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Radial distribution functions (RDF's) calculated from the bonding topologies of quartz, 
cristobalite, tridymite and a 1412 atom model of silica glass (35 A in diameter) have been 
compared with the experimental RDF for silica glass. The functions, 47rr3(#(r) - P0), computed 
over the range 0 < r < 20 A from the known structures of quartz, cristobalite, tridymite and the 
1412 atom model have been compared with the corresponding function for silica glass by means of 
correlation functions, giving 0.26, 0.69, 0.82 and 0.91, respectively (0.00 would indicate no 
correlation, and 1.00, perfect positive correlation). Cristobalite and tridymite are composed 
entirely of six-membered tings of silicate tetrahedra, whereas the model contains both six- and 
five-membered tings in a ratio of 2.6 : 1. The correlation coefficients suggest that the six-membered 
rings of the type present in tridymite play a dominant role in silica glass, but that other ring sizes 
are important and result in the higher correlation coefficient for the 1412 atom model. While the 
correspondence in RDF's is encouraging, the model RDF does not fit the experimental curve to 
within the accuracy of the experiment. Perhaps the model is not large enough to represent 
adequately, in a statistical fashion, all the configurations present in a macroscopic sample. 

1. Introduction 

Diffract ion data obta ined from glasses may be analyzed by the use of the 
Fourier  t ransform to determine the dis t r ibut ion of in teratomic distances in the 
sample. Because such a radial d is t r ibut ion funct ion ( RD F )  is composed of the 
superposi t ion of interatomic distances that arise from the many  configurat ions 
and  or ientat ions  conta ined in a large sample volume, it does not  normal ly  
provide the basis for a un ique  de terminat ion  of the atomic coordinates of an 
amorphous  material.  The R D F  is, however, an impor tan t  criterion by which 
one may judge the validity of any proposed model. A proper  model must  agree 
with all of the features of the experimental  R D F  to within acceptable limits of 
error. The greater the range over which the R D F  is reliable, the more 
restrictive is the test that it provides for a proposed model. 

It has been shown that structurally significant features can be observed in 
the R D F  for silica glass out to about  20 A [1]. These features become evident 
when special precaut ions are taken to reduce the errors in t roduced into the 
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analysis by series termination effects, errors in the measurement of the experi- 
mental data, and errors that derive from incorrect treatment of the background 
intensity [1,2]. It could be expected that the additional detail in the RDF out to 
20 .~ would provide a stringent test for proposed atomic models for silica glass, 
and that this would result in a more restrictive characterization of the predomi- 
nant bonding topologies in this glass. It has been shown [3] that the long-range 
detail in the R D F  for silica glass is similar to that associated with assemblages 
of six-membered rings of silicate tetrahedra such as those present in tridymite 
and, to a lesser extent, those present in cristobalite. 

In this paper RDF 's  are also calculated from the bonding topologies of 
quartz and a 1412 atom model and are compared with the silica glass RDF. 
Comparison between experimental and calculated RDF ' s  are quantified by 
means of a correlation function. The manner by which RDF's  were calculated 
from the atomic parameters of quartz [4], cristobalite [5], and tridymite [6] will 
be detailed below. 

The 1412 atom model was constructed from the 519 atom model of Duffy et 
al. for amorphous silicon [7]. To accomplish this, the silicon atom framework 
was expanded, oxygen atoms were inserted midway between the silicon atoms, 
and the model was relaxed [8] in order that the shortest Si-O, O - O  and Si-Si 
distances could assume nearly "ideal values". The 1785 S i -O distances in the 
relaxed model range from 1.596 ,~ to 1.619 A with a mean value of 1.608 ,~ 
and rms deviation from the mean of 0.003 A; the 2361 O - O  distances range 
from 2.416 ,~ to 2.759 ,~ with a mean of 2.626 ,~ and rms deviation of 0.030 A; 
the 893 Si-Si distances range from 2.981 .~ to 3.207 ,~ with a mean of 3.112 ,~ 
and rms deviation of 0.045 A. The rms deviations for these three classes of 
distances are nearly the same as the values of 0.003 ,~ for Si-O, 0.026 ,~ for 
O - O  and 0.035 ,~, for Si-Si observed for the crystalline polymorph tridymite 
[6]. In the 1412 atom model, however, there are nine O - O  distances that are 
greater than 4a from the mean. There are no such S i -O or Si-Si distances. 
This indicates a shortcoming of the model in these regions. The oxygen atoms 
involved in these extreme distances are trapped in rather high energy wells. 
These nine distances constitute only 0.004 of the total number of such 
distances in the model and their contribution to the RDF is not significant. 
The techniques available for the construction of models of amorphous solids 
has been discussed recently in the literature [9]. 

When the features in an RDF from a crystalline material or a model 
fragment closely resemble the RDF for an amorphous material, it is quite 
likely that this function represents something of significance concerning the 
atomic ordering in the amorphous material. However, even if a model were to 
succeed in fitting the experimental data to within the experimental uncertain- 
ties, it would still remain to be demonstrated that the model is either unique or 
the correct one among several. 

