EVALUATING THE LUMBAR MRI:

HOW I DO IT AKA DON'T MISS THE GOOMBA AKA FINDING WALDO AKA HOW NOT TO "F" IT UP

> Matthew Harris, MD Neuro & Emergency Radiology MBB Radiology/Radiology Partners

EVALUATING THE LUMBAR MRI:

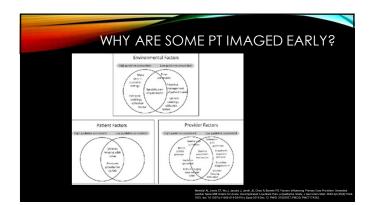
HOW I DO IT AKA DON'T MISS THE GOOMBA AKA FINDING WALDO AKA HOW NOT TO "F" IT UP

> Matthew Harris, MD Neuro & Emergency Radiology MBB Radiology/Radiology Partners

OBJECTIVES:

- Know when to use MRI in back pain
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

OBJECTIVES:


- Know when to use MRI in back pain
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

WHY NOT IMAGE IMMEDIATELY?

- Patients with no back pain often show anatomic abnormalities on imaging
- $\ensuremath{\cdot}$ Labeling phenomenon shown to worsen patients' sense of well-being
- Increased rate of imaging linked to increased rate of surgery, by up to 8-fold!
- No clinically significant difference in patient outcomes between those who had immediate lumbar imaging versus usual care

WHEN TO USE MRI IN LUMBAR PAIN

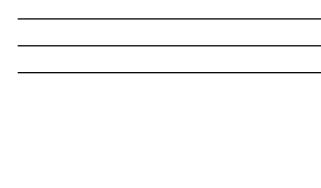
Red Flag Symptom	Concern
Elatory of malignamy	Malignancy
Unexplained weight loss	Malignancy
Imarus esuppresides	infaction, malignancy
Urinary infection	infection, malignancy
intravenous drug use	infection, mail gnancy
Pain not improved with conservative care	infection, malignancy
Preforiged use of storelds	Practano
Eletory of significant trauma	Provetient
Ninor fell/newsy lift in asteananotic/elderly individual	Proctors
Acute outer usingly reteation or overflow incentioence	Cauda equina syndrome, severe neurologic compremise
Loss of anal sphincter tone or fecal incontinence	Cauda equina syndrome, nevere neurologic compromise
Saddly anysthesia	Cauda equina syndrome severe neurologic compromise
Global or programine motor weakness in lawer limbs	Cauda oquina tyrchome, severe neurologić compremise

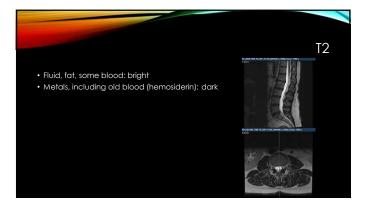
CONCLUSION

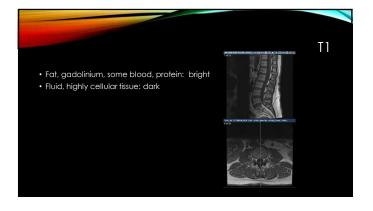
- Imaging of the lumbar spine before 6 weeks does not improve outcomes, but it does increase costs
- Imaging should be saved for patients for whom noninvasive, conservative regimens have failed and surgery or therapeutic injection are being considered

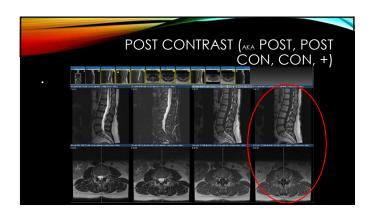
OBJECTIVES:

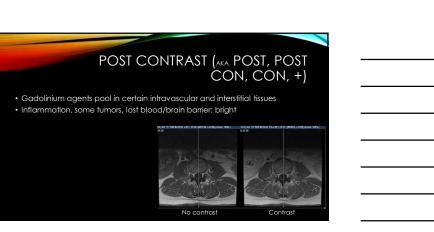
- Know when to use MRI
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature


L-SPINE SEQUENCES: USE A PATTERN!!

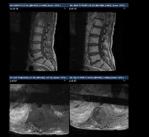

- Sagittal: t2, t2 fat sat, t1, (post t1)
- Axial: Oblique t2, t2, t1, (post t1)
- Coronal: if avail, scout







	T1
<u>renki (Beskose</u>)	



LSPINE ASSESSMENT: USE A CHECKLIST!!

