SSH Extras--SCP and SSH Tunnels
One way to make typing easier for this lab it to add an entry in the /etc/hosts files for the IP addresses we are using. For example, if the address of the CentOS VM is 192.168.12.34, add the following line to /etc/hosts so that the typing is now “centos” versus “192.168.12.34.” [image:]
Also, a host file entry on the CentOS VM with kali and the IP address of the Kali VM may be handy.
Secure Copy (scp)
Once you have SSH running, you can also copy files back and forth securely using secure copy (scp). It’s quite easy, and doesn’t have the security problems that FTP does. The format is very similar to plain old copy (cp).
cp [source file] [destination file]
The difference with scp is that you specify the computer you are copying to or from using the same header that you use for SSH, [user]@[ip address or computer name]:. Examples are john@centos: or john@192.168.12.34:. Note the colon between john@centos and the file name!
Let’s make a file on Kali and then use scp to copy it to CentOS. [image:]
The file is indeed on the CentOS VM.
 [image:]
Now, let’s create a file on the CentOS VM, and then use scp on the Kali VM to fetch it. Since the source file is on the CentOS VM, we use john@centos: before the source file name.[image:][image:]
SCP on Windows
[bookmark: _GoBack]If you’ve installed PuTTY on your Windows host using they MSI file, there should be a file in your PuTTY folder called pscp. If you just downloaded putty.exe, you can download pscp.exe from the same place. It uses a syntax much like scp. You can also download a GUI program for transferring files using SCP on Windows here.
Tunneling with SSH
Local SSH Tunnels
You can make an SSH connection to another computer, and assign that tunnel to a port number on your local machine. Then you can direct another program (browser, mail client, you name it) to connect to that same local port, and its connection is passed through the SSH tunnel. For example, if you are at an unprotected wireless (Starbucks, etc.) you can make an SSH connection to your home computer. The SSH connection is protected by digital certificates so you can be certain you are connecting to your home computer. It’s also encrypted so no one can eavesdrop. Your connection passes through the home computer and then goes safely on to the Internet (at least as safe as you can be on the Internet.)
For this example, we’ll make a tunnel to carry a connection from the browser on our Kali VM through the CentOS VM, and on to www.google.com. First create the tunnel.
ssh –L 8000:www.google.com:80 john@centos
This says we’re going to make an SSH connection to the user john on our CentOS VM. The local port that we’ll use is 8000 (our choice, can be anything), the tunnel will go to www.google.com, and connect to port 80 on the Google server (80 is the standard web port.) [image:]
Now, we just aim our browser at port 8000 on our local machine (127.0.0.1) and the connection is securely tunneled to our CentOS VM and out to www.google.com.
Note: When you aim your browser at 127.0.0.1:8000 instead of the domain name, www.xyzco.com, the web server may not respond. Current web servers often host many web sites on the same IP address, and sort the traffic based on a field in the HTTP header called Host. The best way have your browser add the correct Host field is to add an entry in your /etc/hosts file that aims www.xyzco.com to 127.0.0.1.
(Another way is to skip ahead to the section, Dynamic SSH Tunnels.)
[image:]
Woohoo!
Dynamic SSH Tunnels
If we want to browse to another web site, we’ll have to take down the current tunnel and make a new one, for example, ssh –L 8000:www.nasa.gov:80 john@centos. What a hassle.
SSH supports a proxy protocol called SOCKS5, and calls it a dynamic tunnel. We can configure the connection to use this with the –D switch and the port number on the local machine we’d like to use. Once that’s done, we’ll need to point the web browser to that address by telling it that it is a proxy server.
Here’s the SSH connection, using local port 8001 (our choice, can be anything).
ssh –D 8001 john@centos
[image:]
Now we configure the web browser on the Kali VM to point to the localhost and port we picked (127.0.0.1:8001).				[image:]
With the dynamic tunnel configured we can browse normally. The browser will send its requests through the encrypted SSH tunnel to the CentOS machine. The CentOS will forward them to the Internet, receive the answers, and send them back to the Kali browser through the tunnel.
[image:]
If you want to verify that our browsing is really going through the tunnel, you can run tcpdump on the CentOS machine. You’ll see the SSH traffic to and from Kali, and the web traffic to and from the Internet.
Here is output from tcpdump showing a client (192.168.145.151) sending SSH traffic to the tunnel (192.168.145.157) which is forwarded to the NASA web server running on cloudfront.net.[image:]
Extra note
The proxychains program (https://github.com/haad/proxychains) will allow you to proxy almost anything through an SSH tunnel. By default, it uses port 9050.
image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image1.png

image2.png

image3.png

image4.png

image5.png