The methods by which the RDF's  are calculated will be briefly described 
and then the computed RDF's  will be compared with the experimental R D F  
for silica glass by means of the correlation function as a measure of the 
goodness of agreement. 
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2. Computations 

The calculations of the RDF's  from known bonding topologies were made 
with a computer program developed in this laboratory [10]. It permits compu- 
tation of the RDF's  with atomic coordinates from either a crystalline material 
or a nonperiodic atomic model by evaluating the following expression: 

4~rrZp(r)=(2~r)-l/2Y~ ~ w wj e x p [ - ( r - r i j  ) /2oi j  ] ,  (1) 
i=1  j = l  

where 4~rr20(r) is the probability, weighted by the scattering power of the 
atomic pair /j, f ~ ,  of finding atoms j at a distance rij from atoms i. The 
crystallographic site occupancy of atom i is w,, and f = Zi/(~= ,Z~) '/2 is the 
reduced scattering factor for atom i where Z, is the atomic number of atom i 

and k is the number of atoms in the unit of composition. Both the rms thermal 
displacement along r,j and positional disorder are included in o,j. The first sum 
in eq. (1) is carried out over the n atoms in the asymmetric unit for a crystalline 
material. For a finite model, all of the atoms in the particle are included in this 
sum. The second sum is carried out over the m atoms in the structure that are 
separated from an atom in the asymmetric unit by less than the maximum 
distance selected for the calculation. For crystalline materials, space group 
symmetry transformations and unit cell translations are utilized to generate the 
atomic positions used in the second sum of eq. (1). 

The average value about which o(r) oscillates is given by 

Oo= O; S, ( )L (2) 
i = 1  

where p~ is the number of asymmetric units per ,~3 and n is the number of 
atoms in the unit of composition. For a model containing a sufficiently large 
number of atoms, achieved, for example, with crystalline materials by includ- 
ing a sufficient number of unit cells, p(r) will approach the constant value P0 
at large r. 

For a finite model, p(r) does not approach a limiting value of P0, but 
instead falls to zero at the diameter of the particle. 

In the approximation that the model fragment is spherical, a correction for 
the finite size of the model may be made by dividing p(r) by the RDF for a 
uniform sphere of diameter D, where D is also the diameter of the model 
fragment. The RDF for a uniform sphere of diameter D is designated by e(r, 
D) and is defined as [11] 

e(r,D)= 1-3(r /D)+½(r/D) 3, r<~D. (3) 
The RDF for the model fragment that has been "sharpened" by this factor to 
approximate the RDF for an infinite sample may be expressed as 

p(r, oo) = p(r)/e(r, D). (4) 

For simplicity, p(r, oo) will be used in the following discussion to represent 
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either the R D F  for a crystalline material or a sharpened RDF for a non-crys- 
talline model. In this usage, c(r, D) in eq. (4) may be taken as unity for a 
crystalline material. 

It has been observed that a crystalline phase or a non-crystalline atomic 
model can often be found that possesses features in its corresponding p(r, ~ )  
that are similar in position and shape to, but greater in magnitude at large r 
than the corresponding features in the RDF for an amorphous material of 
interest. For the case where the comparison is based on a crystalline material, 
this amplitude disparity occurs because the longer interatomic distances in a 
crystalline phase are much more highly ordered than they are in an amorphous 
phase. The amplitudes of the oscillations at large r for the p(r, ~ )  from a 
model fragment may arise as a consequence of not only greater order in the 
model than in the amorphous material, but also the somewhat excessive 
amplification of the few interatomic distances at large r by the division by e(r, 
D). An atomic model large enough to adequately represent all of the large 
interatomic distances in an amorphous material has not been constructed. The 
1412 atom model for silica glass discussed in this paper has a diameter of only 
35 A, whereas a more suitable model would have a diameter of several hundred 
h, and contain 105 or more atoms. 

In the absence of a sufficiently large atomic model, a smaller model or a 
crystalline bonding topology may be employed in the attempt to find an 
appropriate model. A simple method that has been found useful for accom- 
plishing this is to modify p(r, ~ )  by various e(r, t) that represent different 
sphere sizes or correlation lengths. If P(t) represents the probability of 
occurrence of an ordered region with diameter t, then the pair correlation 
function, G(r), for a distribution of t may be written 

G( r ) = 4~rr[ p( r, pc ) -  P0] fo~P( t )e( r, t )dt. (5) 

P(t) may be expressed conveniently as a sum of n Gaussian distributions: 

P ( t ) =  ~ wi e x p [ - ( t - t i ) 2 / 2 %  2] (6) 
i=1 (2~r)1/20 i 

where t i is the mean value of the ith Gaussian, o i is the corresponding width 
parameter, and wi is the weight associated with the ith distribution. 