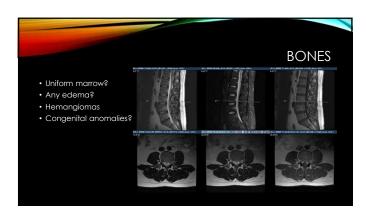
- Surgical changes
- Bones, alignment, marrow, degeneration
- Cord, conus, cauda equina, canal, enhancement
- Paraspinal tissues
- Level by level degenerative assessment
- Check comparisons

WHEN DO YOU ADD CONTRAST?

- Infection
- Neoplasm Postop (not hyperacute or late chronic)

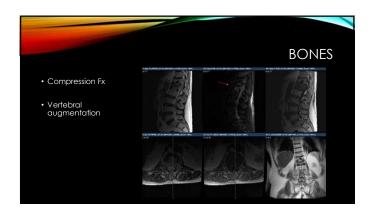

SURGICAL CHANGES

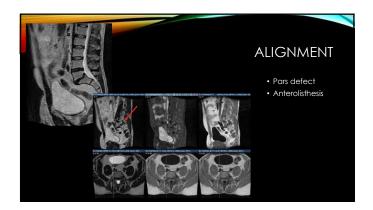
Construct used

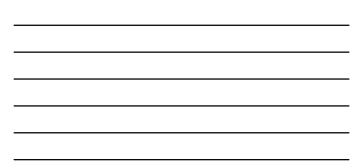

esp canal/foramen

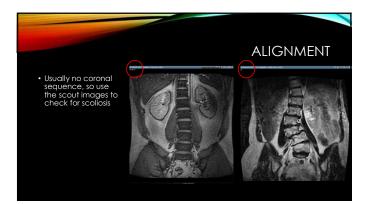
- Approach
- Hardware integrity Obvious complications

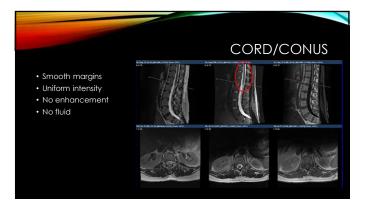
SURGICAL CHANGES Multilevel posterior fixation Metal artifact obscures detail,




ALIGNMENT


BONES

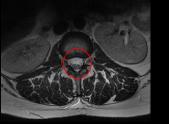

- Spondylolisthesis
 Pars defects vs degenerative facet elongation


Scoliosis

• Hemangioma

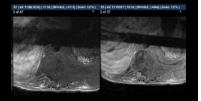


11



CAUDA EQUINA

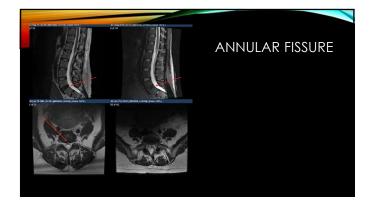
- Even nerve root distributionNo nerve root enhancement
- No nerve root thickening



EXTRASPINAL TISSUES

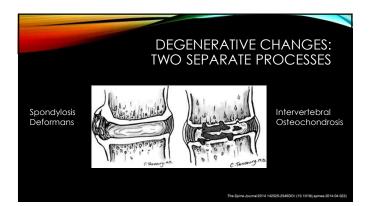
- Paraspinal tissues—abcess, hematoma, phlegmon
- Sacrum, SI joints, pelvis
- Kidneys
- Aorta
- Posterior paraspinal muscles and subq fat
- Other

EXTRASPINAL TISSUE


- Pleura/paraspinal tissue
- Metastatic squamous cell lung ca

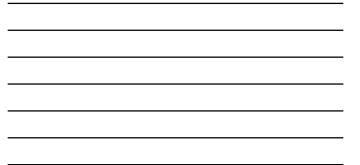
DEGENERATIVE CHANGES

- Disc and facet assessments
- Spondylosis deformans
- Intervertebral Osteochondrosis




OBJECTIVES:

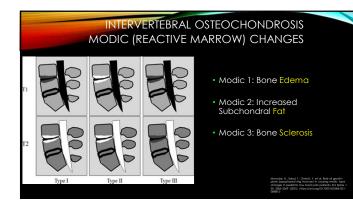
- Know when to use MRI
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature



SPONDYLOSIS DEFORMANS = NORMAL AGING PROCESS

- Disc desiccation
- Disc fibrosis
- Mild narrowing of the disc space
- Diffuse mild bulging of the annulus beyond the disc space
 Osteophytes at the vertebral apophysis

INTERVERTEBRAL OSTEOCHONDROSIS


Pathologic process Genetic factors

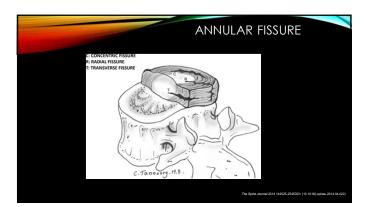
- Nucleus desiccation Fibrotic structural disorganization Irregular disc contour Numerous annular fissures
- c space narrowing cuum phenomenon

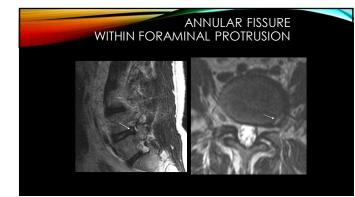
- Bone erosions
 Reactive osteosclerosis
 Multidirectional osteophytes (incl. posterior osteophytes)
 Reactive marrow changes (Modic changes)

OSTEOCHONDROSIS: THE PROCESS

- c degeneration. Loss of disc height → ligamentous strain → abnormal motion → accelerated DJD → restricted motion → process repeats in adjacent levels
- Disc Degeneration \rightarrow HNP \rightarrow canal & foraminal stenoses

18


Modic 2: Increased Subchondral Fat



ANNULAR TEAR = ANNULAR FISSURE

- Pathologic
- Precursor to disc herniation
- $\ensuremath{\cdot}$ Extends from nucleus pulposus to the disc periphery
- Avulsion of disc fibers from vertebral body insertions
- Symptomatic or asymptomatic
- Annular tears ≠ trauma

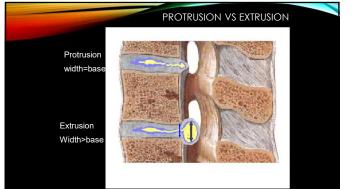
DISC HERNIATION

- Definition: localized or focal displacement of disc material beyond the normal margin of the intervertebral disc space.
- Disc materials: nucleus pulposus, cartilage, fragmented apophyseal bone, annular tissue and/or combination.

HERNIATION TERMINOLOGY

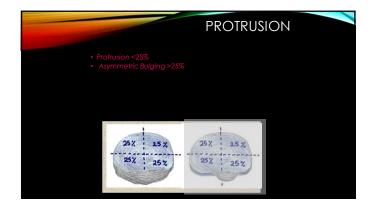
- Disc Herniations
- Protrusion
- Extrusion
- Intravertebral (Schmorls node)
- If Extruded, the disc can then...
- Migrate (connected but rostro-caudal slippage)
 Sequestration (disconnect & slip)
 Subligamentous or erode thru the PLL

DEFINITIONS FOR DISC HERNIATION

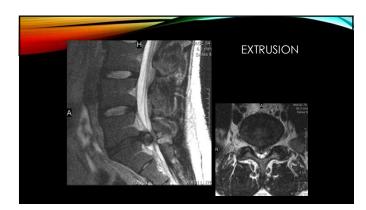

Need sagittal views. Axial views are also necessary to obtain sufficient data to make the distinction – usually best defined on the sagittal view with correlation on the axial view

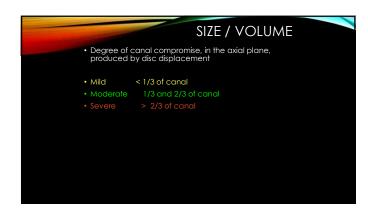
<u>Protrusion</u>

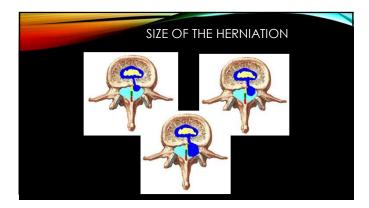
The width of the herniated material doesn't exceed the width of its base ("fits back into the disc space")

