fnl100

p8inst@fnl100 $mv /data/db2/p8_inst/sqllib/adm/db2star2
/data/db2/p8_inst/sqllib/adm/db2star2.mv
p8inst@fnl100 $db2_kill
ipclean: Removing DB2 engine and client's IPC resources for p8inst.
p8inst@fnl100 $

The HADR resources are activated on the standby node fnl70, and the DB2
instance resource on fnl100 is finally marked “Failed Offline” as shown in
Example 12-30.

Example 12-30 HADR takeover on fnl70

root@fnl70 # lssam
Failed offline IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Failed offline IBM.Application:db2_p8inst_fnl100_0-rs
 '- Failed offline IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Pending offline IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Pending offline IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Request=Lock
Binding=Sacrificial Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Pending offline IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

We also check that the primary role was successfully taken over to node fnl70.
See Example 12-31 on page 418.
 Chapter 12. DB2 implementation 417

Example 12-31 HADR status on node fnl70

p8inst@fnl70 $checkhadr.sh all
Summary status for fngcddb:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Disconnected Sync 0 0

Summary status for indexdb:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Disconnected Sync 0 0

Summary status for fnos:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Disconnected Sync 0 0

Summary status for vwdbha:
HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)
Primary Disconnected Sync 0 0

To reintegrate the node in the cluster, we restart the failed node in the domain.
We first deactivate the DB2 instance resource group and stop the node in the
domain. See Example 12-32.

Example 12-32 Stopping the fnl100 node in the cluster domain

root@fnl70 # chrg -o Offline db2_p8inst_fnl100_0-rg
root@fnl70 # resetrsrc -s "Name like 'db2_p8inst_fnl100_0-rs' \
&& NodeNameList in {'fnl100'}" IBM.Application
root@fnl70 # stoprpnode fnl100
...
root@fnl70 # lsrpnode
Name OpState RSCTVersion
fnl70 Online 2.4.9.4
fnl100 Offline 2.4.9.4

Next, we rename the db2star2 program on fnl100 and reactivate the failed node
back in the domain as shown in Example 12-33 on page 419.
418 IBM High Availability Solution for IBM FileNet P8 Systems

Example 12-33 Reintegrating the failed node in the domain

On fnl100:
p8inst@fnl100 $mv /data/db2/p8_inst/sqllib/adm/db2star2.mv \
/data/db2/p8_inst/sqllib/adm/db2star2

On fnl70:
root@fnl70 # startrpnode fnl100
.....
root@fnl70 # lsrpnode
Name OpState RSCTVersion
fnl70 Online 2.4.9.4
fnl100 Online 2.4.9.4
root@fnl70 # chrg -o Online db2_p8inst_fnl100_0-rg

After restarting the DB2 instance on the fnl100 node, the HADR is automatically
started and the node reintegrates in the HADR relationship as a standby node.
The final cluster status in shown in Example 12-34.

Example 12-34 Final cluster status after reintegration of node fnl100

root@fnl70 # lssam
Online IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70
 Chapter 12. DB2 implementation 419

Primary node crash
This test simulates a node failure by halting the primary node, fnl100, during
normal operations. We run the test by invoking the halt -q command on node
fnl100. The cluster HADR resources are automatically taken over on the standby
node fnl70, and the databases are activated for client access. See
Example 12-35.

Example 12-35 Cluster status after node fnl100 failure

root@fnl70 # lssam
Failed offline IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Control=StartInhibited
Nominal=Online
 '- Failed offline IBM.Application:db2_p8inst_fnl100_0-rs
 '- Failed offline IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Node=Offline
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100 Node=Offline
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Request=Lock Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100 Node=Offline
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100 Node=Offline
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100 Node=Offline
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

After restarting the failed node, fnl100, the node reintegrates automatically in the
cluster domain. The DB2 instance starts, and the node reintegrates in the HADR
relationship as standby node. Example 12-36 on page 421 shows the final
cluster status.
420 IBM High Availability Solution for IBM FileNet P8 Systems

Example 12-36 Final cluster status after restarting the node and reintegration in cluster

root@fnl100 # lsrpnode
Name OpState RSCTVersion
fnl70 Online 2.4.9.4
fnl100 Online 2.4.9.4

root@fnl100 # lssam
Online IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

Network interface failure
We bring down the public interface, en2:fnl100, on the primary node, fnl100. For
test purposes, we access the node using the private network and issue the
ifconfig down command on the public interface of node fnl100, as shown in
Example 12-37.

Example 12-37 Simulate the public interface failure on primary node fnl100

root@fnl100 # netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en0 1500 link#2 de.fc.50.1.40.4 1183425 0 1053977 0 0
en0 1500 10.254.240 fnl100-hmcp 1183425 0 1053977 0 0
en2 1500 link#3 de.fc.50.1.40.6 5237869 0 4038896 0 0
en2 1500 9.30.188 fnl100 5237869 0 4038896 0 0
en3 65390 link#4 de.fc.50.1.40.7 1467861 0 1401041 0 0
en3 65390 10.0.4 fnl100-hs04 1467861 0 1401041 0 0
lo0 16896 link#1 1507980 0 1510605 0 0
 Chapter 12. DB2 implementation 421

lo0 16896 127 loopback 1507980 0 1510605 0 0
lo0 16896 ::1 1507980 0 1510605 0 0
root@fnl100 # who am i
root pts/3 Nov 02 19:36 (fnl70-hs04)
root@fnl100 # ifconfig en2 down
root@fnl100 # netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en0 1500 link#2 de.fc.50.1.40.4 1184408 0 1054879 0 0
en0 1500 10.254.240 fnl100-hmcp 1184408 0 1054879 0 0
en2* 1500 link#3 de.fc.50.1.40.6 5238415 0 4039297 0 0
en2* 1500 9.30.188 fnl100 5238415 0 4039297 0 0
en3 65390 link#4 de.fc.50.1.40.7 1468110 0 1401253 0 0
en3 65390 10.0.4 fnl100-hs04 1468110 0 1401253 0 0
lo0 16896 link#1 1508692 0 1511317 0 0
lo0 16896 127 loopback 1508692 0 1511317 0 0
lo0 16896 ::1 1508692 0 1511317 0 0
root@fnl100 #

The DB2 instance on the fnl100 node fails due to the dependency relationship
between the instance and the network equivalency. As a result, the cluster
HADR resources are taken over on the standby node fnl70. The cluster status is
shown in Example 12-38.

Example 12-38 Cluster status after network interface failure

root@fnl70 # lssam
Failed offline IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Binding=Sacrificed
Nominal=Online
 '- Offline IBM.Application:db2_p8inst_fnl100_0-rs
 '- Offline IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Pending offline IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Request=Lock
Binding=Sacrificial Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Request=Lock Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
422 IBM High Availability Solution for IBM FileNet P8 Systems

 |- Failed offline
IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

To reintegrate the node in the cluster, we bring up the public interface on node
fnl100 and check for the cluster status. See Example 12-39.

Example 12-39 Cluster status after bringing up the failed interface

root@fnl100 # lssam
Online IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Failed offline
IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

Next, we restart the node fnl100 in the domain and reintegrate it as an HADR
standby system. See the operations and the final status in Example 12-40 on
page 424.
 Chapter 12. DB2 implementation 423

Example 12-40 Reintegrating the node fnl100 in the cluster domain as standby system

root@fnl70 # chrg -o Offline db2_p8inst_fnl100_0-rg
....Wait for stopping the database instance on fnl100....
root@fnl70 # lssam
Offline IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_p8inst_fnl100_0-rs
 '- Offline IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Request=Lock Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Failed offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Request=Lock Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Failed offline IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Request=Lock Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Failed offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Request=Lock Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Failed offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

root@fnl70 # stoprpnode fnl100
.....
root@fnl70 # lsrpnode
Name OpState RSCTVersion
fnl70 Online 2.4.9.4
fnl100 Offline 2.4.9.4
root@fnl70 # startrpnode fnl100
.....
root@fnl70 # lsrpnode
Name OpState RSCTVersion
fnl70 Online 2.4.9.4
fnl100 Online 2.4.9.4

root@fnl70 # chrg -o Online db2_p8inst_fnl100_0-rg
.....

