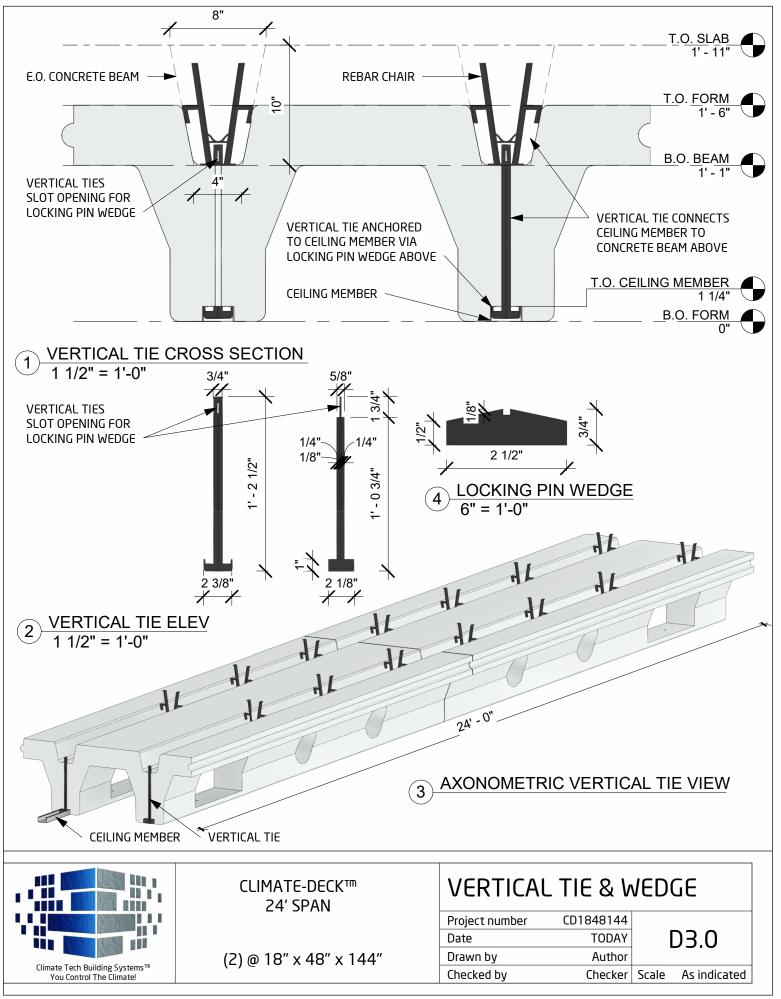


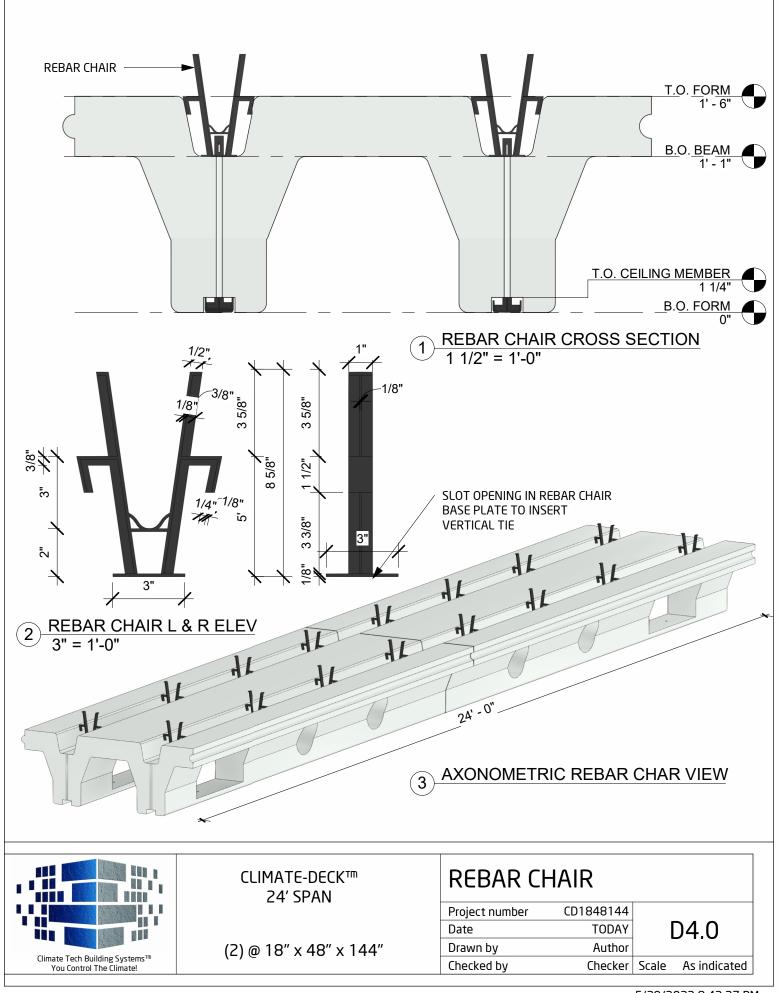

www.climatebuilt.com


Copy Right © | Climate Tech Building Systems<sup>™</sup> | Patent Pending

5/29/2023 8:43:23 PM