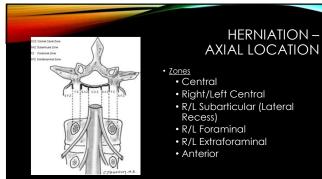

<u>Extrusion</u>

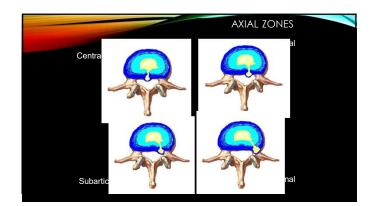
The width of the herniated material exceeds the width of its base ("can't fit back into the disc space")



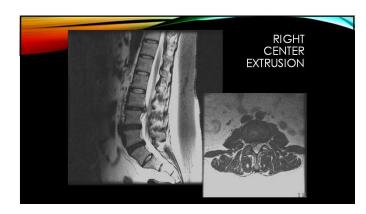

DESCRIPTIONS - DISC HERNIATION

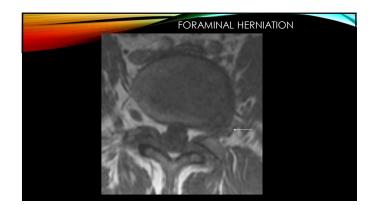

- <u>Shape Protrusion or Extrusion</u>
- Size Relative to the size of the canal
- Location within the spinal canal
- <u>Continuity</u> with disc space
- <u>Composition</u> on T1 and T2 sequences
 <u>Relationship</u> to the PLL

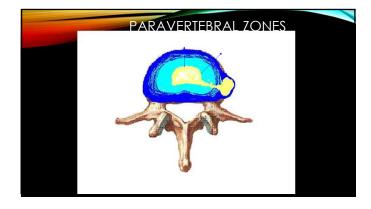


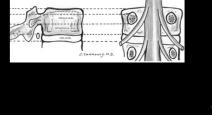


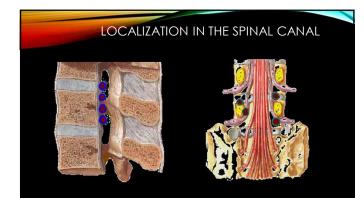
MOD VOLUME HERNIATION

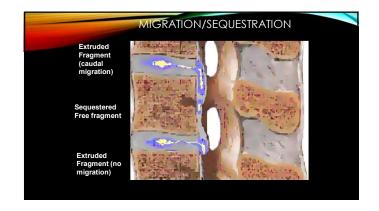




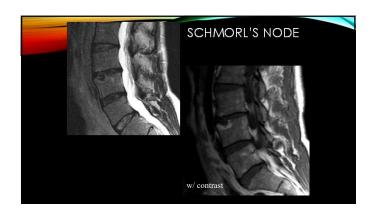







HERNIATION – SAGITTAL LOCATION Levels Suprapedicular Pedicular Infrapedicular Disc Level

- Subligamentous
- Extraligamentous
- Transligamentous (or perforated)



DISRUPTED PLL PLUS EXTRUSION W/ CAUDAL MIGRATION	6 M
	a 507

VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Schmorl's nodes (Lumbothoracic)
- Limbus Vertebral body
 Limbus Avulsion Fracture
 Traction Osteophytes
 OPLL

VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Limbus Vertebral body
 Limbus Avulsion Fracture
 Traction Osteophytes
 OPLL

LIMBUS VERTEBRAE

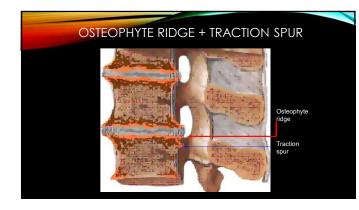
ts the a bi

VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Limbus Vertebral body
- •Limbus Avulsion Fracture
- Traction OsteophytesOPLL (cervical)

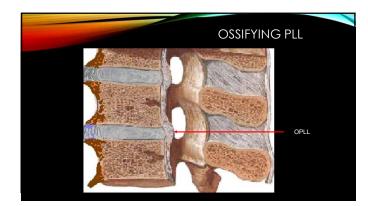
LIMBUS AVULSION: A VARIATION OF DISC HERNIATION

Limbus avulsion fx (Sharpeys fiber hold)



VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Schmorl's nodes (Lumbothoracic)
 Limbus Vertebral body
 Limbus Avulsion fractures (Lumbar)
- Traction Osteophytes


