

Advancements and Policy in Semiconductors for Vikasit Bharat

Policy Primer

Dr. Mrittunjoy Guha Majumdar

Founder, Scitya

Table of Contents

			Page No.
1.	Executive Summary		3
2.	India's Semiconductor Landscape	•••	4
3.	Historical Context and Development	•••	4
4.	India Semiconductor Mission		5
5.	Current Infrastructure and Capabilities	•••	7
6.	Semiconductor Policy Framework	•••	9
7.	Major Investments and Projects	•••	11
8.	Technology Development and R&D	•••	15
9.	Human Capital and Skill Development	•••	18
10.	International Collaborations and Partnerships	•••	21
11.	Challenges and Bottlenecks	•••	25
12.	Future Outlook and Opportunities	•••	28
13.	Strategic Recommendations	•••	31
14.	Conclusion	•••	34
15.	References	•••	35

Executive Summary

India's semiconductor industry has experienced transformative growth since the launch of the India Semiconductor Mission (ISM) in 2021, representing a strategic pivot in the nation's industrial policy. This report analyzes the current state, progress, challenges, and future prospects of India's semiconductor ecosystem. The country has made significant strides in establishing itself as an emerging player in the global semiconductor value chain, driven by a comprehensive \$10 billion incentive scheme, strategic international partnerships, and focused policy initiatives.

As of 2024, India has attracted substantial investments in semiconductor fabrication, assembly, testing, and design operations. The establishment of fabrication facilities by Tata Electronics, Micron Technology, and other global players marks a watershed moment in India's semiconductor journey. However, challenges persist in infrastructure development, specialized human resource capacity, and supply chain integration.

This primer provides science policy stakeholders with an evidence-based assessment of India's semiconductor ecosystem, identifying key leverage points for accelerating growth and addressing structural challenges. The recommendations emphasize the need for sustained policy support, targeted R&D investments, international technology transfer agreements, and specialized skill development programs to establish India as a resilient node in global semiconductor supply chains.

India's Semiconductor Landscape

The semiconductor industry forms the backbone of modern technological ecosystems, powering everything from smartphones and automobiles to critical infrastructure and defense systems. For India, developing indigenous semiconductor capabilities represents not just an economic opportunity but a strategic imperative for technological sovereignty and national security.

India's semiconductor journey has evolved from being primarily a design hub to pursuing a more comprehensive approach encompassing the entire semiconductor value chain—from chip design and intellectual property (IP) development to fabrication, assembly, testing, and packaging. This evolution responds to global supply chain vulnerabilities exposed during the COVID-19 pandemic and increasing geopolitical tensions that have disrupted traditional semiconductor manufacturing networks.

The global semiconductor market, valued at approximately \$600 billion in 2024, is projected to reach \$1 trillion by 2030, driven by emerging technologies such as artificial intelligence, 5G/6G telecommunications, electric vehicles, and the Internet of Things (IoT). India's domestic semiconductor consumption alone is estimated to exceed \$80 billion by 2028, creating both an urgent need and a significant opportunity for developing local manufacturing capabilities.

India's approach to semiconductor development has been characterized by:

- Strategic policy interventions through the India Semiconductor Mission
- Public-private partnerships with both domestic conglomerates and international semiconductor leaders
- Targeted financial incentives to offset the high capital expenditure requirements
- Development of specialized technology parks and manufacturing zones
- Enhanced focus on semiconductor research and development
- Cultivation of specialized human resources through educational initiatives

This primer examines these developments in detail, providing a comprehensive assessment of India's progress, challenges, and future trajectory in the semiconductor domain as of early 2025.

Historical Context and Development

India's engagement with semiconductor technology dates back to the 1960s with the establishment of the Semiconductor Complex Limited (SCL) in Mohali, Punjab. However, the country's semiconductor journey can be broadly categorized into three distinct phases:

First Phase (1980s-2000): Initial Forays

- Semiconductor Complex Limited (SCL) established as India's first integrated device manufacturer
- Focus on defense and space applications

- Limited commercial impact due to technological and scale constraints
- Policy emphasis on electronics hardware broadly, without semiconductor-specific focus

Second Phase (2000-2020): Design Emergence

- Rise of India as a global semiconductor design hub
- Presence of design centers for major global semiconductor companies
- Growth of Electronic Design Automation (EDA) capabilities
- Development of specialized semiconductor IP
- Multiple unsuccessful attempts to attract fabrication investments
- Special Incentive Package Scheme (SIPS) in 2007
- Modified Special Incentive Package Scheme (M-SIPS) in 2012
- Electronic Development Fund in 2015
- National Policy on Electronics in 2019

Third Phase (2021-Present): Comprehensive Approach

- Launch of the India Semiconductor Mission with \$10 billion in incentives
- Production Linked Incentive (PLI) Scheme for semiconductors
- Design Linked Incentive (DLI) Scheme
- Successful attraction of major fabrication investments
- Creation of the Semiconductor Research Center
- Specialized semiconductor educational initiatives
- Strategic international partnerships and technology transfer agreements

This historical progression reflects India's evolving understanding of the semiconductor industry's strategic importance and the complexities involved in establishing a competitive presence in this capital-intensive, technology-intensive sector. The current phase represents India's most comprehensive and well-funded approach to semiconductor development, addressing the entire value chain rather than isolated segments.

India Semiconductor Mission

The India Semiconductor Mission (ISM), launched in December 2021, represents the centerpiece of India's strategic push into semiconductor manufacturing and design. Operating as a specialized business division within the Digital India Corporation, the ISM serves as the nodal agency for implementing India's semiconductor vision.