Final status of the cluster resources:
root@fnl100 # lssam
Online IBM.ResourceGroup:db2_p8inst_fnl100_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs
 '- Online IBM.Application:db2_p8inst_fnl100_0-rs:fnl100
Online IBM.ResourceGroup:db2_p8inst_fnl70_0-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs
 '- Online IBM.Application:db2_p8inst_fnl70_0-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNGCDDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNGCDDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_FNOS-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_FNOS-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_INDEXDB-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl100
424 IBM High Availability Solution for IBM FileNet P8 Systems

 '- Online IBM.Application:db2_p8inst_p8inst_INDEXDB-rs:fnl70
Online IBM.ResourceGroup:db2_p8inst_p8inst_VWDBHA-rg Nominal=Online
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs
 |- Offline IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl100
 '- Online IBM.Application:db2_p8inst_p8inst_VWDBHA-rs:fnl70

12.4 Maintenance and upgrade recommendations for
DB2

This section contains high-level information about upgrading and maintaining
DB2 for FileNet P8 in an HA environment. We discuss the following topics:

� DB2 upgrade for FileNet P8
� DB2 maintenance for FileNet P8

For further details about DB2 system maintenance and upgrade, see Chapter 14,
“Backup and Recovery” in High Availability, Scalability, and Disaster Recovery
for DB2 on Linux, UNIX, and Windows, SG24-7363.

12.4.1 DB2 upgrade for FileNet P8

Your DB2 installation and upgrade are simpler, because the general availability
(GA) versions of DB2 V8 on Microsoft Windows platforms and DB2 V9 on UNIX
platforms contain the base code for an installation in the downloadable fix pack.
This combined fix pack package allows you to install the base code and apply the
fix pack in one installation process, saving time and reducing potential errors that
might occur during the installation.

DB2 has two types of upgrades: fix pack and version level. We describe both
types.

We also provide considerations for upgrading these FileNet P8 components:

� CE, PE, and IS components that use DB2 Server as their metadata repository

� Since IS Version 4.1.2, support for DB2 Version 9.5 as the remote DB failover

DB2 fix pack rolling upgrades
A fix pack is a cumulative collection of Authorized Program Analysis Report
(APAR) fixes. Fix packs have the following characteristics:

� They are cumulative. Fix packs for a particular release of DB2 supersede or
contain all of the APAR fixes that were shipped in previous fix packs and
interim fix packs for that release.
 Chapter 12. DB2 implementation 425

� They are available for all supported operating systems and DB2 database
products.

� They contain multiple APARs.

� They are published on the DB2 Technical Support Web site and are generally
available to clients, who have purchased products under the Passport
Advantage® program. The DB2 Technical Support Web site is
http://www-01.ibm.com/software/data/db2/support/db2_9.

� They are fully tested by IBM.

� They are accompanied by documentation that describes changes to the
database products and how to install and remove the fix pack.

HADR gives you high availability while applying DB2 fix packs through rolling
upgrades. Your database experiences only momentary downtime while you
switch roles between your database servers. With properly written applications
using standard retry logic and the proper handling of message SQL30108N if you
use Automatic Client Reroute (ACR), there is effectively no loss of data, and no
visible downtime to clients.

You follow these steps to perform a rolling upgrade. The HADR Primary
database is never taken offline from users:

1. Check your system’s HADR status.
2. Apply the fix pack on the standby system.
3. Switch the HADR roles from the standby system.
4. Apply the fix pack in the old primary system.
5. Switch the HADR roles back to the original primary system.

DB2 version upgrade
Before you perform the DB2 upgrade, we recommend that you verify the FileNet
P8 components’ compatibility with the DB2 version. See the installation
documentation at this Web site:

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

A rolling upgrade is not supported between DB2 versions or major subversion
migrations, such as Version 8.2 to 9.1, or 9.1 to 9.5. For these events, plan for a
database outage while the HADR primary database is updated.

The initial critical step of DB2 migrations is running the db2ckmig command,
which checks if databases are eligible for migration to the new DB2 version.

For the further details, refer to DB2 9.5 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.
luw.qb.migration.doc/doc/c0023662.html
426 IBM High Availability Solution for IBM FileNet P8 Systems

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://www-01.ibm.com/software/data/db2/support/db2_9

Rolling DB2 configuration parameters
In order to keep your HADR systems optimal, apply changes to both servers as
quickly as possible.

Note that when updating HADR-specific database configuration parameters,
DB2 will not allow you to switch HADR roles. Certain HADR parameters must
always remain matched, such as HADR_TIMEOUT, for example. Therefore, you
must schedule a required brief database outage while updating the parameters
on the primary server and recycling the DB2 instance or deactivating/activating
the database.

For the HADR Primary system, this process of role switching is not required for
dynamic databases or database manager configuration parameters, that is,
which require no recycling of the DB2 database or instance to take immediate
effect. When a dynamic database manager or database configuration parameter
update has been issued on the HADR primary, you must manually perform the
update against the HADR standby, as well. Parameter configurations are not
logged, and thus, are not mirrored through HADR log shipping.

For further details, refer to the DB2 9.5 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.
luw.qb.migration.doc/doc/c0023662.html

12.4.2 DB2 maintenance for FileNet P8

In this section, we describe high-level information about backing up and restoring
DB2 databases or tablespaces. Multiple options to backup and restore DB2
exist, depending on your requirements.

DB2 allows offline and online backup of the databases. You also have options to
back up the entire database or just incremental changes.

In the following paragraphs, we detail the required steps to perform a database
backup for various scenarios. The commands that are shown in this section are
run as the database instance owner.

Full offline backup
The easiest way to create a database backup is by using an offline backup. No
application is accessing or connected to this database at this time. You can
discover whether any application is connected to your database by running this
command:

db2 list application for database <database name>
 Chapter 12. DB2 implementation 427

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html

You need to stop the CE, PE, and IS applications first. Then, make sure that the
connections to the DB2 databases are gone.

To end an application connection from DB2, use the command:

db2 force application <application handle>

To disconnect all the application connections, use:

db2 force application all

The db2 force application all command terminates all of the connections to
all of the databases in the DB2 instance. If more than one database is defined in
an instance, use this command carefully to not interrupt other applications.

If you want to ensure that no one else is working on DB2, you can optionally stop
and restart the DB2 server and put the database in quiesce mode. To force DB2
to end all applications and to not let any of them log on again, use:

db2 quiesce database force connections

Remember, the user must belong to the sysadm or dbadm group.

To create an offline backup of a DB2 database, run:

db2 backup database <database name> to <directory>

To put DB2 back to its normal state, use:

db2 unquiesce db

Full online backup
The advantage of using an online backup is that no application is required to
disconnect from the database and no transaction has to be stopped. The
database remains accessible and is able to be updated at all times. The online
backup also allows you to recover the database to the point in time of the failure.
For FileNet P8, there is no need to stop CE, PE, and IS. You typically perform
backups when systems need to be highly available and no amount of downtime
is acceptable.

Log files are critical for the online backups. Because transactions are still in
progress during the backup, the backup might contain the transactions that are in
an uncommitted status. DB2 uses the information in the database backup
images and the log files to restore the database to a consistent status, as well as
to a specified point in time.

To perform an online backup, run this command:

db2 backup database <database name> ONLINE to <directory>
428 IBM High Availability Solution for IBM FileNet P8 Systems

Incremental backup
DB2 provides backup facilities for data that has changed since the last offline or
online database backup. This feature saves tape or disk space, but it might not
reduce the amount of time to perform a backup, because DB2 still needs to read
the data blocks to determine if they have changed since the last backup.
Performing recovery requires both the database backup and the incremental
backups to fully recover the database. Using this method can take more time to
recover a database.