Copy Right © | Climate Tech Building Systems<sup>™</sup> | Patent Pending


5/29/2023 8:43:28 PM

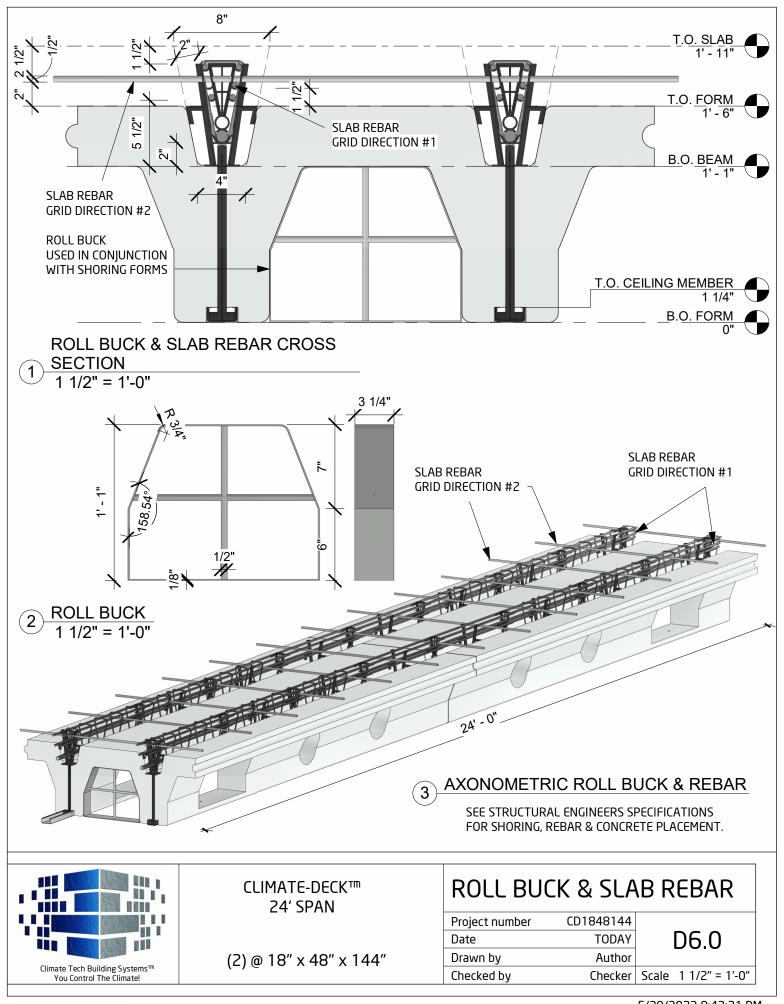


www.climatebuilt.com


Copy Right © | Climate Tech Building Systems<sup>™</sup> | Patent Pending

