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Radial distribution functions (RDF’s) calculated from the bonding topologies of quartz,
cristobalite, tridymite and a 1412 atom model of silica glass (35 A in diameter) have been
compared with the experimental RDF for silica glass. The functions, azr3(p(r)— py), computed
over the range 0 < r <20 A from the known structures of quartz, cristobalite, tridymite and the
1412 atom model have been compared with the corresponding function for silica glass by means of
correlation functions, giving 0.26, 0.69, 0.82 and 0.91, respectively (0.00 would indicate no
correlation, and 1.00, perfect positive correlation). Cristobalite and tridymite are composed
entirely of six-membered rings of silicate tetrahedra, whereas the model contains both six- and
five-membered rings in a ratio of 2.6: 1. The correlation coefficients suggest that the six-membered
rings of the type present in tridymite play a dominant role in silica glass, but that other ring sizes
are important and result in the higher correlation coefficient for the 1412 atom model. While the
correspondence in RDF’s is encouraging, the model RDF does not fit the experimental curve to
within the accuracy of the experiment. Perhaps the model is not large enough to represent
adequately, in a statistical fashion, all the configurations present in a macroscopic sample.

1. Introduction

Diffraction data obtained from glasses may be analyzed by the use of the
Fourier transform to determine the distribution of interatomic distances in the
sample. Because such a radial distribution function (RDF) is composed of the
superposition of interatomic distances that arise from the many configurations
and orientations contained in a large sample volume, it does not normally
provide the basis for a unique determination of the atomic coordinates of an
amorphous material. The RDF is, however, an important criterion by which
one may judge the validity of any proposed model. A proper model must agree
with all of the features of the experimental RDF to within acceptable limits of
error. The greater the range over which the RDF is reliable, the more
restrictive is the test that it provides for a proposed model.

It has been shown that structurally significant features can be observed in
the RDF for silica glass out to about 20 A [1]. These features become evident
when special precautions are taken to reduce the errors introduced into the
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analysis by series termination effects, errors in the measurement of the experi-
mental data, and errors that derive from incorrect treatment of the background
intensity [1,2]. It could be expected that the additional detail in the RDF out to
20 A would provide a stringent test for proposed atomic models for silica glass,
and that this would result in a more restrictive characterization of the predomi-
nant bonding topologies in this glass. It has been shown {3] that the long-range
detail in the RDF for silica glass is similar to that associated with assemblages
of six-membered rings of silicate tetrahedra such as those present in tridymite
and, to a lesser extent, those present in cristobalite.

In this paper RDF’s are also calculated from the bonding topologies of
quartz and a 1412 atom model and are compared with the silica glass RDF.
Comparison between experimental and calculated RDF’s are quantified by
means of a correlation function. The manner by which RDF’s were calculated
from the atomic parameters of quartz [4], cristobalite [5], and tridymite [6] will
be detailed below.

The 1412 atom model was constructed from the 519 atom model of Duffy et
al. for amorphous silicon [7]. To accomplish this, the silicon atom framework
was expanded, oxygen atoms were inserted midway between the silicon atoms,
and the model was relaxed (8] in order that the shortest Si—-O, O-0O and Si-Si
distances could assume nearly “ideal values”. The 1785 Si-O distances in the
relaxed model range from 1.596 A to 1.619 A with a mean value of 1.608 A
and rms de\:iation fronel the mean of 0.003 ;\;othe 2361 O-0O distances range
from 2.416 A t0 2.759 A with a mean of 2.626 A and rms deviation of 0.030 A;
the 893 Si-Si distances range from 2.981 A 10 3.207 A with a mean of 3.112 A
and rms deviation of 0.045 A. The rms deviations for these three classes of
distances are nearly the same as the values of 0.003 A for Si-0, 0.026 A for
0-0 and 0.035 A for Si-Si observed for the crystalline polymorph tridymite
[6]. In the 1412 atom model, however, there are nine O-O distances that are
greater than 40 from the mean. There are no such Si—~O or Si-Si distances.
This indicates a shortcoming of the model in these regions. The oxygen atoms
involved in these extreme distances are trapped in rather high energy wells.
These nine distances constitute only 0.004 of the total number of such
distances in the model and their contribution to the RDF is not significant.
The techniques available for the construction of models of amorphous solids
has been discussed recently in the literature [9].

When the features in an RDF from a crystalline material or a model
fragment closely resemble the RDF for an amorphous material, it is quite
likely that this function represents something of significance concerning the
atomic ordering in the amorphous material. However, even if a model were to
succeed in fitting the experimental data to within the experimental uncertain-
ties, it would still remain to be demonstrated that the model is either unique or
the correct one among several.