Incremental backups are useful for saving space, as well as for saving
bandwidth, when backing up over the network.

Backing up and restoring a database with snapshot backup
DB2 9.5 provides fully integrated flash copy support. It automates the manual
steps that are currently required for backup and restore with flash copy.

Many storage subsystems provide FlashCopy® or snapshot functions that allow
you to make nearly instantaneous point-in-time copies of entire logical volumes
or data sets.

In a traditional backup or restore operation, the database manager copies data to
or from disks using operating system calls. Being able to use the storage
subsystems to perform the data copying makes the backup and restore
operations much faster. In addition, the impact on the ongoing operation is
minimum; therefore, it is an optimal solution for a 24x7 production system.

As of Version 9.5, DB2 provides integrated support for snapshot backups
through DB2 Advanced Copy Services (ACS™). DB2 ACS enables you to use
the fast copying technology of a storage device to perform the data copying part
of backup and restore operations.

Restoring the database
It is important to verify the requirements to restore the database, because there
are multiple ways to restore a database:

� Based on the amount of time that is needed to recover the database
� Recovery based on a specific point in time

Restoring a full database backup is the fastest option. By reapplying database
log files, the time that is needed increases; however, you are able to recover to a
later point in time. Your strategy truly depends on your requirements.
 Chapter 12. DB2 implementation 429

Considerations
There are few considerations for backing up databases for FileNet P8:

� Because FileNet P8 works with multiple databases (in our case, FNGCDDB,
FNOS, INDEXDB, and VWDBHA databases), we recommend that you
schedule the backup for all databases on your system in the same backup
window to maintain consistent data. This consideration is extremely important
for the CE Global Configuration Database (GCD) and object store databases
(FNGCDDB and FNOS, in this example).

� An offline backup is the preferred method for IBM FileNet P8. An offline
backup insures that all application data is in a consistent state. When a
restore becomes necessary, all data must be recovered to the same point in
time.
430 IBM High Availability Solution for IBM FileNet P8 Systems

Chapter 13. System-level failover testing

In this chapter, we provide the details about failover testing for each of the IBM
FileNet P8 components with practical step-by-step procedures in a high
availability environment.

We discuss the following topics:

� System-level testing:

– Prerequisites
– HTTP servers
– Application Engine: Workplace
– Content Engine
– Content Search Engine
– Process Engine server farm
– Image Services
– Databases

� Actual testing process and results

13
© Copyright IBM Corp. 2009. All rights reserved. 431

13.1 System-level testing

The starting point for the system-level testing is making sure that all servers, the
hardware load balancer, and connections are up and running normally. In the
case of active/passive clusters, the active node is up and functioning, with the
passive node waiting to take over the primary node’s function. The objective of
these tests is not to verify full functionality of the software, as in typical quality
assurance (QA) testing. Instead, it is to show that service remains available after
any one node goes down. It is assumed that the software has passed the QA
testing, and therefore, if connectivity is still available after a failure, all functions
will operate normally.

In each series of tests, the person executing the test has to authenticate (log on
to) to the Application Engine (AE), typically, in the first step of the sequence. For
the remaining steps in each sequence, the tester notes whether they are
subsequently required to log in to AE again. In certain failover scenarios, we
expect that the user will be requested to log on again, while in other failover
scenarios, the user’s credentials are retained so that another logon is not
required.

In the cases of the HTTP server, AE, Content Engine (CE), and Process Engine
(PE), the components within each tier are deployed for high availability in a
server farm, with all nodes active (active/active cluster). This configuration is
beneficial for scalability, as well as availability, when compared with an
active/passive cluster of nodes. Under normal circumstances, all of the nodes in
an active/active cluster can be used to service user requests. From a high
availability (HA) standpoint, the benefit of this configuration is that there is little, if
any, recovery time required after a node failure. The other nodes in the cluster
are already up and operational. The only requirement is for the next tier closer to
the user to detect the failure and to start directing requests to the remaining
nodes. This configuration is the preferred configuration for achieving high
availability.

When testing the availability of an active/active cluster in a tier, it is necessary to
fail all of the nodes in the cluster one at a time. You must show that the service
provided by that cluster remains available regardless of which single node in the
cluster fails.

13.1.1 Prerequisites

The prerequisites that we describe here assume that we will test for all of the
components that we have set up, including Image Services (IS) and Content
Search Engine.
432 IBM High Availability Solution for IBM FileNet P8 Systems

After configuring all of the hardware and software, use a population tool to create
an initial set of documents within the Image Services server. These documents
must have content (1 KB of random text is sufficient). The intention is to federate
them using Content Federated Services for Image Services (CFS-IS) so that
they are available through the Content Engine.

Second, use Enterprise Manager to create an object store, enable content-based
retrieval (CBR) searches on the Document class, and populate the object store
with at least five documents, each containing content. For testing convenience,
file these five documents in a single folder. Verify that the documents have been
successfully indexed for CBR searches.

Third, configure CFS-IS so that the documents created within the IS system will
be federated into the object store. Verify that this operation has completed and
that the content of these documents can be accessed through Enterprise
Manager.

Each of the following sections details the steps to verify the high availability of
each of the component tiers under test. Each test focuses on a specific tier in the
configuration. For the system to have end-to-end high availability, each tier must
demonstrate that it can continue to provide service in the event of a failure of any
single node.

13.1.2 HTTP servers

The two HTTP servers operate as a farm and serve as a front end to the AE
systems. They implement WebSphere Application Server-specific load balancing
through the use of the HTTP Plug-in. Because both HTTP servers are able to
connect to both the AE servers, the loss of either HTTP server does not cause a
loss of availability, except for transactions that are in progress at the time of the
failure that were directed through the failed node. The hardware load balancer
ensures that new connections received from clients will be directed to one or
both of the HTTP servers, depending on load and availability. Because testing
availability of the hardware load balancer is outside the scope of this book, only a
single load balancer is used. We assume the single load balancer is either to be
implemented using high availability hardware techniques, or that a backup load
balancer is available at all times to be substituted if the primary load balancer
fails.
 Chapter 13. System-level failover testing 433

Follow these test procedure steps to verify the high availability of the HTTP
server tier:

1. With both nodes running, browse the contents of the object store, and get the
properties of an item. Retrieve four other documents’ properties or content.

2. Shut down HTTP node 1. Repeat the browse/get properties operations to
verify that service is still available.

3. Bring HTTP node 1 back up; shut down HTTP node 2. Repeat the browse/get
properties operations to verify that service is still available.

4. Bring HTTP node 2 back up.

Test expectations: nodes at this tier must maintain session affinity between the
clients and the AE servers, because the AE server retains logon credentials for
the user in between interactions. When the node that the user was using is lost,
the new node will not know which AE was servicing the user previously, and will
select one, effectively at random. Therefore, there is a 50/50 chance that the
user will be requested to log on again during this test.

13.1.3 Application Engine: Workplace

The AE servers form the primary Web tier for P8. They depend on the availability
of CE and PE. Unlike CE and PE, which are designed to be stateless, AE
maintains a state for each user, including each user’s logon credentials.
Therefore, connections from clients to the AEs through any load-balancing
mechanism must be configured with session affinity, so that each time that a
user connects (Web browser connections are typically short-lived), the
connection will be directed to the same AE. Of course, this approach is
impossible if that particular AE become unavailable. So, for this tier, high
availability means that service continues to be available if a node in the tier fails,
but users will be expected to log on again and might have to resubmit a
transaction that was being created at the time of the failure.

