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Abstract
Chronic cough is characterized by a state of cough hypersensitivity. We analyze the process of transpiration, by which 
water appears to evaporate from laryngeal and tracheal mucus as from the surface of a leaf, as a potential cause of cough 
hypersensitivity. In this process, osmotic pressure differences form across mucus, pulling water toward the air, and prevent-
ing mucus dehydration. Recent research suggests that these osmotic differences grow on encounter with dry and dirty air, 
amplifying pressure on upper airway epithelia and initiating a cascade of biophysical events that potentially elevate levels 
of ATP, promote inflammation and acidity, threaten water condensation, and diminish mucus water permeability. Among 
consequences of this inflammatory cascade is tendency to cough. Studies of isotonic, hypotonic, and hypertonic aerosols 
targeted to the upper airways give insights to the nature of mucus transpiration and its relationship to a water layer that forms 
by condensation in the upper airways on exhalation. They also suggest that, while hypertonic NaCl and mannitol may pro-
voke cough and bronchoconstriction, hypertonic salts with permeating anions and non-permeating cations may relieve these 
same upper respiratory dysfunctions. Understanding of mucus transpiration and its role in cough hypersensitivity can lead 
to new treatment modalities for chronic cough and other airway dysfunctions promoted by the breathing of dry and dirty air.
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Introduction

Chronic cough is a condition that affects around 10% of the 
adult population worldwide and is associated with various 
respiratory or non-respiratory conditions, without evident 
cause, while frequently associated with a state of hypersen-
sitivity to tussive or non-tussive stimuli [1]. This hypersen-
sitivity state may be caused by a neuroinflammatory process 
that enhances the sensitivity of the cough peripheral vagal 

sensory neurons in the larynx and upper airways [2]. Recent 
evidence [3] suggests that high rates of water evaporation 
from laryngeal and tracheal mucus arising by exposure to 
dry air [4], cold air [5], mouth breathing [6], or high min-
ute volume [7] can elevate pressure within airway surface 
liquid (ASL), leading to secretion of ATP [8] for prolonged 
duration and activation of the cough neural pathways [9]. 
This review details underlying dehydration processes at the 
level of the surface epithelial liquid and mucus layer focus-
ing on emerging understanding of the process of mucus 
transpiration.

Airway Surface Liquid as Mediator of Inhaled Air 
Humidification

Dehydration of the upper airways exacerbates respiratory 
illnesses, from asthma [10] and COPD [11] to influenza 
[12] and COVID-19 [13]. Dehydration further elevates the 
health dangers of dirty air in chronic ways, by the slowing 
of inhaled particle clearance [14, 15] and in acute ways, 
as in the provocation of bronchoconstriction [16] and even 

 *	 David A. Edwards 
	 dedwards@seas.harvard.edu

1	 John Paulson School of Engineering and Applied Sciences, 
Harvard University, 29 Oxford St, Pierce Hall, Cambridge, 
MA 02138, USA

2	 National Heart & Lung Institute, Imperial College London,  
227B Guy Scadding Building, Royal Brompton Hospital, 
London  SW7 2AZ, UK

3	 Center for Nanomedicine, Johns Hopkins School 
of Medicine, 400 N Broadway St, 6th Floor, Baltimore, 
MD 21231, US

http://crossmark.crossref.org/dialog/?doi=10.1007/s00408-023-00664-0&domain=pdf


	 Lung

1 3

sleep apnea—dry and dirty air at night prolongs sleep apnea 
events, while humidified and dirty air do not [17]. Strenuous 
exercise, which can multiply inhaled air flow by a factor of 
ten, exacerbates upper airway dehydration and the dangers it 
poses to the breathing of dirty air, leading to the secretion of 
inflammatory cytokines [18] and elevated risks of cough and 
bronchoconstriction [19], among other respiratory disorders 
[20] such that respiratory distress is the primary non-injury 
reason for reporting to a sports clinic [20].

