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Abstract 

This study aimed to determine if the use of an intermittent controller structure, either clock-driven or event-

driven, could facilitate system identification when implementing the direct approach (as defined by Forssell 

and Ljung, 1999). This was accomplished by simulating the behaviour of a single-segment inverted pendulum 

in both a stabilised and unstable form with varying amplitudes of noise. The controller setup was then 

alternated across sets of trials between clock-driven intermittent, event-driven intermittent and predictive 

continuous control. The direct approach to system identification was then implemented using the MATLAB 

System Identification Toolbox, in order to determine whether fits obtained when implementing an intermittent 

controller were more accurate than those in which a continuous controller was used. The results suggest that 

the intermittent controllers do indeed show some value as facilitators to the direct approach, with clock-driven 

control significantly outperforming continuous control. 

 

Structural Outline 

Section 1 outlines the aims of this report, and delineates the question being addressed. Given the large volume 

of discordant literature on the subjects, a review has been included in Section 1.3 to help contextualise the 

problem in the fields of system identification of human movement control. Section 2.1 provides the essential 

theory underpinning the rest of the project. Section 2.2 outlines the overall procedure for the investigation, and 

Section 2.3 provides greater detail on specific elements of the methodology. The results are displayed in 

Section 3, and the discussion has been grouped thematically in the different subsections. Conclusory remarks 

in Section 4 recapitulate the most significant findings, as well as their limitations. Finally, in Section 5, the 

results of this study are utilised in conjunction with the existing literature to recommend further areas of 

research 
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Section 1: Project Aims and Introduction 

1.1 – Aims 

This project aims to establish whether the use of an intermittent controller can enable the fitting of more 

accurate transfer functions when using only input and output timeseries data from a plant (the direct approach). 

Clock-driven control (herein CDC) and event-driven control (EDC) strategies will be implemented and 

compared to predictive continuous control (PCC) to determine if there is any statistically significant difference 

in transfer function accuracy. The impact of open-loop interval (for CDC), threshold (for EDC), and time delay 

(for PCC) will also be examined, in order to determine the values of these variables that lead to optimal system 

identification. Furthermore, zero-mean Gaussian white noise will be added to the output of the transfer function 

to simulate a real system more accurately; the amplitude of this noise will be varied across sets of simulations 

to discern the impact of noise on fitting accuracy for each controller structure. Finally, different estimation 

techniques will be used to determine if they have an impact on fitting efficacy. 

 

1.2 – Introduction 

Human movement is integral to daily life; however, our knowledge of its underlying control mechanism 

remains incomplete. Previous attempts at modelling can be broadly broken down into two groups: those that 

envision sustained motion as a concatenation of ballistic movements (intermittent control, or sometimes serial 

ballistic control), and those that argue that parts of the body are in fact continuously controlled. 

The continuous control hypothesis posits that information about the current state of the body is continuously 

conveyed to, and corrected by, the body’s control system (van der Kooij and de Vlugt, 2007). Continuous 

models can be separated by their inclusion or exclusion of a predictive element which is used to counteract the 

influence of a pure time-delay, which is often included in models of physiological systems (Gawthrop, Loram 

and Lakie, 2009). Some previous studies have credited predictive continuous models with being the major 

actor in maintenance of human balance (van der Kooij and de Vlugt, 2007). 

 

By contrast, the intermittent control (herein IC) paradigm postulates that, although information may be 

continuously conveyed to the control system, control action is exerted in the form of a series of open-loop 

trajectories (Loram et al., 2014). The calculation of such a trajectory can be done at regular time intervals 

(often termed clock-driven intermittent control (Loram et al., 2014)) or once the error between the open-loop 

and closed-loop state estimates exceeds a certain threshold (event-driven intermittent control (Gawthrop and 

Wang, 2009)). Though experimental evidence in favour of IC is mixed, it has the advantage of explaining 

certain observed phenomena, such as the psychological refractory period (Gawthrop et al., 2011) which cannot 

be explained by the continuous control paradigm. 