• OPLL

VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Schmorl's nodes (Lumbothoracic)
 Limbus Avulsion fractures (Lumbar)
 Limbus Vertebral body
 Traction Osteophytes (cervical)

- •OPLL

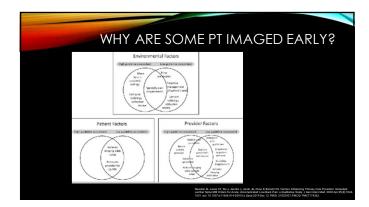
REVIEW

- Know when to use MRI in back pain
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

QUESTIONS? Matthew Harris, MD matthew.harris@radpartners.com

OBJECTIVES:

- Know when to use MRI in back pain
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature


OBJECTIVES:

- Know when to use MRI in back pain
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

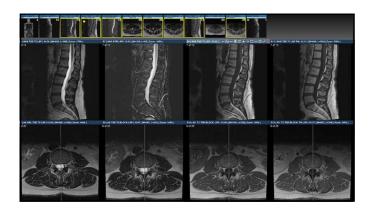
WHY NOT IMAGE IMMEDIATELY?

- Patients with no back pain often show anatomic abnormalities on imaging
- Labeling phenomenon shown to worsen patients' sense of well-being
- Increased rate of imaging linked to increased rate of surgery, by up to 8-fold!
- No clinically significant difference in patient outcomes between those who had immediate lumbar imaging versus usual care

WHEN TO	USE MRI IN LUMBAR PAI
Comprehensive Red Flags and Reasons for Contern as D	
Red Flag Symptom	Concern
Elstory of malignamy	Malignancy
Unexplained weight loss	Malignancy
Imarunosuppression	Infaction, mail guartey
Urmary infection	infection, mailgnancy
Intravenous drug use	infection, mail gnamey
Pain not improved with conservative care	infection, makgrouxy
Preionged use of iteraids	Practare
Eletory of significant trauma	Practism
Minor full/heavy lift in osteoporotic/elderly individual	Practice
Acute outer uninary retention or overflow incentioence	Cauda equina syndrome, nevere neurologic compremise
Loss of anal sphincter tone or fecal incontinence	Cauda equina syndrome, nevere neurologic compromine
Saddly anysthecia	Cauda equina syndrome severe neurologic compromise
Global or programine motor weakness in lower limits	Gauda oguina tyrednome, severe acurologie comprender

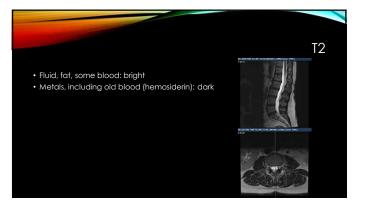
CONCLUSION

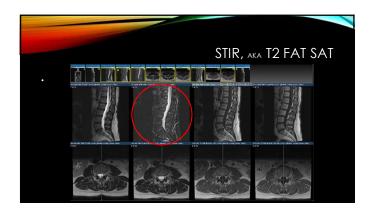
- Imaging of the lumbar spine before 6 weeks does not improve outcomes, but it does increase costs
- Imaging should be saved for patients for whom noninvasive, conservative regimens have failed and surgery or therapeutic injection are being considered

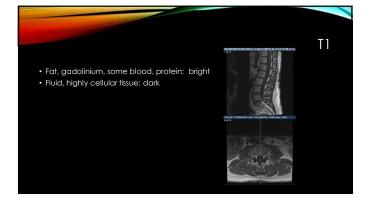

OBJECTIVES:

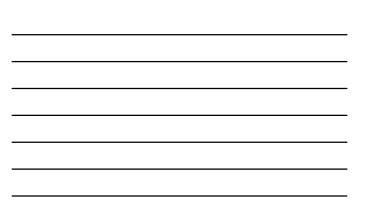
- Know when to use MRI
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

L-SPINE SEQUENCES: USE A PATTERN!!

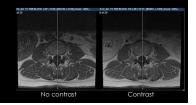

- Sagittal: t2, t2 fat sat, t1, (post t1)
- Axial: Oblique t2, t2, t1, (post t1)
- Coronal: if avail, scout







_



POST CONTRAST (AKA POST, POST CON, CON, +)

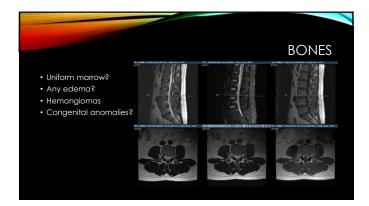
Gadolinium agents pool in certain intravascular and interstitial tissues
 Inflammation, some tumors, lost blood/brain barrier: bright

LSPINE ASSESSMENT: USE A CHECKLIST!!

