

Can developer productivity can be measured?
Yes, but beware:

Developers don’t want to go into a
performance review to have a conversation
that goes like, ”your number on this metric
is lower than this other person”.

Just like any technology, how you use the
metrics determines whether they are
perceived as “evil” or not.

If you’re a manager facing a situation
where a developer’s productivity has
declined, don’t focus on using metrics as
proof. Chances are, you don’t need metrics
to find out what’s going on in the dev’s life
that may be affecting their work.

Backlash from developers 😡

You can’t blame developers for believing
“when a measure becomes a target, it
ceases to become a good measure”, if
your culture isn’t healthy enough.

It’s OK to have metrics. It’s OK to have
targets. It’s not OK to weaponize numbers.

For example, if you practice blameless
culture, everyone knows the point of a
post-mortem is to learn from the incident.

That makes it psychologically safe for
anyone to say, “This problem happened
and it’s because what so-and-so did”.

Unhealthy culture ❌

There is such a thing as “bad metrics”.

Lines of code written can be misleading.
You can spend a couple of days writing
only 3 lines of code, but those three lines of
code could be terribly important.

Some say that a good developer writes 9
lines of code a day, including future
refactoring, bugs, rewrites, etc.

Whether 9 is the right number is beside the
point:
• Lines of code not deployed to production

does nothing for end users or business
• Lines of code deployed but of poor

quality will actually hurt your team.

Example 1: Lines of code

Story points can be good in some teams
when everything's aligned, but it often can
become an exercise of “counting
jellybeans”.

The idea behind story points is that the
abstraction helps developers stop
themselves from equating points to hours.
In reality, devs still do this in their heads.

The issue with metrics like story points is it
adds a layer of abstraction between the
work outputs and the ultimately important
outcomes, such as more frequent or higher
quality releases.

Example 2: Story points

”Bad” metrics often are a

couple steps removed from

the actual outcomes an

Engineering team would be

held accountable for, such as
:

higher quality releases, more

frequent releases, higher

reliability, or all the above.

Metrics gone bad: “Business Value Points”.

Don Brown, Sleuth CTO, once worked at a place
that used a metric called “business value points”
or BVPs.

BVPs are basically like story points, but for
annual planning purposes.

The Engineering team would be given a target to
deliver more BVPs compared to prior period, e.g.,
20% more than last year.

The target brought all kinds of gamesmanships.
Devs would pick easier tasks and assign them
higher BVPs to make it easier to hit the target.

Annual shenanigans

The worst part of BVPs is that it disincentivizes
the team from working on refactoring and
performance tasks.

The metric became yet another way to get the
team to ship more and more features, but as they
did that, the backlog of tech debt grew, and
developing features took longer and longer.

Ultimately stability got worse, resulting in
unhappy customers. Unfortunately, Support didn’t
have enough BVPs to give – especially
compared to revenue-facing functions – so they
couldn’t influence the priorities, and things never
changed for the better.

Short term-isms

Example of good metrics: Accelerate metrics.

How often the team deploys to
production.

This metric is good because to
improve on the metric, the
team will need to adopt best
practices, including:
- Keeping codebase in

deployable state
- Deploying in small batches
- Having a well-defined

deployment process
- Investing in testing and

deployment automation

Deploy Frequency

How long it takes from first
commit to production deploy.

This metric is good because it
ensures enough attention is
paid to finding and removing
potential bottlenecks in the
development lifecycle.

It also reinforces a key
DevOps tenet: that the
definition of “done” is not when
the code is written & merged,
but when the release has
been deployed to production.

Change Lead Time

How long it takes to recover
from a failure in production.

This metric is good because it
requires an entire team effort
across Dev and Ops.

Teams would need to have
good observability, incident
management process, and a
blameless culture to do well
on MTTR.

MTTR

How often deploys cause
failure in production.

This metric is good because it
helps the team focus on
release quality.

In fact, the definition of “done”
should be when the release
has been deployed to
production and it is healthy
(zero or acceptable negative
impact) – however that’s
defined for your team.

Change Failure Rate

Study shows these metrics are highly correlated with software
delivery performance. To learn more, check out the Accelerate

State of DevOps 2019 report from DORA.

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

What makes a metric “good”.

What does a productive Engineering
team do? They deliver. Being more
productive is about delivering better
releases faster.

The Accelerate metrics are good
metrics because if your team is
deploying more often, making
changes faster, causing failures less
often, and resolving failures faster
when they do occur – there could be
no argument that the team is
productive.

Lines of code, on the other hand,
wouldn’t be a good metric because
more lines of code don’t necessarily
mean better releases faster.

Eyes on the prize 🎁

Notice that all four Accelerate metrics
are focused not on an individual’s
work outputs, but rather on how well
the entire team works together.

Good metrics promote teamwork, not
discourage them.

No ”I” in team

Asking “how can we add processes to
slow down and make sure our 3-
month release has no bugs and is
“safe” to ship” is asking how to play
better defense.

Good metrics help the team play
better offense – as in, ”how do we
keep the code flowing? What can we
do to ship smaller changes and quick
fixes if we make a mistake?”

Offense is the best defense.

Dylan and Don’s fav metric: Deploy Frequency

High deploy frequency implies that a lot of
things are going well.

It implies the team has a healthy enough
culture where developers are empowered
and feel safe to make changes.

It also implies the team likely has adopted
best practices like small batch sizes.

When you're shipping frequently and you
have very small batch sizes, it becomes a
non-event to deploy to production.

The surface area you can break things with
with is smaller with small batches, too.

Dylan

To deploy frequently, teams would need to
employ automation and tracking in their
deployment process.

A good deployment process can reduce the
stress on developers during deploys.

It means developers don’t have to set aside
hours after a deploy just in case something
goes wrong.

And even if there were so many changes in
the deploy, figuring out which one caused
the issue – and rolling it back if necessary
– should be quick and easy.

Don

https://www.youtube.com/watch?v=U4Z0HfRYTHI

Enjoyed this guide? It’s from a popular episode of Dev
Matters on Sleuth TV. Watch the full 50-minute video👇

Dylan Etkin,
Sleuth CEO

Don Brown,
Sleuth CTO, and host
of mrdonbrown on
Twitch

https://www.youtube.com/watch?v=U4Z0HfRYTHI
https://youtube.com/c/sleuthtv