 

System identification has, naturally, played an integral role in many of these studies. However, the choice of 

system identification method must be considered alongside the underlying control structure (van der Kooij, 

van Asseldonk and van der Helm, 2005). Thus, a dilemma emerges since the selection of an identification tool 
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is predicated on the (unknown) feedback structure. This quandary is starkly evident when one examines 

methods that fall under Ljung’s classification of the “Direct Approach” (Forssell and Ljung, 1999), wherein 

input and output data are used to derive information about the plant without integrating information about the 

controller structure. These methods are not applicable to closed-loop continuous control systems since any 

attempt to relate the input and output would not solely reflect the properties of the plant (Forssell and Ljung, 

1999). Additionally, the negative impact of noise is exacerbated by its constant reintroduction to the plant. 

However, if the serial ballistic hypothesis is indeed correct, it is possible that the input and output data could 

be sufficient to generate valid models. 

 

To this end, this project aimed to establish the extent to which intermittent control can act as a facilitator to the 

direct approach to system identification. This was accomplished by fitting transfer function models to input-

output data from an inverted pendulum model of human standing; this was done using the MATLAB System 

identification Toolbox. The resultant transfer functions were post-processed in order to determine whether 

there was a statistically significant difference in the quality of fits obtained when implementing an intermittent 

controller as compared to a continuous controller. 

 

1.3 – Literature Review 

This literature review has been included to provide context to the current study, and to clarify the possible 

implications its findings could have on the fields of system identification and human movement control. To 

date, there are no studies which assess the potential of intermittent control (IC) as a facilitator for the direct 

approach (DA) to system identification. First, this review will examine the relevant literature pertaining to the 

identification of closed-loop systems. Subsequently, the points from the first section will be contextualised 

through a brief analysis of the available research on human postural control. Finally, the findings presented in 

the two preceding sections will be combined in order to establish why intermittent control has not yet been 

explored as a facilitator to system identification. 

 

In 1977, Gustavsson et al. (Gustavsson, Ljung and Söderström, 1977), noted that the methods of system 

identification could be categorised according to the assumptions made regarding the feedback mechanism. 

These classifications remain largely unchanged with the exception of a small tweak by Forssell and Ljung in 

1999 (Forssell and Ljung, 1999). As suggested by Gevers (Gevers, 2003), the need for such designations arose 

from the rapid expansion in the number of papers relating to system identification that succeeded the 

publication of the seminal Åström-Bohlin and Ho-Kalman papers in the mid-1960s (Åström and Bohlin, 1965; 

Ho and Kalman, 1966). 

According to the updated definitions, the direct-approach to system identification is defined as identification 

of the open-loop system using measures of input and output whilst ignoring feedback mechanisms (Forssell 

and Ljung, 1999). Therefore, the authors note, it would be inappropriate to apply this method to closed-loop 

systems since the output would be correlated to the input. However, the authors also note that it is a perfectly 

valid means of system identification in the context of open-loop control. Thus, if the view is entertained that 
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human movement represents a series of open-loop trajectories (i.e. is controlled intermittently), the direct 

approach may remain a useful analytical tool. However, as will be seen in the next few paragraphs, movement 

control remains an area of major debate among the scientific community. 

 

As of this writing, the nature of the human postural control system remains an unsolved question. At the centre 

of this dilemma are three established models, each with experimental evidence to their credit: non-predictive 

continuous control (NPCC), predictive continuous control (PCC) and intermittent control (IC). Originally, 

these theories were suggested independently: for example, the first reported association of IC with human 

movement control was in a posthumously published paper by K. J. Craik (Craik, 1947). More than four decades 

later, a team led by Johansson et al. published a paper in which they fitted a continuous PID controller model 

to experimental data of perturbed standing (Johansson, Magnusson and Akesson, 1988); no mention is made 

of the possibility that human posture may not be continuously controlled. This would not be the last time that 

experimental data was framed in the context of one model without regard for the possibility of other controller 

configurations. 