- Surgical changes
- Bones, alignment, marrow, degeneration
- Cord, conus, cauda equina, canal, enhancement
- Paraspinal tissues
- Level by level degenerative assessment
- Check comparisons

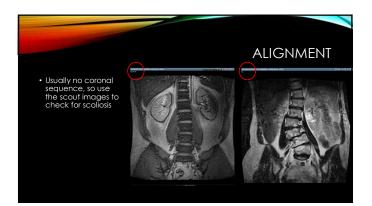
WHEN DO YOU ADD CONTRAST?

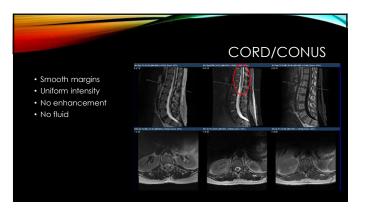
- Infection
- Neoplasm
- Postop (not hyperacute or late chronic)

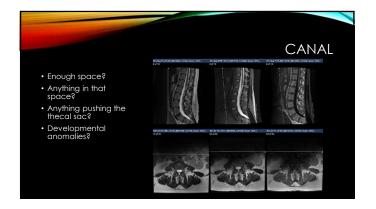


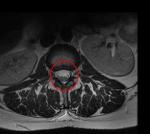
SURGICAL CHANGES

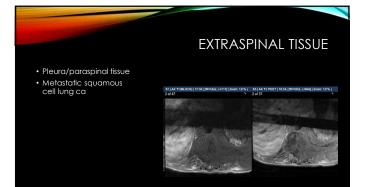
- Construct used
- Approach
- Hardware integrity
- Obvious complications


		BONES
Multiple myeloma	(E)	
	SEE.	E





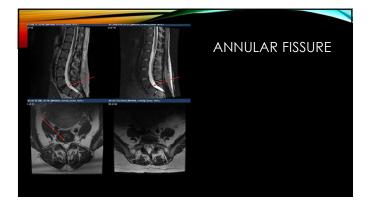



CAUDA EQUINA

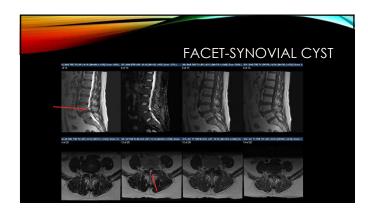
- Even nerve root distribution
- No nerve root enhancement
- No nerve root thickening

EXTRASPINAL TISSUES

- Paraspinal tissues—abcess, hematoma, phlegmon
- Sacrum, SI joints, pelvis
- Kidneys • Aorta
- Posterior paraspinal muscles and subq fat
- Other

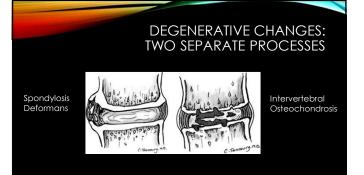

DISC LEVEL ASSESSMENT

- Facets Canal stenosis
- Foraminal stenosis



DEGENERATIVE CHANGES

- Disc and facet assessments
- Spondylosis deformans
- Intervertebral Osteochondrosis



OBJECTIVES:

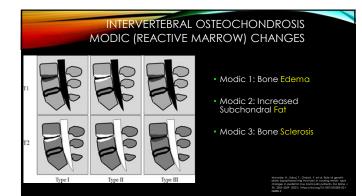
- Know when to use MRI
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

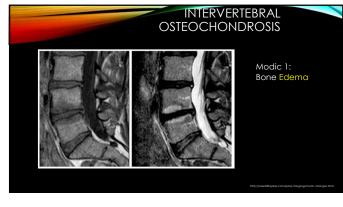
SPONDYLOSIS DEFORMANS = NORMAL AGING PROCESS

- Disc desiccationDisc fibrosis

- Disc horosis
 Mild narrowing of the disc space
 Diffuse mild bulging of the annulus beyond the disc space
 Osteophytes at the vertebral apophysis