5/29/2023 8:43:25 PM

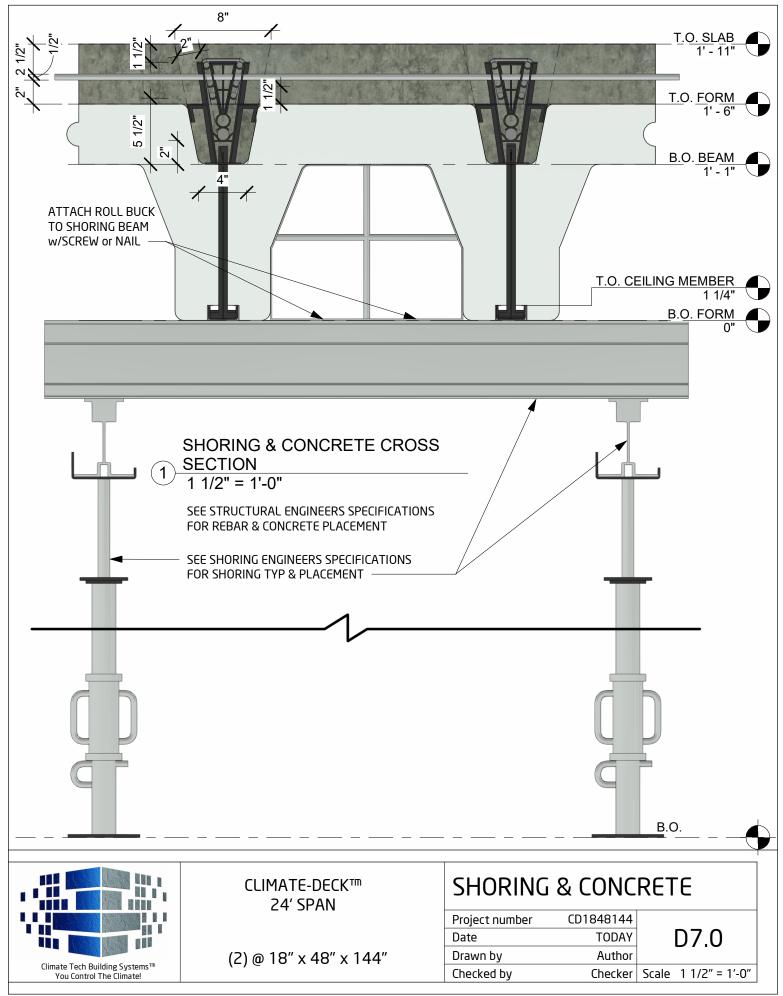



Copy Right  ${\ensuremath{\mathbb C}}$  | Climate Tech Building Systems  ${\ensuremath{^{\mbox{\tiny TM}}}}$  | Patent Pending

