
 

 

 

Kringlecon 2:  Two Turtle Doves 
A Holiday Hack Challenge Presented by 

Counter Hack Challenges 

and SANS 

Report by John York 

johnyork807@gmail.com 

January 13, 2019  

mailto:johnyork807@gmail.com


 

 

Contents 
Lessons .......................................................................................................................................................... 6 

Shout-outs ..................................................................................................................................................... 6 

Objective 0—Talk to Santa in the Quad ........................................................................................................ 6 

Objective 1—Find the Turtle Doves .............................................................................................................. 7 

Objective 2—Unredact Threatening Document ........................................................................................... 8 

Objective 3—Windows Log Analysis:  Evaluate Attack Outcome ................................................................. 9 

Escape ed terminal  ......... 10 

DeepBlueCLI ............................................................................................................................................ 11 

Find the password spraying attack ......................................................................................................... 11 

Objective 4--Windows Log Analysis: Determine Attacker Technique ........................................................ 14 

Linux Path terminal ................................................................................................................................. 14 

Finding the tool with EQL ........................................................................................................................ 16 

Objective 5--Network Log Analysis: Determine Compromised System ...................................................... 18 

Xmas Cheer Laser Terminal ..................................................................................................................... 18 



Determine the compromised system with RITA ..................................................................................... 33 

Objective 6—Splunk .................................................................................................................................... 34 

Training Question 1—Prof Banas’ computer name ................................................................................ 36 

Training Question 2—Sensitive File ........................................................................................................ 37 

Training Question 3—Find the FQDN of the command and control server ........................................... 38 

Training Question 4—Find the malicious document .............................................................................. 38 

Question 5—How many email addresses sent student essays to Prof. Banas? ..................................... 46 

Question 6—What was the password on the zip archive? ..................................................................... 47 

Question 7—Who sent the evil email? ................................................................................................... 47 

The Challenge Question—What message did the adversary embed in their attack? ............................ 47 

Objective 7—Get Access to the Steam Tunnels .......................................................................................... 49 

Holiday Hack Terminal ............................................................................................................................ 49 

Easy Mode ........................................................................................................................................... 51 

Medium Mode .................................................................................................................................... 52 

Hard Mode .......................................................................................................................................... 55 

Cutting the key ........................................................................................................................................ 60 

Objective 8—bypassing the Frido Sleigh CAPTEHA .................................................................................... 63 

Nyanshell Terminal ................................................................................................................................. 64 

Attacking the CATPTEHA server fridosleigh.com .................................................................................... 68 

1. Determine the format of the image data in capteha_api.py .......................................................... 71 

2.  Prepare the data for the predict.py script ..................................................................................... 72 

3.  Run predict and determine the format of the data it returns ....................................................... 73 

4.  Adjust the data format to match what capteha_api.py wants ...................................................... 74 

Let capteha_api.py run and spam the contest for Krampus ............................................................... 75 

Objective 9—Retrieve Scraps of Paper from Server ................................................................................... 76 

Terminal—Graylog server ....................................................................................................................... 77 

Question 1—What did Minty download? ........................................................................................... 78 

Question 2—What IP and port did the malicious file connect to? ..................................................... 80 

Question 3—What was the first command executed by the attacker? ............................................. 80 

Question 4—How did the attacker escalate privileges? ..................................................................... 81 

Question 5—How did the attacker dump credentials? ...................................................................... 82 

Question 6—What account did the attacker use to pivot to another workstation? .......................... 82 

Question 7—What time does the attacker make a Remote Desktop (RDP) connection? ................. 83 



Question 8—What is the third host the attacker connects to? .......................................................... 84 

Question 9—What secret document did the attacker transfer from wks-3 to wks-2? ...................... 85 

Question 10—What IP address did the attacker exfiltrate the file to? .............................................. 86 

Attack the Student Portal Server ............................................................................................................ 88 

Reconnaissance ................................................................................................................................... 88 

Preparing the attack ............................................................................................................................ 90 

Attack .................................................................................................................................................. 91 

Objective 10—Recover Cleartext Document .............................................................................................. 95 

Terminal—Mongo Pilfer.......................................................................................................................... 96 

Decrypting the Document ....................................................................................................................... 98 

Testing elfscrow.exe ............................................................................................................................... 98 

Examining the Assembly Language ..................................................................................................... 99 

Adapting Ron’s skeleton.rb ............................................................................................................... 102 

Testing the key generator ................................................................................................................. 103 

Testing the decryption ...................................................................................................................... 104 

Brute forcing the encrypted document ............................................................................................ 104 

The Loot ............................................................................................................................................ 106 

Confusion .......................................................................................................................................... 106 

Objective 11—Open the Sleigh Shop Door ............................................................................................... 107 

Terminal—Smart Braces ....................................................................................................................... 108 

Open Shinny’s crate .............................................................................................................................. 111 

Lock 1 ................................................................................................................................................ 111 

Lock 2 ................................................................................................................................................ 112 

Lock 3 ................................................................................................................................................ 112 

Lock 4 ................................................................................................................................................ 113 

Lock 5 ................................................................................................................................................ 113 

Lock 6 ................................................................................................................................................ 113 

Lock 7 ................................................................................................................................................ 114 

Lock 8 ................................................................................................................................................ 115 

Lock 9 ................................................................................................................................................ 115 

Lock 10 .............................................................................................................................................. 116 

Objective 12—Filter Out Poisoned Sources of Weather Data. ................................................................. 124 

Terminal—Zeek JSON Analysis .............................................................................................................. 125 



Sleigh route finder—What is the %$^@#$!!! Password? ..................................................................... 127 

Sleigh route finder—block 100 offending sources............................................................................ 129 

Finding Local File Injection (LFI) ........................................................................................................ 129 

Finding Cross Site Scripting (XSS) ...................................................................................................... 130 

Finding SQL Injection (SQLi) .............................................................................................................. 130 

Finding Shellshock ............................................................................................................................. 130 

Pivoting ............................................................................................................................................. 130 

The Door Opens ........................................................................................................................................ 133 

 

  



Kringlecon2 
Two Turtle Doves Lessonized (Sort of) 
Once again, the team at CounterHack Challenges has outdone itself.  The 2019 Holiday Hack Challenge is 

bigger and better than ever. 

Lessons 
For the last two years I’ve turned each terminal and objective into a lesson format that I can use with my 

Infosec class for High School seniors.  This year there are so many terminals and challenges that I could 

only create lessons some of them and will provide a walkthrough for the others. 

Several of these challenges are well suited to become lessons.  So far, I’ve managed to complete lessons 

on the Linux Terminals, the Holiday Hack Trail, and the Christmas Cheer Laser.  A colleague of mine who 

teaches Python is interested in a machine learning module, so the CAPTEHA challenge may be next. 

Once the lessons have been tested in my class, I will release them to the public.  I hope to present them, 

along with other classroom modules I’ve created, at the Virginia Cybersecurity Education Conference in 

the early Fall of 2020. 

Shout-outs 
Several people on the Slack site for Kringlecon sponsored by Central Security gave me hints and nudges 

when I was discouraged and needed hints to continue the challenge.  They are (in no particular order) 

@dh, @totallynotrobots, @infosecetc, @ustayready, @teknofile, @KyleP, and @ChrisElgee.  I’ve 

probably forgotten someone, and I apologize for that. 

Objective 0—Talk to Santa in the Quad 
This is a simple getting started objective. 

 

Santa asks you to find the Two Turtle Doves.  (The very first part of the conversation is missing.)  Note 

the part where Santa asks you to come back after completing Objectives 2 – 5.  Until you do that, your 



badge will only show the first few objectives. 

 

Objective 1—Find the Turtle Doves 
The purpose of this objective is to get you to explore Elf University. 

 

The Turtle Doves are warming themselves by the fire in the Student Union, which is on the North side of 

the Quad. 

 



 

 

Objective 2—Unredact Threatening Document 

 

If you make a lap around the Quad, you’ll find the letter in the Northwest corner.  Early in the game it 

was hard to find because players tended to stand on the letter, but the game builders fixed that. 

 

Someone has attempted to redact the document, but not successfully.  A simple select-all, copy and 

paste defeats the redaction. 



 

The first word in ALL CAPS in the subject line is DEMAND.  Entering this in the objective will give you 

credit. 

Objective 3—Windows Log Analysis:  Evaluate Attack Outcome 

 

The link in the objective takes you to https://downloads.elfu.org/Security.evtx.zip , which is the log you 

need to evaluate.  Let’s visit Bushy Evergreen in the train station to see if he can help us. 

 

https://downloads.elfu.org/Security.evtx.zip


Escape ed terminal 

 
The appendix has a Lessonized version of the terminal.  Here, we’ll just type ‘q’ at the terminal to exit 

ed. 

 

Once this is done, Bushy Evergreen will give you the hint for the Event Log objective.  In addition to the 

dialog, Bushy will put a hint into our badge. 

 



The link to Eric’s DerbyCon talk on DeepBlueCLI is here: 

https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html  

DeepBlueCLI 
There are several apps we will need from GitHub, so I just installed Git on both my Ubuntu and Windows 

10 Holiday Hack Challenge VMs.  On Windows just go to https://git-scm.com/downloads and install the 

Windows version.  You can find DeepBlueCLI at https://github.com/sans-blue-team/DeepBlueCLI. 

 

In a PowerShell/Cmd prompt change directory to a location where you would like to download 

DeepBlueCLI.  Copy the URL from the GitHub site and type: 
git clone https://github.com/sans-blue-team/DeepBlueCLI.git 

 

Then download Security.evtx.zip from the link in the Objective and expand it. 

 

Finally, run DeepBlueCLI on the event log and save the results. 

 
.\DeepBlue.ps1 ..\Desktop\HHC2019\Security.evtx > ..\Desktop\DBsecurity.txt 

Find the password spraying attack 
In password spraying, the attackers try one password against all the accounts they can reach.  If that 

fails, they will try again with another password, and repeat until they are successful.  This allows them to 

avoid locking accounts, since the rounds against all accounts take long enough that a single account is 

not attacked quickly enough to trigger lockout. 

https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html
https://git-scm.com/downloads
https://github.com/sans-blue-team/DeepBlueCLI
https://github.com/sans-blue-team/DeepBlueCLI.git
https://downloads.elfu.org/Security.evtx.zip


The spraying event will show us all the accounts that have had unsuccessful attempts.  What we need to 

find is a successful login that occurred while the attack was in progress, or very shortly afterward. 

