CITY OF CHRISTOPHER # 2020 Water Quality Report ## Introduction This year, as in years past, the tap water produced by the Rend Lake Conservancy District Intercity Water Plant (Plant) and distributed by the City of Christopher met all USEPA and Illinois EPA drinking water health standards. The Plant vigilantly safeguards its surface water supply and we are able to report that the Rend Lake Conservancy District Intercity Water Plant had no violations and the City of Christopher had no violations (as listed below) of a contaminant level or of any other water quality standard in 2020. This report summarizes the quality of water that the City received from the Plant and also the quality of your water as it traveled through the City's distribution system. Also, it will discuss where the water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with this information because it is important to us that you are informed about the water you are receiving. If you have any questions about this report or concerns about your water system, please contact Mr. Greg Beckwith, Superintendent, at (618) 724-2011. Please feel free to attend any regularly scheduled City Hall meeting. Meetings are held at the City Hall the second Monday of each month at 6:30 P.M. ## **Water Source** The City buys the water from the Rend Lake Intercity Water System. Their system treats relatively high-quality surface water pumped from the intake structure at Rend Lake. The intake structure is located along the southeast portion of the lake adjacent to the Plant. The source water assessment for our supply has not been completed by the Illinois EPA. It is anticipated that this assessment will be performed within the next three years. Information provided by this assessment will indicate any contaminant sources of concern in the vicinity of Rend Lake and how it relates to the quality of water produced by the Plant. # Health Issues Some people may be more vulnerable to contaminants in drinking water. Immuno-compromised people such as people with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline at 800-426-4791. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at 800-426-4791. # Contaminant Sources The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it can dissolve naturally occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Possible contaminants consist of: - Microbial contaminants such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - Inorganic contaminants such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining or farming. - Pesticides and herbicides which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses. - Organic chemical contaminants including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems. - Radioactive Contaminants which may be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, USEPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. In addition to this informational section of the Water Quality Report, we have included several tables for your review. The tables will illustrate the contaminants that were detected in the Rend Lake Intercity Water System distribution lines and also the contaminants that the City detected in their own distribution lines. Please note that neither system had a violation of a contaminant level. ## Consumer Confidence Report ## Annual Drinking Water Quality Report #### CHRISTOPHER IL0550150 Annual Water Quality Report for the period of January 1 to December 31, 2020 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The source of drinking water used by CHRISTOPHER is Purchased Surface Water For more information regarding this report contact: Name <u>Greg Beckwith</u> Phone 618-724-2011 Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. #### Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. # 2020 Regulated Contaminants Detected ### Lead and Copper Definitions: ppb: ppm: Treatment Technique or TT: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th
Percentile | # Sites Over
AL | Units | Likely Source of Contamination | |-----------------|--------------|------|-------------------|--------------------|--------------------|-------|---| | Copper | 09/29/2018 | 1.3 | 1.3 | 0.204 | 0 | ppm | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | #### Water Quality Test Results | madel guarry read Results | | |--|--| | Definitions: | The following tables contain scientific terms and measures, some of which may require explanation. | | Avg: | Regulatory compliance with some MCLs are based on running annual average of monthly samples. | | Level 1 Assessment: | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment: | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant Level or MCL: The I | highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasibleusing
the best available treatment technology. | | Maximum Contaminant Level Goal or MCLG: | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | Maximum residual disinfectant level or MRDL: | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum residual disinfectant level goal or MRDLG: | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | na: | not applicable. | | mrem: | millirems per year (a measure of radiation absorbed by the body) | micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. A required process intended to reduce the level of a contaminant in drinking water. ### Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-----------------------------|--------------------------|----------|-------|-----------|--| | Chloramines | 12/31/2020 | 3 | 2.5 - 3.3 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | Haloacetic Acids
(HAA5) | 2020 | 19 | 0 - 26 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes
(TTHM) | 2020 | 43 | 25.3 - 60.5 | No goal for
the total | 80 | ppb | N | By-product of drinking water disinfection. | #### Source Water Assessment We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at 618-724-2011. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. Source of Water: REND LAKE INTER-CITY WATER SYSTEMIllinois EPA considers all surface water sources of public water supply to susceptible to potential pollution problems. Hence the reason for mandatory treatment of all public water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems) and shoreline erosion. #### Violations Table ### Chloramines Some people who use water containing chloramines well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chloramines well in excess of the MRDL could experience stomach discomfort or anemia. | Violation Type | Violation Begin | Violation End | Violation Explanation: Operator recorded residual, but forgot to transfer to lab sheet. Violation returned to compliance. | |----------------------------------|-----------------|---------------|---| | MONITORING, ROUTINE (DBP), MAJOR | 01/01/2020 | 03/31/2020 | We failed to test our drinking water for the contaminant and period indicated. Because of
this failure, we cannot be sure of the quality of our drinking water during the period