Since the thermal mapping study of McFadden and 
coworkers [21], processes of heating and humidification of 
inhaled air have been thoroughly explored [22–24]. In these 
studies, it has generally been assumed that water evaporates 
from airway surface liquid (ASL) as it does from any body 
of water exposed to unsaturated air, while recent evidence 
suggests that, particularly in the vicinity of the larynx and 
trachea where air flow on inspiration is greatest owing to 
the laryngeal jet [25], evaporation occurs in tandem with a 
process commonly known as transpiration [3].

Transpiration is a phenomenon widely observed in nature 
[26] that occurs when water evaporates over the surface of a 
hydrogel, leading to an osmotic pressure difference over the 
thickness of the hydrogel that eventually pulls water up from 
beneath the hydrogel. Water evaporation over the thin epi-
dermis of a leaf can lead to osmotic pressure differentials as 
large as 1000 atmospheres [26], pulling water over distances 
of 10 m or more from moist soil. Evaporation over upper 
airway mucus, a far thinner hydrogel barrier, leads to pres-
sure elevation that is inevitably more modest, while on the 
mouth breathing of dry and dirty air can potentially surpass 
1000 Pascals, provoking inflammation and dysfunction [3].

Transpiring hydrogels tend to form thin layers of water 
condensation on contact with the atmosphere [27]. In the 
upper airways, where exhaled air becomes supersaturated 
on air entry into the trachea owing to the drop in tempera-
ture that occurs as air travels from the central and lower air-
ways into the mouth, these condensation layers are refreshed 
on every exhalation, with approximately 33% of the water 
that evaporates on inhalation condensing on exhalation 
[24]. Condensation layer thickness reflects environmental 
conditions [28], thickening when evaporation rate is low, 
and thinning when it is high [3]—a kind of barometer of 
the osmotic pressure differential that keeps the transpiring 
hydrogel moist even in dry air conditions.

Inhalation of isotonic, hypotonic, and hypertonic aero-
sols is a common strategy for modifying the condensation 
layer and thereby physically modifying ASL structure and 
function for diagnostic, hygienic, and therapeutic purposes 
[29–32]. Advances in the understanding of mucus transpi-
ration and the interrelated water condensation layer might 
serve the utility of these and other medical aerosols for the 
management of respiratory illnesses worsened by the breath-
ing of dry and dirty air, such as chronic cough [1].

Transpiration

Transpiration from evaporating hydrogels has been studied 
for over a century since the early experiments by Dar-
win [33], who observed that coating a leaf’s surface with 
vaseline reduces water evaporation while does not prevent 
it altogether. Transpiration differs from normal evapora-
tion in that, while the latter leads to no pressure elevation 
within the evaporating liquid, the former elevates pressure 
in the following manner. Evaporation over the hydrogel 
leads to a redistribution of osmolytes across the hydro-
gel and thus an osmotic pressure gradient, which is equal 
and opposite in direction to a “water pressure” gradient. 
This latter pressure, i.e., the pressure that might be directly 
measured by a manometer inside the water pores of the 
gel and frequently referred to as the “pervadic” pressure 
[34], drives water flow toward the evaporating surface. 
Total hydrostatic pressure in the hydrogel being the sum 
of osmotic and pervadic pressures, osmotic pressure ele-
vation increases the total hydrostatic pressure within the 
hydrogel, which is the origin of the hydrostatic head that 
pulls water up from the roots to the surface of a transpir-
ing leaf. Transpiration accounts for an estimated 4/5th of 
all water evaporated from the earth’s soil and 1/8th of all 
water evaporated from the earth [35] and is frequently 
exploited for water filtration systems in engineered hydro-
gel materials [36].