The output file, DBsecurity.txt, shows many password spray attacks. 

 

The first happens at 4:21:46 

 
The last happens at 4:22:46 

 
 

Find a successful login that happened while the spray was going on. Open the security.evtx file in 

Eventviewer (double-click if you are in Windows.) Find a successful logon event, 4624, and click on the 

Event ID column to sort by EventID.

 
 

Now look at all the successful logins between 4:21:46 and 4:22:46. Most of them are domain business 



like this. 

 

But one of them is a user account.  It looks like Shinny Upatree (supatree) had a simple password and 

was caught by the attack. 

 

 

Enter supatree into Objective 3 to get credit for solving it. 

 



Objective 4--Windows Log Analysis: Determine Attacker Technique 
This objective is designed to demonstrate the value of Windows Sysmon logs. 

 
The Sysmon logs we will need are given to us by the link in the objective. 

https://downloads.elfu.org/sysmon-data.json.zip  

Linux Path terminal 
(There is a Lessonized version in the appendix.)  SugarPlum Mary is the owner of the Linux Path 

terminal.  She has a hint to help us with the terminal. 

 

https://downloads.elfu.org/sysmon-data.json.zip


The words in green are indeed important, as they are the commands we need. 

 

Running ls does not give us what we want.  The which command shows us the location of the binary it 

runs. 

 

The locate command gives us files from a database kept by Linux, so it is much faster than using 

find on the entire file system.  Unfortunately, many file names contain ‘ls’, so it gives us over 350 

answers.  Fortunately, locate has a --regex option. 

 
locate --regex '/ls$' 

note:  sudo updatedb would get rid of the warning, if we could run it.  We also could have used 

find instead of locate, without using a regex. 



Since /usr/local/bin/ls is the bad ls, /bin/ls must be the good one.  We can see that the 

bad ls comes before the good one in the PATH variable, which is why it is the one that runs. 

 

It is time to claim our reward. 

 
https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon 

 
The EQL Threat Hunting link is 

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/ 

Ross Wolf’s talk is no longer available on the CircleCityCon web site, but his posts are available here: 

https://www.endgame.com/our-experts/ross-wolf 

Finding the tool with EQL 
The simplest way to solve this objective is to follow Josh through his SANS Pentest Blog, EQL Threat 

Hunting.  Our goal is to identify the tool the attacker used to retrieve domain password hashes from the 

lsass.exe process. 

It is easy to install eql on our Ubuntu Holiday Hack VM since it is a Python program listed in pip: 
sudo pip3 install eql 

https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/
https://www.endgame.com/our-experts/ross-wolf


 

The data samples zip file (https://downloads.elfu.org/sysmon-data.json.zip) expands into several files.  

The files contain data that has already been extracted from the attacked computer and have been 

converted to the EQL schema as well. 

 

When we follow the steps in the blog paragraph Threat Hunting: regsvr32.exe, we see this. 

 
eql query -f querydata.json "process_name == 'regsvr32.exe' | unique 

command_line" | jq 

https://downloads.elfu.org/sysmon-data.json.zip


As in Josh’s blog, we see that meterpreter is being used.  Let’s try the next command from Josh’s blog. 

 
eql query -f T1003-CredentialDumping-ntdsutil_eql.json 'process where 

process_name == "ntdsutil.exe" and command_line == "*create*" and 

command_line == "*ifm*"' | jq 

You can learn a lot by following Josh’s blog to its conclusion with the challenge logs, but right here we see 

that the attacker used ntdsutil.exe to extract the hashes.  It seems that ntdsutil.exe is not a valid answer 

for the objective, but ‘ntdsutil’ works. 

Objective 5--Network Log Analysis: Determine Compromised System 
This objective shows us the ability of RITA to locate Command and Control channels using Zeek logs. 

 
The link gives us the files we will need to analyze, available at https://downloads.elfu.org/elfu-zeeklogs.zip  

Xmas Cheer Laser Terminal 
Sparkle Redberry attends the Xmas Cheer Laser terminal in the Laboratory of Hermey Hall.  The Laser 

terminal is the hardest terminal in the game, and the laboratory is always crowded. 

https://downloads.elfu.org/elfu-zeeklogs.zip


  

Sparkle asks us to fix his laser and starts us with a PowerShell hint. 

 
https://blogs.sans.org/pen-testing/files/2016/05/PowerShellCheatSheet_v41.pdf  

The laser challenge is a long scavanger hunt using PowerShell. 

 

https://blogs.sans.org/pen-testing/files/2016/05/PowerShellCheatSheet_v41.pdf


We see that an attacker left a taunting note at /home/callingcard.txt.  We can view the file with the Get-

Content commandlet, with aliases gc and type. 

 

The Invoke-WebRequest in the MOTD looks interesting, let’s try that. 

 
Now we know what we are looking for:  the correct settings for refraction, temperature, mirror angle, 

and gaseous elements. 



The taunt contains a reference to the command history, so we will use Get-History. 

 

Notice that we’ve already found a parameter we were looking for, angle?val=65.5.  The elipsis at 

the end of Id 9 indicates the PowerShell has truncated the output to fit the screen.  We can get the 

entire output by piping into Format-List (alias fl).  We will get fancy and just view Id 9. 

 
Get-History | Where-Object {$_.ID -eq ‘9’} | format-list. 

So, it appears we are supposed to use directory listings (Get my Child Items) to find clues.  It turns out 

there’s another clue that the terminal hasn’t mentioned yet hiding in the environment variables.  

PowerShell makes environment variables ( and registry and certificate store and others) available 

through Get-ChildItem (alias gci, dir, and normally ls, but ls has been removed in this terminal.) 

 
gci env: 



Elipses again. 

 
gci env:riddle | fl 

Finally we have a hint we can work with.  We need to look through /etc and all its subfolders to find the 

newest file.  One of the most useful commandlets in PowerShell it Get-Member.  It allows us to see the 

methods and properties that are available in the objects we work with.  Is there a LastWriteTime 

property in a directory listing? 

 
<snip> 

 

Yes there is.  We can sort on LastWriteTime in descending order (newest first), and then grab the first 

one and print its name, write time, and path. 

 
gci /etc/ -Recurse | Sort-Object -Property LastWriteTime -Descending | 

Select-Object -Property Name,LastWriteTime,pspath -First 1 

We could get rid of the permissions errors with -ErrorAction SilentlyContinue.  With aliases 

for Sort-Object and Select-Object, the command looks like this. 



 
gci /etc/ -Recurse -ErrorAction SilentlyContinue | sort LastWriteTime 

-Descending | Select Name,LastWriteTime,pspath -first 1. 

The file we need is /etc/apt/archive. 

We can expand the archive with  
Expand-Archive -Path /etc/apt/archive -DestinationPath archive 

 
or for short, Expand-Archive /etc/apt/archive archive. 

The contents of the archive are 

 

The riddle contains 

 

We will need to come back to that executable, runme.elf 



It appears we need to find MD5 hashes of files in the depths directory until we find a file with the given 

hash.  The hint says “shallow”, so maybe a depth of 2 will be enough. 

 
gci -Depth 2 | Where-Object {!$_.psiscontainter} | Get-FileHash -Algorithm 

MD5 | Select-Object -Property Hash,Path | Where-Object {$_.Hash -eq 

‘25520151A320B5B0D21561F92C8F6224’} 

Another parameter!  Temperature?val=-33.5 

The first Where-Object checks to see that the pipeline input from gci ($_) is not a directory 

{!$_.psiscontainter}.  The Select-Object only allow the object properties Hash and Path to 

continue down the pipeline.  The second Where-Object selects the object with the correct hash.  

Now we have to find the file in /home/elf/depths with the longest path, or FullName. 

 
gci ./depths/*.txt -Recurse  | Select-Object -Property FullName | sort 

{$_.FullName.length} -Descending | Select-Object -first 1 | fl 

 
gc 

/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown

/escape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever

/practical/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful



/dawn/adult/either/burn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to

/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/fox/0jhj5xz6.

txt 

Now to kill the processes in the proper order.  The key here is to add -IncludeUserName to Get-

Process so we can see the user name.  You can do this manually, or use a script.  This script puts the 

users in the proper order and then kills each process. 

 

It can be pasted directly into the terminal, or put into two lines for easier pasting. 
$user = 'bushy','alabaster','minty','holly' 

$process = Get-Process -IncludeUserName;$user | foreach { foreach ($p in 

$process) {if ($_ -eq $p.UserName) {$id=$p.id; Stop-Process $id; write-output 

"killed $id, $_"}}} 

 

The hint you /shall/see . tells us where to look for our answer. 

 

 



To find the .xml file, 

 
gci /etc/*.xml -Recurse -ErrorAction SilentlyContinue 

This is what part of one event looks like. 

 

 This one was hard.  I couldn’t make Powershell XML work for me, so I just wrote a small script.  (I’m 

looking forward to reading the write up for someone that did it directly in XML.)  The .Id the hint refers 

to is in the line <I32 N=”Id”>3</I32>.  The I32 part means it is a 32 bit Integer. 



$ids ='' 
$regex = '<I32 N=.Id.>(\d)</I32>' 
Get-Content  /etc/systemd/system/timers.target.wants/EventLog.xml | ForEach-Object { 
    if($_ -match $regex){ 
        $ids += $Matches[1]         
    } 
} 
$ids.ToCharArray() | group  
 

The regular expression in the second line finds the N=”Id” line (I didn’t bother escaping the quotes, and 
replaced them with the single character wild card, ‘.’)  The (\d) saves the number (3 in the example 
<I32 N=”Id”>3</I32>) in the variable $Matches, which are collected in $ids.  To be able to group 
by the numbers we recover, we have to change the string $ids to an array of characters. 

 
 
The lonely unique Id referenced in the hint is the number 1 (of course, one is the lonliest number.) 