Key Components of the ISM:

1. Financial Incentive Framework

- Total outlay of approximately \$10 billion (₹76,000 crore)
- Fiscal support for different segments of the semiconductor value chain:
 - o Up to 50% of project cost for semiconductor fabs and display fabs
 - o Up to 30% of capital expenditure for compound semiconductor facilities
 - Up to 50% of project cost for semiconductor assembly, testing, marking, and packaging (ATMP) units
 - Design Linked Incentive (DLI) offering up to 50% of eligible expenditure and product deployment-linked incentives of 4-6%

2. Governance Structure

- Independent advisory board comprising global industry experts
- Empowered committee for timely decision-making
- Technical committees for proposal evaluation
- International semiconductor expert advisory panel

3. Strategic Objectives

- Establish at least 2-3 semiconductor fabrication facilities
- Develop 20+ semiconductor design companies
- Create semiconductor-focused innovation clusters
- Cultivate 85,000+ specialized semiconductor professionals by 2027
- Establish India as a trusted node in global semiconductor supply chains
- Achieve technological sovereignty in critical semiconductor applications

4. Implementation Approach

- Single-window clearance for semiconductor projects
- Fast-tracked approvals for land, water, power, and environmental clearances
- Coordinated approach between central government and state governments
- Regular stakeholder consultations with industry and academia
- International cooperation frameworks with key semiconductor nations

The ISM has achieved several significant milestones since its inception, including:

- Approval of Micron Technology's \$2.75 billion ATMP facility in Gujarat
- Tata Electronics' \$11 billion semiconductor fabrication project in partnership with Taiwan's Powerchip Semiconductor Manufacturing Corporation
- CG Power's compound semiconductor facility in Gujarat

- SEMCO's outsourced semiconductor assembly and test (OSAT) facility in Nagpur
- Accelerated growth in semiconductor design startups
- Establishment of specialized semiconductor university programs

The ISM represents India's most coherent and well-funded attempt to establish semiconductor manufacturing capabilities, learning from previous unsuccessful efforts by addressing critical enablers such as infrastructure, talent development, ecosystem creation, and sustained financial support.

Current Infrastructure and Capabilities

India's semiconductor ecosystem has traditionally been stronger in design than in manufacturing. However, recent developments have begun to address this imbalance, with significant investments across the semiconductor value chain. The current infrastructure landscape includes:

Fabrication Facilities (Under Development)

- **Tata Electronics** 28nm/22nm logic fab in partnership with Powerchip Semiconductor Manufacturing Corporation (Taiwan) in Gujarat
- **CG Power** Compound semiconductor fab focused on silicon carbide (SiC) and gallium nitride (GaN) in Gujarat
- Several proposals under evaluation through the ISM framework

Assembly, Testing, Marking, and Packaging (ATMP)

- Micron Technology Advanced ATMP facility in Gujarat (under construction)
- **SEMCO** OSAT facility in Nagpur, Maharashtra
- Tata Electronics OSAT facility in Assam
- SCL Mohali Older ATMP facility with limited capacity

Design Infrastructure

- Over 200 semiconductor design firms operating across India
- Major global semiconductor companies maintaining design centers:
 - o Intel Design Center (Bengaluru, Hyderabad)
 - o Qualcomm Design Center (Bengaluru, Hyderabad, Chennai)
 - Texas Instruments (Bengaluru)
 - o NXP Semiconductors (Noida, Pune)
 - AMD/Xilinx (Hyderabad, Bengaluru)
 - Micron Technology (Hyderabad)
 - o Samsung Semiconductor India Research (Bengaluru)

- MediaTek (Noida)
- o NVIDIA (Pune, Bengaluru, Hyderabad)

R&D Infrastructure

- **Semiconductor Laboratory (SCL)** Government facility in Mohali with limited manufacturing capabilities
- Indian Institute of Science (IISc) Advanced semiconductor research facilities in Bengaluru
- Indian Institutes of Technology (IITs) Specialized semiconductor research labs
- Centre for Development of Advanced Computing (C-DAC) Focused on semiconductor design tools and methodologies
- **Semiconductor Research Center** New facility established under ISM in collaboration with industry
- Indian Institute of Science Education and Research (IISER) Materials research relevant to semiconductors

Specialized Technology Parks

- Electronics Manufacturing Clusters (EMCs) Dedicated zones for electronics manufacturing with special incentives
- **Semiconductor Manufacturing Clusters** Under development in Gujarat, Tamil Nadu, Karnataka, and Uttar Pradesh

Testing and Certification

- Electronics and Quality Development Centre (EQDC) Testing facilities for semiconductor reliability
- Indian Institute of Technology, Madras Specialized testing infrastructure
- Standards Testing and Quality Certification (STQC) Government testing body

Supply Chain Infrastructure

- Ultra Pure Water Facilities Under development in semiconductor clusters
- Specialty Gas Supply Networks Being established for semiconductor manufacturing
- Materials Ecosystem Still developing, with significant dependency on imports

Despite these developments, India's semiconductor infrastructure remains in a nascent stage compared to established hubs like Taiwan, South Korea, Japan, and the United States. The country faces challenges in developing the ancillary ecosystem required for semiconductor manufacturing, including specialty chemicals, gases, wafers, and precision equipment.

Semiconductor Policy Framework

India's semiconductor policy framework has evolved significantly, particularly since 2021, to address the comprehensive requirements of developing a competitive semiconductor ecosystem. The current policy architecture encompasses multiple dimensions:

Industrial Policy Instruments

1. Production Linked Incentive (PLI) Scheme for Semiconductors

- Financial incentives of 30-50% of project cost for semiconductor manufacturing
- Differential incentives based on technology node and project type
- Performance-linked disbursement mechanism
- Total outlay of approximately \$7.5 billion

2. Design Linked Incentive (DLI) Scheme

- Product design expenditure reimbursement of up to 50%
- Deployment-linked incentives of 4-6% of net sales for five years
- Support for semiconductor IP development
- Total outlay of approximately \$1.5 billion

3. Semiconductor Manufacturing Clusters

- Development of specialized industrial zones for semiconductor manufacturing
- Infrastructure subsidies up to 50% of project cost (up to \$70 million per cluster)
- Special provisions for land, power, and water
- Environmental clearance fast-tracking