The methods by which the RDF’s are calculated will be briefly described
and then the computed RDF’s will be compared with the experimental RDF
for silica glass by means of the correlation function as a measure of the
goodness of agreement.
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2. Computations

The calculations of the RDF’s from known bonding topologies were made
with a computer program developed in this laboratory [10]. It permits compu-
tation of the RDF’s with atomic coordinates from either a crystalline material
or a nonperiodic atomic model by evaluating the following expression:

darip(r)=(2 1Yy f'—j; —(r—r.) 2
p\r '”) Z Z WW; P exp[ (r rij) /20,',] > (1)
Ly

i=1j=1

where 47r?p(r) is the probability, weighted by the scattering power of the
atomic pair ij, ],]j, of finding atoms ;j at a distance r,; from atoms i. The
crystallographic site occupancy of atom i is w,, and f, = Z,/(Z%_,Z})'/? is the
reduced scattering factor for atom i where Z, is the atomic number of atom i
and k is the number of atoms in the unit of composition. Both the rms thermal
displacement along r;; and positional disorder are included in o, ;. The first sum
in eq. (1) is carried out over the n atoms in the asymmetric unit for a crystalline
material. For a finite model, all of the atoms in the particle are included in this
sum. The second sum is carried out over the m atoms in the structure that are
separated from an atom in the asymmetric unit by less than the maximum
distance selected for the calculation. For crystalline materials, space group
symmetry transformations and unit cell translations are utilized to generate the
atomic positions used in the second sum of eq. (1).
The average value about which p(r) oscillates is given by
’ - 712
PO=POE(Wif1)’ (2)
i=1

where p| is the number of asymmetric units per A® and £ is the number of
atoms in the unit of composition. For a model containing a sufficiently large
number of atoms, achieved, for example, with crystalline materials by includ-
ing a sufficient number of unit cells, p(r) will approach the constant value p,
at large r.

For a finite model, p(r) does not approach a limiting value of p,, but
instead falls to zero at the diameter of the particle.

In the approximation that the model fragment is spherical, a correction for
the finite size of the model may be made by dividing p(r) by the RDF for a
uniform sphere of diameter D, where D is also the diameter of the model
fragment. The RDF for a uniform sphere of diameter D is designated by &(r,
D) and is defined as [11]

e(r,D)=1-3(r/D)+4(r/D)’, r<D. (3)

The RDF for the model fragment that has been “sharpened” by this factor to
approximate the RDF for an infinite sample may be expressed as

p(r, 0)=p(r)/e(r, D). (4)

For simplicity, p(r, cc) will be used in the following discussion to represent
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either the RDF for a crystalline material or a sharpened RDF for a non-crys-
talline model. In this usage, €(r, D) in eq. (4) may be taken as unity for a
crystalline material.

It has been observed that a crystalline phase or a non-crystalline atomic
model can often be found that possesses features in its corresponding p(r, o)
that are similar in position and shape to, but greater in magnitude at large r
than the corresponding features in the RDF for an amorphous material of
interest. For the case where the comparison is based on a crystalline material,
this amplitude disparity occurs because the longer interatomic distances in a
crystalline phase are much more highly ordered than they are in an amorphous
phase. The amplitudes of the oscillations at large » for the p(r, o) from a
model fragment may arise as a consequence of not only greater order in the
model than in the amorphous material, but also the somewhat excessive
amplification of the few interatomic distances at large r by the division by &(r,
D). An atomic model large enough to adequately represent all of the large
interatomic distances in an amorphous material has not been constructed. The
1412 atom model for silica glass discussed in this paper has a diameter of only
35 A, whereas a more suitable model would have a diameter of several hundred
A and contain 10° or more atoms.

In the absence of a sufficiently large atomic model, a smaller model or a
crystalline bonding topology may be employed in the attempt to find an
appropriate model. A simple method that has been found useful for accom-
plishing this is to modify p(r, oo) by various &(r, t) that represent different
sphere sizes or correlation lengths. If P(z) represents the probability of
occurrence of an ordered region with diameter ¢, then the pair correlation
function, G(r), for a distribution of # may be written

0
G(r)=dnr[o(r, oo)—po]j; P(t)e(r, t)dt. (5)
P(t) may be expressed conveniently as a sum of n Gaussian distributions:
n W, 5
P(1)= Y ——— exp[ - (1—1,)’/20}], (6)
i=1 (27) "o,

where ¢, is the mean value of the ith Gaussian, g, is the corresponding width
parameter, and w, is the weight associated with the ith distribution.