We can find the clue by selecting the .Id we want and looking at lines before and after to get the entire 
event (-Context 8,141.  I played with those numbers until I had the entire event, nothing magic.) 

 
<snip> 



 
gc /etc/systemd/system/timers.target.wants/EventLog.xml | Select-

String -pattern '<I32 N=.Id.>1</I32>' -context 8,141 

 

So, we have our third parameter. 
$correct_gases_postbody = @{`n O=6`n H=7`n He=3`n N=4`n Ne=22`n 

Ar=11`n Xe=10`n F=20`n Kr=8`n Rn=9`n} 

 

Note:  The backtick character is Powershell’s escape character, so `n is \n, or newline.  This is JSON put 

into a Powershell hash (like a Python dictionary.) 

Now we need to go back to that .elf file we saw before. 

 

Just trying to run the file doesn’t work. 

 

The extension is .elf.  Is is really a Linux executable?

 
The magic bytes show it really is a .elf. 



What OS are we running?  Powershell normally means Windows but the file system looks like Linux. 

 

We are indeed running on Linux, so this must be PowerShell Core. 

 

Browse the file system.  Now, that’s interesting!  We may be able to use chmod. 

 



WooHoo!  Standard Linux procedures worked! 

 

Now we have the fourth parameter.  Refraction?val=1.867 

Now that we have our parameters, let’s try to restart the laser.  It’s always good to turn something off 

before you mess with the settings. 
(Invoke-WebRequest -Uri http://localhost:1225/api/off).RawContent 

Next is the refraction. 
(Invoke-WebRequest -Uri http://localhost:1225/api/refraction?val=1.867).RawContent 

Temperature 
(Invoke-WebRequest -Uri http://localhost:1225/api/temperature?val=-33.5).RawContent 

Angle 

(Invoke-WebRequest -Uri http://localhost:1225/api/angle?val=65.5).RawContent 

I had trouble with the POST and spent several hours on it.  Most of the problem was due to a typo.  

During the process I found several variants for posting the data that worked.  First is the text/application 

format from the example on the status page. 

$Body = 'O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9' 

(Invoke-WebRequest -Uri http://localhost:1225/api/gas -Method Post -Body 

$Body).RawContent 

URL-encoded text/application format is next. 

$Body = 

'O%3D6%26H%3D7%26He%3D3%26N%3D4%26Ne%3D22%26Ar%3D11%26Xe%3D10%26F%3D20%26Kr%3D8%26Rn%3

D9' 

Finally, a hash/dictionary as a JSON array 

$Body = 

@{"O"="6";"H"="7";"He"="3";"N"="4";"Ne"="22";"Ar"="11";"Xe"="10";"F"="20";"Kr"="8";"Rn

"="9"} 

http://localhost:1225/api/off
http://localhost:1225/api/refraction?val=1.867
http://localhost:1225/api/temperature?val=-33.5
http://localhost:1225/api/angle?val=65.5)


All three of them worked once I fixed the typo.  I’m just showing the first version of $Body. 

 

Finally, turn the laser back on and check the status. 
(Invoke-WebRequest -Uri http://localhost:1225/api/on).RawContent 

(Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent

 

http://localhost:1225/api/on).RawContent
http://localhost:1225/api/o


 

 

Whew!  Once that’s done Sparkle congratulates us, asks us to look at the Zeek logs, and gives us the link 

to RITA on our badge. 

  
https://www.activecountermeasures.com/free-tools/rita/  

https://www.activecountermeasures.com/free-tools/rita/


Determine the compromised system with RITA 
Fortunately, after all the work on the laser the objective is easy; you don’t even have to install RITA.  

Expand the files that come from the link on Objective 5 from your badge. 

 

Inside the zipped file, you find index.html. 

 

The index.html file holds the summary of an entire RITA report, so all you need to do is examine it.  Click 

on the ELFU link (it’s more to the right than below.) 

 

If you look at Beacons, you will see one pair of addresses with a huge number of connections and a very 

large score. 

 

 



If you look at long connections, you’ll see a very long connection between the same local 

address and another outside address. 

 

The compromised system is 192.168.134.130.  Enter that in Objective 5 to receive credit. 

Objective 6—Splunk 
This objective teaches how to use Splunk and the value of the different data types that can be 

used. 

 
The data we will analyze is available at https://splunk.elfu.org/.  

When we visit Prof. Banas, he gives us hints.  He is about the only elf that doesn’t have his own 

terminal. 

 

https://splunk.elfu.org/


Before we start, there is a Kringlecon2 talk that we should watch.  There are several good hints 

to get us started; here are two. 

 

 

So, off to the Splunk site.  Alice Bluebird leads us through the investigation (more or less :-) 

 



Training Question 1—Prof Banas’ computer name 
Let’s start with hints from the talk.  First, find what data is available. 

 
| metadata type=sourcetypes 

The main sources we will use at the beginning are WinEventLog, PowerShell logs from 

WinEventLog:Microsoft-Windows-Powershell/Operational, and Sysmon logs from 

XmlWinEventLog:Microsoft-Windows-Sysmon/Operational.   

Now let’s try the search example he gave us.  I didn’t know what Prof. Banas’ username was, so the hint 

is helpful. 

 
sourcetype=WinEventLog cbanas 

 



Training Question 2—Sensitive File 
Alice Bluebird hints very strongly that we should search for ‘Santa’ and she gives us a sample search for 

cbanas.  Adjusting that to search for Santa gives 

 

There are large blobs of Base64 encoded PowerShell commands;it is nice that PowerShell logs extract 

some of the commands that were encoded.  There are several events that show attackers were 

searching Prof. Banas’ computer for phrases containing Santa.

 

From the first event, 

 

Prof. Banas had the document Naughty_and_Nice_2019_draft.txt in his documents folder. 
C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt 

 



Training Question 3—Find the FQDN of the command and control server 
Alice Bluebird tells us that Sysmon Event Code 3 data show network connections and even gives us a 

search pattern. 

 
index=main sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational powershell 

EventCode=3  

The Selected/Interesting fields are indeed handy. 
144.202.46.214.vultr.com 

 

Training Question 4—Find the malicious document 
This one gave me (and a lot of other people) trouble.  Following the instructions from Alice, and starting 

on her third step: 



 
index=main sourcetype="WinEventLog:Microsoft-Windows-Powershell/Operational" | reverse  

Now, Alice’s advice 

 

 
index=main sourcetype="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" 



We do find two ProccessId’s as Alice suggested, 6268 and 5864. 

 

When we click on 6268, it creates a new query with just that one PID 

 
<snip> 

 

We find that it has references to WINWORD.EXE.  The PID 5864 does not have references to Word.  

Since we are looking for a document, PID 6268 seems more promising.  We’ll do that one first. 

Alice’s hint references Sysmon Event Code 1.  It’s probably a dead end, but we should check it out. 

 



Maybe we’ll get lucky and find a Sysmon Event Code 1.  We do have one. 

 



Clicking on the ‘1’ creates a new query. 

 

The event (when expanded) even has this nifty action. 

 

Get parent process creation event doesn’t help.

 



Get process creation event doesn’t help either.  No luck with the Sysmon Event Code 1 queries. 

 

We’ll need to follow Alice’s procedure and look for process execution events in the time range.  This is 

where the decimal PID from Sysmon and the hex PID from WinEventLog EventCode 4688 come into play.  

We could use calculators for the hex to decimal, but we can also use the method from the talk: 

 
The search is  
sourcetype=wineventlog EventCode=4688  

| eval hex_convert_pid=tonumber(New_Process_ID,16) 

 

The new field appears in the Interesting column.  Move it up to Selected.  

 



When I investigated these PIDs I didn’t find anything, so I zoomed out in time (one click) and tried again.  

(Not finding anything took me an hour or two.) 

 
 

There’ the PID we were looking at before, 6268.  When we click on it, a new query is created. 

 
<snip> 

 
 



This certainly looks promising.  Let’s search for the PID of the Creator Process, 0x1748. 

 

This finds no results.  Back to sysmon.  0x1748 = 5690. 

 
<snip> 

 

I think we’ve got it, finally.  “19th Century Holiday Cheer Assignment.docm” is the answer to question 4. 

 

Note to Challenge Designer.  The time window made this challenge harder.  Of the two PIDs 5864 and 

6268, the first goes to a dead end and the second leads to a solution.  However, at 5:18:15, PID 6268 

falls outside the 10 second window (starts at 5:18:32) which leads players to work on the dead end 5864 

first.  If they forget about 6268, they will get lost. 



Question 5—How many email addresses sent student essays to Prof. Banas? 
Alice has two hints for us. 

 

 

The first hint gives us this query. 
index=main sourcetype=stoq | table _time results{}.workers.smtp.to 

results{}.workers.smtp.from  results{}.workers.smtp.subject 

results{}.workers.smtp.body | sort - _time 

We can modify the query to meet our needs. 
index=main sourcetype=stoq  "results{}.workers.smtp.subject"="Holiday Cheer 

Assignment Submission" | table  _time results{}.workers.smtp.from  

results{}.workers.smtp.subject 

 

It is strange that every entry is present in both lower case and title capitalization.  This query gives 21, 

but due to the capitalization 42 also works. 

 



Question 6—What was the password on the zip archive? 
Fortunately, this one came up quickly.  I experimented with ways to search for 

results{}.workers.smtp.body that contained “password” but didn’t find any, so I took the easy answer. 

 

 

 

Question 7—Who sent the evil email? 
In the last search we saw the email was sent by Bradley Buttercups.  We can find his address easily 

enough. 

 

Note that his email address is eIfu.org instead of elfu.org. 

 

 

The Challenge Question—What message did the adversary embed in their attack? 
The challenge requires us to download the message attachment from the stoQ archive.  I created a base 

search by clicking on Bradley Buttercups’ email in the search above. 



index=main sourcetype=stoq "results{}.workers.smtp.from"="Bradly 

Buttercups <Bradly.Buttercups@eIfu.org>" 

I added this to the end of my search as Alice suggested. 

| eval results = spath(_raw, "results{}")  

| mvexpand results 

| eval path=spath(results, "archivers.filedir.path"), filename=spath(results, 

"payload_meta.extra_data.filename"), fullpath=path."/".filename  

| search fullpath!=""  

| table filename,fullpath 

 

That gave me this result. 