INTERVERTEBRAL OSTEOCHONDROSIS


INTERVERTEBRAL OSTEOCHONDROSIS


- Pathologic process
 Genetic factors
- Nucleus desiccation
 Fibrotic structural disorganization
 Irregular disc contour
 Numerous annular fissures
 Disc space narrowing
 Vacuum phenomenon

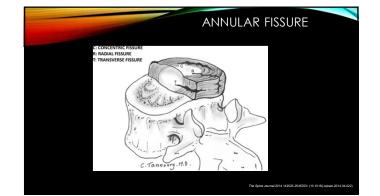
- Bone erosions
 Reactive osteosclerosis
 Multidirectional osteophytes (incl. posterior osteophytes)
 Reactive marrow changes (Modic changes)

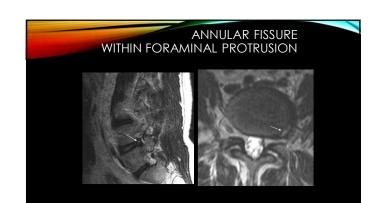
OSTEOCHONDROSIS: THE PROCESS

- c degeneration... Loss of disc height → ligamentous strain → abnormal motion → accelerated DJD → restricted motion → process repeats in adjacent levels
- Disc Degeneration → HNP → canal & foraminal stenoses

INTERVERTEBRAL OSTEOCHONDROSIS

Modic 2: Increased Subchondral Fat


http://wiadlinuise.com/mise.imm/an/modio-chomose.ht



ANNULAR TEAR = ANNULAR FISSURE

- Pathologic
- Precursor to disc herniation
- Extends from nucleus pulposus to the disc periphery
- Avulsion of disc fibers from vertebral body insertions
- Symptomatic or asymptomatic
- Annular tears ≠ trauma

DISC HERNIATION

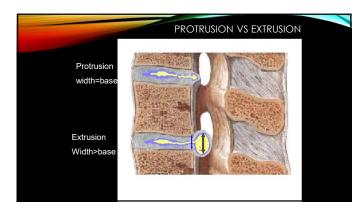
- Definition: localized or focal displacement of disc material beyond the normal margin of the intervertebral disc space.
- Disc materials: nucleus pulposus, cartilage, fragmented apophyseal bone, annular tissue and/or combination.

HERNIATION TERMINOLOGY

- Disc Herniations
 - Protrusion
 - Extrusion
 - Intravertebral (Schmorls node)
- If Extruded, the disc can then...
 Migrate (connected but rostro-caudal slippage)
 Sequestration (disconnect & slip)
 Sublicamentous or grade thru the

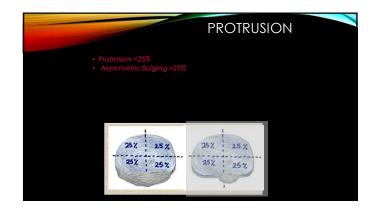
 - Subligamentous or erode thru the PLL

DEFINITIONS FOR DISC HERNIATION

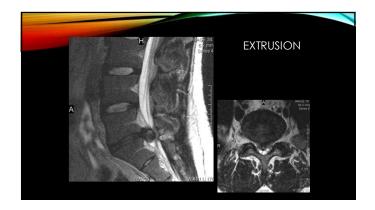

Need sagittal views. Axial views are also necessary to obtain sufficient data to make the distinction – usually best defined on the sagittal view with correlation on the axial view

<u>Protrusion</u>

The width of the herniated material doesn't exceed the width of its base ("fits back into the disc space")

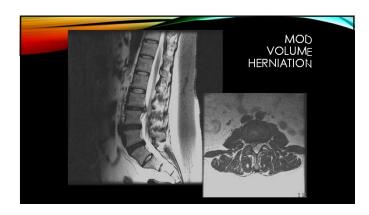

Extrusion

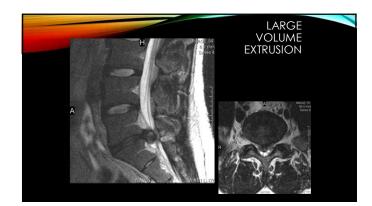
The width of the herniated material exceeds the width of its base ("can't fit back into the disc space")

