

Pulley Question – Vertical masses

Two masses, m_1 (30kg) and m_2 (20kg) are connected by a rope over a frictionless pulley of negligible mass. The masses are released from rest. Air resistance is negligible.

a) Calculate the acceleration of the masses once they are released. (2 marks)

- b) Calculate the tension in the rope. (2 marks)

M1 = 30kg M2 = 20kg g = 9.8m/s Ignore friction

ATARs Plus

SOLUTION: Pulley Question – Vertical masses

Two masses, m_1 (30kg) and m_2 (20kg) are connected by a rope over a frictionless pulley of negligible mass. The masses are released from rest. Air resistance is negligible.

a) Calculate the acceleration of the masses once they are released. (2 marks)

$$\Rightarrow \quad \therefore a = g\left(\frac{m_1 - m_2}{m_1 + m_2}\right)$$

Note: The above simplified expression may be useful for similar questions.

$$a = 9.8 \left(\frac{30 - 20}{30 + 20} \right) = 1.96$$

$$\therefore a = 2.0 \ m/s^2$$
 (in the direction of W₁)

b) Calculate the tension in the rope. (2 marks)

 W_1

M1 = 30kg M2 = 20kg $g = 9.8m/s^2$ Ignore friction

ATARs Plus