 
<snip> 

 

You can download the entire document before or after compression, or any of the document’s 

component parts.  Since the document contains malware, the challenge author removed the content 

from all the files on the list, except the one that has the information we need, core.xml 

I had the best luck clicking through the directories on the web site, rather than copy and paste. 

 



Contents of core.xml: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<cp:coreProperties xmlns:cp="http://schemas.openxmlformats.org/package/2006/metadata/core-

properties" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" 

xmlns:dcmitype="http://purl.org/dc/dcmitype/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"><dc:title>Holiday Cheer Assignment</dc:title><dc:subject>19th Century 

Cheer</dc:subject><dc:creator>Bradly 

Buttercups</dc:creator><cp:keywords></cp:keywords><dc:description>Kent you are so unfair. And we 

were going to make you the king of the Winter Carnival.</dc:description><cp:lastModifiedBy>Tim 

Edwards</cp:lastModifiedBy><cp:revision>4</cp:revision><dcterms:created 

xsi:type="dcterms:W3CDTF">2019-11-19T14:54:00Z</dcterms:created><dcterms:modified 

xsi:type="dcterms:W3CDTF">2019-11-

19T17:50:00Z</dcterms:modified><cp:category></cp:category></cp:coreProperties> 

Enter the highlighted phrase in the objective to get credit. 

Objective 7—Get Access to the Steam Tunnels 

 
 
First, we need to visit Minty.  Note:  this terminal is in the appendix as a lesson. 

Holiday Hack Terminal 

  



Minty tells us to listen to the talk about web application penetration testing, as does her link in the 
badge. 

  
https://www.youtube.com/watch?v=0T6-DQtzCgM&feature=youtu.be 

Here’s the beginning of the Trail terminal.  The hacks for each game mode, easy, medium, and 

hard have the same difficulty as the game modes. 

  
 

We will skip the supply purchase.  Hackers don’t need supplies! 

https://www.youtube.com/watch?v=0T6-DQtzCgM&feature=youtu.be


Easy Mode 
Notice that easy mode is using a simple GET request.  Chris showed us how to deal with these in his talk. 

 

Here are the url contents in full: 
hhc://trail.hhc/trail/?difficulty=0&distance=0&money=5000&pace=0&curmonth=7&c

urday=1&reindeer=2&runners=2&ammo=100&meds=20&food=400&name0=Billy&health0=10

0&cond0=0&causeofdeath0=&deathday0=0&deathmonth0=0&name1=Jo&health1=100&cond1

=0&causeofdeath1=&deathday1=0&deathmonth1=0&name2=Joseph&health2=100&cond2=0&

causeofdeath2=&deathday2=0&deathmonth2=0&name3=Billy&health3=100&cond3=0&caus

eofdeath3=&deathday3=0&deathmonth3=0 

Note that the screen says the Distance Remaining is 8000, and the url holds &distance=0.  Let’s 

change the url to &distance=8000 and see what happens. 

 
Click GO and we have a winner. 

 



 

Medium Mode 
In Medium mode there are no parameters in the URI, so the page must be sending them in a POST 

request. 

 

An easy way to view and change POST requests is with Burp Suite.  We can use the Burp Suite installed 

on Kali Linux or install it ourselves. 

https://tutorialsoverflow.com/how-to-install-and-configure-burp-suite-on-ubuntu-18-04/  

Note that if you install Burp Suite on your own, it requires Java.  Also, sudo apt install burp won’t work; 

it will install a backup tool.  Also note that when examining HTTPS sites you need to install the Burp CA 

certificate into your browser as shown here.  

https://support.portswigger.net/customer/portal/articles/1783087-installing-burp-s-ca-certificate-in-

firefox  

Now if we browse to the Holiday Hack Trail terminal with our browser configured to use Burp Suite as a 

proxy (see the installation link above for instructions) we see our visit.  If you want Minty to give you 

credit you need to log in through the game and not use the direct link to the terminal. 

https://tutorialsoverflow.com/how-to-install-and-configure-burp-suite-on-ubuntu-18-04/
https://support.portswigger.net/customer/portal/articles/1783087-installing-burp-s-ca-certificate-in-firefox
https://support.portswigger.net/customer/portal/articles/1783087-installing-burp-s-ca-certificate-in-firefox


To start with, set Intercept on the Proxy Tab to off so Burp Suite won’t bother us while we are bringing 

the page up. 

 

After selecting medium and skipping the purchases, the Burp Suite Target tab shows the requests and 

responses.

 

The parameters are being set in a POST request as we thought. 

 



Turn Intercept to On and press the GO button 

 

The web site will not respond, as Burp Suite has intercepted the request. 

 

Now, let’s set the distance to 8000 as we did before, and then press Forward (twice) to send the request 

on to the Trail terminal. 

 

 

 



Another winner! 

 

Hard Mode 
In hard mode, there is a real hash where there was just the word ‘HASH’ in medium mode.  It probably 

won’t work to tamper with the mileage now, but it is worth a shot. 

 



Busted. 

 

The hash length is 32 characters, which is 16 bytes or 128 bits.  The MD5 hash is the most common 128 

bit hash.  Perhaps we can crack it (or Google it.) 

 

Googling “e4873aa9a05cc5ed839561d121516766” md5 hash takes us to a very interesting 

web site. 

 
http://hash.oderskebrzdy.cz/md5.php?kolik=0-100000 

 

Not only does it tell us that the hash in question is of the number 1646, it gives us all the hashes we will 

need to tamper with the Trail site.  We could have cracked the hash with hashcat and created new 

hashes with md5sum, but this is too easy to pass up. 

Click on GO a few times to collect requests in the Burp Suite Target tab.  Then put the request values 

into a table to see what they look like. 

The only parameters I’ll consider are Distance, Day, Food, and Hash, since those are the only ones that I 

thought would change while I clicked GO.  I realize a spreadsheet and pencil and paper are passé, but it’s 

quick and gets the job done. 

http://hash.oderskebrzdy.cz/md5.php?kolik=0-100000


 

The table shows us clearly that when the Distance goes up, the number that is hashed goes up by the 

same amount.  We’ll hope the rule holds, and that there is not other testing for large changes in 

Distance. 

With this beginning configuration of the game, we’ll turn on Intercept and see if we can break it. 

 

This is the request that appears in Intercept.  We need to increase the distance to 8000 and adjust the 

hash accordingly. 

 

From the website of MD5 hashes 0 to 10,000, we see the site is hashing the number 1653 for the 

request. 

 



The current value of distance is 34, so we need to compute how much we are increasing the distance, 

and then increase the hashed number by the same amount. 

8000 – 34 = 7966 

1653 + 7966 = 9619 

 

That means we need to change the hash to e4f67a0e4293245fba713c412fc63e28 when we change the 

distance to 8000.

 

Click Forward in Burp Suite to let the tampered request go to the Trail site, and click Forward once or 

twice more to let the subsequent packets go, and we are winners again.

 



A little bird told me I should look at developer tools after winning the trail in hard mode.  Sure enough, 

there is something of interest. 

 

 

Minty congratulates us and puts two new hints in our badge. 

 

  
https://github.com/deviantollam/decoding 

https://www.youtube.com/watch?v=KU6FJnbkeLA&feature=youtu.be  

https://github.com/deviantollam/decoding
https://www.youtube.com/watch?v=KU6FJnbkeLA&feature=youtu.be


Cutting the key 
The first step is to get an image of the key.  Every few minutes a strange character zips though Minty’s 

room and disappears into the closet. 

  

The Network tab of the web browser’s developer tools shows a new image after he passes through.  

Double-clicking on the line with the png will show you the image and allow you to download a copy.  The 

picture of the key is much better than what is evident during game play. 

  

From the Bitting Templates hint above, download Deviant Ollam’s template for the Schlage key. 

 



Grab the key image from krampus.png.  Enlarge, rotate, and superimpose it over the template as 

Deviant Ollam does in the video.  I quickly became frustrated with my lack of proficiency in 

GIMP, so I outsourced this portion to a friend who teaches PhotoShop (thanks Len!)  The final 

image looks like this. 

 

The bitting code can be read from this picture:  1 2 2 5 2 0 

The bitting machine does not work well in Firefox but worked for me in Chrome. 

  FireFox    Chrome 

  

The output of the bitting machine is a file named with the bitting code, 12250.png in this case.  If 

neither version of the key machine works, this URL will generate a key image. 
https://key.elfu.org/backend/keys/SC4_preview/122520.png 
To generate different keys, change the bitting code in the file name. 
 
In the closet, click on the key ring to open a dialog that allows you to select the key image file. 
 

https://key.elfu.org/backend/keys/SC4_preview/122520.png


 

 
If the key is correct, it will open the lock. 

 

 

 

 

The door to the steam tunnel opens. 

  

The badge now shows access to the steam tunnels, which you can use to teleport around the 

game.  Cool. 



 

Objective 8—bypassing the Frido Sleigh CAPTEHA 
This challenge using Machine Learning in Python was so much fun I’m writing it up as a class for our 

Python students. 

 

This challenge is accessible in Krampus’ lair in the steam tunnels.  Krampus has some crucial 

information for us.  We will need both the images and the API later. 

 



  
https://downloads.elfu.org/capteha_images.tar.gz 

https://downloads.elfu.org/capteha_api.py 

But first, we need to visit the Speaker Unpreparedness Room in Hermey Hall to see Alabaster 

Snowball and his terminal, Nyanshell 

Nyanshell Terminal 
Someone has been playing games with Alabaster.  That’s cruel, considering the beating he took 

last year. 

  

https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py


Alabaster says some important words:  overwrite, chatter, immutable, and sudo -l.  There are also 

hints from Alabaster on the badge. 

 

 
 

Let’s su to alabster’s account and see what’s happening. 

 



 

 

No wonder Alabaster is upset. 

The badge hint talks about /etc/passwd. 