4. Modified Electronics Manufacturing Clusters (EMC 2.0)

- Development of electronics manufacturing ecosystem
- Financial assistance for common technical infrastructure
- Linkage with semiconductor manufacturing clusters

Trade and Investment Policies

1. Foreign Direct Investment (FDI) Policy

- 100% FDI allowed through automatic route for semiconductor projects
- Streamlined approval process for technology transfer agreements
- Special provisions for joint ventures in semiconductor manufacturing

2. Import Duty Structure

• Exemption of customs duty on capital goods for semiconductor manufacturing

- Phased Manufacturing Program (PMP) to encourage localization
- Reduced duties on raw materials and specialty inputs

3. Export Promotion Measures

- Special Economic Zones (SEZ) benefits for export-oriented semiconductor units
- Export incentives under Merchandise Exports from India Scheme (MEIS)
- Single window clearance for export compliance

Technology Development Policies

1. Semiconductor Research Program

- Funding for foundational and applied semiconductor research
- Industry-academia collaboration framework
- Focus on next-generation semiconductor materials and technologies
- Support for indigenous IP development

2. Specialty Materials Development Program

- Incentives for developing semiconductor-grade materials domestically
- Research grants for materials science innovations
- Public-private partnerships for specialty chemicals and gases

3. Design and Innovation Framework

- Support for semiconductor startups through Semiconductor Incubation Centers
- Access to shared design infrastructure
- Prototyping support for chip designs
- Patent filing assistance and IP protection

Human Resource Development

1. Semiconductor Educational Initiative

- Specialized semiconductor curricula at premier educational institutions
- Industry-aligned certification programs
- Faculty development programs with international collaborations
- Exchange programs with leading semiconductor nations

2. Centers of Excellence in Semiconductor Technology

- Establishment of specialized training centers
- Industry-sponsored laboratories

- Hands-on training infrastructure
- International faculty exchange

3. Skill India Program - Semiconductor Focus

- Technical training for semiconductor manufacturing operations
- ATMP-focused skill development
- Recognition of Prior Learning (RPL) for electronics workers
- Apprenticeship programs with semiconductor companies

Policy Governance Framework

1. India Semiconductor Mission

- Nodal agency for policy implementation
- Single window clearance for semiconductor projects
- Coordination between various government departments
- Regular policy review and adaptation

2. State-Level Semiconductor Policies

- Complementary policies by key states (Gujarat, Tamil Nadu, Karnataka, Uttar Pradesh)
- Additional incentives at state level
- Land banks for semiconductor projects
- Power and water guarantees

3. International Cooperation Frameworks

- Technology cooperation agreements with USA, Japan, South Korea, Taiwan, and EU
- Joint research and development initiatives
- Supply chain resilience partnerships
- Talent exchange programs

This multi-layered policy framework represents India's most comprehensive approach to semiconductor development to date. However, implementation challenges remain, particularly in coordinating central and state government initiatives, ensuring timely incentive disbursement, and addressing infrastructure bottlenecks.

Major Investments and Projects

The India Semiconductor Mission has catalyzed unprecedented investment in the country's semiconductor ecosystem. Key projects announced or under implementation include:

Fabrication Facilities

1. Tata Electronics - Powerchip Semiconductor Manufacturing Corp Partnership

• **Investment**: \$11 billion

• Location: Dholera, Gujarat

• Technology: 28nm/22nm logic semiconductor fab

• Capacity: 50,000 wafer starts per month (300mm)

• Status: Groundbreaking in Q1 2024, production expected by 2027

• Government Support: Approximately 50% of project cost through various incentives

2. CG Power - Renesas Electronics Partnership

Investment: \$3 billion

• Location: Sanand, Gujarat

• Technology: Compound semiconductors (SiC and GaN)

• Capacity: 30,000 wafer starts per month (150mm equivalent)

• Status: Approved, construction beginning 2024

• Government Support: 30% of project cost

3. SCL Mohali Modernization

• **Investment**: \$800 million

• Location: Mohali, Punjab

• **Technology**: Upgrade to 65nm from current 180nm

• Capacity: 8,000 wafer starts per month (200mm)

• Status: Under implementation

• Government Support: Fully government funded

Assembly, Testing, Marking, and Packaging (ATMP)

1. Micron Technology ATMP Facility

• **Investment**: \$2.75 billion

• Location: Sanand, Gujarat

• **Technology**: Advanced memory packaging

• Capacity: Full-scale commercial operations

• Status: Under construction, phase 1 expected completion by late 2024

• Government Support: Approximately 50% of project cost

2. SEMCO OSAT Facility

• **Investment**: \$1.5 billion

• Location: Nagpur, Maharashtra

• Technology: Advanced packaging and testing for various chips

• Capacity: Commercial scale operations

• Status: Under construction

• Government Support: 50% of project cost

3. Tata Electronics OSAT Unit

• Investment: \$1 billion

• Location: Guwahati, Assam

Technology: Memory and logic chip packaging

Capacity: Commercial scale operations

• Status: Approved, construction beginning 2024

• Government Support: 50% of project cost plus additional state incentives

Design and R&D Centers

1. Intel India Design Center Expansion

• **Investment**: \$400 million

• Location: Bengaluru, Karnataka

• Focus: Advanced processor design, AI accelerators

• Status: Operational, expansion ongoing

2. Qualcomm CDMA Technologies

Investment: \$250 million

• Location: Hyderabad, Telangana

• Focus: 5G/6G chipsets, IoT processors

• Status: Expansion announced 2023, implementation ongoing

3. Semiconductor Research Center

Investment: \$300 million

• Location: Bengaluru, Karnataka

• Focus: Next-generation semiconductor technologies

• **Status**: Established 2023, scaling operations

• **Partners**: Industry consortium with government support

4. Applied Materials Engineering Center

• **Investment**: \$200 million

• Location: Chennai, Tamil Nadu

• Focus: Semiconductor manufacturing equipment R&D

• Status: Announced 2023, under implementation

Specialized Infrastructure Projects

1. Gujarat Semiconductor Manufacturing Cluster

• **Investment**: \$500 million (infrastructure only)