In recent years, basic transpiration principles have 
been analyzed in many natural and engineering contexts 
[37–40]. Etzold et al. [40] notably studied transpiration 
in polymer hydrogel beads in steady-state evaporative 
conditions with varying relative humidity, reporting a 
steady-state redistribution of polymer mesh strands, with 
polymer strands more concentrated near the evaporating 
surface of the bead. This redistribution of mass, obeying 
a cubic dependence of polymer mass fraction on distance 
from the base of the beads, is indeed the physical origin 
of the osmotic pressure gradient observed in the study 
[40]. Overall, mass conservation within the hydrogel leads 
then to a steady-state shrinkage of the hydrogel beads. The 
greater the evaporation rate, the greater the stratification 
of polymer, the greater the shrinkage, and the greater the 
hydrostatic head. Total pressure increase ΔP grows lin-
early with evaporation rate q at relatively low evaporation 
rates, while with q3 at high evaporation rates. Equivalently, 
the overall water permeability of the transpiring hydrogel 
remains unchanged with increasing q at low evaporation 
rates, while at high evaporation, it diminishes with q−2 
(owing to compression).
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Mucus Transpiration

Humans lose over the course of a day from 200 mL to 1 L 
of water due to breathing depending on the dryness and 
coolness of inhaled air and minute volume [41]. This loss 
of water to the environment reflects a net movement of 
water from airway epithelia into the ASL. In steady-state 
breathing conditions, this slow movement of water equals 
the evaporation rate itself such that ASL volume is con-
served. When this evaporative convection is sufficiently 
strong to retard the ability of molecules or particles within 
mucus to move independently by diffusion, mass accumu-
lates near the evaporating surface, generating an osmotic 
pressure gradient and the basic conditions for transpira-
tion. In the human larynx and trachea, such transpiration 
conditions exist, as can be seen by consideration of the 
Peclet number (Pe), which characterizes the relative rates 
of convective to diffusive motion. With mucus thickness 
h ~ 10−5 m, mucin strand diffusivity, D ~ 10−12 m2/s, and 
evaporation rates ranging in conditions of tidal breathing 
to exercise from q ~ 10−7 m/s to 10−6 m/s, Pe = qh/D > 1.

Edwards and Chung [3] analyzed the consequences of 
mucus transpiration to evaporative water flow in the human 
upper airways in conditions ranging from dry (10% relative 
humidity) to moist (60% relative humidity) air, slow and 
fast breathing, nasal, and mouth breathing. They determined 
the overall pressure exerted on the airway epithelium as a 
function of breathing conditions and compared their results 

to those of Button et al. [42], who measured ATP secretion 
from ciliated epithelial cells as a function of mechanical 
compression of cilia in vitro, and the findings of Fowles 
et al. [43], who measured the frequency of cough in asth-
matic human subjects following topical ATP deposition 
by aerosol, to deduce a quantitative relationship between 
breathing conditions and cough propensity in hypersensi-
tive airways.

Their results are summarized in Fig. 1, as relates to the 
mouth breathing of dry air with relative humidity 10% by 
asthmatic human subjects. As ventilation rate increases from 
normal tidal breathing ~ 15 to 30 L/min to minute volumes 
characteristic of exercise (upward of 100 L/min), osmotic 
pressure on airway epithelia elevates, easily surpassing 
1000 Pa, leading to ATP secretion [42], triggering of P2X3 
receptors [9], and cough [43].

The alignment of theory and experiment pictorially rep-
resented in Fig. 1, together with similar theoretical/experi-
mental alignment for associated upper airway dysfunctions 
[3], suggests that the coupling of upper airway dehydration 
and a mucus transpiration inflammatory (MTI) pathway may 
contribute to the prevalence of chronic cough. Mechanis-
tically, upper airway mucus appears, as a consequence of 
the transpiration process, to thicken and thin [similar to the 
deformation of transpiring synthetic hydrogels observed on 
changes in environmental conditions [40]] with variation 
in breathing conditions, stressing underlying airway epithe-
lia as a continual physiological response to the quality of 