The multiplication of (p(r, o) —p,) by various e(r, t) to approximate a
G(r) function for an infinite material assumes that the contribution from the
[1 —&(r, t)] distances removed from p(r, oo) introduces into G(r) a smooth
term equal to py[l — &(r, #)]. Such an approximation may be reasonable at
large r, but is not valid for small r. The most obvious shortcoming is in the
region with r less than the bonded peak where G(r)/4mr would be —pye(r, t)
rather than the correct —p, value. Since &(r, t) are very nearly one at small r
for the G(r) functions reported in this paper, this shortcoming does not have a
noticeable effect. A more rigorous treatment might be based on an equation
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analogous to eq. (1) which would contain an elaborate set of disorder parame-
ters more complicated than those characterized by the Gaussian distributions.

3. Results and discussion

Egs. (1, 4, 5, 6) were used to calculate the theoretical »*G(r) curves that are
illustrated i in fig. 1. In these calculatlons the value of the o,; for eq. (1) ranged
from 0.05 A at r = 1.6 A 10 0.35 A at r = 20 A and was taken to be a function
of r only. For the evaluation of eq. (6), two values of ¢, were employed with
w,=0.7 for t,= 6.5 A and w, = 0.3 for 1, = 12 A. The g, in eq. (6) were set equal
to one. For the nonperiodic model, a diameter of D =35 A was found
appropriate for computing (r, D) in order to correct for the finite size of the
atomic model.

Fig. 1 also illustrates the experimental r?G(r) curve for silica glass. The
r2G(r) functions may be compared by calculating a correlation function [12],
F(calc, exp) between the calculated and the experimental curves:

F(calc, exp) =/[ rG(r)] cad rG(r)] e,q,dr/('/[ rG(r)] zalcdrf[ rG(r)] ixpdr)l/z.
(7)

This correlation function may range in value from 1.0 to —1.0. A value of 1.0

corresponds to perfect positive correlation, whereas a value of zero corre-
sponds to no correlation. Table 1 lists the F(calc, exp) values that relate the
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Fig. 1. The experimental RDF curve obtained for silica glass and the corresponding curves
calculated from the atomic coordinates of a 1412 atom model and the crystal structures of
tridymite, cristobalite and quartz. In order that the small details in G(r) eq. 5 at large r be evident
on the same plot as the much larger details at small r, the function r2G(r) is illustrated.
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Table 1
Correlation coefficients comparing the silica glass radial distribution function with those for
various bonding topologies defined in the text.

Range (;\) 1412 atom model Trid. Crist. Quartz
0-20 0.91 0.82 0.69 0.26
0-10 091 0.83 0.68 0.28

10-20 0.87 0.90 0.76 0.10
0-2 1.00 1.00 0.97 1.00
2- 4 0.95 0.89 0.87 0.46
4- 6 0.90 0.83 0.53 0.44
6- 8 0.96 0.83 0.65 -0.17
8-10 0.90 0.75 0.49 0.00

10-12 0.92 0.96 0.92 -0.32

12-14 0.80 0.86 0.82 0.31

14-16 0.86 0.69 —0.01 0.33

16-18 0.86 0.84 0.85 0.76

18-20 0.75 0.40 0.70 0.72

upper three curves in fig. 1 with the curve for silica glass. The correlation
values calculated for the range 0 < r <20 A that compare the r2G(r) functions
computed from quartz, cristobalite, tridymite and the 1412 atom model with
the corresponding function for silica glass are 0.26, 0.69, 0.82 and 0.91,
respectively. Correlation functions are also presented for smaller ranges of
interatomic distances.

Cristobalite and tridymite are composed entirely of six-membered rings of
silicate tetrahedra. The 1412 atom model contains both six- and five-membered
rings in a ratio of 2.6 : 1. The correlation coefficients suggest that the six-mem-
bered rings of the type present in tridymite play a dominant role in silica glass,
that other ring sizes are important and result in the higher correlation coeffi-
cient for the 1412 atom model.

Although the correlation coefficient of 0.91 for the 1412 atom model is
encouraging, a correct model should yield an RDF that agrees with the silica
glass curve within the error limits (correlation coefficients of 0.97-1.00)
throughout its entire range. Also, the correlation coefficient of 0.90 between
the model and the silica glass curves in the range 4 <r <6 A suggests that the
model does not have the correct proportion of the various ring sizes. In this
connection, a much larger model, perhaps 200 A in diameter, would be
required to represent adequately, in a statistical fashion, the configuration
present in a macroscopic sample.
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