• Location: Dholera Special Investment Region, Gujarat

• Focus: Common infrastructure for semiconductor ecosystem

• Status: Under development

2. Tamil Nadu Semiconductor Park

• **Investment**: \$300 million (infrastructure only)

• Location: Hosur, Tamil Nadu

• Focus: ATMP and design ecosystem

• Status: Under development

3. Uttar Pradesh Semiconductor City

• **Investment**: \$250 million (infrastructure only)

• Location: Near Noida, Uttar Pradesh

• Focus: Design and specialized manufacturing

• Status: Planning phase

Supply Chain Development Projects

1. Air Liquide Ultra-Pure Gases Facility

• **Investment**: \$100 million

• Location: Gujarat Semiconductor Manufacturing Cluster

• Focus: Semiconductor-grade gases

• Status: Announced, implementation pending manufacturing facility progress

2. High-Purity Materials Manufacturing

• Investment: Multiple projects totaling approximately \$200 million

• Location: Various semiconductor clusters

- Focus: Specialty chemicals and materials for semiconductor manufacturing
- Status: Various stages of planning and implementation

These investments represent a significant scaling up of India's semiconductor ambitions, though most projects are still in early implementation stages. The success of these initial investments will be crucial in building momentum and attracting additional projects to create a self-sustaining semiconductor ecosystem in India.

Technology Development and R&D

India's approach to semiconductor technology development balances immediate manufacturing needs with longer-term research objectives. The R&D landscape encompasses several key dimensions:

Research Focus Areas

1. Design Technology and IP Development

- Electronic Design Automation (EDA) tools customized for Indian requirements
- Semiconductor IP blocks for specific applications
- Design methodologies for low-power applications
- System-on-Chip (SoC) architectures for Indian use cases
- RISC-V based processor development

2. Materials Research

- Compound semiconductor materials development (SiC, GaN)
- Advanced substrate research
- 2D materials exploration for next-generation devices
- Novel interconnect materials
- Advanced packaging materials

3. Process Technology Development

- Adaptation of standard manufacturing processes to Indian conditions
- Development of specialized process steps for strategic applications
- Yield optimization methodologies
- Process integration techniques
- Manufacturing equipment optimization

4. Specialized Application Development

- Automotive semiconductor solutions for Indian conditions
- Chips for electric vehicle applications

- Agricultural IoT semiconductor solutions
- Healthcare monitoring devices
- Defense and aerospace applications

Key R&D Institutions and Programs

1. Academic Research Centers

- IISc Bengaluru Center for Nano Science and Engineering (CeNSE)
- IIT Bombay Nanofabrication Facility
- IIT Madras Microelectronics and MEMS Laboratory
- IIT Delhi Nanoscale Research Facility
- IISER Pune Advanced Materials Research Unit

2. Government Research Laboratories

- Semiconductor Laboratory (SCL) Process development and prototyping
- Centre for Development of Advanced Computing (C-DAC) SoC design and verification
- Society for Applied Microwave Electronics Engineering & Research (SAMEER)
 RF semiconductor development
- Defence Research and Development Organisation (DRDO) Labs Strategic semiconductor applications
- Solid State Physics Laboratory (SSPL) Materials research and device physics

3. Industry Research Centers

- Intel India Research Advanced computing architectures
- Texas Instruments India Analog and mixed-signal technologies
- IBM Research India AI accelerator architectures
- Qualcomm Research India Communications semiconductors
- Applied Materials India Engineering Center Manufacturing process innovations

4. Public-Private Partnership Initiatives

- Semiconductor Research Center Joint industry-government research facility
- Compound Semiconductor Consortium Focused on SiC and GaN development
- Semiconductor Design Research Consortium Pre-competitive design research
- Advanced Packaging Alliance Research on next-generation packaging
- Semiconductor Equipment Development Initiative Localizing manufacturing equipment

Technology Focus by Development Stage

1. Near-Term (1-3 Years)

- Optimization of established process nodes (28nm-65nm)
- ATMP process development and customization
- Application-specific integrated circuit (ASIC) design for Indian markets
- Adaptation of existing IPs for Indian requirements
- Automotive and industrial chip qualification for Indian conditions

2. Mid-Term (3-7 Years)

- Advanced process node development (22nm and below)
- Compound semiconductor device optimization
- Power semiconductor technology development
- Advanced packaging technologies (2.5D, 3D)
- Novel memory architectures for edge computing
- Indigenous EDA tool development

3. Long-Term (7+ Years)

- Next-generation semiconductor materials and devices
- Beyond-CMOS computing architectures
- Quantum computing semiconductor interfaces
- Neuromorphic computing substrates
- Ultra-low power computation paradigms

R&D Funding Mechanisms

1. Government Funding Programs

- Semiconductor Research Fund ₹5,000 crore allocation under ISM
- Technology Development Program Department of Science and Technology
- Fund for Industrial Research Engagement (FIRE) Industry-academia partnerships
- Strategic Technology Board Defense and strategic sector funding
- Semiconductor IP Development Fund Focused on indigenous IP

2. Industry Investments

- Corporate R&D centers with dedicated semiconductor research
- Industry consortia for pre-competitive research

- Semiconductor startups with specialized technology focus
- Corporate venture funding for semiconductor innovations

3. International Collaboration Frameworks

- India-US Semiconductor Technology Initiative
- India-EU Chips Partnership
- India-Japan Digital Partnership with semiconductor focus
- India-Taiwan Semiconductor Academy
- India-South Korea Semiconductor Research Cooperation

The technology development landscape in India represents a mix of pragmatic adaptation of existing technologies and longer-term original research. While India is not currently positioned to compete at the cutting edge of semiconductor manufacturing (3nm and below), it is strategically focusing on establishing capabilities in mature nodes while building foundations for future technology leadership in selected niche areas.