5/29/2023 8:43:27 PM

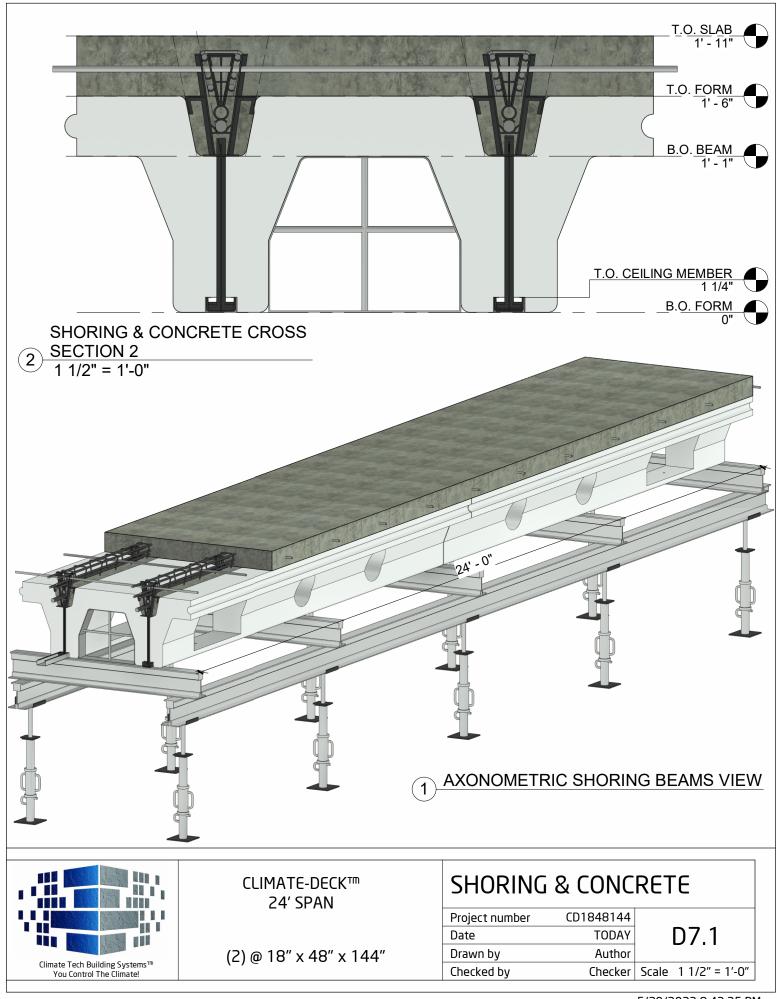


Copy Right © | Climate Tech Building Systems<sup>™</sup> | Patent Pending


5/29/2023 8:43:30 PM



www.climatebuilt.com


Copy Right © | Climate Tech Building Systems<sup>™</sup> | Patent Pending

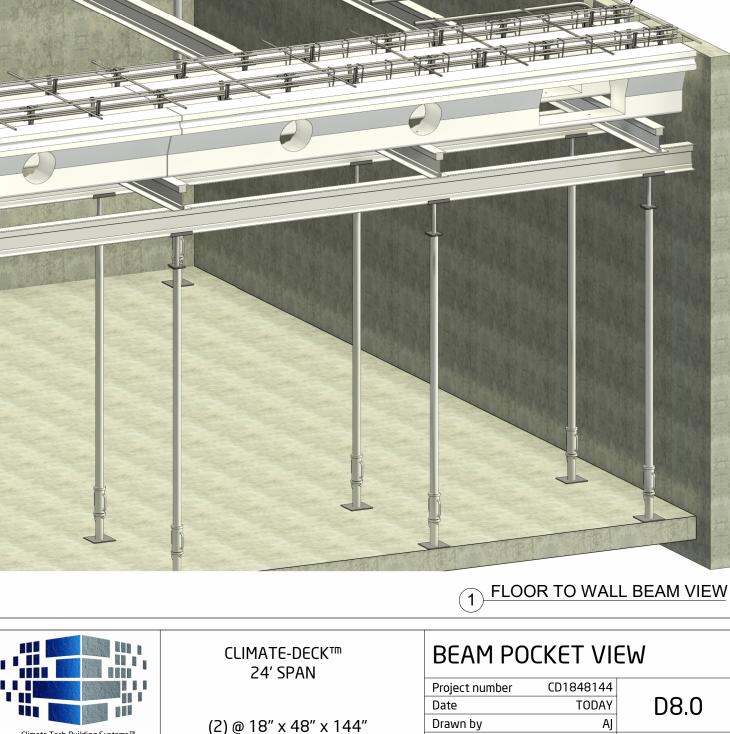
5/29/2023 8:43:31 PM



Copy Right  ${\tt C}$  | Climate Tech Building Systems  ${\tt T}$  | Patent Pending

5/29/2023 8:43:33 PM




Copy Right  $\mathbb O$  | Climate Tech Building Systems  $^{\rm TM}$  | Patent Pending

5/29/2023 8:43:35 PM



STRIP FORMS, BREAK OUT EPS POCKET **EXPOSING #8 REBAR, BEND** REBAR DOWN INTO THE CONCRETE FORMS BEAM VOID

SET CLIMATE-DECK<sup>™</sup> & REBAR BEAM CAGE INTO PLACE, CONNECTING #8 BAR FROM WALL TO CONCRETE BEAM



Climate Tech Building Systems™ You Control The Climate!