Fig. 1   Cough provocation in hypersensitive airways by the mouth 
breathing of dry (10% RH) air [3]. Original figurative representation 
of predicted [3] relationships between cough rate and ventilation rate 
in asthmatic airways as a function of ASL pressure elevation and ATP 
secretion. ASL pressure elevation is predicted as a function of ven-
tilation rate without fitted parameters. ATP secretion is predicted by 
assuming linear pressure-secretion kinetics and determination of the 

linear coefficient by fitting of the experimental in vitro data of Button 
et  al. [43]. Cough rate is assumed to be linearly dependent on ATP 
concentration with determination of the linear coefficient by fitting of 
the experimental human cough data obtained in asthmatics following 
inhalation of ATP [44]. The illustrated relationship between ventila-
tion rate and cough rate accurately predicts cough rate as observed in 
asthmatics on exposure of the trachea to cool dry air [4]
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inhaled air. Such alterations in upper airway mucus, yet to 
be observed, may impact mucus barrier function and even-
tually the response of the upper airways to the breathing of 
dirty air.

MTI Pathway

Sharp local gradients of osmolarity form in the MTI pathway 
of the kind that appear in drought conditions across the epi-
dermis of a leaf, pulling water from deeper and deeper into 
dry soil, and leading to the wilting of the leaf [44]. In the 
case of laryngeal and tracheal ASL (see Fig. 2), the “wilt-
ing of the leaf” phenomenon implies sustained secretion of 
ATP [43], which elevates likelihood of P2X3 cough receptor 
activation [9], while also elevates cytosolic calcium [45] and 
down-regulates CFTR channel activity in the apical mem-
brane of airway epithelia [46]. Inflammatory cytokine secre-
tion recruits mast cells [47] and eosinophils [48]. Reduced 
bicarbonate secretion into ASL accompanying reduction 
in CFTR activity can lead to acidity, possibly triggered by 
secretion of carbonic anhydrase by eosinophils [49], thereby 
activating TRPV receptors [50] and acid-sensitive ion chan-
nels (ASIC) as a parallel route to cough provocation.

Strenuous exercise exacerbates the MTI pathway by 
accelerating airway dehydration [7, 18–20, 51]. Exercise 
promotes cough in hypersensitive airways by elevation of 
ATP concentration in the ASL and activation of P2X3 recep-
tors (as reflected in the ATP cough-dependence shown in 
Fig. 1), while also by acidification of the ASL and activation 
of acid-sensitive cough receptors. Thus, while ASL naturally 
maintains isotonicity in states of health and disease [52], 
hyperosmolar gradients do arise along the MTI pathway 
and are especially elevated in states of exercise, offering 
insight into the interchangeability of exercise-induced and 

hyperosmolar-aerosol-induced provocations for cough and 
bronchoconstriction [53, 54].

Measures of exhaled breath condensate pH and chloride 
concentration may be effective monitors of MTI, both of 
which have been reported to be suppressed in chronic cough 
patients [55], while elevated FeNO may reflect a broader (as 
asthmatic) inflammatory signature and be a less sensitive 
measure of the MTI pathway itself [56]. Recognition and 
elucidation of the thin layer of water that condenses over 
upper airway mucus on exhalation, and appears to persist on 
transpiring mucus, may provide further insight into the MTI 
pathway, as reviewed below.

The Condensation Layer

Condensation layers exist on leaves [27, 28] and artificial 
transpiring hydrogels [57]. They come about in the follow-
ing way. Water condenses on the hydrogel free of solute. 
On condensation, solutes in the hydrogel diffuse into the 
condensed layer to equilibrate concentration differences. 
Evaporation concentrates these solutes in the condensation 
layer driving diffusion back into the hydrogel. The hydrogel, 
with elevated solids concentration near the evaporating sur-
face, reflects diffusing solutes to degrees that vary with sol-
ute size and structure, promoting an osmotic pressure in the 
condensation layer that adds to the osmotic pressure formed 
by transpiration within the hydrogel itself.