The multiplication of (p(r, pc)-  Po) by various e(r, t) to approximate a 
G(r) function for an infinite material assumes that the contribution from the 
[1 - e ( r ,  t)] distances removed from p(r, or) introduces into G(r) a smooth 
term equal to p 0 [ 1 -  e(r, t)]. Such an approximation may be reasonable at 
large r, but is not valid for small r. The most obvious shortcoming is in the 
region with r less than the bonded peak where G(r)/41rr would be - p o e ( r ,  t) 
rather than the correct -P0  value. Since e(r, t) are very nearly one at small r 
for the G(r) functions reported in this paper, this shortcoming does not have a 

noticeable effect. A more rigorous treatment might be based on an equation 
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analogous to eq. ( I )  which would contain an elaborate set of disorder parame-  
ters more complicated than those characterized by the Gaussian distributions. 

3. Results and discussion 

Eqs. (1, 4, 5, 6) were used to calculate the theoretical r2G(r) curves that are 
illustrated in fig. 1. In these calculations the value of  the o U for eq. (1) ranged 
from 0.05 ,~ at r = 1.6 ,h, to 0.35 ,~ at r = 20 ,~ and was taken to be a function 
of  r only. For  the evaluation of  eq. (6), two values of  t i were employed with 
w, = 0.7 for t, = 6.5 ,~ and w~ = 0.3 for t~ = 12 A. The o, in eq. (6) were set equal 
to one. For  the nonperiodic model, a diameter of  D = 35 ,~ was found 
appropria te  for comput ing  e(r, D) in order to correct for the finite size of the 
a tomic model. 

Fig. 1 also illustrates the experimental r2G(r) curve for silica glass. The 
r2G(r) functions may be compared  by calculating a correlation function [12], 
F(calc, exp) between the calculated and the experimental curves: 

F(calc,  e x p ) = f [  rG(r)]c,lc [ rG(r)]e,pdr/ [ ra(r)]~a,cdr f [  rG(r)]2e×pdr 

(7) 
This correlation function may range in value from 1.0 to - 1.0. A value of 1.0 
corresponds to perfect positive correlation, whereas a value of  zero corre- 
sponds to no correlation. Table 1 lists the F(calc, exp) values that relate the 
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Fig. 1. The experimental RDF curve obtained for silica glass and the corresponding curves 
calculated from the atomic coordinates of a 1412 atom model and the crystal structures of 
tridymite, cristobalite and quartz. In order that the small details in G(r) eq. 5 at large r be evident 
on the same plot as the much larger details at small r, the function rEG(r) is illustrated. 
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Table 1 
Correlation coefficients comparing the silica glass radial distribution function with those for 
various bonding topologies defined in the text. 

Range (A) 1412 atom model Trid. Crist. Quartz 

0-20 0.91 0.82 0.69 0.26 
0-10 0.91 0.83 0.68 0.28 

10-20 0.87 0.90 0.76 0.10 
0-  2 1.00 1.00 0.97 1.00 
2 -  4 0.95 0.89 0.87 0.46 
4-  6 0.90 0.83 0.53 0.44 
6-  8 0.96 0.83 0.65 -0 .17 
8-10 0.90 0.75 0.49 0.00 

I0-12 0.92 0.96 0.92 - 0.32 
12-14 0.80 0.86 0.82 0.31 
14-16 0.86 0.69 - 0.01 0.33 
16-18 0.86 0.84 0.85 0.76 
18-20 0.75 0.40 0.70 0.72 

upper three curves in fig. 1 with the curve for silica glass. The correlation 
values calculated for the range 0 < r < 20 ,~ that compare the r2G(r) functions 
computed from quartz, cristobalite, tridymite and the 1412 atom model with 
the corresponding function for silica glass are 0.26, 0.69, 0.82 and 0.91, 
respectively. Correlation functions are also presented for smaller ranges of 
interatomic distances. 

Cristobalite and tridymite are composed entirely of six-membered rings of 
silicate tetrahedra. The 1412 atom model contains both six- and five-membered 
rings in a ratio of 2.6 : 1. The correlation coefficients suggest that the six-mem- 
bered rings of the type present in tridymite play a dominant role in silica glass, 
that other ring sizes are important and result in the higher correlation coeffi- 
cient for the 1412 atom model. 

Although the correlation coefficient of 0.91 for the 1412 atom model is 
encouraging, a correct model should yield an R D F  that agrees with the silica 
glass curve within the error limits (correlation coefficients of 0.97-1.00) 
throughout its entire range. Also, the correlation coefficient of 0.90 between 
the model and the silica glass curves in the range 4 < r < 6 ,~ suggests that the 
model does not have the correct proportion of the various ring sizes. In this 
connection, a much larger model, perhaps 200 ,~ in diameter, would be 
required to represent adequately, in a statistical fashion, the configuration 
present in a macroscopic sample. 
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