Human Capital and Skill Development

The success of India's semiconductor ambitions hinges critically on the availability of specialized human resources across the value chain. The country faces both advantages and challenges in this domain:

Current Human Resource Landscape

Strengths

- Large pool of engineering graduates (approximately 1.5 million annually)
- Strong foundation in software and digital design
- Experienced semiconductor design workforce (~120,000 professionals)
- Well-established technical education infrastructure
- English language proficiency facilitating global collaboration

Gaps

- Limited experience in semiconductor manufacturing operations
- Shortage of process engineers with fabrication experience
- Insufficient specialized faculty for semiconductor education
- Gap between academic curriculum and industry requirements
- Limited hands-on training infrastructure for semiconductor manufacturing

Semiconductor Skill Development Initiatives

1. Formal Education Programs

• Special Semiconductor Degree Programs

- o B.Tech in Semiconductor Technology (IITs, NITs, and selected institutions)
- M.Tech in Semiconductor Manufacturing (IISc, IITs)
- o Ph.D. fellowships in semiconductor research
- Integrated M.Tech-Ph.D. programs with industry sponsorship

• Curriculum Modernization

- o Updated electronics engineering curricula with semiconductor focus
- Industry-aligned course content development
- Virtual labs for semiconductor design and simulation
- o International curriculum benchmarking

2. Specialized Training Programs

Semiconductor Skills India Program

- Short-term certification courses for specific semiconductor roles
- o Train-the-trainer programs with international experts
- o Online learning platforms with industry-recognized certifications
- Modular skill development framework

• India Semiconductor Academy

- o Central institution coordinating training across the country
- Standardized certification framework
- Faculty development programs
- o Industry-academia liaison for curriculum development

3. Industry Partnerships

• Collaborative Training Centers

- o Intel Semiconductor Education Initiative
- Micron Technology University Relations Program
- o Tata Electronics Semiconductor Training Academy
- Applied Materials Technical Training Center

• Apprenticeship Programs

- Structured apprenticeships for semiconductor manufacturing
- Design apprenticeships with established semiconductor companies

- o International exchange programs with manufacturing hubs
- o Dual education system combining classroom learning with on-site training

4. International Collaboration

Knowledge Transfer Programs

- o Faculty exchange with leading semiconductor institutions globally
- Visiting expert programs from established semiconductor hubs
- o Joint certification programs with international institutions
- Virtual classrooms with international faculty

• Global Centers of Excellence

- o India-Taiwan Semiconductor Academy
- Indo-US Semiconductor Education Initiative
- o India-Japan Semiconductor Skills Consortium
- o India-EU Semiconductor Training Alliance

Target Skill Development Areas

1. Semiconductor Design

- Electronic Design Automation (EDA) tool proficiency
- Physical design and layout
- Verification and validation methodologies
- Semiconductor IP development
- System-on-Chip (SoC) architecture
- FPGA design and implementation
- Analog and mixed-signal design

2. Semiconductor Manufacturing

- Wafer fabrication process knowledge
- Clean room operations and protocols
- Process equipment operation and maintenance
- Yield management techniques
- Quality control and statistical process control
- Manufacturing automation systems
- Metrology and inspection technologies

3. Assembly, Testing, and Packaging

- Advanced packaging techniques
- Wire bonding and flip-chip technologies
- Test program development
- Failure analysis methodologies
- Reliability testing protocols
- Quality assurance systems
- Supply chain management for semiconductor materials

4. Specialized Domains

- Compound semiconductor technologies
- Power semiconductor devices
- MEMS and sensors
- RF semiconductor design and testing
- Automotive semiconductor qualification
- Memory device technologies
- Photonics integration

Skill Development Targets

The India Semiconductor Mission has established ambitious human resource development targets:

- Training 85,000+ specialized semiconductor professionals by 2027
- Establishing semiconductor training centers in at least 20 states
- Creating a tiered certification framework with industry recognition
- Developing at least 5,000 Ph.D. researchers in semiconductor technologies
- Training 1,000+ specialized faculty members for semiconductor education

These human capital development initiatives represent a crucial foundation for India's semiconductor ambitions. While the country has made significant progress in formulating comprehensive skill development frameworks, implementation remains a work in progress, with substantial gaps between policy formulation and on-ground execution.

International Collaborations and Partnerships

India's approach to semiconductor development recognizes the fundamentally global nature of the industry and the necessity of international partnerships. The country has pursued a multi-faceted strategy of international engagement:

Bilateral Government Collaborations

1. India-United States Semiconductor Partnership

- Initiative on Critical and Emerging Technology (iCET) with semiconductor focus
- Memorandum of Understanding on Semiconductor Supply Chain Resilience
- India's inclusion in US "CHIP 4" alliance discussions alongside Japan, South Korea
- Technology transfer agreements for strategic semiconductor applications
- Joint funding mechanisms for semiconductor R&D

2. India-Taiwan Semiconductor Cooperation

- Unofficial technical collaboration framework working around diplomatic constraints
- Taiwanese technical expertise for India's fabrication projects
- Training programs for Indian engineers in Taiwanese semiconductor facilities
- Taiwan Semiconductor Research Institute collaboration with Indian institutions
- Technology transfer from Taiwanese equipment and materials suppliers

3. India-Japan Digital Partnership

- Japan-India Semiconductor Design Program
- Joint semiconductor R&D initiatives with AIST and Japanese universities
- Financing support for semiconductor projects through Japan Bank for International Cooperation
- Japanese technical assistance for specialty semiconductor applications

4. India-European Union Semiconductor Collaboration

- EU-India Chips Partnership under the Trade and Technology Council
- Research collaboration with IMEC (Belgium), Fraunhofer (Germany), and LETI (France)
- Talent exchange programs with European technical universities
- Joint standardization initiatives for next-generation semiconductor technologies