In the upper airways, condensation occurs with every 
breath. During normal tidal mouth breathing of modestly 
humid air approximately 3 mg of water evaporate in the 
human trachea such that on exhalation approximately 1 mg 
returns to the trachea by condensation of supersaturated air. 
Given a typical human tracheal surface area of 60 cm2, this 
suggests that between ~ 166 nm and ~ 1.66 μm condenses 
in the trachea with each exhalation in conditions ranging 

Fig. 2   A conjectural map of the 
mucus transpiration inflamma-
tory (MTI) pathway for cough 
provocation. Upper airway 
dehydration results in airway 
epithelial cellular stress (Fig. 1), 
ATP secretion into the ASL 
[42], and activation of P2X3 
receptors, promoting cough [9]. 
Sustained ATP elevation further 
leads to CFTR down-regu-
lation in the apical epithelial 
membrane [47], which reduces 
bicarbonate flux into the ASL, 
promoting acidification of the 
ASL, and cough provocation 
by parallel activation of TRPV 
receptors [50]
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from normal tidal breathing to strenuous exercise. Edwards 
and Chung [3] therefore assumed a condensation layer 
thickness of 1 μm, similar to the characteristic dimension 
reported for the water layer on leaves [27]. Others [28] have 
reported condensation layer thickness on a dry leaf varying 
between ~ 9 μm and ~ 18 μm from very dry (20% RH) to 
moist (80% RH) conditions.

Condensation layer thickness appears to be reflected in 
the relative number of respiratory droplets generated during 
a normal shallow tidal breath [3]. Exhaled breath particles 
(EBP) associated with normal tidal breathing break off of 
the condensation layer surface by the shear of inhaled air, 
which in the larynx and trachea moves with a laryngeal jet 
[58] speed (~ 3 m/s) similar to that required to generate sea 
spray [59]. EBP have been observed to increase and decrease 
in number by a factor of ~ 2 on the movement of human 
subjects from humid to dry back to humid air conditions 
[60], the same degree of condensation layer thickness change 
observed on the surface of a dry leaf in dry and humid air 
conditions [28]. Doubling the thickness of the condensation 
layer will halve the concentration of surfactant and diminish 
propensity for droplet breakup [3] and respiratory droplet 
generation having been shown to increase dramatically with 
increased presence of lung surfactant [61]. How this change 
in condensation layer height comes about is suggested by the 
theory of mucus transpiration as illustrated in Fig. 3, where 
fall in the thickness of the condensation layer accompanies 
diminution of the mucus water permeability in a manner 

typified by the shrinkage of the transpiring hydrogels studied 
by Etzold et al. [40].

Condensation layers on upper airway mucus may play a 
role in airborne pathogen infection and transmission [32, 62, 
63], in the deposition and opsonization (surfactant coating) 
of inhaled particles [64], and possibly in regulating mucosal 
compressive forces delivered by the inhalation and exces-
sive accumulation of PM 2.5, as observed to date in non-
pulmonary mucosa [65].

Hydrating the Airways with Isotonic, Hypotonic, 
and Hypertonic Aerosols

Replenishing and compositionally altering the condensation 
layer by the aerosol deposition of isotonic, hypotonic, and 
hypertonic solutions have a long history of practice in res-
piratory science and healthcare [29, 31], led by the pioneer-
ing research of Anderson [66, 67].

Zuim et al. [68] recently reported results from a double-
blinded human clinical study of hypertonic aerosol delivery 
of the four principal airway chloride salts demonstrating the 
relative longevity of divalent salt (notably magnesium chlo-
ride) laryngeal hydration. They demonstrate by numerical 
analysis of a generalization of the theoretical model devel-
oped by Sandefur, Boucher and Elston [69] that topical 
deposition in the upper airways of hypertonic salts provides 
hydration for shorter or longer time periods depending on 
whether salt cations permeate the apical epithelial mem-
brane (Na+, K+) or do not (Ca++, Mg++), with the latter 
hydrating longest as the divalent cations clear most slowly 
by a periciliary pathway. They also predict that salts with the 
principal permeating cation (Na+) risk transient acidifica-
tion of ASL by lowering chloride channel CFTR permeation 
in parallel with rapid ASL hydration. The same phenom-
enon occurs on the delivery of a hypertonic aerosol lacking 
the permeating anion (Cl−), as with mannitol. By avoiding 
the permeating cation and including the permeating anion, 
hypertonic divalent salts appear to avoid acidification and 
the associated provocations that follow from activation of 
TRPV receptors [50].