 

As experimental evidence mounted in favour of each theory, so too did the need to cross-examine these 

different models. This need was addressed by several authors (van der Kooij and de Vlugt, 2007; Gawthrop, 

Loram and Lakie, 2009; Gollee et al., 2012), who applied both numerical and experimental methods in order 

to determine the true nature of the human control system. These later studies were successful in validating 

PCC over NPCC (Gawthrop, Loram and Lakie, 2009), but disagreement between studies meant that a unified 

theory of human postural control never emerged. Indeed, despite the efforts of several teams of researchers, 

the results remained conflicting: for example, a frequently-cited 2007 paper by van de Kooij et al. boldly stated 

that continuous control “dominated” human postural responses (van der Kooij and de Vlugt, 2007). However, 

later rebuttals (Loram et al., 2014) by advocates of IC cite its capacity to masquerade as continuous control 

under specific conditions, as well as its ability to explain physiological phenomena that, as of this writing, are 

still left unaddressed by the continuous control paradigm. 

 

The most recent studies still fall short of providing a unified view of human movement control. Some 

investigations, such as a 2014 paper by Elias et al. (Elias, Watanabe and Kohn, 2014) note that the structure of 

human physiology permits the implementation of both continuous and intermittent control mechanisms in 

postural control. Such thoughts have also been echoed in engineering studies (Tanabe et al., 2016). There exist 

nonetheless some papers which continue to frame their methodologies and results in the context of particular 

models without acknowledging this potential duality (Hwang et al., 2016). 

 

Hence, the discordant findings of human postural studies provide an explanation for why intermittent control 

has thus far been overlooked as a facilitator for system identification. Given the inextricable link between 

controller design and identification technique, methods that did not match the control paradigm under 

examination were rejected out of hand. For example, when discussing the implementation of the direct 
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approach in previous studies, a 2005 paper by van de Kooij et al. commented that the inaptness of the method 

rendered the results “meaningless and confusing” (van der Kooij, van Asseldonk and van der Helm, 2005). 

However, if one removes the supposition that the underlying controller structure is continuous, it unlocks the 

possibility that the direct approach may provide a fruitful means of system identification. 

 

One can conclude, based on the literature, that conclusively demonstrating the facilitative value of IC systems 

could have far-reaching benefits in the study of human movement control, and more broadly in the 

identification of closed-loop systems. However, progress in this area has been stifled by the conflicting results 

of previous studies, particularly in the area of human postural control. 
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Section 2: Methodology 

2.1 – Essential Theory 

2.1.1 – System identification and transfer functions 

This section aims to clarify what is meant by the “direct approach”, and to provide background for the methods 

outlined in Section 2.2. System identification is applied in a wide variety of contexts, and with significant 

variation, rendering it challenging to isolate a single, comprehensive definition. However, broadly, system 

identification refers to the practice of deriving a model that relates observed quantities (Ljung, 2010). Methods 

of system identification can be broken down by the data they use to relate these observed quantities. This report 

implements the set of definitions expressed by Forssell and Ljung in their 1999 paper “Closed-loop 

identification revisited” (Forssell and Ljung, 1999). Here, they provide three categories of system identification 

methods based on the information used to derive the model. Firstly, there is the direct approach (DA), which 

is the focus of this paper: in this method, the inputs and outputs are used to derive a model of the plant, without 

utilising any information about the controller structure. The alternatives to this approach are the indirect 

approach and the joint input-output method: since these are comprehensively reviewed in (Forssell and Ljung, 

1999; van der Kooij, van Asseldonk and van der Helm, 2005), they will not be explained in detail here. 

However, it is important to note that the two alternative methods have shortcomings not shared by the DA. 

