Applying the Normal Distribution

Ayak David Chol

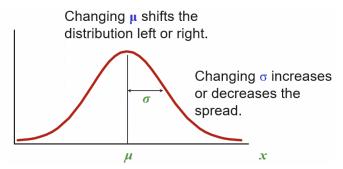
July 17, 2025

Objectives

By the end of this lesson, you will be able to:

- Describe properties of the normal distribution
- Standardize values using z-scores
- Use the standard normal table to find probabilities
- Apply the normal distribution to solve **real-world problems**

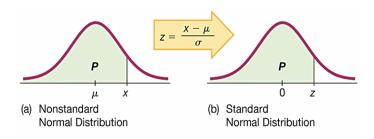
The Normal Distribution



Key Characteristics

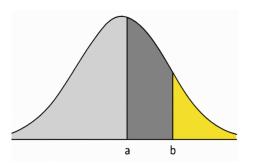
- Bell-shaped and symmetric about the mean (μ)
- Characterized by:
 - ightharpoonup Mean (μ)
 - Standard deviation (σ)
- Symmetric when mean = median = mode

Standardizing Normal Distribution



- Converts any normal variable to the standard normal distribution making $\mu = 0$ and $\sigma = 1$.
- This is good for computing normal probabilities by transforming **X** units into **Z** units $\Rightarrow z = \frac{x \mu}{\sigma}$.

Finding Probabilities



General Formula

$$P(a < X < b) = P(Z < z_b) - P(Z < z_a)$$

• Use the **z-table** or technology (e.g., calculators, software) to find probabilities.

Problem

SAT Math scores are normally distributed with $\mu = 500$ and $\sigma = 100$.

What proportion of students score below 650?

Problem

SAT Math scores are normally distributed with $\mu = 500$ and $\sigma = 100$.

What proportion of students score below 650?

Solution

• Compute the z-score:

$$z = \frac{x - \mu}{\sigma} = \frac{650 - 500}{100} = 1.5$$

Problem

SAT Math scores are normally distributed with $\mu = 500$ and $\sigma = 100$.

What proportion of students score below 650?

Solution

• Compute the z-score:

$$z = \frac{x - \mu}{\sigma} = \frac{650 - 500}{100} = 1.5$$

2 Look up z = 1.5 in the standard normal table.

Example 1 Cont · · ·

\mathbf{Z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406

Solution

$$P(Z < 1.5) = 0.9332$$

Interpretation

About 93.32% of students score below 650.

Problem

IQ scores are normally distributed with $\mu = 100$, $\sigma = 15$.

What percentage of people have an IQ above 130?

Problem

IQ scores are normally distributed with $\mu = 100$, $\sigma = 15$.

What percentage of people have an IQ above 130?

Solution

$$z = \frac{x - \mu}{\sigma} = \frac{130 - 100}{15} = 2.0$$

Problem

IQ scores are normally distributed with $\mu = 100$, $\sigma = 15$.

What percentage of people have an IQ above 130?

Solution

$$z = \frac{x - \mu}{\sigma} = \frac{130 - 100}{15} = 2.0$$

\mathbf{Z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803

Problem

IQ scores are normally distributed with $\mu = 100, \, \sigma = 15.$

What percentage of people have an IQ above 130?

Solution

$$z = \frac{x - \mu}{\sigma} = \frac{130 - 100}{15} = 2.0$$

\mathbf{Z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803

$$P(Z > 2.0) = 1 - P(Z < 2.0) = 1 - 0.9772 = 0.0228$$

Problem

IQ scores are normally distributed with $\mu = 100$, $\sigma = 15$.

What percentage of people have an IQ above 130?

Solution

$$z = \frac{x - \mu}{\sigma} = \frac{130 - 100}{15} = 2.0$$

\mathbf{Z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803

$$P(Z > 2.0) = 1 - P(Z < 2.0) = 1 - 0.9772 = 0.0228$$

Answer

2.28% have an IQ above 130.

Summary

Key Points in this lesson:

- The **normal distribution** models real-world variables.
- **Z-scores** allow comparison across different normal distributions.
- Use **z-tables** or software to compute probabilities.