 
Take a look at /bin/nsh.  Most likely nsh means Nyan shell. 

 

The file is rwx everyone so he should be able to overwrite it. 

 



 

Hmmm.  There were hints about sudo -l and chatter. 

 

This site has good information about chattr. https://www.computerhope.com/unix/chattr.htm 

 
 

What does the “i” stand for?  From the link just above, 

 

That “i” needs to go away.

 
 

Try to overwrite the ugly shell again, and it works. 

 
 

Success! 

 

https://www.computerhope.com/unix/chattr.htm


Of course, there are hints. 

  
https://www.youtube.com/watch?v=jmVPLwjm_zs&feature=youtu.be 

 

The link points to Chris Davis’ presentation on machine learning.  It’s necessary for this 

challenge. 

 

Attacking the CATPTEHA server fridosleigh.com 
The Python code for this challenge is available at 

https://github.com/chrisjd20/img_rec_tf_ml_demo  

I found that this was easiest to install on Ubuntu 18.04, although I also got it to work on 

Windows 10 using Ubuntu running on Windows Subsystem for Linux (WSL).  The instructions 

at Chris’ GitHub site worked; I did need to install tensorflow_hub.  I also found Chris’ module 

worked with the current version of TensorFlow. 

The key to understanding the demo and how to modify it for the challenge is understanding how 

the data flows.  The code in retrain.py needs to be given the location of the training images with 

the option –image_dir.  It then creates the machine learning graphs and stores them in 

/tmp/retrain_tmp.  It pays to remember that /tmp is erased upon reboot, so move the files 

if you want to keep them. 

https://www.youtube.com/watch?v=jmVPLwjm_zs&feature=youtu.be
https://github.com/chrisjd20/img_rec_tf_ml_demo


 

To do the challenge, we need the files from the links Krampus gave us. 

https://downloads.elfu.org/capteha_images.tar.gz 

https://downloads.elfu.org/capteha_api.py 

The capteha_images file supplies us with new training images for the challenge, which is nice.  

Once they are unzipped you can run retrain.py from those images and generate a new 

/tmp/retrain_tmp directory (erase the old one first.) 

It turns out the capteha_api.py file does all the work of contacting fridosleigh.com to get 

the capteha images.  Once it is told which images to submit, it submits them to fridosleigh.com 

and then spams the site with contest entries until Krampus wins. 

The beginning of the code gets the capteha images. 

 

The middle part leaves some work for us. 

 

https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py


And the end spams the site with contest entries. 

 

 
 

 

To solve this challenge we need to: 

1. Determine the format of the image data the beginning of capteha_api.py downloads from 

fridosleigh.com 

2. Adjust the data into a format that the predict_images_using_trained_model.py (known 

hereafter as predict.py) script can understand. 



3. Run predict.py and determine the format of the data it returns 

4. Adjust the data from predict.py into a format the end of capteha_api.py can understand 

5. Let capteha_api.py finish and win the contest for Krampus. 

1. Determine the format of the image data in capteha_api.py 
We’ll use the built-in Python debugger to look at the image data after it is downloaded from 

fridosleigh.com. 

Add import pdb to the beginning of capteha_api.py 

 

Add pdb.set_trace() just before the ‘’’MISSING’’’ part. 

 

Now run capteha_api.py and use the debugger print (p) command to examine the contents of 

b64_image. 

 

We have confirmed that b64_images is a list that contains dictionaries.  The keys of the dictionary are 

base64 and uuid.  The length of the base64 for the first image is 14136 and it does contain base64 text, 

so it is probably an encoded image.  We’ll need to decode that before passing it to predict.py. 



 
The uuid value looks like the file names in the demo, good. 

We don’t need it yet, but we might as well examine challenge_image_types while we are here. 

 
In this case the site wants us to identify all images that are ornaments, stockings, or candy canes. 

2.  Prepare the data for the predict.py script 
The predict.py script looks for the image data in the same place as the demo script did, which is 

unknown_images in the local directory.  It reads the files as binary data and passes them (image_bytes) 

and the file path (img_file_path) into a thread which runs the predict_image function. 

 

So, we need to put the decoded images into the unknown_images directory, with file names given by 

uuid. 

 

open('unknown_images/{}'.format(image['uuid'])  puts the images into files named by 

uuid 

filehandle.write(codecs.decode(image['base64'].encode(), 'base64'))  

decodes the base64 data and writes it to file.  In Python3, the codecs module for base64 requires the 

input be of type bytes, not string, which is the reason for the ‘.encode()’ term. 



3.  Run predict and determine the format of the data it returns 
The only change that the predict.py script needs (other than a shorter name) is to have a return 

statement at the end to send the data back to capteha_api.py.  It doesn’t need any parameters in the 

definition of main() because it looks for its input in the unknown_images directory. 

 
Added to predict.py 

Also, we need to add an import statement to the beginning of capteha_api.py so we can call predict.py 

(or predict_jy.py in this case.) 

 
And then the call itself, with the pdb.set_trace() moved to be after the call.  

 

Now, lets see what we get back in capteha_api.py 

 

The list (l) command shows us we stopped in the right place, after the call to predict_jy.main(). 

 



As before, examine the data. 

 

We received a list containing dictionaries, with keys img_full_path, prediction, and percent.  Values for 

img_full_path and prediction are strings, and percent is a number.  We will need the prediction to tell 

whether or not it matches what the server is asking for, and we need to strip uuid frm the img_full_path 

for return to the server. 

4.  Adjust the data format to match what capteha_api.py wants 
Now we just loop through the response we received.  If the image prediction matches what’s in 

challenge_image_types, we add the uuid to the final_answer string. 

 



Let capteha_api.py run and spam the contest for Krampus 
Hmm, problems. 

 

I spent quite a lot of time trying to speed things up to pass the server timeout.  From my testing, I 

estimate the timeout to be between 10 and 12 seconds, even though the web site says 5 seconds.  The 

computer I used is a Dell laptop, about 6 years old, with an i5 Dual Core CPU.  I collected the following 

times as I incorporated changes to reduce the time. 

• 20 sec. with the original code in an Ubuntu VM 

• 17 sec. with the code modified to keep the fridosleigh.com images in memory rather than pass 

images to predict.py by saving them to disk 

• 15 sec. above, plus preloading the training files into memory before requesting the capteha 

• 14 sec. above, running on hardware, Windows 10, Windows Subsystem for Linux (WSL) 

Fortunately I had an old gaming computer available.  It has an i5 single core CPU, but also has an nVida 

GEForce GTX-760 graphics card.  It produced the following times, and all of them were successful. 

• 10 sec. with the original code in Ubuntu on hardware 

• 8.7 sec. with the code modified to keep the fridosleigh.com images in memory rather than pass 

images to predict.py by saving them to disk 

• 8.5 sec. above, plus preloading the training files into memory before requesting the capteha 

These times are +- 1 second. 

Another way to solve this (if you have a wimpy computer like my laptop) is to use an AWS instance with 

GPU capability or to do the same at Google Research Collaborate.  You can also save time by making the 

matches require less accuracy by using the options available in retrain.py (see the code.)  I could not get 

the options to work, however. 



Anyway, we won.  Input the code from the email into the objective to get credit. 

 

 
 

Objective 9—Retrieve Scraps of Paper from Server 
In this challenge we get to use sqlmap against a vulnerable server.  I stink at manual SQL injection (SQLi) 

so it is really cool to have a challenge that lets us use sqlmap, even if we do have to jump through hoops 

to do it.  Thanks HHC! 



 

Let’s see what Pepper Minstix has to say. 

  

Terminal—Graylog server 
Pepper has this hint for us.  He wants us to read the manual (RTFM). 

 
http://docs.graylog.org/en/3.1/pages/queries.html  

The Graylog terminal is kind enough to show the answers after you solve each question, so this section 

will just show answers and the searches necessary to find them. 

http://docs.graylog.org/en/3.1/pages/queries.html


Select All messages and Search in all messages in the time window to get started. 

  

Question 1—What did Minty download? 

 
Items on the left pane that are checked appear as headings in the right pane.  To make a search for 

Firefox, first check process image and find firefox.exe. 

 



Then expand the event and click the magnifying glass by firefox.exe.  The correct search will be added to 

the search bar. 

 

 

Do the same thing for EventID 2. 

 

We are looking for the Target File, so check Target File on the left side and it will become a heading.  

Now it is easy to scroll down and find the evil file. 

 



Question 2—What IP and port did the malicious file connect to? 

 
Grab the file name and put it into ProcessImage.  Also change the EventID to 3, which is a 

network connection in sysmon. 

 

 
 

Question 3—What was the first command executed by the attacker? 

 
Each command the attacker executes spawns a new process under cookie_recipe.exe.  Change 

our previous search to look for ParentProcessImage instead of ProcessImage and remove 

EventID 3. 

 



Check CommandLine on the left side.  Note that the most recent events are at the top of the 

message pane, so scroll down to the bottom to find the first/oldest command. 

 
The conhost event occurs at the same time as the execution of cookie_recipe.exe, so it is 

probably caused by cookie_recipe.exe.  The first command is whoami. 

 

Question 4—How did the attacker escalate privileges? 

 
The attacker makes several queries about services, and finally executes this attack against the 

webexservice.  He is using the WebExec vulnerability published this year by Ron Bowes. 

https://blog.skullsecurity.org/2018/technical-rundown-of-webexec  

 
 

The attacker uses WebExec to start a new malicious file, cookie_recipe2.exe. 

https://blog.skullsecurity.org/2018/technical-rundown-of-webexec


Question 5—How did the attacker dump credentials? 

 
Change the search we’ve been using to search for cookie_recipe2.exe instead of 

cookie_recipe.exe. 

 
As you scroll up from the bottom, you will see the attacker download MimiKatz and save it with 

different filenames, likely trying to evade antivirus. 

 
 

He also tries to execute several of those files.  It appears that cookie.exe is successful. 

 
 

Question 6—What account did the attacker use to pivot to another workstation? 

 
Look back to the search we had for Question 2 (repeated below), where the attacker used 

cookie_recipe.exe to gain remote access.  The connection was to 192.168.247.175.  Let’s search 

for Event 4624 with a source address of 192.168.247.175. 

