Objective--Network Traffic Forensics (Part 3)

Solution (or part of it)
The interesting parts of the app.js file are here.

const dey mode = true;
| -
y ¢

'‘/keys/server. key'),

‘/keys/server.crt'),
\
1 HTTP2 only. NOT HTTP1 HTTP1.1
{
1)
E kaylog key g _path sod for dev mode T iew traffic., Stores a
i)
t.keys(procass.anv)
keys.leangth; i++)
process.env[env_keys(i]] === "string"
dirs.push(("/"+env_keys[i].tolowerCase()+'/*"))
)
]
return uniquedrray(dirs)
if (dev_mods)
at env variable to open up directoriss during dev
const env_dirs = leoad_snvs()s
) else | - -
const env_dirs = ['/pub/','/uploads/'

__dirname + process.env.DEV + process.

fow minutes

WOrth at & time

We are looking for the SSLKEYLOGFILE, according to HTTP/2 Decryption and Analysis in Wireshark. Sure

enough, there is a line with exactly what we are looking for.

const key log path = (!dev mode || dirname + process.env.DEV +

process.env.SSLKEYLOGFILE)

The environment variable is SSLKEYLOGFILE.

The function 1oad envs () takes all the environment variables, converts them to lower case and
pushes them into a list. That is strange, but maybe it is trying to make the code scalable as the
environment variables article suggests. You had better be careful with your environment variables if

you do that.

The 1if statement opens directories to all environment variables if dev_mode is True. If dev_mode is

False it opens the directories put and uploads.

When we look back up to the constants, we find this, so the application is in dev_mode.

const dev _mode = true;
It appears our developer was not careful with the environment variables.

Therefore, the server should be opening a directory or file like the value stored in sslkeylogfile.

Browsing to that directory gives us this, so it appears the file name is

https://www.youtube.com/watch?v=YHOnxlQ6zec
https://codeburst.io/process-env-what-it-is-and-why-when-how-to-use-it-effectively-505d0b2831e7

http2packalyzer clientrandom ssl.log.
< & @ https://packalyzer.kringlecastle.com/sslkeylogfile/

Error: ENOENT: no such file or directeory, open 'fopt/http2packalyzer_clientrandom_ssl.log/"®

What a weird and wonderful (for attackers) that error message is!

However, /opt/http2packalyzer clientrandom ssl.log/ looks strange. Let’s go back to
the constant that created that string.
|const key:log_path = (!dev _mode || _ dirname + process.env.DEV + process.env.SSLEEYLOGFILE)

We know that dev_mode is True, so !dev_mode is False. The OR(||) is using short-cut
execution. If the first part of the OR is True, the entire statement is True so the second part does not
need to be executed. If the first part is False, the second part must be evaluated to determine if the
statement is True or False. The second part is only executed when the first part is false.

Therefore, this is executed.
__dirname + process.env.DEV + process.env.SSLKEYLOGFILE

The internal function dirname gives the current directory. Then process.env.DEV must give
the value that the DEV environment variable points to. Finally, process.env.SSLKEYLOGFILE
gives the value of the SSLKEYLOGFILE. So,

__dirname is /opt/

process.env.DEV is http2

process.env.SSLKEYLOGFILE 1is packalyzer clientrandom ssl.log

The missing ‘/’ in the code we just examined makes http2 look like part of the file name, but it is not.
The file name is packalyzer clientrandom ssl.log.

We didn’t find the file in the /pub directory. The /opt/http2/ directories are local to the server, not
what is published by the webserver. Let’s hope the web directory is dev/; after all, there is a DEV
environment variable.

https://packalyzer.kringlecastle.com/dev/packalyzer clientrandom ssl.log/

& & @ https;//packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssllog

CLIENT_RANDOM 4FAS5CBE13326FBFOC3I@235A79148322195029E252C67BEF2BE48E4738C31CC0D 39D@75BF1FCCDCA4B5C950663761FESE
CLIENT_RAMNDOM 2E3AEGAE2BB33DC13AGBCAASSEZDET146C5D3AGC55B5165504B6569@55F864E8 4C5BDEC2@3F594F 2F20D17ERE5887510
CLIENT_RAMNDOM 2442424176471B424AECEBAFAZS@BCEESCEE2CE149E1BODEF13258ALAACIAFAEEE DB45E@F36E259EFBEB39950251F 34400
CLIENT_RAMNDOM 26FAZCRBE59BG6F18E4CEESF11ADBFEEBBEFOR40BATEFE4ALVEFOB0AT4ECD174950 FD3ER1ADB7EE48C169D3C24A380968
CLIENT_RANDOM 6983197C6F598CBAAZTDETAECEBDIFAS2ESS735CCE11B97A1SATITEFSFDOECS12 2853 1DA57ACDABBAABEC42B56276566
CLIENT_RANDOM AVB3D3530C37DCEE3EE1650219DF32CDEYS501242DD286843FB1779A3865168% 616DFBES966D13975B26C5ARGFBABES
CLIENT_RAMNDOM 424DE94E69BCE48279673E3FCO239362DACTDEBCS503E95E2EVEFE2IABBYELI4AFF E@SF3EECF471C1D3C61CBED4B64598E
CLIENT_RAMNDOM C43DASSGEDGERFOOSFECFFE50@8EE3310A2DEAGLOLIF42CCSRQEST7E3I12EEFDD4L 8D926A727870CA446203CT7B5D4E4315
CLIENT RAMNDOM Ce8&651D@31AlFFDDA7BASASTOBCELLS2A0@5CERCY1895B42E5EEBBYFEE2290DD 83333C8@95C6EDAT2458AVEEDFSBADD

Yes! Copy the contents of the page and paste it into a text editor. We can move on to decrypting
packets. Finally!

https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log/

Hand In

Follow the steps in Chris’ video and see what you can glean from the pcap file you downloaded from
Packalyzer. It would be nice to find an answer to the objective, but if not, credentials are always good!

Note: Download the packet capture file, and then grab the SSLKEYLOGFILE soon afterwards. If there’s a
large time delay, the keys may not match the capture file.

1) Isthere a user name and password in the pcap file?

2) If you find credentials, where would be a good place to use them? If you are lucky, you will find
something with ‘secret’ in the name. What is it?

https://www.youtube.com/watch?v=YHOnxlQ6zec