www.climatebuilt.com

5/30/2023 9:46:24 AM

AJ Scale

Copy Right © | Climate Tech Building Systems<sup>™</sup> | Patent Pending

Checked by

| Concrete Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     | Software copyright ENE                                            | RCALC, INC. 1983-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| DESCRIPTION: typ 24' span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Site Serve LLC                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| CODE REFERENCES<br>Calculations per ACI 318-14, IB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 2018 CBC 2019 ASCE 7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| Load Combination Set : ASCE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| <b>Material Properties</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| fc = 3.0 k<br>fr = fc <sup>1/2</sup> * 7.50 = 410.792 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   | ð in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ear: 0.750<br>0.850                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| $\psi$ Density = 145.0 p<br>$\lambda$ LtWt Factor = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pcf β <sub>1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                               |                                                                   | • • /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| Elastic Modulus = 3,122.0 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | si Fy - Stirrups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.0 ksi                                                                                                                                                                                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| fy - Main Rebar = 60.0 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | si E - Stirrups = 2<br>si Stirrup Bar Size #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29,000.0 ksi<br>3                                                                                                                                                                                   | é                                                                 | • • /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| E - Main Rebar = 29,000.0 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | si<br>of Resisting Legs Per Stirrup =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or resisting Legs r er otirrup -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     | ·                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     | L                                                                 | 4in .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| $\searrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.06) L(0.08)                                                                                                                                                                                       |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     | ÷                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                               |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0 ft                                                                                                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ' w x 10" h                                                                                                                                                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| <b>Cross Section &amp; Reinforci</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | na Deteile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| Span #1 Reinforcing<br>1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n 0.0 to 24.0 ft in this span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 10.0 in<br>2-#4 at 1.50 in fror                                                                                                                                                                   | n Top, from 0.0 to 2                                              | 4.0 ft in this span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 0.0 to 24.0 ft in this span<br>ded to loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | n Top, from 0.0 to 2                                              | 4.0 ft in this span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |
| 1-#8 at 2.0 in from Bottom, from<br>2-#4 at 5.0 in from Bottom, from<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br>DESIGN SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror                                                                                                                                                                                | n Top, from 0.0 to 2                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gn OK                                           |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= <b>0.670</b> : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-#4 at 1.50 in fror<br>Maximum Deflection                                                                                                                                                          |                                                                   | Desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |
| 1-#8 at 2.0 in from Bottom, from<br>2-#4 at 5.0 in from Bottom, from<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br>DESIGN SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transier<br>Max Upward Transiert I                                                                                                       | nt Deflection<br>Deflection                                       | Desig<br>0.625 in Ratio =<br>0.000 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 460 >=360<br>0 <360.0                           |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable                                                                                                                                                                                                                                                                                                                                                                                         | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transier<br>Max Upward Transient<br>Max Downward Total De                                                                                | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span                                                                                                                                                                                                                                                                                                                      | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transier<br>Max Upward Transiert I                                                                                                       | nt Deflection<br>Deflection<br>sflection                          | Desig<br>0.625 in Ratio =<br>0.000 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable                                                                                                                                                                                                                                                                                                                                                                                         | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transier<br>Max Upward Transient<br>Max Downward Total De                                                                                | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span                                                                                                                                                                                                                                                                                                                      | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transier<br>Max Upward Transient<br>Max Downward Total De                                                                                | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination                                                                                                                                                                                                                                      | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum                                                                                                                                                                                                                   | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br><u>Support 1 Support 2</u><br>2.405 2.