 
 



After several connections to elfu-res-wks1, the attacker moves to elfu-res-wks2. 

 
 

Poor Alabaster is a victim again this year. 

 
 

Question 7—What time does the attacker make a Remote Desktop (RDP) connection? 

 
 

This was the hardest question of the challenge, as it asked for a connection time instead of a 

successful login via RDP time.  Unless you knew to use the Login Type that signifies an RDP 

login instead of searching for RDP connections, you could spin your wheels for hours.  This site 



shows that the login type we want is 10.  https://eventlogxp.com/blog/logon-type-what-does-it-

mean/  

 

 

 
 

We see that the attacker failed several times before making an RDP connection from 

192.168.247.175 to elfu-res-wks2 at 06:04:28. 

 

Question 8—What is the third host the attacker connects to? 

 
Logon type 3 is a network logon. 

 

https://eventlogxp.com/blog/logon-type-what-does-it-mean/
https://eventlogxp.com/blog/logon-type-what-does-it-mean/


If we scroll up from 06:04:28, we don’t see any new connections involved until we find elfu-

wks-3 at 06:07:22. 

 

 
 

Expanding that event gives us the answer. 

 
 

Question 9—What secret document did the attacker transfer from wks-3 to wks-2? 

 



 

Use the query they recommend for finding files created on wks2 

 

With TargetFileName selected on the left side we see this. 

 

We can remove some of the cruft by adding a regex to the search. 

 
 

 

Question 10—What IP address did the attacker exfiltrate the file to? 

 
 

Use this query and we see one event. 

 



 

Look for the pastebin.com connection. 

 

 

Here’s the success message. 

 

Now to collect the hints. 

 



 

https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win 

https://www.owasp.org/index.php/SQL_Injection 

Attack the Student Portal Server 
We were given the link to the Student Portal server in the objective. 

https://studentportal.elfu.org/ 

Reconnaissance 
A simple test, ;’ in the first name field shows that the site is vulnerable to SQL injection. 

 

 

From the hints, it is obvious that we can use sqlmap tamper scripts. 

 

The MariaDB server worried me, but searches showed me that sqlmap treats MariaDB as MySQL. 

https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win
https://www.owasp.org/index.php/SQL_Injection
https://studentportal.elfu.org/


When the web app submits an application, it sends it to application_received.php.  Chrome developer 

tools show what the app put in form data (expanded below, then raw below that.) 

 

 

 

The data is just as it was entered into the form, but there is also a long token.  Where did that come 

from? 

Returning to the application form shows that the form uses the function submitApplication() to send the 

data to application_received.php. 

 



 

At the bottom of the source for apply.php, there is the code for submitApplication() 

.  

The submitApplication() function calls elfSign(), which inserts the response from /validator.php into the 

element token. 

 

Now we know where the token comes from. 

Preparing the attack 
We will have to configure sqlmap to get a new token for each request it submits.  There are three 

options that I see:  csrf-url, tamper, and eval. 

csrf-url 

This option was promising but sqlmap would not recognize the token.  I can no longer find the 

reference, but the csrf option expects the token to be wrapped, depending on the method used.  One of 

the methods was wrapping in HTML, but the student portal site sends the token raw. 

tamper 

This is the method the hints recommend, but another player nudged me to look for something easier.  

The tamper script modifies the payload that is inserted into a parameter, it does not give total control 

over a parameter itself.  To make tamper work I believe you would have to leave the token out of the 

data/parameter list for sqlmap, require sqlmap to put the payload in the last parameter, and write the 

code to append &token=xxxxxxxx to the payload. 

eval 

This option allows direct manipulation of a token and is the easiest to use for this attack. 



 

Attack 
The following command was successful. 

python3 sqlmap.py --url 'https://studentportal.elfu.org/application-received.php'\ 

   --data='name=a&elfmail=c%40d.e&program=f&phone=1&whyme=g&essay=h&token=blank'\ 

    -p 'name' --skip='token' --eval='import urllib.request;import urllib.parse;\ 

    w = urllib.request.urlopen("https://studentportal.elfu.org/validator.php");\ 

    token = urllib.parse.quote(w.read())' 

--url gives the link to the student portal site we are attacking. 

--data is needed because this is a POST request.  It tells sqlmap what goes in the request.  The data is 

copied directly from the parameters we saw in Chrome dev tools, except for the token.  The token is 

blank because it is long and will be overwritten by the eval script. 

-p ‘name’ tells sqlmap to attack the name field of the form.  All the fields are vulnerable so this could 

be omitted. 

--eval is the python script that will modify a parameter.  The last statement is token =, so token will be 

the parameter that is modified.  Here is the script in multiline form. 

 

I was pleased to discover that I could insert debugging into my script when I needed it, although I am not 

showing it here. (import pdb, and pdb.set_trace() ) 

This is the command running in sqlmap. 

 

 



 
<snip> 

 

The attack was successful.  To extract data, I just added --all to the command and ran it again. 

 

 

 



 

 

Bingo!  Stop the download, no need to go further.  The first time I ran this, sqlmap was unable to 

download the krampus table, so I allowed it to download the application table.  The application table is 

huge, so I stopped after an hour and was able to recover the same data.  I imagine the HHC folks fixed 

the problem with the krampus table so we wouldn’t pound their servers for hours on end.  This is 

recovering the picture URIs from the data from the application table. 

 

 /krampus/0f5f510e.png,  /krampus/1cc7e121.png, /krampus/439f15e6.png, 

/krampus/667d6896.png, /krampus/adb798ca.png, and /krampus/ba417715.png give access to 

pictures of the paper scraps. 



 
 

I became frustrated with GIMP and assembled the document user older technology. 

 

 
 

The answer for the objective is Super Sled-o-matic. 

 



Objective 10—Recover Cleartext Document 
This objective involves decrypting a document that has been encrypted using an app that was written at 

the North Pole.  It is probably the hardest challenge in Kringlecon2 but is also the most rewarding to 

complete.  It deserves its five-tree rating. 

 
https://downloads.elfu.org/elfscrow.exe 

https://downloads.elfu.org/elfscrow.pdb 

https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc 

 

We need to visit Holly Evergreen in the NetWars room and solve her terminal. 
 

 

https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc


Holly gives us a badge hint as well. 

 
https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases  

Terminal—Mongo Pilfer 
Holly tried lsof -i, probably looking for the network connection to the Mongo database, and 

mentions ps.  So, try ps aux. 

 

The command line for mongod was long and would have been truncated if we hadn’t piped the 

output into more (less is unavailable on this terminal.) 

https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases


The port they use, 12121, is a non-standard port so it must be specified to the Mongo client. 

 

The Mongo commands we need are also in this link.  https://www.guru99.com/mongodb-query-

document-using-find.html  

 
db.solution.find.() 

db.loadServerScripts();displaySolution();  

 

https://www.guru99.com/mongodb-query-document-using-find.html
https://www.guru99.com/mongodb-query-document-using-find.html


We get hints from Holly and on our badge. 

 
https://youtu.be/obJdpKDpFBA  

The link she gives is to Ron Bowes’ talk.  It’s essential unless you are a reverse engineering 

guru. 

 

Decrypting the Document 

Testing elfscrow.exe 
The elfscrow help gives us syntax and a few clues.  Running elfscrow with --insecure was 

interesting, as it showed the communication of the key to the elfscrow server, but it wasn’t 

necessary to solve the challenge. 

 
 

It is important to note that the syntax is 
elfscrow.exe --encrypt <infile> <outfile> 

https://youtu.be/obJdpKDpFBA


If you try to use redirection (>) for the output file Windows will put an extra 0x0a00 on the end 

and totally mess you up. 

Elfscrow gives us some good information:  the seed and the encryption key.  Watchers of Ron’s 

talk will know these are important. 

 

Examining the Assembly Language. 

Since Ron used IDA, we will too.  The installation on an Ubuntu VM went well but IDA 

wouldn’t include the symbol table we were given.  If the elfscrow.exe code was opened in 

Windows IDA with elfscrow.pdb in the same folder, symbols were automatically included.  The 

symbols made understanding the code much easier, so the IDA work was done in Windows. 

Most of what we need occurs in this code. 

 

There is one other useful spot.  The do_decrypt code has an error message that says we are using 

DES-CBC.  It’s not the most secure, but I’m sure it was selected so that we don’t burn up our 

computers in the brute force stage. 



 

The main code calls time.  According to https://docs.microsoft.com/en-us/cpp/c-runtime-

library/reference/time-time32-time64?view=vs-2019, the function returns Linux epoch time in 

seconds.  That is good, as the objective says the document was encrypted between 7:00 and 9:00 

PM on December 6, 2019.  That means we only have to brute force 7200 seeds (2*60*60). 

 

After calling super_secure_srand, it goes into a loop that calls super_secure_random eight times. 

The super_secure_srand code is not complicated.  It prints the seed (it is the value of time, which 

was just called) and saves it in a variable called state. 

 

The loop that calls super_secure_random is where the work is done.  The super_secure_random 

code implements the Linear Congruential Generator (LCG), but with different values from the 

demo. 

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/time-time32-time64?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/time-time32-time64?view=vs-2019


 

The page Ron used in his demo, https://rosettacode.org/wiki/Linear_congruential_generator,  

also has the numbers 21403 and 2531011 on it.  They are in the Microsoft formula instead of the 

BSD formula from the demo.  Besides the different constants, the Microsoft formula also 

includes a division by 216 that is not in Ron’s demo.  The division appears in the assembly code 

as well, in sar eax 10h.   Shift right by 16 (10hex) is the same as division by 216.  The code, 

and eax 7FFFFFFFh, is the same as the mod 231 operation.  (I wonder if there is an error in 

the code, since the assembly language is 7FFFh, which would be mod 215.  I’m not good at 

assembly, so I could be wrong.) 
 
From the rosettacode.org link: 

 
The loop to generate the key is executed 8 times, once for each byte of the generated key. 

https://rosettacode.org/wiki/Linear_congruential_generator


 

Adapting Ron’s skeleton.rb 
Ron posted the files from his talk at https://tinurl.com/kringlecon-crypto, which resolves to his GitHub 

site, https://github.com/CounterHack/reversing-crypto-talk-public. 