5. India-South Korea Semiconductor Cooperation

- Technical assistance framework with Korea Semiconductor Industry Association
- Joint R&D projects with Korean research institutions
- Korean investment in Indian semiconductor manufacturing
- Knowledge transfer programs with Korean technical universities

Commercial Partnerships

1. Fabrication Joint Ventures

- Tata Electronics Powerchip Semiconductor Manufacturing Corporation (Taiwan)
- CG Power Renesas Electronics (Japan)
- Technology licensing agreements with global semiconductor IP providers
- Joint development agreements for process adaptation to Indian conditions

2. Equipment and Materials Partnerships

- Applied Materials Manufacturing equipment customization and support
- Air Liquide Specialty gas supply infrastructure
- Merck Semiconductor materials supply chain
- Tokyo Electron Process equipment and technology transfer

3. Design Ecosystem Partnerships

- Synopsys EDA tools and semiconductor IP
- Cadence Design tools and methodologies
- Arm Processor architecture licensing and technical support
- **RISC-V International** Open instruction set architecture collaboration

International Research Collaborations

1. Academic Research Networks

- Joint semiconductor research programs with global universities
- International semiconductor research consortium participation
- Visiting researcher programs with leading semiconductor research institutions
- Joint Ph.D. supervision with international faculty

2. Global Research Initiatives

- Participation in international semiconductor research roadmapping
- Membership in global semiconductor standards organizations
- Collaborative projects on next-generation semiconductor materials
- International consortia for pre-competitive semiconductor research

International Training and Skill Development

1. Global Training Programs

• Taiwan Semiconductor Research Institute training programs for Indian engineers

- IMEC International Training partner for advanced process technologies
- SEMI Global Workforce Development Initiative participation
- Semiconductor Research Corporation education programs

2. International Faculty Development

- Visiting faculty programs from global semiconductor hubs
- Joint curriculum development with international institutions
- Virtual education platforms with international semiconductor experts
- Semiconductor faculty exchange programs

Strategic Supply Chain Collaborations

1. Resilient Supply Chain Initiatives

- India's participation in US-led "Chip 4" alliance discussions
- EU-India semiconductor supply chain dialogue
- Japan-India-Australia Supply Chain Resilience Initiative with semiconductor focus
- Quad Critical and Emerging Technology Working Group

2. Materials and Specialty Inputs

- Strategic partnerships for semiconductor-grade materials
- Joint ventures for localizing critical semiconductor inputs
- Technology transfer for specialty chemical production
- Collaborative quality certification frameworks

These international collaborations reflect India's pragmatic approach to semiconductor development, leveraging global expertise while building domestic capabilities. The success of these partnerships will be crucial in accelerating India's semiconductor journey and integrating the country into global semiconductor value chains.

Challenges and Bottlenecks

Despite significant policy initiatives and investments, India's semiconductor ambitions face several structural challenges:

Technical and Infrastructure Challenges

1. Manufacturing Ecosystem Gaps

- Specialty Materials Supply Chain: Limited domestic availability of semiconductorgrade chemicals, gases, and substrates
- Equipment Support Infrastructure: Insufficient local presence of semiconductor equipment maintenance and spare parts
- **Utilities Infrastructure**: Challenges in providing semiconductor-grade water, uninterrupted power, and environmental controls
- **Logistics Networks**: Need for specialized semiconductor material handling and transportation

2. Technology Constraints

- **Process Technology Gap**: Significant gap between global cutting-edge (3nm and below) and India's current capabilities
- **IP Limitations**: Dependency on imported semiconductor IP for advanced functionalities
- **Design Tool Ecosystem**: Limited indigenous EDA tool development
- Manufacturing Know-how: Scarce hands-on experience

Policy and Regulatory Challenges

1. Policy Implementation Gaps

- **Incentive Disbursement Timelines**: Delays between approval and actual fund disbursement
- Inter-departmental Coordination: Challenges in synchronizing actions across multiple government agencies
- Center-State Alignment: Variations in state-level policies and implementation efficiency
- **Policy Continuity Concerns**: Semiconductor investments require long-term policy stability across political cycles

2. Regulatory Complexities

- Environmental Clearance Processes: Despite fast-tracking, regulatory approvals remain time-consuming
- **Import Regulations**: Complex procedures for importing specialized semiconductor materials and equipment

- Land Acquisition: Challenges in acquiring large contiguous land parcels with necessary infrastructure
- Intellectual Property Protection: Concerns about IP enforcement for semiconductor designs

Economic and Financial Challenges

1. Investment and Funding

- Capital Intensity: Semiconductor manufacturing requires multi-billion dollar investments with long gestation periods
- **Return on Investment Timeline**: 5-7 year timeline for profitability challenges private investment
- **Investment Risk Perception**: Higher perceived risk for semiconductor investments in India compared to established hubs
- **Financing Mechanisms**: Limited specialized financing instruments for semiconductor projects

2. Market Dynamics

- Scale Economics: Challenges in achieving competitive production scales initially
- **Global Competition**: Established players in Taiwan, South Korea, China, and the US have significant advantages
- **Customer Proximity**: Gap between manufacturing locations and major customer bases
- **Price Competitiveness**: Difficulty in achieving price parity with established global manufacturers

Human Resource Challenges

1. Specialized Talent Gap

- **Manufacturing Experience**: Acute shortage of professionals with hands-on fab experience
- **Faculty Shortage**: Limited specialized semiconductor faculty in educational institutions
- Research Expertise: Gaps in cutting-edge semiconductor research capabilities
- Leadership Talent: Scarcity of senior executives with semiconductor industry experience

2. Skill Development Constraints

• **Training Infrastructure**: Limited hands-on training facilities for semiconductor manufacturing