Specifically, they either require a priori knowledge of the controller, or would necessitate further 

experimentation on the system to derive sensitivity functions (van der Kooij, van Asseldonk and van der Helm, 

2005).  

 

In modern control, it is common to represent systems in state-space form (Equation 1), which relates the inputs 

(𝑢) and outputs (𝑦) by a set of differential equations in terms of the states (𝑥) (Antsaklis and Michel, 2007).  

One of the primary reasons for its widespread use is its versatility: through restructuring using similarity 

transformations, one can derive valuable information about the controllability and observability of the system 

(Antsaklis and Michel, 2007). However, it is precisely this propensity for rearrangement that renders state-

space form unsuited to comparison between models; this is because, the matrices 𝑨, 𝑩, 𝑪, and 𝑫 can take on 

an infinite number of configurations through transformation using non-singular matrices (Hinrichsen and 

Pritchard, 2005). Therefore, given that this study is entirely reliant on comparison between fitted models and 

the true system, an alternative means of parametric representation is required. 

 

�̇� = 𝑨𝑥 + 𝑩𝑢 

𝑦 = 𝑪𝑥 + 𝑫𝑢 

 

Transfer functions (Equation 2) provide a means of representing the relationship between the inputs and 

outputs of a system in the frequency domain (Isermann and Münchhof, 2011). Transfer functions are comprised 

of the ratio of two polynomials, and the order of the numerator and denominator represent the number of zeros 

and poles of the system respectively (Iqbal, 2017). Unlike state-space models, transfer functions only have a 

Equation 1 
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single form, rendering them more easily compared and thus ideal for the model fitting in this study. The roots 

of the denominator polynomial, often called the characteristic equation, are the system poles; the location of 

these poles on the complex plane is highly indicative of the dynamic properties of a system (Morud and 

Skogestad, 1996). 

 

𝑌(𝑠)

𝑈(𝑠)
=

𝑑

𝑎𝑠ଶ + 𝑏𝑠 + 𝑐
 

 

Note that the transfer function in Equation 2 represents a generic system with no zeros and two poles, which 

is analogous to the system under examination in this study. 

 

2.1.2 – Intermittent control 

This section aims to provide an understanding about the basics of intermittent control, to aid interpretation of 

subsequent sections. Open-loop control and closed-loop control can be considered to sit on opposing sides of 

a spectrum: in the former, the output is never fed back, meaning that control action is exerted without 

accounting for the current state of the system. By contrast, in closed-loop control, the output is being measured 

and used to regulate control action. For this reason, open-loop control alone is insufficient to stabilise an 

unstable plant (Skogestad, Havre and Larsson, 2002). 

 

 
 

Figure 1: A block-diagram representation of a predictive continuous controller, as adapted from (Gawthrop et al., 2011). The same 

notation has been employed, with the thin arrows representing scalar quantities, and the thick arrows representing vectors. 

Importantly, note the summing junction after the “System” block, where 𝑣௬(𝑡) is added; this is where the sensor noise was 

implemented during the simulations. 

 

 

 

 

Equation 2 
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IC systems can be considered intermediates between the two extremes of open and closed loop control: instead 

of fastidious state observation and correction, IC systems exert control action by means of sequential, open-

loop trajectories. According to some authors, this intermittency can provide a means of sparing computational 

resources (Gawthrop et al., 2011). 

 

By examining Figures 1 and 2, one notes that the only blocks not common to the two diagrams are those 

labelled “Hold” and “Trig.”; these are the drivers of intermittent control action. The “Trig.” block is responsible 

for triggering the sampling action of the controller: this updates the value of 𝒙ෝ𝒘(𝒕𝒊) at sample times 𝑡. This, 

in turn, updates the value of  𝒙ෝ𝒉(𝒕), thus altering the vector that is fed through the state feedback controller 

and changing the control trajectory. As its name suggests, the “Hold” block ensures that the sampled signal 

𝒙ෝ𝒑(𝒕𝒊 − 𝒕𝒅) is defined at all values of t. Most often, the function implemented in the “Hold” block is not a 

zero-order hold as implemented in most digital controllers. This is because the zero-order hold is not generally 

effective when implemented alongside an event-driven controller (Gawthrop et al., 2011). Instead, a 

generalised hold function is adopted, specifically the system-matched hold as outlined in (Gawthrop and Wang, 

2011).  
 