The demo solution in Ruby is clearly marked with things we need to change (TODO), although we also 

need to include the >> 16. 

 

 

https://tinurl.com/kringlecon-crypto
https://github.com/CounterHack/reversing-crypto-talk-public


The error message in do_decrypt shows us that the algorithm is DES-CBC. 

The DES algorithm uses a key length of 8 bytes.  (The elfscrow.exe app nicely shows (length:  8) when it 

displays the seed and the key.) 

To check that DES-CBC is available in Ruby, we can use Interactive Ruby (irb). 

 
<snip> 

 

Testing the key generator 
Since elfscrow.exe is nice enough to show us the seed and the key, we can use that to test our key 

generation.  Using the previous data from elfscrow.exe gives us a seed of 1578093182 and a key of 

3a00894d16eb8b41. 

 

Pasting our code into irb gives us this. 

 
Success!  We created the same key. 



Testing the decryption 
The test above encrypted the file test.txt as text.txt.enc (got my ‘s’s and ‘x’s mixed up, oh well.)  If the 

code is correct, the new key should be able to decrypt it.  Be sure to use the elfscrow.exe syntax, 

elfscrow.exe --encrypt <infile> <outfile>, rather than redirecting the output to a file.  Redirecting in 

Windows adds a trailer that will cause problems if you have Ruby running in Linux. 

 
It works! 

Brute forcing the encrypted document 
When we try the 7200 seeds, one per second from December 6, 2019 between 7pm and 9pm, many of 

the resulting keys will cause decryption errors.  We need to catch errors in the decrypt() function.  Also, 

there will be many seeds that don’t generate errors but result in a “decrypted” document that is 

gibberish.  Therefore, we need to test each result to see if it is correct.  The document is supposed to be 

a PDF document, so we can check to see that it begins with the magic bytes ‘PDF-1’ ( the file command 

would work as well.)  Here is the completed script.  It starts with the seed = 1575658800 because that is 

the Linux Epoch time of 7pm, December 6, 2019. 

KEY_LENGTH = 8  

 

def generate_key(seed) 

  key = '' 

  1.upto(KEY_LENGTH) do 

    key += ((seed = (214013 * seed + 2531011) & 0x7fff_ffff) >> 16 & 0xff).chr 

  end 

  return key 

end 

 

def decrypt(data, key) 

  c = OpenSSL::Cipher::DES.new('cbc')  

  c.decrypt 

  c.key = key 

    begin 

      decrypted = c.update(data) + c.final() 

    rescue 



      decrypted = 'decrypt error' 

    end 

  return (decrypted) 

end 

 

data = IO.binread("ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc") 

start_seed = 1575658800 

 

for seed in start_seed..(start_seed + 7200) 

  key = generate_key(seed) 

  decrypted = decrypt(data, key) 

  if decrypted != 'decrypt error' 

      puts("no error at key = #{key.unpack('H*')} seed = #{seed}") 

      if decrypted[1..5] == 'PDF-1' 

         IO.binwrite("ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf", decrypted) 

         puts("success!!") 

         break 

      end 

  end 

end 

 



 
<snip> 

 

The seed was 1575663650 and the key was b5ad6a321240fbec.  Decryption took less than 5 minutes. 

The Loot 
Here is the cover of the decrypted PDF document.  The document is amazingly detailed and must have 

taken quite some time to create. 

 

It also contains information that may help us later. 

 

Confusion 
I’m reluctant to make this claim because I am a novice assembly language person.  It appears to me that 

the assembly language code does not correctly implement the LCG from the Rosetta Code site, and from 

what Ron has in his demo.  It appears to me that the code implements what is shown below.  It has been 

split into parts to make it easier to compare with the assembly language code. 



 

It should implement this 

 

It appears that the 0x7fff is in the wrong place.  Also, 0x7fff should be 0x7fffffff to properly implement 

mod 2^31.  The later could easily be my limited knowledge of assembly language, however.  At any rate, 

both versions work. 

Objective 11—Open the Sleigh Shop Door 
This objective gives as much practice with browser developer tools as a person could want. 

 
Before we start, we need to help Kent Tinseltooth. 

 



Terminal—Smart Braces 
Kent Tinseltooth has an interesting problem.  His Internet of Teeth have been compromised and 

he needs us to fix his firewall. 

 

Someone is talking to him through his braces.  There’s more to the conversation, but this is 

important—srf.elfu.org is classified, and it runs with default creds. 

 

Kent gives us a link to assist us. 

 
https://upcloud.com/community/tutorials/configure-iptables-centos/  

The terminal has some important instructions for us on how to configure his iptables.  They need 

to be in the exact order given at the end of the list. 

https://upcloud.com/community/tutorials/configure-iptables-centos/


 
I used several links when configuring these rules. 

https://howto-madkour.blogspot.com/2013/02/change-iptables-default-policy-to-drop.html 

https://help.serversaustralia.com.au/s/article/How-To-Whitelist-An-IP-Address-In-IPTables 

https://serverfault.com/questions/353130/iptables-and-multiple-ports 

https://www.digitalocean.com/community/tutorials/iptables-essentials-common-firewall-rules-and-

commands 

These rules worked to help Kent. 

sudo iptables -P INPUT DROP 

sudo iptables -P FORWARD DROP 

sudo iptables -P OUTPUT DROP 

sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT 

sudo iptables -A OUTPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT 

sudo iptables -A INPUT -p tcp --dport 22 -s 172.19.0.225 -j ACCEPT 

sudo iptables -A INPUT -p tcp -m multiport --dports 21,80 -j ACCEPT 

sudo iptables -A OUTPUT -p tcp --dport 80 -j ACCEPT 

sudo iptables -A INPUT -i lo -j ACCEPT 

Note.  The command sudo iptables -n -v -l allows you to see your rules, and how 

many times they’ve fired.  It’s about the only feedback you get on this challenge if things don’t 

go right.  All the rules will get hits except the last one.  When the last rule is hit it doesn’t display 

because you won. 

https://howto-madkour.blogspot.com/2013/02/change-iptables-default-policy-to-drop.html
https://help.serversaustralia.com.au/s/article/How-To-Whitelist-An-IP-Address-In-IPTables
https://serverfault.com/questions/353130/iptables-and-multiple-ports
https://www.digitalocean.com/community/tutorials/iptables-essentials-common-firewall-rules-and-commands
https://www.digitalocean.com/community/tutorials/iptables-essentials-common-firewall-rules-and-commands


 
 

Kent rewards us with many badge hints and some nice words.  Clearly, he wants us to use 

browser tools. 

 
https://xkcd.com/325/  

https://developers.google.com/web/tools/chrome-devtools 

https://developer.mozilla.org/en-US/docs/Tools 

https://developer.apple.com/safari/tools/  

https://curl.haxx.se/docs/manpage.html 

I like the Lynx tools. 

https://xkcd.com/325/
https://developers.google.com/web/tools/chrome-devtools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
https://curl.haxx.se/docs/manpage.html


Open Shinny’s crate 
When we visit Shinny Upatree, he has this to say. 

  

The link he gives for his crate is https://crate.elfu.org/. 

Shinny’s crate has a series of locks that need to be opened with developer tools.  I used Chrome, 

but Shinny provided hints for just about everything. 

Lock 1 

There’s a nice flag in the console.  It even looks like a flag. 

 

https://crate.elfu.org/


Lock 2 

The hint tells you to print the page.  The preview shows the lock code in purple.  (How did they 

do that?) 

 

Lock 3 

The hints tell you to look at the network tab.  There is an interesting .png file there that is 

downloaded every few minutes. 

 



Lock 4 

The hint about Local barrels points us to Local Storage, under Application. 

 

Lock 5 

The hint asks about the code in the title.  It’s in index.html under Sources. 

 

Lock 6 

The hint talks about perspective.  In the Sources tab, css -> styles.css -> <long random name> 

gives access to the perspective setting for the hologram.  I had best luck setting the perspective to 

zero, or deleting it altogether.  Having no perspective is as effective as increased perspective. 



 

 

Lock 7 

The code is in the font family at the beginning of index.html. 

 



Lock 8 

To find this one you need to find the Event Listener for eggs under the Elements tab. 

 

Lock 9 

You can find the ‘chakras’ in the Elements tab as well. 

 

To make them active, right-click and select Force state -> active. 

 



When one becomes active, part of the code appears. 

 

Or, you could just find chakra in the css. 

 

Lock 10 

Note:  The hints indicated that we should use a DOM Tree Viewer.  The one I downloaded didn’t 

work well, so I decided to look at the errors and code instead.  (This only applies when you get to 

the macaroni section.)  This is the last lock, so of course it is the most complicated.  The hint 

says to pop off the cover of the lock. The Network tab shows that there are .png’s for the lock, 



the lock cover, and the lock inside.   

 

The HTML for this lock looks different from the others.  Lock 10 has a class called cover that 

the others don’t have, and it disables the unlock button. 

 

The other locks work without a cover class, what if we “pop off” the cover class?  In the 

Elements tab we can edit the HTML, or better yet, delete the element.

 



Once the cover element is removed, we see the inside of the lock. 

 

If we enlarge the lock_inside.png image, we see the lock code. 

 

We unlock the lock, and it won’t open. 

 



Missing macaroni?  Really? 

Index.html does have a macaroni, but I don’t know what to do with it yet.

 

Clicking on the link next to the macaroni error we had in the console takes us to this. 

 

What?  Javascript in the css section?  I didn’t know you could do that. 

try { 

  const _0x95d5de = 

document['\x71\x75\x65\x72\x79\x53\x65\x6c\x65\x63\x74\x6f\x72'](_0x387a('0x6

3')); 

  if (!_0x95d5de) 

       throw Error(_0x387a('0x64'));  

Great, obfuscated javascript.  But, by pasting the code into the console we can clean it. 

 

 



try { const _0x95d5de = document[querySelector](.locks > li > .lock.c10 > 

.component.macaroni); 

  if (!_0x95d5de) 

       throw Error(“Missing macaroni);  

 

It is looking for a class called macaroni in .lock.c10 (i.e. lock 10).  Searching for macaroni under 

the Elements tab gives this. 