Follow these test procedure steps for verifying high availability of the AE server
tier with CE:

1. With both nodes running, browse the contents of the object store, and get the
properties of an item.

2. Shut down AE node 1. Repeat the browse/get properties operations to verify
that service is still available.

3. Bring AE node 1 back up; shut down AE node 2. Repeat the browse/get
properties operations to verify that service is still available.
434 IBM High Availability Solution for IBM FileNet P8 Systems

Follow these test steps to verify the functioning of AE with PE:

1. Bring AE node 2 back up. Create a two step workflow from the Process
Designer.

2. Shut down AE node 1. Create a two step workflow from the Process
Designer.

3. Bring up AE node 1; shut down AE node 2. Create a two step workflow from
the Process Designer.

4. Bring up AE node 2. With both nodes running, launch a workflow that
contains a manual step.

5. Shut down AE node 1. Complete the manual step in the workflow.

6. Bring up AE node 1; shut down AE node 2. Complete the second step of the
workflow.

7. Bring up AE node 2.

13.1.4 Content Engine

Content Engine, along with Process Engine, forms the business logic tier of the
P8 architecture. It depends primarily upon the availability of the databases, File
Storage Areas, and or Fixed Content Devices for its operation. For CE to be
highly available, each of these underlying services must be made to be highly
available also, along with other infrastructure, such as the network.

CE is configured for high availability in an active/active server farm. CE is
designed to be stateless, so that requests can be sent to any CE within the farm
for processing. Clients of CE will access it in one of two ways. Web Services
clients will connect through a load balancer (a hardware load balancer in the
configuration that is used for this book). Enterprise JavaBeans (EJB) clients will
use software load balancing that is provided by the application server
(WebSphere Workload Manager, in the case of WebSphere Network
Deployment Edition, the application server that is used for this book).

Because all CEs are normally active, testing of high availability in this tier will
involve shutting down each node in the tier in turn and verifying availability of the
CE service at all times. Because CEs are stateless and do not “replace” the
functioning of a failed node, no failovers or failbacks are required, only verifying
that service remains available regardless of which CE node might be down at a
given time.
 Chapter 13. System-level failover testing 435

Follow these test procedure steps for verifying the high availability of Content
Engine:

1. With all nodes running, log in to Workplace from a browser. Create a
document with content. Browse the contents of the object store. Get the
properties of a document.

2. Shut down CE node 1. Check out the document that was created in step 1.

3. Bring up CE node 1; shut down CE node 2. Check in the document that was
checked out in step 2, with new content.

4. Bring CE node 2 back up.

As noted earlier, the EnableDispatcher setting in Content Engine to enable the
dispatching of indexing jobs to Content Search Engine (CSE) constitutes a single
point of failure in versions of the 4.x CE prior to 4.5. In those earlier versions,
including Version 4.0.1, which is used for the testing for this book, it is
necessarily to change this setting manually when a failover occurs, if indexing is
to continue.

13.1.5 Content Search Engine

Content Search Engine consists of several components, and of those
components, three form single points of failure:

� The Master Administration Server: There is only one Master Administration
Server within a K2 domain. For high availability, it must be
active/passive-clustered.

� The Index Server: For a given collection, there is only one Index Server.
Furthermore, this server must have local file access, typically through a Fibre
Channel connection to a storage area network (SAN) device. For high
availability, each Index Server must therefore be active/passive-clustered.

� The CE that dispatches indexing jobs: In CE Versions 4.0.0 and 4.0.1, there
is a distinguished CE node that performs this function. For a completely
automatic failover if this node were to fail, either it must be
active/passive-clustered, or the cluster management software must run a
custom program that will change the EnableDispatcher setting from the failed
node to another node in the farm.

In the configuration of P8 that is used for this book, all of the CSE services are
deployed on one logical partition (LPAR). Consequently, that LPAR is
active/passive-clustered with another LPAR that is using IBM PowerHA for AIX
(HACMP - formerly IBM High Availability Cluster Multi-Processing). Therefore,
testing consists of shutting down the initially active node, verifying that a failover
occurs, and then, that service remains available. We also want to verify that
436 IBM High Availability Solution for IBM FileNet P8 Systems

Content Engine will continue to accept new documents even when the service is
completely unavailable.

Follow these test procedure steps for verifying the high availability of the Content
Search Engine:

1. With all nodes running, log in to Workplace from a browser. Create a new
document containing at least one keyword that is not contained in any other
document in the repository. Wait until all of the documents have been indexed
(set a low dispatcher wait interval, and check the indexing job queue to verify
that the indexing has completed).

2. Create a new document with content.

3. Verify that the document is indexed and can be found in a search.

4. Shut down CSE node 1 and verify that a failover to node 2 has occurred.
Perform the same test as in steps 2 and 3.

5. Perform a failback from node 2 back to node 1. Perform the same test as in
steps 2 and 3.

6. Now, bring down both nodes, so that the CSE service is unavailable. Perform
the same test as in step 2.

7. Finally, restore node 1 to normal operation. Now, perform the test in step 3 to
verify whether the documents that were created in step 6 have been indexed
now that service has been restored.

We expect that in step 6, the user will still be able to create a document, and that
this document will be indexed and be searchable after the CSE nodes are
brought back up in step 7.

13.1.6 Process Engine server farm

Two high availability configurations of Process Engine can be set up: either
active/active server farm or active/passive cluster. For this book, we test the best
practice approach, which is the active/active server farm of PEs. In this
configuration, testing of its high availability is similar to the previous tests for the
Content Engine server farm. Because either node in the farm must be able to
handle all client requests, the tests involve alternately shutting down one or the
other of the PEs in the farm, and while each node is down, performing a client
operation through AE to demonstrate that users still have service during the
outage.
 Chapter 13. System-level failover testing 437

Starting with both Process Engines in the active state, execute the following tests
for verifying high availability of Process Engine:

1. Shut down PE node 1. Launch a workflow process that contains a manual
intervention step.

2. Bring up PE node 1; shut down PE node 2. Complete the manual intervention
step in the previously launched workflow process.

3. Bring PE node 2 back up. Complete the work item for the launched workflow
with both nodes up.

4. Shut down PE node 2. Launch a workflow process with a manual intervention
step.

5. Bring PE node 2 back up; shut down PE node 1. Complete the manual
intervention step in the launched workflow.

6. Bring PE node 1 back up. Complete the work flow with both nodes up.

13.1.7 Image Services

In the configuration that is used for this book, we used the Image Services
system as a Fixed Content Device by Content Engine. The IS system is, in turn,
a client of the database. Because the IS system is configured for high availability
in an active/passive cluster, only a single failover is required to test the system’s
HA robustness. If the IS system can fail over to the passive node, and if Content
Engine can then continue to function by accessing content stored in IS, the test is
successful. We have already verified that the documents within the IS system are
available through Content Engine in the prerequisite steps just listed.

Use the following test procedure for verifying high availability of Image Services:

1. Shut down the active IS system. Verify that failover occurs and that HACMP
brings up the passive node.

2. Verify that CE users can still access content that is stored in the IS system.

3. Perform a failback from the passive IS node to the originally active IS node.

4. Verify that CE users can still access content that is stored in the IS system.

In addition to these tests that verify that the IS system is highly available as a
fixed content device through Content Engine, we also verify that the IS system
remains available for its native clients:

1. Verify that the IS system is available from the IDM Desktop client by logging
in and retrieving a document image.

2. Shut down the active IS system (node 1). Verify that failover occurs and that
HACMP brings up the passive node (node 2).
438 IBM High Availability Solution for IBM FileNet P8 Systems

3. Verify that the IS system is available from the IDM Desktop client by logging
in and retrieving a document image. Note whether the user must reconnect or
log on again.

4. Shut down node 2, and verify that HACMP brings the node 1 IS system back
up.

5. Verify that the IS system is available from the IDM Desktop client by logging
in and retrieving a document image. Note whether the user must reconnect or
log on again.