As mentioned, the two primary manifestations of intermittent control are clock-driven control (CDC) and 

event-driven control (EDC). In CDC, the “Trig.” block prompts sampling at regular intervals, i.e., 𝑡 is 

constant. By contrast, in EDC, sampling is triggered when the difference between the hold state 𝒙ෝ𝒉(𝒕) and the 

observer state 𝒙ෝ𝒘(𝒕) exceeds a given threshold. As such, sampling is generally irregular (𝑡 is not constant). 

However, it is critical to note that event-driven controllers also have a minimum sampling time Δ 

(Gawthrop, Gollee and Loram, 2018), which prevents overactivity of the controller. Therefore, in cases where 

the system output is driven to extremes, such as by external disturbance, the effectuation of new control 

trajectories will become regular. Thus, the controller will transition from event-driven to clock-driven with an 

open-loop interval (𝑡) of Δ. 
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Figure 2: A block diagram representation of an intermittent controller, as adapted from (Gawthrop et al., 2011). Note the 

introduction of several new blocks not included in the continuous controller (Figure 1). Despite these differences, the point of 

application of the sensor noise 𝑣௬(𝑡) remains the same. As in the original paper, the bold arrows represent vector quantities, the slim 

arrows represent scalar quantities, and the dashed arrows indicate values that are only defined at times when the sampling trigger is 

active (i.e., when 𝑡 = 𝑡) 

 

2.2 – Overview of method 

2.2.1 – Background 

In order to assess the facilitative value of intermittent control systems, input and output data had to be collected 

from a system regulated by a variety of controller setups. In the present study, this information was obtained 

from a MATLAB simulation of a one-segment inverted pendulum designed by Álvarez and Doublein (Álvarez 

and Doublein, 2021). The Álvarez and Doublein model (henceforth simply “the Model”) is based on the 

conversion of the dynamic equations of the inverted pendulum to a second-order state-space form. The 

structure of the Model is detailed more thoroughly in Section 2.3.1. 

 

 
Figure 3: A schematic showing the structure of the single-segment inverted pendulum modelled by Álvarez and Doublein. More 

detail is provided in Section 2.3.1. Figure adapted from (Álvarez and Doublein, 2021) 
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The Model was selected for this investigation because of its many tuneable parameters: for example, the state-

space matrices underpinning the model were able to be modified, allowing experimentation on the original 

(unstable) system, as well as a stabilised version (c.f., Section 2.3.1). Another critical benefit of this simulation 

was that the Model was capable of switching its mode of operation between intermittent and continuous 

control. Furthermore, the nature of the intermittent control could be specified (i.e., event-driven, or clock-

driven), as could the controller properties (including open-loop interval and error threshold). Given the high 

flexibility of the model, the variables relevant to system identification needed to be isolated in order to ensure 

that the method employed would provide a valid test of the thesis. With regards to intermittent control, it is 

evident that the open-loop interval would likely play a critical role in the efficacy of DA system identification 

approaches. Since the DA is most applicable to open-loop systems (Forssell and Ljung, 1999), it follows that 

increasing the threshold in EDC and the open-loop interval in CDC could improve the accuracy of system 

identification. In the case of PCC, alteration of the time delay would likely affect the quality of identification 

since the fitting mechanisms employed (c.f., Section 2.3.3) do not account for a delay component. Thus, the 

expectation is that the quality of system identification would deteriorate, along with the quality of control. 