 

There is a class macaroni, but it is in the section for lock 7.  Let’s copy it and paste it into lock 

10. 

 



Interesting, a piece of macaroni just appeared on the lock.

 

Now it should work! 

 

Oh man!  Cotton is not present in the code, but swab is.  Time for another copy and paste.  We’ll 

put it just below macaroni. 

 



 

Now it should work, maybe? 

 

Ok, find the gnome and paste him in. 

 
 



 

There’s not much more room to put stuff, this had better work. 

 

Whew! 

Enter “The Tooth Fairy” in the Objective to claim credit. 



Objective 12—Filter Out Poisoned Sources of Weather Data. 
This objective has us parsing Bro/Zeek logs with jq. 

 
https://downloads.elfu.org/http.log.gz 

https://srf.elfu.org/ 

Now that we have access to the Sleigh Workshop, we see Wunorse Openslae and the Tooth 

Fairy.  The Tooth Fairy confesses readily. 

 

Wunorse has a terminal to get us ready for finding badness in the logs. 

  

https://downloads.elfu.org/http.log.gz
https://srf.elfu.org/


As usual, Wunorse also has a badge hint. 

 
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2  

Terminal—Zeek JSON Analysis 
Wunorse’s terminal is straightforward.  It follows the SANS Pentest Blog almost exactly. 

 

First, see what an event looks like. 

 

It’s nice that there is a duration field.  We can even copy and paste the example from the blog. 

cat conn.log | jq -s 'sort_by(.duration) | reverse | .[0]' 

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2


 
 

It is hard to put aside my Linux command line friends, though.  This worked too. 

 
 

At any rate, the IP address Wunorse is looking for is 13.107.21.200.  Wunorse’s comments after 

the terminal is solved are long, so here’s the text (emphasis added by me.) 

That's got to be the one - thanks! 

Hey, you know what? We've got a crisis here. 

You see, Santa's flight route is planned by a complex set of machine learning algorithms 

which use available weather data. 

All the weather stations are reporting severe weather to Santa's Sleigh. I think someone 

might be forging intentionally false weather data! 

I'm so flummoxed I can't even remember how to login! 



Hmm... Maybe the Zeek http.log could help us. 

I worry about LFI, XSS, and SQLi in the Zeek log - oh my! 

And I'd be shocked if there weren't some shell stuff in there too. 

I'll bet if you pick through, you can find some naughty data from naughty hosts and block 

it in the firewall. 

If you find a log entry that definitely looks bad, try pivoting off other unusual attributes 

in that entry to find more bad IPs. 

The sleigh's machine learning device (SRF) needs most of the malicious IPs blocked in 

order to calculate a good route. 

Try not to block many legitimate weather station IPs as that could also cause route 

calculation failure. 

Remember, when looking at JSON data, jq is the tool for you! 

There is also a badge hint. 

 
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion  

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)  

https://en.wikipedia.org/wiki/Shellshock_(software_bug)  

https://www.owasp.org/index.php/SQL_Injection 

 

Since LFI, XSS, SQLi, and shellshock are mentioned so often that I think we should look for 

them. 

 

Sleigh route finder—What is the %$^@#$!!! Password? 
I had trouble with this one.  We have two hints 

• Encrypted document:  the software is on the Elf Research Labs’ git repository 

• Kent Tinseltooth:  the software is using the default credentials. 

After trying all the defaults I could think of, admin admin and the like, friends hinted that I should search 

the logs for events related to the hints.   

I had a hard time searching the logs we were given in https://downloads.elfu.org/http.log.gz with 

jq because they were inside an array ( comma separated events, inside [ and ] ).  I get frustrated 

easily, so the first time I ran this objective I used these commands to get rid of the array and 

make the data line-based so I could use regular Linux tools. 

cat http.log | sed 's/}, {/}\n{/g' | tr -d '[' | tr -d ']' > 

http2.log 

https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://www.owasp.org/index.php/SQL_Injection
https://downloads.elfu.org/http.log.gz


It changes an array of comma separated events [ {xxx}, {xxx}, … ] into events on separate lines.  Then I 

was able to use my Linux friends to solve the problem.  That probably destroys the intent of the 

objective, so I’m going to attempt to re-do the problem with just jq for the write up. 

For finding the credentials, the helpful thing was to sort through all the requested URIs and see if 

anything corresponded to a git repository.  The following search does that.  I had to jump out of jq and 

end with Linux friends; once the answer is reduced to a string it is no longer JSON and jq doesn’t want to 

deal with it.  The grep -v ‘api/’ is there because there are many /api/weather?station 

URIs in the logs and I want to get rid of them. 
cat http.log | jq '.[]| select (.status_code == 200) | .uri' | sort | 

uniq -c | sort -nr | grep -v 'api/' | less 

 

The file README.md occurs in git repositories. 

 
WooHoo!  It’s not protected by the site logon!  



The contents of README.md are (extra line breaks removed): 

# Sled-O-Matic - Sleigh Route Finder Web API 

### Installation 

``` 

sudo apt install python3-pip 

sudo python3 -m pip install -r requirements.txt 

``` 

#### Running: 

`python3 ./srfweb.py` 

#### Logging in: 

You can login using the default admin pass: 

`admin 924158F9522B3744F5FCD4D10FAC4356` 

However, it's recommended to change this in the sqlite db to something 

custom. 

Sleigh route finder—block 100 offending sources 

Note to Designer.  There were a lot of bad things in the logs besides what we were told to look 

for.  I (and many others) were lured down rabbit holes chasing other stuff besides the big 4 (LFI, 

XSS, SQLi, and shellshock).  Perhaps one of the elves ran a Nessus scan we didn’t know about.  

For me, this objective became, “Do what you were told, nothing more, nothing less” rather than 

working on my search Fu to find bad events.  I did spend a lot of time looking at the logs and 

trying different searches, though. 

 

Finding Local File Injection (LFI) 
At first I treated this as only looking for directory transversal ( ../../../.. ) but I remembered LFI could also 

include files that are in the server’s current working directory.  After looking through the logs and 



making many searches, I settled on this search as being easy (a prime consideration) and not catching 

too much extra.  I realize it is a search that would have major problems in real life. 

Sorry, but the jq syntax is making me crazy.  After a half dozen attempts at matching a phrase across all 

keys, I gave up.  I’m going to enjoy reading reports where all this was done in jq; jq documentation could 

use more examples.  The file http-2.log has been converted so that events are line delimited. 

grep passwd http2.log | jq '.["id.orig_h"]' > lfi-ip.txt 

This search catches /adminpasswd.cgi, which may be an error, but it also catches 

/.|./.|./etc/passwd, which would pass a normal transversal search.  Piping into wc -l shows 

it catches 16 IP addresses. 

Finding Cross Site Scripting (XSS) 
Again, this isn’t the best search, but after running several searches and examining the data it is a simple 

search that works. 

grep -i '<scr' http2.log | jq -j '.["id.orig_h"], "\n"' > xss-

ip.txt 

It catches 16 IP addresses. 

Finding SQL Injection (SQLi) 
Another search that works with the data we have, but would cause trouble IRL. 

grep -i union http2.log | jq '.["id.orig_h"]' > sqli-ip.txt 

Later I found some ‘1=1’ hiding in the usernames, so added this. 

grep '1=1' http2.log | jq '["ip.orig_h"]' >> sqli-ip.txt 

 

These found 29 IP addresses. 

Finding Shellshock 
Shellshock has a unique string, so it is easy to find. 

grep '() { :; };' http2.log | jq '.["id.orig_h"]' > shellshock-ip.txt 

It found 6 IP addresses. 

Pivoting 

We have 67 addresses and need 100, so there is more work to do.  After wasting much time 

chasing the other bad things in the logs like Metasploit user agents, I went back to the original 

instructions, “If you find a log entry that definitely looks bad, try pivoting off other unusual attributes in 

that entry to find more bad IPs.” 

In most of the known bad events, the only other key to work with is user_agent.  This will make 

a list of all the user agents and how many times they are used. 

cat http2.log | jq '.user_agent' | sort | uniq -c | sort -nr > 

agents_only.txt 



The first few lines of the result look like this. 

 
<snip> 

 

After looking up the user agents for bad events and comparing them to the list, I found that very 

many of the ‘bad’ user agents were only used twice.  It seemed logical to block the other IP 

address that used the same user agent. 

You could write a script to find the user agents for bad events; compare them to the user agent 

list; if the user agent is only used twice, find and block the other IP address.  Before doing that, it 

was easier to try blocking the IPs of all user agents that appeared only twice. 

This finds all user agents that appear twice in the user agent list we just made, 

grep -e '\s2\s\"' agents_only.txt 

 

And this puts them into a file. 

grep -e '\s2\s\"' agents_only.txt | cut -d'"' -f2 > ua2.txt 

Finally, this small BASH script goes through the file of user agents that occur twice and extracts 

the IP addresses.  The input happens with < ua2.txt, and the output appends to ua2-ip.txt. 

using >> ua2-ip.txt. 

while read ua; do 

  grep "$ua" http2.log | jq -j '.["id.orig_h"]' >> ua2-ip.txt 

  done < ua2.txt 

 



Put the lists together and remove duplicates. 

 

We have 109 IP addresses, not too far from 100. 

One last cleanup is to make the addresses so that we can paste them into srf.elfu.org. 

 
(Strange, an IP address that starts with 0.  I wonder how that got into the logs.) 

 
cat composite_uniq.txt | tr -d '"' | tr "\n" "," > final.txt 

Paste the contents of final.txt into the firewall (removed the last null and commas) and click DENY 

 

Made it!  Enter the RID into the objective. 



The Door Opens 
The door giving access to the Bell Tower opens when the last objective is solved. 

  

In the Bell Tower we find Santa, Krampus and The Tooth Fairy (wearing prison garb?)  

 

The Tooth Fairy has left a note that promises trouble for next year.  We may see Jack Frost. 

 

Thanks, CounterHack Challenges and SANS for a terrific challenge! 