13.1.8 Databases

Because we are using the DB2 High Availability Disaster Recovery (HADR)
feature in the configuration for this book, database failover is invisible to the P8
servers (the database clients). In our test environment, all of the databases
reside in a single instance of DB2. Therefore, failover testing involves shutting
down the active node and observing that failover and continuity occur
successfully. In the preceding tests, we have verified that the primary database is
operating properly with all of its clients, so we can proceed directly to the failover
testing:

1. Shut down the primary DB server.

2. Verify that failover occurs so that the passive database is brought fully online.

3. Verify that CE users can access content that is stored both in the filestore and
in the IS system.

4. Use the Process Tracker to complete a work item for a launched workflow.

5. Perform a failback from the passive database node to the original active
node.

6. Verify that CE users can access content that is stored both in the filestore and
in the IS system.

7. Use the Process Tracker to complete a work item for a launched workflow.

13.2 Actual testing process and results

For Content Search Engine, refer to Chapter 10, “Content Search Engine
implementation” on page 221, and for Image Services, refer to Chapter 11,
“Image Services implementation” on page 285 for details about tests and test
results. System-level failover tests involve more than one component so many P8
components are tested together under the same configuration.
 Chapter 13. System-level failover testing 439

For example, CE and PE are tested together for these reasons:

� They are dependent on each other for workflow.
� Workplace is the application that we use to test both engines.

13.2.1 HTTP servers

When both HTTP servers are running, client requests are spread across both of
them. Figure 13-1 shows a functioning FileNet Workplace Web application,
beneath which, two side-by-side command windows show the entries for the two
HTTP logs, one for each server. In this case, both servers are serving HTTP
GET requests successfully (that is, code 200).

Figure 13-1 Both HTTP servers are running

We stop one of the HTTP servers by using the WebSphere administrative
console, as shown in Figure 13-2 on page 441.
440 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 13-2 Stop HTTP Server in WebSphere administrative console

The FileNet Workplace still functions normally with one HTTP server running. In
Figure 13-3, the side-by-side HTTP log windows show that only the second
HTTP server is serving Workplace GET requests.

Figure 13-3 Workplace behaves normally after one HTTP stops
 Chapter 13. System-level failover testing 441

13.2.2 Application Engine: Workplace

AE runs as WebSphere application servers, which are managed in a cluster. The
WebSphere administrative console shows the status of each server. To begin this
failover test, we have two servers running first, as shown in Figure 13-4.

Figure 13-4 Both AE servers are running

While both AE servers are running, we can import a document into P8 through
Workplace, as shown in Figure 13-5 and Figure 13-6 on page 443.

Figure 13-5 Importing a document in Workplace
442 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 13-6 Successful Workplace import

Then, we stop one of the AE servers in WebSphere administrative console, as
shown in Figure 13-7.

Figure 13-7 Stop an AE server

Importing a new document in Workplace functions normally on the available AE
server. The user will not notice any change, because the same user happens to
be on the live server. See Figure 13-8 on page 444.
 Chapter 13. System-level failover testing 443

Figure 13-8 Document import successful with one AE server

A similar test shows a second user, who is using Workplace and sending
requests to the AE server, which is about to go down (simulated by stopping
server2). See Figure 13-9.

Figure 13-9 The second AE is stopped while the first AE stays up

When the same user tries to perform a document import, authentication is
required again in Workplace, as shown in Figure 13-10 on page 445.
444 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 13-10 Re-authentication required for users on the AE server that is down

After the user logs in again, the same import succeeds with only one AE instance
running. See Figure 13-11.

Figure 13-11 Import succeeds in Workplace on one AE instance

13.2.3 Content Engine and Process Engine

Content Engine and Process Engine both have to function for a workflow to work.
We combine the two components in this system-level failover test scenario.
Similar to other WebSphere servers, we stop one of the CE servers in the
WebSphere administrative console, as shown Figure 13-12 on page 446.
 Chapter 13. System-level failover testing 445

Figure 13-12 CE cluster has only one instance up

We also stop one of the PE instances in the farm setup. Overall, we can see
clearly which servers are running and which servers are down in the F5 load
balancer. Figure 13-13 shows the statistics for the HTTP, CE, and PE nodes. For
this test, we make one HTTP server, one CE server, and one PE server available
(nodes marked red are down, and nodes marked green are up).

Figure 13-13 Only one HTTP, one CE server, and one PE server available
446 IBM High Availability Solution for IBM FileNet P8 Systems

We can successfully import a document, as shown in Figure 13-14.

Figure 13-14 Successful import document into CE on a single HA stream

Next, we test the workflow. Before we stop PE, we launched a workflow and
move one step in the workflow. Figure 13-15, Figure 13-16 on page 448, and
Figure 13-17 on page 448 show what tasks we can perform up to until the PE
shutdown.

Figure 13-15 Launch a workflow in Workplace
 Chapter 13. System-level failover testing 447

Figure 13-16 User tasks show the workflow

Figure 13-17 Move the workflow forward

Using the Process Tracker, we can see where we are in the workflow (at which
step). Figure 13-18 on page 449 shows that we are at the “General” step in the
workflow before a PE instance is shut down.
448 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 13-18 Workflow step

Now when one of the PEs is stopped, we can continue the workflow in
Workplace. Figure 13-19 on page 450 and Figure 13-20 on page 450 show the
successful test.
 Chapter 13. System-level failover testing 449

Figure 13-19 Continue workflow on one PE server

Figure 13-20 Workflow completes
450 IBM High Availability Solution for IBM FileNet P8 Systems

13.2.4 Database failover

In this scenario, we use Image Services (IS) as part of the database failover test.
We import a document into IS, as shown in Figure 13-21.

Figure 13-21 Import a book document into Image Services

Now, we fail over DB2, which runs the IS database. After the DB2 primary node
fails over the standby node, we perform the same import in Workplace. See
Figure 13-22 on page 452.
 Chapter 13. System-level failover testing 451

Figure 13-22 Import document into IS after database failover occurs

The error that is shown in Figure 13-23 suggests that a database connection is
being re-established. We have to retry the same import request by clicking
Return.

Figure 13-23 Error message seen during DB connection re-established from IS to DB2

Upon retry, the document is successfully imported into IS, as shown in the fifth
document in Figure 13-24 on page 453.
452 IBM High Availability Solution for IBM FileNet P8 Systems

Figure 13-24 Successful import in IS after DB failover
 Chapter 13. System-level failover testing 453

454 IBM High Availability Solution for IBM FileNet P8 Systems

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM
Redbooks publications” on page 457. Note that several of the documents
referenced here might be available in softcopy only:

� IBM Content Manager Backup/Recovery and High Availability: Strategies
Options and Procedures, SG24-7063

� IBM TotalStorage Solutions for Disaster Recovery, SG24-6547

� WebSphere Application Server V6 System Management & Configuration
Handbook, SG24-6451

Other publications

These publications are also relevant as further information sources:

� IBM FileNet P8 System Overview, GC31-5482

� IBM FileNet P8 High Availability Technical Notice, GC31-5487

� IBM FileNet 4.0 Installation and Update Guide, GC31-5488

� IBM FileNet Image Services, Version 4.1, Microsoft Cluster Server Installation
and Upgrade Procedures for Windows Server, GC31-5531-01

� IBM FileNet Image Services, Version 4.1, VERITAS Cluster Server and
VERITAS Volume Replicator Guidelines, GC31-5545

� IBM FileNet Image Services, Version 4.1, Installation and Configuration
Procedures for AIX/6000, GC31-5557-01

� IBM FileNet Image Services, Version 4.1, Release Notes, GC31-5578-03

� IBM FileNet P8 Content Federation Services for Image Services, Version 4.0,
Guidelines, GC31-5484-01

� IBM FileNet Image Services, ISRA, and Print Hardware and Software
Requirements, GC31-5609-04
© Copyright IBM Corp. 2009. All rights reserved. 455

� IBM FileNet Image Services, OSAR Cable Tool, 2008-07-22

� High Availability, Scalability, and Disaster Recovery for DB2 on Linux, UNIX,
and Windows, SG24-7363

Online resources

These Web sites are also relevant as further information sources:

� Product documentation for IBM FileNet P8 Platform:

http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422

� Product documentation for IBM FileNet Image Services:

http://www.ibm.com/support/docview.wss?rs=3284&context=SSNVUD&uid=sw
g27010558

� IBM PowerHA for AIX or IBM High Availability Cluster Multi-Processing
(HACMP) library:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?top
ic=/com.ibm.cluster.hacmp.doc/hacmpbooks.html

� DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

� DB2 database product documentation:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

� Migration to DB2 Version 9.5:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.d
b2.luw.qb.migration.doc/doc/c0023662.html

� IBM DB2 Version 9 system requirements:

http://www.ibm.com/software/data/db2/9/sysreqs.html

� BIG-IP System Management Guide:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys.html

� Instructions for BIG-IP 5 high availability configuration in the GUI:

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/
bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
456 IBM High Availability Solution for IBM FileNet P8 Systems

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.hacmp.doc/hacmpbooks.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.migration.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://www.ibm.com/software/data/db2/9/sysreqs.html
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys.html
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip9_0sys/9_0_xSystemMgmtGuide-13-1.html#wp1020826
http://www.ibm.com/support/docview.wss?rs=3278&uid=swg27010422
http://www.ibm.com/support/docview.wss?rs=3284&context=SSNVUD&uid=swg27010558
http://www.ibm.com/support/docview.wss?rs=3284&context=SSNVUD&uid=swg27010558
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/software/data/db2/9/sysreqs.html
http://www.ibm.com/support/docview.wss?rs=3284&context=SSNVUD&uid=swg27010558
http://www.ibm.com/support/docview.wss?rs=3284&context=SSNVUD&uid=swg27010558

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, IBM
Redpaper publications, Technotes, draft publications and Additional materials,
as well as order hardcopy IBM Redbooks publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 457

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

458 IBM High Availability Solution for IBM FileNet P8 Systems

Index

Symbols
.Net API 26

A
absolute path 363
access control list 22
access role 115
ACL 22
active cluster node 360
active database 382
active node 153, 374
active/active

cluster 46
farm 204, 207

active/passive
cluster 50, 204

active-active
configuration 18

active-passive
configuration 18
HA cluster 286

addNode.sh command 139, 158
address space 82
administration tools 152
administrative console 81, 138, 157, 163, 445
administrative partition 114
administrative security 138, 157
administrative task 355
aixterm 330
algorithm 48
algorithms 204
alternate IP configuration 378
annotation 222
APAR 425
API based program 152
applets 29
applheapsz 395
application clustering 10
application data 204
application failure 352
application load 153
application monitor log 368
application server 21, 157
© Copyright IBM Corp. 2009. All rights reserved.
application server definition 137
application tier 14–15
applications server 140, 158
approval process 120
asymmetric cluster 286
asynchronous 377
authentication information 39
automatic client reroute 375
availability 11

measuring 7
availability level 9

B
backup 5, 427
backup mode 328
backup system 373
bandwidth 429
basic availability test 214
bes_commit 332
BLOB 394
boot time 314
broadcast 18
broadcast domain 81
broker server 53
browsers 102
bus length 339
business activity monitoring 20
business impact 11
business intelligence 63
business logic 15
business logic tier 14
business process 26, 204
business process framework 20
business-centric 20
business-critical nature 286

C
cach response 23
Capture 20
catalog 208
catalog tcpip node 208
CBR 222
CBR-enabled string property 222
 459

cell 137, 157
CFS 22
chvg command 302
cl_scdiskreset command 340
classify 222
cldisp 296
client access 370, 378
client communication 381
client configuration 385
client instance 207
client tier 14–15
client updater 212
clstat 343
clstat command 366
cluster domain 409, 420
cluster information daemon 366
cluster manager daemon log 368
cluster node 357, 402
cluster status 422
clustering 10
cluster-single point of control 298
collection 37, 222
collection file 52
COM API 26
command line 332
committed transaction 375
communicates 205
communication daemon 368
compliance requirement 21
component integrator 28
configuration editor 336
connectivity 432
console interface 79
container-managed authentication 164
Content Based Retrieval 36
content based retrieval 222, 253
content based search 222
content element 21
Content Engine

communication protocol 25
EJB API 26
high availability 22
scalability 22
transport protocol 25
Web Services API 26

Content Engine database 21
Content Engine Web Services (CEWS) 25
content federated service 22
content management 78

Content Search Engine 222
continuous availability 12
cookie 90
cor_listen 332
corporate governance standards 120
cross repository Search 36
C-SPOC 298
ct_management_scope 403
custom object 152
custom permission_table 363
Customer-developed application 20

D
DARE synchronization log 368
data file 357
data redundancy 10
data replication protection 378
data table space 372
data tier 14–15
database backup 429
database code

rolling upgrade 379
database configuration parameter 395
database engine 375
database failure 289
database instance 378
database manager 370
database manager system 15
database operation 382
database pair 378
database server 207, 370
database server resource 373
database structure 25
data-centric 17
data-link layer 74
db2_kill command 413
db2haicu 370, 401
db2pd 400
db2pd command 404, 414
decryption 47
default gateway 403
default service 85
demand 331
demilitarized zone 78
dependency relationship 422
deploy manager 139, 157
deployment manager definition 156
devreset command 340
460 IBM High Availability Solution for IBM FileNet P8 Systems

directory server 138, 157
disaster recovery 10
disaster recovery strategy 10
disk array 17
Disk controller failure 289
Disk failure 289
disk redundancy 9
disk resources 373
disk subsystem 8
dispatcher 52
document

versioned 22
document catalog 21
document management 120
document review 120
domain configuration 22
down time 6
ds_init 332
dual-server IS 291
dynamic logical partitioning 64

E
ECM 152
eForms 20, 30
EJB 48
EJB API

Content Engine 26
EJB transport 26

advantages 26
electronic 30
email management 20
encryption 47
end-to-end solution 5
Engine-init.war 164
enhance concurrent capable volume group 301
Enterprise Content Management 20, 152
Enterprise Java Beans (EJB) 25
enterprise resource planning 63
enterprise user 204
equivalency 383
errorlog 368
event processing 22
event script log 368
external storage infrastructure 62
external user 204

F
failback 18

failover 10, 17, 46, 222, 375, 378
Farming 10
fastest mode 84
fault tolerance 223
federation

benefit 22
definition 22

File Collection 362
file system 21, 208, 222, 292, 374
firewall 8, 47
firewall process 16
fixed content device 35
fixed-content device 21
flash copy 429
fn_edit 316
fn_util 317
from 370
full database backup 429
full text indexing 36

G
GCD JNDI 161
get dbm cfg 399
Global Configuration Data (GCD) 22
global configuration database 371
grid computing 65
group services log file 368

H
HACMP cluster 337
HADR_LOCAL_SVC 399
HADR_PEER_WINDOW 398
HADR_REMOTE_SVC 399
halt 414
hardware load balancer 209
hardware-only solution 5
health monitor 87, 91, 114
heartbeat 403
high availability 4, 10–12
high availability strategy 370
high availibility 223
High-density 24-inch 64
home directory 384
horizontal scalability 120, 223
horizontal scaling 4
hot-standby 376
http 91
HTTPS traffic 47
 Index 461

I
IBM FileNet Records Manager 20
idle standby 286
IDM Find query 341
ifconfig command 414
ifconfig down command 421
image manager component 286
inactive cluster node 328
incremental backups 429
index areas 37
index table space 372
Indexing 222
indexing request 222
inetd 306
information abstraction 40
initfnsw 330
initfnsw command 355, 367
initfnsw status 343
initial configuration 403
installation action step 389
installation directory 156, 390
installation kit 384
instance crash 413
internal terminator 339
intial boot sequence 209
IP address 374, 378
IP address space 80
IP alias 299
IP routing 74
IP sprayer 8
IP-based cluster 10
ISTK 330

J
Java API Assembly 209
Java applet 134
JFS log 304

K
K2 Administration Server 39
K2 Broker Server 41
K2 Index Server 40
K2 Master Administration Server 39
K2 Search Server 41
K2 Ticket Server 39
kernel 305
key functional component 370
key pair 402

killfnsw 330

L
LAN 80
LDAP authentication 120
least connection 84
legacy system 22
Lightweight Directory Access Protocol (LDAP) 23
listening mode 204
load balancer 8, 47, 153, 209, 446
load balancing 10
load balancing method 84
load balancing pool 114
load-balanced server farm 46
local area network 80
local file access 40
local host 402
localization 30
log buffer 377
log files 375, 377
log shipping 427
logical container 114
logical partitions 376
logical subset 80
logical tiers