 

2.2.2 – Important note: Variables of Interest 

Throughout Section 2, the shorthand “Variable of Interest” is used. The reason for this is that not all 

variables are relevant to each control structure: for example, clock-driven intermittent control has no relation 

to thresholds, so there would be no sense to varying the threshold value in a set of simulations that used a 

clock-driven controller. Hence, the designation “Variable of Interest” was devised to enable emphasis to be 

placed on the most relevant variables for each controller structure. This would allow the derivation of more 

meaningful, robust conclusions about the impact of each variable on system identification. The Variables of 

Interest are as follows for each controller structure: 

o Clock-Driven Intermittent Control (CDC) – Open Loop Interval (𝑡) 

o Event- Driven Intermittent Control (EDC) – Error Threshold 

o Predictive Continuous Control (PCC) – Time Delay  

For more details on the default parameters, including the default inputs, see Appendix A. 

 

2.2.3 – Overview of method 
The Model simulated the behaviour of an inverted pendulum over a period of time that could be defined by 

the user. The default duration was thirty seconds, and this was retained for this study since it provided time for 

the pendulum to respond to multiple step inputs (c.f. Appendix A). Additionally, the sampling time was kept 

at 1ms, since this would provide a large dataset from which to obtain accurate models. 

 

The initial conditions of the simulation were consistent across all trials: the velocity of the mass at the 

pendulum tip was equal to +0.1𝑚𝑠ିଵ, with the pendulum angle equal to 0°. Following implementation of 

these conditions, the simulation would run for thirty seconds. At each sampling point, the angle of the 
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pendulum and the control input were saved to two separate arrays. These arrays were then used as arguments 

for the MATLAB “iddata()” function along with the sampling time. The output of this operation yielded an 

“iddata” object that could be used as an input to the “tfest()” function. 

Besides the “iddata” object, the “tfest()” function demanded inputs of the desired number of poles and zeros 

(2 and 0 respectively, in this instance). Furthermore, because this study sought to determine the facilitative 

value of IC under a range of conditions, the “tfest()” function was given a further argument to alter the 

algorithm that was used to estimate the initial parameter values; more detail is provided in Section 2.3.3. The 

output of the “tfest()” function was a transfer function with numerator and denominator orders as specified in 

the function input. The poles of this fitted transfer function were found using the “pole()” method, and 

compared to the true poles as detailed in Section 2.3.4.  

 

Two further pieces of data were collected for each trial: the median open-loop interval, and the median error. 

The median open-loop interval was found by finding the time intervals between which a new controller 

trajectory was initiated using the MATLAB “findpeaks()” function. Finding the differences in peak locations 

would yield an array of data, the median of which was the open-loop interval; of course, this was only relevant 

for clock-driven and event-driven control (and in the former, all open-loop intervals would be equal to the 

median). The median error was obtained by finding the absolute error between the reference input 𝑤(𝑡) and 

the output of the system 𝑦(𝑡): this would provide an array of data the size of the original timeseries. The 

median of these values was the median error, and could be used to obtain an indication of the quality of control. 

Granted, this would be an imperfect metric, but this report was unable to find an established alternative in the 

literature. Using the notation of Figures 1 and 2, the error at the 𝑖-th timestep can be calculated as shown in 

Equation 3. In this case, T represents the total simulation time, and h represents the sampling interval. 

ϵ = |𝑤(𝑡) − 𝑦(𝑡)|   0 ≤ 𝑖 ≤
𝑇

ℎ
 

 

The paragraphs above described a single trial. As mentioned, each simulation included a function that 

simulated sensor noise; this was added to the true output as outlined in Section 2.3.2. In order to generate this 

noise, a random number generator function was used; to control the output of this random number generator, 

a “seed” could be selected by specifying an argument for the MATLAB “rng()” function. An identical seed 

would ensure that the noise generated across trials was uniform. Hence, to prevent overfitting to the noise, 

each simulation was processed eight times implementing a different integer between 1 and 8. This constituted 

a result set. This is important because, in Section 3, references will be made to the median value of a particular 

result set. To remove any ambiguity, one result set implements the same type of controller, the same noise 

scale factor, and the same parameter initialisation method. 