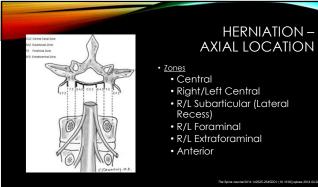


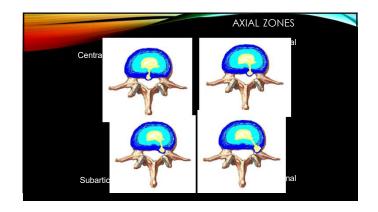
DESCRIPTIONS - DISC HERNIATION

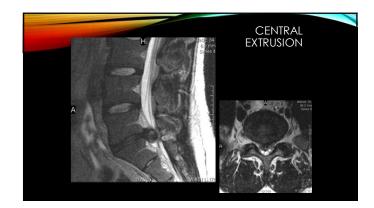
- <u>Shape Protrusion or Extrusion</u>
- Size Relative to the size of the canal
- Location within the spinal canal
- <u>Continuity</u> with disc space
 <u>Composition</u> on T1 and T2 sequences
- <u>Relationship</u> to the PLL



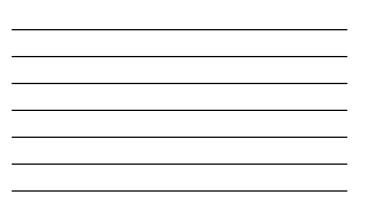

SIZE / VOLUME
canal compromise, in the axial plane, by disc displacement
< 1/3 of canal 1/3 and 2/3 of canal > 2/3 of canal

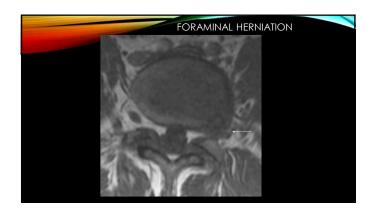


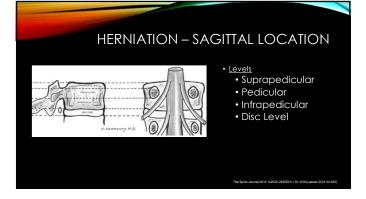


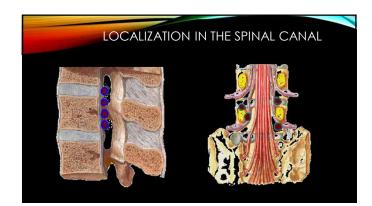


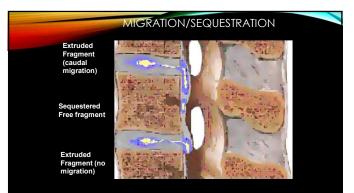












EXTRUSION W/ CAUDAL MIGRATION	

- Subligamentous
- Extraligamentous
- Transligamentous (or perforated)

- Schmorl's nodes (Lumbothoracic)
- Limbus Vertebral body
 Limbus Avulsion Fracture
 Traction Osteophytes
 OPLL

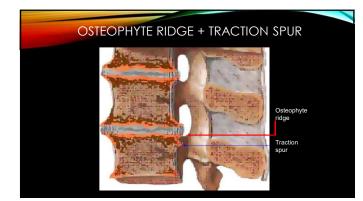
VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Limbus Vertebral body
 Limbus Avulsion Fracture
 Traction Osteophytes
 OPLL

LIMBUS VERTEBRAE

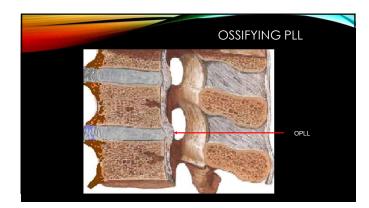
VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Limbus Vertebral body
- •Limbus Avulsion Fracture
- Traction OsteophytesOPLL (cervical)



VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Schmorl's nodes (Lumbothoracic)
 Limbus Vertebral body
 Limbus Avulsion fractures (Lumbar)


- Traction Osteophytes
- OPLL

VARIATIONS OF DEGENERATIVE SPINE PROBLEMS

- Schmorl's nodes (Lumbothoracic)
 Limbus Avulsion fractures (Lumbar)
 Limbus Vertebral body
 Traction Osteophytes (cervical)

•OPLL

REVIEW

- Know when to use MRI in back pain
- Develop a reliable pattern for assessing spinal MRI
- Identify differences between normal and pathologic degenerative appearances
- Familiarity with lumbar disc nomenclature

