Objective--Recover Alabaster’s Password
(Part 4)

Searching for a private key

So far, the encryption has been done well. The key was randomly generated (although we haven’t
evaluated its quality.) The malware sends an encrypted version of the key to the server and deletes its
own copy of the key when it no longer needs it. It keeps a SHA-1 hash of the key so that it can verify
that the server has returned the correct key when the victim pays the ransom.

However, Shinny Upatree thinks there may be a flaw in the DNS server that will allow us to retrieve the
private key.

Of course, this all depends how the key was encrypted and
managed in memory. Proper public key encryption requires
a private key to decrypt.

Perhaps there is a flaw in the wannacookie author's DNS
server that we can manipulate to retrieve what we need.
If so, we can retrieve our keys from memory, decrypt the
key, and then decrypt our ransomed files.

Let’s take a look at the line in the malware that retrieved the public key.
$pub_key System.Convert FromBase64string($(get_over_dns("7365727665722E637274")))

Remember that the code has functions to convert data between different formats. We can use the
malware’s H2A function to read the value the function submitted to get_over_dns.

server.crt

Maybe we can ask for “server.key”. Rather than convert ASCII to hex, we can put this in the command
instead of converting it separately: A2H “server.key”

PS Ci\Users\Jobn'\malwares [Systes.Convert]::FromBaseBaString(S{get_over_dns(AZH "server.key")))
Exception ca [facetast it 1 et 1 put not a { Ba 64

PS Ci\Users' Jobn'\ ma Twares

We are receiving something, but it is failing the conversion to base64. Perhaps we should do it piece by
piece.

P5 C:Z\UsershJohn'\malware= get_over_dns({AZH “server.key™)

BEGIN PRIVATE KEY
MIIEvgIBADANEgkghlci GOwOBAQEFAASCEKgwggSkAgEAACIBAQDE I N2ZVUbXCEMG
L4sM2UH T1R4seEZ 11 2CMoD]7 3gHg 1+t Spwt K94 L 6znL DLWSAGBUvH+ TmHhhep9u1
W3vwHYCqg+MaSE 1 jBrvwly0e?Cr /geNBrdMtQs IKkoM 1Az R IY X vt WANF JF5 A+Ng
71 I+ dMVEL 8+ PVOGWp1 PABDSWT 1+9el lkgPbNDxCTFhAGGTHEU+cHOC Tob05SES HkDS

TPUKKIVC3FsDE, £60y I ThCwiGKkRWGSvgcOC gAGVDeL NY JIMEFvD+WHAL 2WijWTu3
HnATfMPs1 Enk,/v125wHDCtaNjFREGES 1207 1 dFVIWE pS s TOmrrM1 Y 1+ 7 xeVeMTorwd
tk,/1Z 1YNAGMBAAEC ggEAHdIGCIJOXS5E] BgPudxZ156up1Yan+RHoZ dDz6bAE J4EvC
0DW4 a0+ IdRaD%9mM,/SaB09GWLL It 0dyvhREx 1+ 1G1 bEvDGZHFRd4fMOONHGAVL gaW
OTfHgb9HPu;j 7 8ImDBCEFaZ HDuThdulb0sr4RLWOScLbIbS 82 e5pdAtZvpFcPt1fN
6Yq5,/ w01 SVEFROWu1dMbBE IN1x+xe1 JpBulsS Kol 9KHIn]Z cEgZVOQpLXzrsjKre7U

Bingo! We can save that with get_over_dns(A2H “server.key”) | Out-File server.key

PS C:iUsersﬁiﬂhnﬂma1ware$ get_over_dns(AZH "server.key") | Out-File server.key

P5 C:\Users’\John\malwarex> |

Now we have the encrypted key, the 512-byte hex string we recovered from memory, and the private
key. We may need the public key so let’s grab a copy of that.

P5 C:hUsers'Johnmalware= get_over_dns({AZH “server.crt™) | Out-File server.crt

PS5 C:%WUsers'John'malware=

Decrypting the key

We have everything we need to decrypt Alabaster’s key. It isn’t easy, however. Here’s a quote from this
link:

Unfortunately there are no universal tool for all cases. This really depends on an application
that was used for key file generation. For example a key file created by OpenSSL is not
compatible with certutil and pvk2pfx. A key created by makecert is compatible with pvk2pfx
only and so on.

Both our private and public keys are in base64 text. It would seem they should be easily transportable
between Windows and Linux, but little things get in the way.

1. Text encoding varies. Linux and openssl use ASCIl or UTF-8, while Windows tends to use UTF-16.

2. Line endings vary. Linux and openssl use \n, while Windows uses \r\n to mark the end of a line.

3. Headers vary. openssl requires headers like “-----BEGIN CERTIFICATE-----" while Windows
sometimes omits them. The server.crt file we downloaded does not have headers, for
example.

Since the malware is written in PowerShell, assume that the key should be decrypted using Windows
tools. | could not find Windows methods that allowed decryption with only the private key (openssl
does.) Instead we must combine the private and public keys into one file in PFX (also known as PKCS-12)
format. Since the new file will contain the private key, Windows will want you to protect it with a
password; just pick a simple password you can remember. | used “password”.

https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx
https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx

Hand in

1) Combine the private and public keys (server.key and server.crt)into anew file called
server.pfx using the procedure found at this link. Use the procedure for certutil.exe, which is
found on Windows by default. Include the modifier “ExtendedProperties” (without
guotes) at the end of your certutil command. See the help using certutil -MergePFX
help. Handin a copy of the server.pfx file, and the password you used when you created it.

2) Decrypt the key using the function the malware used for encryption, Pub_Key_Enc, with some
changes:

a. create avariable with the path to your new server.pfx
$cert path = Get-Childitem file\path\server.pfx

b. toimport server.pfx, we need to use a slightly different syntax. The import
function works differently depending on what that parameters are. We are using the
version “Import(String, String, X509KeyStorageFlags)” from here.
Scert.Import (Scert path, "password", O0)

c. to decrypt the key, you need to load the file containing the encrypted key (512 bytes)
into a variable.

d. the 512-byte datais in hex, but the Decrypt method wants binary. Use one of the
malware’s conversion functions to fix that.

e . the syntax for the Decrypt function is slightly different as well.
$Byte key = Scert.PrivateKey.Decrypt (Skey enc, S$Strue)

f. Convert $Byte key to hex, and hand that in.

https://www.sysadmins.lv/blog-en/how-to-join-certificate-and-private-key-to-a-pkcs12pfx-file.aspx
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.import?view=netframework-4.7.2