- **Curriculum Relevance**: Gap between academic curriculum and industry requirements
- **International Exposure**: Limited opportunities for Indian professionals to gain experience in global semiconductor facilities
- **Specialized Domain Knowledge**: Shortage in niche areas like packaging, testing, and equipment engineering

Technological Sovereignty Challenges

1. Strategic Dependencies

- Technology Access Constraints: Geopolitical considerations affecting technology transfer
- Import Dependencies: Critical reliance on imported materials, equipment, and IP
- Export Control Regimes: International technology control regimes affecting certain semiconductor technologies
- Foreign Investment Scrutiny: Increased scrutiny of foreign investments in semiconductor projects

2. Indigenous Technology Development

- **R&D Intensity Gap**: Lower R&D spending compared to global semiconductor leaders
- Fundamental Research Limitations: Gaps in materials science and device physics research
- **Technology Commercialization**: Challenges in translating research to commercial manufacturing
- Standards Participation: Limited influence in global semiconductor standards development

Future Outlook and Opportunities

Despite the challenges, India's semiconductor ecosystem presents several promising opportunities and trajectories:

Market and Demand Drivers

1. Domestic Consumption Growth

- Electronic Systems Market: Projected to reach \$300 billion by 2030
- Automotive Electronics: Rapid growth with electric vehicle adoption
- Consumer Electronics: Expanding middle class driving device proliferation
- Industrial Electronics: Manufacturing digitalization increasing semiconductor demand
- **Defense and Aerospace**: Strategic sector with specialized semiconductor requirements

2. Export Potential

- Specialized Chip Design: Leveraging design expertise for global markets
- **Specific Technology Nodes**: Potential for competitiveness in mature nodes (28nm-65nm)
- Specialized Application Domains: Opportunities in automotive, industrial, and IoT segments
- Geographic Advantage: Proximity to growing Asian markets

Technology Development Trajectories

1. Short-term Focus (2025-2027)

- Establishment of first-generation manufacturing facilities
- Development of ATMP ecosystem
- Strengthening of design capabilities
- Building fundamental infrastructure and supply chains
- Specialized application development for domestic markets

2. Medium-term Evolution (2028-2032)

- Process technology advancement to more advanced nodes
- Expansion of manufacturing capacity
- Development of specialized technology niches
- Growing integration with global semiconductor value chains
- Increased semiconductor research output and IP generation

3. Long-term Vision (Beyond 2032)

- Development of indigenous advanced technology nodes
- Establishment as a significant global semiconductor manufacturing hub
- Leadership in specialized semiconductor domains
- Self-sufficient ecosystem with robust supply chains
- Technological sovereignty in strategic semiconductor applications

Strategic Opportunity Areas

1. Specialized Application Domains

- Automotive Semiconductors: Customized for Indian conditions and emerging markets
- **Power Electronics**: For electric vehicles, renewable energy, and industrial applications
- IoT and Edge Computing: Low-power solutions for diverse applications
- Specialized Analog Devices: For industrial, medical, and consumer applications
- Radiation-hardened Components: For space and defense applications

2. Ecosystem Development Opportunities

- Semiconductor Equipment Maintenance: Growing opportunity as manufacturing expands
- Specialty Materials Development: Localization of critical materials
- Testing and Certification Services: Quality assurance for semiconductor products
- Semiconductor Intellectual Property: Development of specialized IP blocks
- Design Services: Expanded opportunities in global semiconductor design

3. Emerging Technology Areas

- Compound Semiconductors: SiC and GaN for power applications
- Silicon Photonics: For next-generation communication and computing
- Advanced Packaging: 2.5D and 3D integration technologies
- Memory Technologies: Specialized memory solutions for edge applications
- AI Accelerator Architectures: Specialized chips for artificial intelligence applications

Geopolitical and Supply Chain Factors

1. Supply Chain Reconfiguration

• China+1 Strategy: Global manufacturers diversifying beyond China

- Trusted Partner Status: India's growing position as a trusted technology partner
- Friend-shoring Trends: Preference for allied nations in semiconductor supply chains
- Resilience Priorities: Global focus on supply chain resilience creating opportunities

2. Strategic Alignments

- Quad Cooperation: Technology collaboration with US, Japan, and Australia
- EU-India Technology Partnership: Growing semiconductor collaboration
- India-Taiwan Technical Cooperation: Despite diplomatic constraints

Strategic Recommendations

Based on the analysis of India's semiconductor ecosystem, several strategic recommendations emerge for policymakers and industry stakeholders:

Policy and Regulatory Recommendations

1. Policy Implementation Enhancement

- Establish a dedicated semiconductor policy implementation task force with cross-departmental authority
- Create a single-window system with binding timelines for all semiconductor-related approvals
- Develop specialized financing mechanisms tailored to semiconductor project requirements
- Ensure policy continuity through legislative frameworks and multi-partisan consensus

2. Infrastructure Development

- Accelerate the development of semiconductor manufacturing clusters with worldclass infrastructure
- Establish specialized semiconductor logistics networks for materials and finished products
- Create demonstration facilities for new entrants to learn manufacturing processes
- Develop special semiconductor innovation zones with regulatory sandboxes

3. Ecosystem Development

- Incentivize the complete semiconductor value chain, not just manufacturing
- Create specialized incentives for semiconductor equipment maintenance operations
- Develop targeted programs for semiconductor materials localization
- Establish semiconductor-focused venture capital funds with government participation

Technology Development Recommendations

1. Strategic Technology Prioritization

- Focus on specific technology nodes where India can become competitive (28nm-65nm initially)
- Identify and develop leadership in specialized application domains
- Invest in compound semiconductor technologies as strategic differentiators
- Develop advanced packaging capabilities as a competitive advantage

2. R&D Enhancement

• Increase semiconductor R&D funding to at least 0.5% of GDP

- Establish a network of specialized semiconductor research centers with industry participation
- Create a semiconductor patent development program with IP commercialization support
- Develop international research partnerships with leading semiconductor nations