Then, these variables were altered in turn in order to explore how they each affected the accuracy of system 

identification. Each result set was then repeated three times, once for each type of controller: event-driven, 

clock-driven and predictive continuous. Subsequently, the amplitude of noise was increased by an increment 

of 0.1 (c.f. Section 2.3.2). The minimum scale factor was 0.1, which would mean that 68% of noise values 

Equation 3 



  

11 
 

would be between 13% and 40% of the magnitude of the set-point signal. The maximum scale factor used was 

2.0, since this was found to be the value at which the fitting performance of all controller types deteriorated 

significantly. 

  

As mentioned, each controller structure had an assigned Variable of Interest (c.f. Section 2.2.2), which was 

varied between the ranges of 0.1 and 0.8. This range was selected to enable the obtention of sufficient data for 

the derivation of robust conclusions. Furthermore, early experimentation with the model suggested a 

propensity for system identification to break down more frequently when the variables of interest were 

assigned values of more than 0.8; as such, this provided an appropriate upper limit. Finally, the algorithm used 

to estimate the initial parameter values was varied as outlined in Section 2.3.4. Note that only one estimation 

algorithm was found to be appropriate for the unstable system, whereas four were found to be suitable for the 

stabilised pendulum. 

 

 

Figure 4: A succinct explanation of how the different parameters were varied between sets of simulations. 

 

 

2.2.4 – Post-processing 

Once the polar distances had been obtained, further refinement was required in order to definitively gauge 

whether intermittently controlled systems enabled more accurate fitting of transfer functions. Additionally, 

clarification was sought as to the conditions under which each of the controllers performed best. 

Prior to the analysis of trends, anomalous polar distances were filtered out of the dataset. Initially, a value was 

designated as an anomaly if it sat outside three mean absolute deviations of the dataset median. However, since 

the fitting methods implemented would occasionally converge to values orders of magnitude greater than the 

next highest value, they would skew the statistical parameters to the extent that this was not always a valid 

identifier; thus, it became necessary to implement a manual threshold to counteract this. A threshold of fifty 

units of polar distance was then additionally imposed, and this was effective in filtering out any extraneous 

fits. 

 

The resultant refined data was incredibly rich in information, so the analysis occurred in several stages with 

each step focused on a different aspect. First, it was determined if any of the controller setups enabled accurate 

identification in a way that was more robust to noise. To do this, the median polar distance of a dataset was 
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plotted against the noise scale factor for each of the three controllers. If the median polar distance increased 

more rapidly with noise amplitude for one controller type, it would be suggestive of a lower noise robustness. 

The results of this analysis are discussed in Section 3.1. 

 

Secondly, the influence of parameter estimation algorithm on identification accuracy was determined by 

conducting a Kruskal-Wallis test. For each type of controller, the data would be separated into categories 

depending on the initial estimation algorithm that was implemented (c.f. Section 2.3.4). A Kruskal-Wallis test 

would then be conducted in order to determine whether there was a statistically significant difference between 

the quality of fits obtained when each algorithm was used. The Kruskal-Wallis test was selected over ANOVA 

because it could not be presumed that the data would be normally distributed. The results of this analysis are 

discussed in Section 3.2. 

 

The influence of the open-loop interval on identification accuracy for intermittent controllers was then 

assessed. Due to its close relationship to threshold in event-driven control, the analysis of the two variables 

was combined in Section 3.3. This was accomplished by plotting several graphs showing the variation of 

median polar distance with both threshold and median open-loop interval. The impact of time delay on 

continuous controller identification accuracy was similarly deduced by plotting median polar distance against 

the applied time delay. The results of this analysis are displayed in Section 3.4. 

