
Christmas Cheer Laser, part 8, the hard way
This is an appendix to Christmas Cheer Laser, part 8. If you want to practice burrowing through messy

XML data without assistance from Import-Clixml, this is for you.

Answers to the Previous Question
9) What laser parameters do you recover from the XML document?

The last hint told us to look for a .xml file in the /etc directory.

We’ve already done something like that, so it shouldn’t be hard. It’s nice that PowerShell will do

recursive searches with a wild card in the middle, like /etc/*.xml.

dir /etc/*.xml -Recurse -ErrorAction SilentlyContinue

Notice that the EventLog.xml file is over 10 MB. It will take a long time to scroll through this file looking

for the correct id. In fact, if we look at the first few lines of the file, we see that each event is very long.
gc /etc/systemd/system/timers.target.wants/EventLog.xml | select -

first 20

It turns out that each event is about 210 lines long. A copy of one event is in the text file is in the file

LaserXML1event.txt. We are lucky though, as the Id we need is in the screenshot above. It is

<I32 N=”Id”> The value of the N=”Id” node in the screenshot is 3. (I believe the I32 stands for 32

bit integer.)

According to the hint, we need to group all the Id values. There will be one value that only occurs once,

and it should contain the information we are seeking.

For simpler ways to solve this problem, see “Christmas Cheer Laser part 8.pdf”. This way shows the ugly

details of burrowing through the XML manually.

PowerShell XML Data Type
There is a lot of XML data, so most languages have methods to handle it. We can load the contents of

EventLog.xml file into a variable (PowerShell variable names start with $) and then change its data type

to XML. Many programming languages call this type casting, or casting. Get-Content is like cat in

Linux and type in Windows, so it has the aliases gc, type, and cat. (This terminal doesn’t have

cat.)
[xml]$xdoc = gc /etc/systemd/system/timers.target.wants/EventLog.xml

If you pipe $xdoc into Get-Member, you will see that it is a System.Xml.XmlDocument and it

has many methods for dealing with XML data.

Let’s explore. The variable itself will tell us that it is a collection of objects called Objs.

Ok. The objects inside of the Objs collection are called Obj.

We are dealing with a 10MB file, we should limit our output.

We can see that underneath Obj, there are properties (nodes in XML) RefId, TN, ToString, Props, and

MS. If you look back at the screenshot with the first lines of the file, you will see that our node, <I32

N="Id">3</I32>, lives under the Props node. Use Get-Member to examine the properties of the

I32 node.

<snip>

The I32 node has properties Item, #text, and N. Now look at the contents if I32 with
$xdoc.Objs.Obj.Props.I32 | select -first 10

It looks like each event has 4 I32 nodes, named Id, Task, ProcessID, and ThreadID (they

start to repeat after that, as we’re into the next object.) This adds a little difficulty. The N= part is inside

the tag for the node, so it is an attribute, not another node. We can separate the node with the correct

attribute (Id) using the Where-Object cmdlet.

The node we want is in the N column (property) and has the value Id. The #text column gives us the

contents between the tags in <I32 N="Id">3</I32>, 3 in our case.

$xdoc.Objs.Obj.Props.I32 | where {$_.N -eq “Id”} | select -first 10

Ah, that is what we need. The command has grabbed all the nodes for <I32 N="Id">. PowerShell has a

cmdlet, Group-Object (alias group) that that will put things into groups. For example, it can put all

the Id 5 items in the screenshot above into one group and count them (same for the ones, twos, threes,

etc.)

Notice the numbers are in the column called “#text”, above. We can group by that.
$xdoc.Objs.Obj.Props.I32 | where {$_.N -eq “Id”} | group '#text'

The riddle told us to find the Id that only happens once, and it is <I32 N="Id">1</I32>. Now,

what is in the node that has N=”Id” with a value of 1? Note that we have moved up one level for the

next command. We are looking at $xdoc.Objs.Obj.Props and not

$xdoc.Objs.Obj.Props.I32. This is so we will have the properties we need in the pipeline, and

not just the I32 stuff. Since we are doing that, we have to use $_.I32.N in our Where-Object

statement.

Also, lets add a check so the only object we keep is the one with the Id value equal to 1.
$_.I32."#text" -eq 1

$xdoc.Objs.Obj.Props | where {$_.I32.N -eq "Id" -and $_.I32."#text" -eq 1}

We need the contents, not the node names so pipe into Format-List -Property *, or fl * to

grab the values of all properties.

<snip>

Ugh. Its two pages of text, but we can find the answer.

$correct_gases_postbody = @{`n O=6`n H=7`n He=3`n N=4`n Ne=22`n Ar=11`n Xe=10`n

F=20`n Kr=8`n Rn=9`n}

From here you can go back to the original document, “Christmas Cheer Laser part 8.pdf”.