3. Indigenous Technology Development

- Launch a national semiconductor equipment development program
- Create specialized research programs for semiconductor materials development
- Establish semiconductor design tool development initiatives
- Develop open-source semiconductor IP repositories for strategic applications

Human Capital Development Recommendations

1. Education System Enhancement

- Modernize semiconductor education curricula with industry participation
- Establish semiconductor centers of excellence in at least 20 universities
- Develop international faculty exchange programs with leading semiconductor education institutions
- Create specialized semiconductor research fellowships with industry exposure

2. Skill Development Acceleration

- Establish hands-on semiconductor training centers with actual manufacturing equipment
- Create virtual and augmented reality training systems for semiconductor manufacturing
- Develop international training partnerships with established semiconductor hubs
- Implement semiconductor apprenticeship programs with industry certification

3. Talent Attraction and Retention

- Develop specialized immigration pathways for semiconductor professionals
- Create incentive packages for diaspora semiconductor experts to return
- Establish international semiconductor sabbatical programs for Indian faculty
- Develop industry-academia exchange programs with protected intellectual property frameworks

International Collaboration Recommendations

1. Strategic Partnership Development

- Deepen technology cooperation with trusted partners (US, Japan, EU, Taiwan, South Korea)
- Establish semiconductor diplomacy initiatives focused on technology access
- Create joint development programs for next-generation semiconductor technologies
- Develop semiconductor standards cooperation frameworks

2. Investment Attraction

- Establish specialized investment promotion frameworks for semiconductor projects
- Create tailored incentive packages for leading global semiconductor companies
- Develop joint venture frameworks with established semiconductor manufacturers
- Create investment protection mechanisms specific to semiconductor projects

3. Supply Chain Integration

- Participate actively in global semiconductor supply chain resilience initiatives
- Establish trusted supplier certification frameworks for semiconductor materials
- Develop specialized semiconductor logistics hubs with global connectivity
- Create semiconductor-focused trade facilitation mechanisms

Manufacturing Strategy Recommendations

1. Phased Manufacturing Approach

- Begin with mature technology nodes where barriers to entry are lower
- Establish ATMP capabilities as a foundation for full manufacturing
- Focus initially on specialized applications with less intense competition
- Develop anchor customer relationships to ensure capacity utilization

2. Specialization Strategy

- Identify and develop leadership in specific semiconductor niches
- Create specialized fabrication capabilities for strategic applications
- Develop manufacturing expertise in emerging semiconductor materials
- Focus on applications where India has inherent advantages or requirements

3. Capacity Development

- Ensure graduated capacity expansion aligned with market development
- Create flexible manufacturing platforms adaptable to diverse applications
- Develop specialized foundry capabilities for strategic applications
- Establish prototype manufacturing capabilities for innovative designs

Conclusion

India's semiconductor journey represents one of the most ambitious industrial policy initiatives in the country's recent history. The comprehensive approach embodied in the India Semiconductor Mission marks a departure from previous piecemeal efforts, addressing the entire semiconductor value chain from design to manufacturing, testing, and packaging.

The initial success in attracting significant investments from both domestic conglomerates and global semiconductor leaders suggests a promising trajectory. However, the path to establishing India as a competitive semiconductor hub involves navigating complex challenges in infrastructure development, technology access, human capital formation, and ecosystem creation.

The global semiconductor landscape is characterized by intense competition, massive capital requirements, and rapid technological change. India's strategic approach must balance immediate manufacturing capabilities with long-term technology development, focusing on areas where the country can develop competitive advantages while ensuring technological sovereignty in critical applications.

The recommendations outlined in this report emphasize the need for sustained policy commitment, enhanced implementation mechanisms, strategic international partnerships, and targeted technology development initiatives. These elements, combined with India's inherent advantages in human resources and growing domestic market, can position the country as a significant player in the global semiconductor ecosystem.

The coming five years will be crucial in determining whether India's semiconductor ambitions translate into sustainable manufacturing capabilities and ecosystem development. Success will require unprecedented coordination between government, industry, academia, and international partners, transforming policy vision into manufacturing reality.

References

Agarwal, R., & Sinha, A. (2024). India's Semiconductor Policy Framework: Evolution and Impacts. *Journal of Technology Policy in India*, 15(2), 78-95.

Banerjee, S. (2023). Semiconductor Manufacturing in India: Challenges and Opportunities. *International Journal of Electronics Manufacturing*, 8(3), 215-232.

Department of Electronics and Information Technology. (2021). *India Semiconductor Mission: Strategic Framework*. Government of India.

Electronics Industries Association of India. (2024). *Indian Semiconductor Market Report* 2023-24. ELCINA.

Gartner. (2024). Global Semiconductor Market Forecast 2024-2030. Gartner Research.

Indian Institute of Science. (2023). Semiconductor Research and Development Roadmap for India. IISc Bangalore.

International Semiconductor Industry Association. (2024). *Global Semiconductor Industry Outlook 2024*. SEMI.

Kumar, P., & Mehta, D. (2024). Human Capital Development for Semiconductor Industry in India. *International Journal of Technology and Human Resource Development*, 12(1), 45-62.

Ministry of Electronics and Information Technology. (2022). *National Policy on Electronics* 2023. Government of India.

Ramesh, T. (2023). India's Place in Global Semiconductor Value Chains. *Asian Journal of Technology Management*, 14(2), 156-173.

Semiconductor Industry Association. (2024). 2024 State of the Semiconductor Industry Report. SIA.

Singh, R., & Patel, K. (2024). Comparative Analysis of Semiconductor Policies in Asian Economics. *Asian Journal of Public Policy*, *9*(1), 112-135.

Tata Electronics. (2023). *Semiconductor Manufacturing in India: Industry Perspective*. Tata Strategic Management Group.

World Semiconductor Trade Statistics. (2024). *Global Semiconductor Market Report 2023*. WSTS.