Content Manager 14
logical volume 292, 357
logon credential 48, 434
lssam command 411, 414

M
magnetic storage 32
magnetic storage and retrieval 286, 291
managed node 123
master administration server 39
matrix

availability 6
members 84
memory-intensive 64
metadata 22, 152, 371
micro-partitioning 64
minor number 317
mk_links 317
MKF 317, 357, 371
monitor interval 333
monitor script 331
monitors 209
mount -a command 303
462 IBM High Availability Solution for IBM FileNet P8 Systems

MSAR 286, 291
multi-keyed file 317, 357, 371

N
natural disasters 5
NCH_daemon 332
near-synchronous 377
netmask 82
netmon.cf file 403
network adapter failure 289
Network Attached Storage (NAS) 21
network clearing house database 293
Network Clearinghouse domain 209
network communication 44
network devices 84
network equivalency 422
network failure 289
network infrastructure 62
network load balancer 44
network maintenance task 81
network performance 74
network resource 373, 378
network setting 209
node 91
node agent 123
node availability test 214
nodes 114
non-logged operation 380
NTP server 402

O
object store 22, 371
offline backup 427
offline database backup 397
offline status 411
online backup 428
online status 411
optical library 337, 340
optimum availability investment point 11
OSAR 291
outage 4
ownership 374

P
page cache 332
parallel querying 41, 222
partner 204

passive node 153, 204
passive role 382
passphrase 402
password 160
passwordless ssh 403
peer domain scope 403
peer state 404
performance

Content Engine, transport 26
persistence 90
persistence method 84
physical database 373
physical machine 4
physical storage area 371
ping response 218
planned downtime 286
planned outage 5
platform clustering 10
policy script 383
pool 84
port number 87, 382
Power failure 289
PPM configuration 363
preprpnode command 403
presentation layer 29, 134
presentation tier 14–15
primary 370
primary node 413, 451
primary nodes 402
primary role 378, 413
private network 381, 421
process 204
process analyzer 20
process broker services 95
process designer 435
process simulator 20
process tracker 448
processing power 64
processing-centric 17
processor cycle 64
process-related data 371
profile 140, 158, 363
profile definition 156
property 90, 211
protocol 44, 74, 87
public host key 402
public interface 423
public network 381
 Index 463

Q
quality assurance 432

R
RAID system 21
raw device 317, 357, 374
raw partition 208, 302
Redbooks Web site 457

Contact us xv
redundant circuits 289
redundant network infrastructure 289
region recovery 372
register 409
relationship 383
remote clustered database 290
remote command execution 402
remote content management system 22
remote procedure call 205
rendition engine 20
replication 10
resource group 360, 383
response

caches 23
response file 389
restore 397, 427
retention period 30
retry logic 426
rich media 120
rmsock 307
rolling upgrade 426

database code 379

S
scp command 397
scripts 374
SCSI 338
SCSI adapter 338
SCSI bus 338
search 222
search operation 222
secure communication 47
secure shell (ssh) 402
security 47, 123
security breaches 5
security definition 156
security zone 120
self IP address 82
server cluster 17

server failure 289
server farm 16
service address 299
service name 85
Service Oriented Architecture 48
session affinity 48, 90, 102, 434
shared file system 335
Shared processor pool 64
Shared storage 286
shared storage 372
shared volume group 301
Sharepoint Connector 29
single point of failure 44, 47, 288
single points of failure 223
snapshot 429
SOA 48
software failure 5
source database 370
SPOC command log 368
SPOF 288
SQL30108N 426
ssh 402
ssh command 403
ssh-keyscan utility 402
SSL security 29
standby node 316, 341
start script 363
startup context page 101
statefull session bean 49
stateless 434
stateless bean 49
sticky session 48
stop script 329, 356
storage 376
storage area 371
Storage Attached Network (SAN) 21
storage device 429
storage library 337
storage subsystem 44, 429
storage tier 14
strategy 223
subsystem 204
surface file 293
svcename 399
symbolic link 363
symmetric multiprocessing 63
synchronous 377
system maintenance 355
system object 114
464 IBM High Availability Solution for IBM FileNet P8 Systems

system operator errors 5

T
table space 427
takeover 341
target database 370
technology direction 18
terminators 338
throughput 49
TM_daemon 332
topology 368
trace log 368
traffic management 122
traffic management system 80
transaction processing 63
transactions 377
transfer remote procedure 205
transferred workflow 205
transport protocol 48

Content Engine 25
typical install 388

U
ultra high performance computing 63
umask 227
UpdateInstaller 156
uptime 6
user account 114
user authentication 23
user name 160
user-defined action 22
utility log 368

V
Verity Query Language 36
version

document 22
vertical scalability 4
virtual address 88, 411
virtual I/O 64
virtual IP 378
virtual IP name 210
virtual LAN 64
virtual local area network 66, 74, 122
virtual name 209
virtual port 88
virtual server 88, 114, 209

virtualization 291
VLAN 74
volume group 226, 292, 357
vwbroker 95
vworbbroker 95

W
WcmApiConfig.properties 143
Web content publishing 120
Web server 78, 120
Web Services API

Content Engine 26
Web services interface 25
wizard-driven content contribution 120
workflow 204, 445
workflow management 79
workflow object 152
workload 205
Workplace 120
workplace application 78
WSI 25, 48
WSI transport 49

advantages 26

X
XML 120
 Index 465

466 IBM High Availability Solution for IBM FileNet P8 Systems

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 High Availability Solution

for IBM
 FileNet P8 System

s

®

SG24-7700-00 ISBN 0738433268

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IBM High Availability Solution
for IBM FileNet P8 Systems

Provides HA
strategies and
options for IBM
FileNet P8 systems

Includes HA
implementation for
Content Engine,
Process Engine, and
Application Engine

Describes HA
implementation for
Content Search
Engine, Image
Services, and
databases

Many organizations require almost continuous availability of
their mission-critical, IBM FileNet P8 systems. Loss of system
resources and services can translate directly into lost revenue
and lost customers. The goal, therefore, is to design and
implement IBM FileNet P8 systems that are highly available by
compensating for both planned and unplanned system
outages and eliminating single points of failure.

IBM FileNet P8 Platform provides availability features that are
built-in to the core components. With these features, high
availability of an IBM FileNet P8 system can be achieved
through redundancy: redundant components, redundant
systems, and redundant data. Hardware and software
components might fail. With redundancy, the failure can be
eliminated or minimized.

This IBM Redbooks publication describes strategies and
options for core IBM FileNet P8 system components. In
addition, the book provides detailed, step-by-step procedures
that we used to implement high availability for our case study
IBM FileNet P8 system. This book serves as a practical
reference when you design and implement highly available
IBM FileNet P8 systems.