Hypertonic divalent salt (HDS) aerosols with slow-
clearing non-permeating cations and permeating anions 
may therefore be useful as non-pharmacological means to 
deactivate the MTI pathway for prophylaxis and treatment of 
chronic cough and related dysfunction of upper airway dehy-
dration. Easily delivered to the larynx in the form of a nasal 
aerosol from a hand-held pump spray with large droplet 
diameter (8–15 μm), they permit effective laryngeal hydra-
tion in a few breaths [68], possibly reducing ATP and acidity 
triggers of cough (Fig. 2). Such aerosols may yield chronic 
as well as acute therapeutic benefits if buffered to alkalin-
ity, since deposition of ~ 6 mg of alkaline solution onto the 
larynx and trachea, where total water volume is ~ 60 mg for 

Fig. 3   Mouth and nose breathing impact on condensation layer sta-
bility. Original figurative representation of predicted [3] condensa-
tion later thickness versus ventilation rate as a function of ventilation 
rate and normalized mucus water permeability for cases of nose and 
mouth breathing of moist and dry air. As ventilation rate increases, 
the mass accumulation of mucus solids near the evaporating surface 
reduces mucus water permeability. This reduces water permeation 
into the condensation layer, which then loses height. The ventilation 
rate dependence of condensation layer height is similar to its depend-
ence on reduction of relative humidity or temperature, as both pro-
cesses elevate evaporation rate in the upper airways
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a human adult, potentially elevates ASL pH and accelerates 
the shutting down of the TRPV cough pathway. Alkaline 
HDS might further serve as useful adjuvants to P2X3 antag-
onist and other upper airway receptor-targeting therapeutics.

Figure 4 provides an illustration of how shutdown of the 
MTI pathway via HDS aerosol delivery (MgCl2 or CaCl2) 
may complement P2X3 antagonism for the treatment of 
chronic cough. Predicated on the assumption that environ-
mental provocation of the MTI pathway is a common con-
dition underlying laryngeal hypersensitivity, HDS aerosol 
treatment (as illustrated in Fig. 4) reduces agonist action at 
the P2X3 receptor, complementing the function of P2X3 
drugs, while also reducing TRPV/ASIC activation and the 
ASL inflammation that promotes laryngeal hypersensitivity.

Conclusion

Transpiration of water appears to sustain normal lung func-
tion notwithstanding the steady loss of water that humidi-
fies the air we breathe. Contemporary conditions, includ-
ing climate change, aging of the human population, and the 
rise in rates of obesity, challenge the transpiration process 
in human upper airways, either by reducing airborne water 
content (through the increased frequency of breathing air-
conditioned air) or whole-body water content (owing to 
prevalence of dehydration among the elderly and the obese), 
creating “drought-like” conditions in the upper airways. This 
promotes inflammation and upper airway dysfunction, such 
as cough, akin to the wilting of a leaf. It would also appear 
to promote changes in structure and function of upper airway 
mucus, of the kind that have been observed in natural and 

artificial transpiring hydrogels. This may couple laryngeal 
dehydration with an MTI inflammatory response promoting 
cough hypersensitivity and ultimately chronic cough.

Clarifying the phenomenology of mucus transpiration 
and its complex interplay with air quality, inflammation, 
and disease may advance diagnostic, hygienic, and thera-
peutic interventions for chronic cough and help to reverse 
airway dehydration and the accompanying neuroinflamma-
tory events that occurs with breathing dry and dirty air.
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