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination                                                                                                                                                                                                                                      | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H                                                                                                                                                                              | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H                                                                                                                                                                    | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H                                                                                                                                       | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>1.445 1.445<br>1.445 1.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MIXimum<br>Overall MIXimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+S+H<br>+D+0.750Lr+0.750L+H                                                                                                                         | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>1.445 1.445 1.445<br>1.445 1.445 1.445<br>1.445 1.445 1.445 1.445<br>1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.455 1.45                                           | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H                                                                                                                                       | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>1.445 1.445<br>1.445 1.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+Lr+H<br>+D+Lr+H<br>+D+Lr+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                                 | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.165<br>2.165 2.165<br>2.165 2.165<br>1.445 1.445<br>2.405 2.165<br>2.165 2.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                               | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+Lr+H<br>+D+Lr+H<br>+D+Lr+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                                 | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.165<br>2.165 2.165<br>2.165 2.165<br>1.445 1.445<br>2.405 2.165<br>2.165 2.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                               | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in fror<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Defle<br>Max Upward Total Defle                                                 | nt Deflection<br>Deflection<br>sflection                          | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                               | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-#4 at 1.50 in from<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Deflet<br>Max Upward Total Deflet<br>Support notation : Far left is #1          | nt Deflection<br>Deflection<br>eflection<br>ction                 | Desig<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =<br>0.000 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                               | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.105<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>0.867 0.867<br>0.867 0.867<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165<br>0.867 0.867<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-#4 at 1.50 in from<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Deflet<br>Max Upward Total Deflet<br>Support notation : Far left is #1          | nt Deflection<br>Deflection<br>sflection                          | Desig<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =<br>0.000 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 460 >=360<br>0 <360.0<br>165 >=150              |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H                                                               | $ \begin{array}{r} \text{m } 0.0 \text{ to } 24.0 \text{ ft in this span} \\ \hline \text{ded to loads} \\ 0 \text{ ksf, Tributary Width = } 2.0 \text{ ft} \\ \hline \textbf{Typical Section} \\ 19.620 \text{ k-ft} \\ 29.303 \text{ k-ft} \\ 12.022 \text{ ft} \\ \text{Span # 1} \\ \hline \textbf{Support 1 Support 2} \\ 2.405 & 2.405 \\ 0.867 & 0.867 \\ 1.445 & 1.445 \\ 2.405 & 2.405 \\ 1.445 & 1.445 \\ 2.405 & 2.405 \\ 1.445 & 1.445 \\ 1.445 & 1.445 \\ 1.445 & 1.445 \\ 2.165 & 2.165 \\ 2.165 & 2.165 \\ 2.165 & 2.165 \\ 2.165 & 2.165 \\ 2.165 & 2.165 \\ 2.165 & 2.165 \\ 0.867 & 0.867 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-#4 at 1.50 in from<br>Maximum Deflection<br>Max Downward Transien<br>Max Upward Transient I<br>Max Downward Total Deflet<br>Max Upward Total Deflet<br>Support notation : Far left is #1          | nt Deflection<br>Deflection<br>sflection<br>ction                 | Desig<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =<br>0.000 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 460 >=360.<br>0 <360.0<br>165 >=150<br>0 <150.0 |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H<br>+D+0.60D+0.60W+0.60H                     | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.105<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>0.867 0.867<br>0.867 0.867<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165<br>0.867 0.867<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-#4 at 1.50 in from<br>Maximum Deflection<br>Max Downward Transient<br>Max Upward Transient I<br>Max Upward Total Deflection<br>Max Upward Total Deflection<br>Support notation : Far left is #1   | nt Deflection<br>Deflection<br>sflection<br>ction                 | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =<br>0.000 in Ratio =<br>0.000 in Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 460 >=360.<br>0 <360.0<br>165 >=150<br>0 <150.0 |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H<br>+D+0.750Lr+0.750L+0.450W+H<br>+D+0.60D+0.60W+0.60H | n 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165 2.165<br>2.165 2.165 2.165<br>2.165 2.165 2.165<br>2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2 | 2-#4 at 1.50 in from<br>Maximum Deflection<br>Max Downward Transient<br>Max Upward Transient I<br>Max Downward Total Deflection<br>Max Upward Total Deflection<br>Support notation : Far left is #1 | nt Deflection<br>Deflection<br>eflection<br>sction<br>Ctural D    | Desig<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =<br>0.000 in Ratio =<br><b>Detail</b><br>D1848144<br>TODAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 460 >=360.<br>0 <360.0<br>165 >=150             |
| 1-#8 at 2.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>2-#4 at 5.0 in from Bottom, fror<br>Beam self weight calculated and add<br>Load for Span Number 1<br>Uniform Load : D = 0.030, L = 0.04<br><b>DESIGN SUMMARY</b><br>Maximum Bending Stress Ratio<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>Location of maximum on span<br>Span # where maximum occurs<br><b>Vertical Reactions</b><br>Load Combination<br>Overall MAXimum<br>Overall MAXimum<br>Overall MINimum<br>+D+H<br>+D+L+H<br>+D+L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.750Lr+0.750L+H<br>+D+0.60W+H<br>+D+0.750Lr+0.750L+0.450W+H<br>+D+0.750Lr+0.750L+0.450W+H<br>+D+0.60D+0.60W+0.60H | m 0.0 to 24.0 ft in this span<br>ded to loads<br>0 ksf, Tributary Width = 2.0 ft<br>= 0.670 : 1<br>Typical Section<br>19.620 k-ft<br>29.303 k-ft<br>12.022 ft<br>Span # 1<br>Support 1 Support 2<br>2.405 2.405<br>0.867 0.867<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.405<br>1.445 1.445<br>2.405 2.105<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>2.165 2.165<br>0.867 0.867<br>0.867 0.867<br>1.445 1.445<br>2.165 2.165<br>2.165 2.165<br>0.867 0.867<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-#4 at 1.50 in from<br>Maximum Deflection<br>Max Downward Transient<br>Max Upward Transient I<br>Max Downward Total Deflection<br>Max Upward Total Deflection<br>Support notation : Far left is #1 | nt Deflection<br>Deflection<br>eflection<br>cctural D<br>number C | Desi<br>0.625 in Ratio =<br>0.000 in Ratio =<br>1.735 in Ratio =<br>0.000 | 460 >=360.<br>0 <360.0<br>165 >=150<br>0 <150.0 |

5/29/2023 8:43:35 PM