This book is intended for IT architects, IT specialists, project
managers, and decision makers identifying the best high
availability strategies and integrating them into the IBM
FileNet P8 system design process.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Become a published author
	Comments welcome

	Part 1 Concepts and overview
	Chapter 1. Introducing high availability
	1.1 High availability
	1.2 Measuring availability
	1.2.1 Planned compared to unplanned outages
	1.2.2 Availability matrix
	1.2.3 Total availability of a system

	1.3 Levels of availability
	1.4 High availability cost compared to loss
	1.5 High availability and continuous availability
	1.6 IBM FileNet P8 platform infrastructure fundamentals
	1.6.1 Application clustering (server farms)
	1.6.2 Platform clustering (server clusters)
	1.6.3 Choosing between a farm or a cluster

	Chapter 2. IBM FileNet P8 system architectural overview
	2.1 Architectural overview
	2.2 Content Engine
	2.2.1 Database
	2.2.2 Communication protocols

	2.3 Process Engine
	2.3.1 Component Integrator
	2.3.2 Communication protocols

	2.4 Application Engine
	2.4.1 Communication protocols

	2.5 Image Services and CFS-IS
	2.5.1 Communication protocols
	2.5.2 CFS-IS architecture

	2.6 Content Search Engine
	2.6.1 Content Search Engine architecture
	2.6.2 K2 Master Administration Server
	2.6.3 K2 Administration Server
	2.6.4 K2 Ticket Server
	2.6.5 K2 Index Server
	2.6.6 K2 Broker and Search Servers
	2.6.7 Communication protocols

	Chapter 3. High availability strategies for IBM FileNet P8 systems
	3.1 Component redundancy
	3.2 Virtualization compared to high availability
	3.3 Application Engine
	3.3.1 Session affinity for Application Engine

	3.4 Content Engine
	3.4.1 Load balancing the EJB transport
	3.4.2 Load balancing the WSI transport
	3.4.3 Session affinity for Content Engine

	3.5 Process Engine
	3.5.1 Session affinity for Process Engine

	3.6 Content Search Engine
	3.7 Image Services and CFS-IS
	3.8 Summary

	Part 2 High availability implementation for IBM FileNet P8 system components
	Chapter 4. Infrastructure setup: Introducing the case study
	4.1 Case study introduction
	4.2 Hardware
	4.2.1 IBM p5 595 features and overview
	4.2.2 BIG-IP 6800 system features and overview

	4.3 Physical architecture
	4.4 Architecture summary
	4.4.1 Scenario A
	4.4.2 Scenario B

	4.5 Installation sequence reference

	Chapter 5. Hardware load balancer implementation (F5 BIG-IP)
	5.1 BIG-IP System overview
	5.1.1 Core modules
	5.1.2 Key benefits

	5.2 BIG-IP configuration for IBM FileNet P8
	5.2.1 Configuring the self IP and virtual local area networks
	5.2.2 Define the pools for Application Engine, Content Engine, and Process Engine
	5.2.3 Define the virtual servers for Application Engine, Content Engine, and Process Engine
	5.2.4 Enable session affinity for Content Engine in BIG-IP
	5.2.5 Configure health monitors for Application Engine, Content Engine, and Process Engine
	5.2.6 Validate load balancing
	5.2.7 Test 1: Load balancing on two HTTP nodes
	5.2.8 Test 2: Load balancing on one HTTP node
	5.2.9 Test 3: Load balancing on two CE nodes
	5.2.10 Test 4: Load balancing on one CE node
	5.2.11 Test 5: Load balancing on two PE nodes
	5.2.12 Test 6: Load balancing on one PE node

	5.3 Setting up and configuring standby BIG-IP
	5.3.1 Configuring the new BIG-IP in a redundant pair
	5.3.2 Configuring the original BIG-IP as a standby system
	5.3.3 Synchronizing configurations
	5.3.4 Viewing redundancy states and synchronization status
	5.3.5 Validate standby BIG-IP failover

	5.4 Set up administrative partitions for P8

	Chapter 6. Web tier implementation
	6.1 Introduction
	6.2 Hardware components
	6.2.1 Load balancers

	6.3 Software components
	6.3.1 IBM HTTP Server system requirements
	6.3.2 HTTP server and plug-in setup and management overview
	6.3.3 Web tier component installation preparation
	6.3.4 IBM HTTP Server installation steps
	6.3.5 Web server plug-ins installation steps
	6.3.6 Fix Pack 17 installation steps

	6.4 Failover test at the Web tier level
	6.5 Maintenance recommendations

	Chapter 7. Application Engine implementation
	7.1 Introduction
	7.2 High availability options for Application Engine
	7.3 Design for the case study
	7.4 Setup for active/active Application Engine cluster (farm)
	7.4.1 Procedure for Application Engine cluster setup

	7.5 High availability tests at the Application Engine level
	7.5.1 Application Engine basic availability test
	7.5.2 Application Engine node availability test 1
	7.5.3 Application Engine node availability test 2

	Chapter 8. Content Engine implementation
	8.1 Introduction
	8.2 High availability options for Content Engine
	8.3 Case study design
	8.4 Setting up the active/active Content Engine cluster (farm)
	8.4.1 Procedure for the Content Engine cluster setup

	8.5 High availability tests at the Content Engine level
	8.5.1 Content Engine basic availability test
	8.5.2 Node availability test 1
	8.5.3 Node availability test 2
	8.5.4 Load balance test

	Chapter 9. Process Engine implementation
	9.1 Introduction
	9.2 High Availability options for Process Engine
	9.3 Design for the case study
	9.4 Setup for active/active Process Engine cluster (farm)
	9.4.1 Procedure for PE active/active cluster (farm) setup

	9.5 High availability tests at the Process Engine level
	9.5.1 Process Engine basic availability test
	9.5.2 Node availability test 1
	9.5.3 Node availability test 2
	9.5.4 High availability test

	Chapter 10. Content Search Engine implementation
	10.1 Introduction
	10.2 Content Search Engine high availability strategy
	10.3 Design for the case study
	10.4 Installing and configuring the CSE components
	10.4.1 System prerequisites
	10.4.2 Installing Autonomy K2 on IBM AIX 5.3.0
	10.4.3 Configure an HACMP resource group for CSE
	10.4.4 Configure an HACMP application server for CSE
	10.4.5 Updating the Content Engine Server farm
	10.4.6 Configuring document classes and properties for CBR
	10.4.7 Validate basic indexing and searching operations

	10.5 High availability tests at the CSE level
	10.5.1 CSE planned failover and failback procedures
	10.5.2 CSE unplanned failover and failback procedures
	10.5.3 Content Engine failures: K2 Dispatcher Queue

	10.6 Troubleshooting the Content Search Engine

	Chapter 11. Image Services implementation
	11.1 High availability options for Image Services
	11.1.1 High availability for Image Services
	11.1.2 IS cluster takeover example
	11.1.3 High availability considerations for IS

	11.2 Installing IS in a high availability environment
	11.2.1 IS HA support and documentation
	11.2.2 Fresh installation of IS on HACMP
	11.2.3 Integrating an existing IS into HACMP
	11.2.4 Connecting optical storage libraries

	11.3 High availability test for IS cluster
	11.3.1 Restart and takeover tests
	11.3.2 Database reconnect test

	11.4 IS maintenance in HACMP clusters
	11.4.1 Managing IS as a cluster resource
	11.4.2 Overview of local and shared resources
	11.4.3 IS update procedures with HACMP
	11.4.4 Troubleshooting and log files

	Chapter 12. DB2 implementation
	12.1 DB2 high availability strategies for FileNet P8
	12.1.1 Database considerations for FileNet P8
	12.1.2 Scenarios for DB2 high availability

	12.2 Setting up DB2 high availability for FileNet P8
	12.2.1 The lab environment
	12.2.2 Prepare the DB2 setup
	12.2.3 Install DB2 server
	12.2.4 DB2 configuration for FileNet P8
	12.2.5 Setting up HADR
	12.2.6 Integrating DB2 HADR and IBM Tivoli System Automation for Multiplatforms

	12.3 High availability tests for DB2
	12.3.1 Test case description
	12.3.2 Performing the tests

	12.4 Maintenance and upgrade recommendations for DB2
	12.4.1 DB2 upgrade for FileNet P8
	12.4.2 DB2 maintenance for FileNet P8

	Chapter 13. System-level failover testing
	13.1 System-level testing
	13.1.1 Prerequisites
	13.1.2 HTTP servers
	13.1.3 Application Engine: Workplace
	13.1.4 Content Engine
	13.1.5 Content Search Engine
	13.1.6 Process Engine server farm
	13.1.7 Image Services
	13.1.8 Databases

	13.2 Actual testing process and results
	13.2.1 HTTP servers
	13.2.2 Application Engine: Workplace
	13.2.3 Content Engine and Process Engine
	13.2.4 Database failover

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