indicated. | ## Consumer Confidence Rule The Consumer Confidence Rule requires community water systems to prepare and provide to their customers annual consumer confidence reports on the quality of the water delivered by the systems. | Violation Type | Violation Begin | Violation End | Violation Explanation: First issuance of Consumer Confidence Report, the Christopher distribution report was omitted. Report was reissued and Violation was returned to compliance. | |-----------------------------------|-----------------|---------------|--| | CCR ADEQUACY/AVAILABILITY/CONTENT | 07/01/2020 | | We failed to provide to you, our drinking water customers, an annual report that adequately informed you about the quality of our drinking water and the risks from exposure to contaminants detected in our drinking water. | # **Annual Drinking Water Quality Report** # REND LAKE INTERCITY WATER SYSTEM ## IL0555100 Annual Water Quality Report for the period of January 1 to December 31, 2020 This report is intended to provide you with important information about your drinking water and the efforts made by the REND LAKE INTERCITY WATER SYSTEM to provide safe drinking water. The source of drinking water used by REND LAKE INTERCITY WATER SYSTEM is Surface Water. For more information regarding this report contact: Name: Tony Furlow Phone: 618-439-4394 Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. ### Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may come from gas stations, urban storm water runoff, and septic systems. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead # **Source Water Assessment** Rend Lake is utilized by the Rend Lake Intercity Water System (Facility # 0555100) to provide water to 67 communities in Williamson, White, Saline, Perry, Jefferson, Jackson, Hamilton and Franklin Counties. This facility draws water from Rend Lake through one surface water intake (IEPA #70290). The supply provides approximately 15 million gallons per day to 67 satellite supplies with an estimated population of 175,000 people. Illinois EPA considers all surface water sources of public water supply to be susceptible to potential pollution problems, hence the reason for mandatory treatment of all public water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems) and shoreline erosion. Our surface supply location is INTAKE (70290) REND LAKE SURFACE. We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. These meetings are on the 4th Monday of each month at our administration office located at 11231 Marcum Branch Rd., Benton, IL. The source water assessment for our supply has been completed by the Illinois EPA. If you would like to view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at: http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl # 2020 Regulated Contaminants Detected Lead and Copper Date Sampled: 11/15/19 Definitions: Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG's allow for a margin of safety. | Lead
MCLG | Lead
Action
Level (AL) | Lead 90th
Percentile | # Sites
Over Lead
AL | Copper
MCLG | Copper
Action Level
(AL) | Copper 90th
Percentile | # Sites
Over
Copper AL | Likely Source of
Contamination | |--------------|------------------------------|-------------------------|----------------------------|----------------|--------------------------------|---------------------------|------------------------------|--| | 0 | 15 ppb | 0 ppb | 0 | 1.3 ppm | 1.3 ppm | 0 | 0 | Corrosion of household plumbing systems; Erosion of natural deposits | ## **Water Quality Test Results** Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the Maximum Contaminant Level Goal as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety. ppm: milligrams per liter or parts per million - or one ounce in 7,350,000 gallons of water. N/A: not applicable. Avg.: Regulatory compliance with some MCL's is based on running annual average of monthly samples. Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant in drinking water below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants. pCi/L: Picocuries per Liter (a measure of radioactivity) ## **Regulated Contaminants** | Disinfectants & Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL. | Units | Violation | Likely Source Of Contaminant | |--|--------------------|---------------------------|-------------------------------------|----------------------------|---------------------|------------------|----------------------|---| | *Not all sample results ma | y have been | used for calcul
where | lating the Highe
e compliance sa | st level det
mpling sho | ected becauld occur | ause s
in the | ome resul
future. | ts may be part of an evaluation to determine | | *Total Haloacetic Acids
(HAA5) | 2020 | 21 | 14 - 28.6 | N/A | 60 | ppb | No | By-product of drinking water chlorination | | *TTHMs [Total
Trihalomethanes] | 2020 | 43 | 25.4 - 54.6 | N/A | 80 | ppb | No | By-product of drinking water chlorination | | Chlorite | 2020 | 0.62 | 0.17 - 0.62 | .8 | 1 | ppm | No | By-product of drinking water chlorination | | Chloramines | 12/31/20 | 3 | 2.74 - 3.3 | MRDLG=4 | MRDL=4 | ppm | No | Water additive used to control microbes | | Inorganic Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source Of Contaminant | | Barium | 2020 | 0.0155 | 0.0155 -
0.0155 | 2 | 2 | ppm | No | Discharge of drilling wastes; Discharge from
metal refineries; Erosion of natural deposits | | Arsenic | 2020 | 1 | 0.72 - 0.72 | 0 | 10 | ppb | No | Erosion of natural deposits; Runoff from orchards; Runoff from electronics production wastes | | Inorganic Contaminants
(continued) | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source Of Contaminant | |---------------------------------------|--------------------|---------------------------|-----------------------------|------|-----|-------|-----------|---| | Fluoride | 2020 | 0.6 | 0.55 - 0.55 | 4 | 4 | ppm | No | Erosion of natural deposits; Water additive
which promotes strong teeth; Fertilizer or
Aluminum Factory discharge | | Sodium | 2020 | 19 | 19.3 - 19.3 | | | ppm | No | Erosion from naturally occurring deposits: | | Nitrate (measured as
Nitrogen) | 2020 | 0.16 | 0.16 - 0.16 | 10 | 10 | ppm | No | Runoff from fertilizer use; Leaching from seption tanks, sewage; Erosion of natural deposits. | The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old. | Radioactive Contaminants | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source Of Contaminant | |---|-----------------|---------------------------|-----------------------------|------|-----|-------|-----------|---| | Combined Radium 226/228 | 2020 | 0.86 | 0.86 - 0.86 | О | 5 | pCi/L | No | Erosion of naturally occurring deposits | | Gross alpha excluding radon and uranium | 2020 | 0.12 | 0.12 - 0.12 | 0 | 15 | pCi/L | No | Erosion of naturally occurring deposits | Turbidity Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants. Definitions: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. NTU – Nephelometric Turbidity Units | Lowest Monthly % meeting limit | Limit (Treatment Technique) | Violation | Source | | |--------------------------------|-----------------------------|-----------|-------------|----------------| | 100% | 0.3 NTU | No | Soil Runoff | | | Highest Single Measurement | Limit (Treatment Technique) | Violation | Source | | | 0.29 | 1 NTU | No | Soil Runoff | ************** | **Total Organic Carbon** The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violation sections. **VIOLATIONS:** There were no violations this reporting period.