
Terminal--Snort Challenge (Part 3)
Solution (Regular expressions)
The basic regex that we need for one character is
[0-9,A-F]

This specifies a range of possible values for the character. It can be any digit 0 through 9 or any letter A

through F. Normally a character set for hex characters also includes lower case letters a through f, but

those are not present in our packet captures.

We specify the number of consecutive characters we want to match using curly braces { }. If we want to

match a string when it reaches 24 characters, we would use {24}. A string between 20 and 30 characters

would be {20,30}. If we use {24} and the string is longer, that is fine; the rule will fire when it sees 24

characters and ignore the rest.

A regex to match a string of at least 24 hex characters (upper case letters) would be
[0-9A-F]{24}

The choice of 24 characters was arbitrary. The packets we saw had hex strings 0x/26 (decimal 38)

characters long, but we may not have seen all the possible packets.

Snort rules
 The basic Snort rule syntax is explained in this pdf. Normally the header looks something like this:
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any.

The strings $EXTERNAL_NET, $HTTP_PORTS and $HOME_NET are variables that are configured

in /etc/snort/snort.conf when Snort is installed; they specify external and internal IP addresses

and ports related to services like web. This rule would be looking for traffic from outside web servers

coming in to our network. We will not need to be that specific, although it is good practice. We will

write a quick and dirty, ugly rule to solve the terminal. There is an appendix to this document with a

more reasonable rule.

The most generic header we could have would be this.
alert udp any any <> any any

That selects traffic with any IP address and port going in any direction. The only thing it looks for is the

UDP protocol. We can do a little better than that; we know one of the ports will be 53.
alert udp any 53 <> any any

The body of the rule follows the header. It is enclosed in parentheses, and the parts are separated by

semicolons. Most rules have a message, so we can use this.
msg: “DNS--wannacookie cnc detected”;

We will skip the Flow option, since that applies to TCP traffic.

Snort uses Perl Compatible Regular Expressions, or PCRE. The detection option for a regular expression

is pcre: . Additionally, the pcre is enclosed in quotes and / characters. This will be the heart of our

https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/116/original/Snort_rule_infographic.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190103%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190103T221733Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=a8dcd1a9a891c939b6a75f6f42b9e4258bd4d7c3e038a82b5d1d2f97d7db68fe

rule.
pcre:”/[0-9,A-F]{24}/”;

Finally, all rules must have a Signature ID. The custom is to use ID numbers of 1,000,000 or higher for

local rules, that are not part of the official Snort rule set.
sid: 1000001;rev:1;

To put all together, our rule is
alert udp any 53 <> any any (msg: “DNS--wannacookie cnc detected”;

pcre:”/[0-9,A-F]{24}/”; sid: 1000001;rev:1;)

Please note that this is a very sloppy rule. The pcre test consumes a lot of processor time so normally

there is a content check first, to make sure that we are dealing with a DNS packet before the pcre

executes. Another Kringlecon player told me, “If I wrote a rule like that at work I’d be fired.”

Put the rule to work
Enter the Snort terminal and follow the instructions on the main page and the moreinfo.txt file. Use a

text editor to place the rule in the file, /etc/snort/rules/local.rules. Then start Snort with

this command.
snort -A fast -r ~/snort.log.pcap -l ~/snort_logs -c

/etc/snort/snort.conf

This tells snort to alert on traffic and use fast (brief) logging (-A fast). Rather than copying traffic

from a network interface, it will read the file snort.log.pcap in the user’s home directory. It will

place the log file and a pcap containing captured packets in ~/snort_logs. Finally, it will read the

Snort configuration file in /etc/snort/snort.conf.

Troubleshooting
Snort is very finicky about rule syntax, so do not be surprised if Snort does not start on the first attempt.

The terminal tells you whether you completed the challenge even if you don’t run Snort(!). When Snort

runs, it posts pages of information to the terminal. If you have syntax errors, the error messages will

appear at the very end of the output. Beware of Windows “smart quotes”, as they cause problems.

Once you have syntax errors corrected, look at ~/snort_logs/alert to see what the rule alerted

on. You must catch traffic in both directions to get credit for the terminal. You can also use tcpdump or

tshark on the terminal to look at the packet capture (in ~/snort_logs/) if you need more

information about the packets that your rule alerted on.

 If you want to run a local copy of Snort, be aware that the installation is complicated. There is better

support for Snort on CentOS or Fedora, so use that distribution.

Better Rules
It would be better to split the rule into two, one for inbound and one for outbound traffic. Then we can

use the $HOME_NET and $EXTERNAL_NET variables to limit the packets we examine. The new rules also

include a content check for the DNS flags that specify query or response.

In this query, note that there are two bytes of flags equal to 01 00 hex. Also, the bytes are found two

bytes after the start of the DNS payload. The first two bytes hold the Transaction ID (0x94e3 for this

packet), and the next two hold the flags.

This phrase will look for 01 00 hex in the second and third bytes of the payload. It skips two bytes

(offset: 2) and then takes the next two bytes (depth: 2).
content:"|01 00|"; offset:2; depth:2;

For response packets, the flags look like this.

This phrase will tell us we have a DNS response.
content:"|84 00|"; offset:2; depth:2;

These rules are more specific and will do a simple check to ensure the packet is DNS before executing

the expensive pcre check.

alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg: "DNS--wannacookie

cnc detected outbound"; content:"|01 00|"; offset:2; depth:2;

pcre:"/[0-9A-F]{24}/"; sid: 1000002;rev:2;)

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg: "DNS--wannacookie

cnc detected inbound"; content:"|84 00|"; offset:2; depth:2;

pcre:"/[0-9A-F]{24}/"; sid: 1000001;rev:2;)

Up Next
We can gain useful intelligence about the ransomware if we analyze the network traffic in the packet

capture file. Even better, we get to learn about Wireshark’s command line sibling, tshark!