 

Finally, a comprehensive analysis was done to determine if intermittent controllers enabled the production of 

statistically more accurate fits than the PCC controller. This was accomplished by ranking all the fits for each 

controller type from the lowest median polar distance to the highest. The intermittent controller distance was 

then subtracted from the continuous polar distance to obtain the accuracy deficit 𝐷 (c.f. Equation 4). A positive 

accuracy deficit would indicate that the poles of the models obtained using intermittent controllers sat closer 

to the true poles than those fitted to data where a continuous controller was used (whereas a negative deficit 

would prove the reverse). A one-sample t-test was then done to determine if the accuracy deficit was 

statistically significantly different from zero, which would provide evidence of a consistent difference between 

fit quality achieved when implementing the two controller types. 

𝐷 = �̂�  −  �̂� 

 

 

 

2.3 – Details of methodological aspects 

2.3.1 – Conversion between stable and unstable systems 

The Model consists of a second-order state-space system based on the dynamics of an inverted pendulum. The 

equations underpinning the pendular motion are based on classical Newtonian mechanics, so are not directly 

Equation 4 
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relevant to a report centred on control. Nonetheless, explanations of their derivation are available in the original 

paper (Álvarez and Doublein, 2021). Reconfiguration of the dynamic equations into state-space form yields: 

�̇� = 𝑨𝑥 + 𝑩𝑢 

𝑦 = 𝑪𝑥 + 𝑫𝑢 

In the case of the original (unstable) system, the matrices are as below: 

𝑨 =    
−





(ଵି)


  

1 0

 , 𝑩 =  





0

 , 𝑪 =  [1 0] , 𝑫 =  0 

 

Here, as in the original paper, V is the ankle viscosity, J is the inertia of the pendulum, c is the ratio between 

tendon stiffness and load stiffness, h is the pendulum length, m is the pendulum mass, and g is the acceleration 

due to gravity. The constant values used in the simulations are provided in Appendix A. In order to stabilise 

the system, both values in the top row of the 𝑨 matrix were made negative; this would ensure that all 

eigenvalues of the matrix fall in the left half plane, which is the criterion that governs a stable dynamic 

response. As such, in the stabilised version, the matrices are as follows: 

𝑨 =    
−




−

(ଵି)


  

1 0

 , 𝑩 =  





0

 , 𝑪 =  [1 0] , 𝑫 =  0 

 

2.3.2 – Addition of noise and disturbance to the system  

The implementation of protocols to simulate sources of noise was central to this study. This is because, as has 

been noted in the literature, systems that are noise-free and void of nonlinearities are substantially easier to 

identify (Forssell and Ljung, 1999), and do not reflect the properties of real systems. 

 

All the simulations in this study included external inputs that simulated the action of sensor noise. In Figures 

1 and 2, this is denoted by 𝑣௬(𝑡). This was done by adding a zero-mean Gaussian white noise value to each 

datapoint of the output timeseries (𝑦(𝑡) in the Figures 1 and 2). In MATLAB R2021b, a pseudo-random 

number can be drawn from a zero-mean normal distribution with a standard deviation of 1 using the “randn()” 

function. High and low noise levels were distinguished through multiplication of the randomly generated value 

by a scale factor. Thus, the sensor noise can be described mathematically as: 

𝑦
ᇱ(𝑡) = 𝑦(𝑡) + 𝐴 ∗ 𝑣௬,(𝑡)  0 ≤ 𝑖 ≤

𝑇

ℎ
 

Where 𝑦
ᇱ(𝑡) represents the noisy output, 𝑦(𝑡) represents the original output value, 𝐴 is the scale factor, 𝑣௬(𝑡) 

is the pseudo-randomly generated noise value, 𝑇 is the total simulation time, and h is the sampling time. Here, 

Equation 1 

Equation 5 
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the subscript “j” is used to denote the different random number generator seeds, which will alter the noise 

characteristics across simulations. 

2.3.3 – Model fitting 

Among the outputs of the Model were the control signal (𝑢(𝑡) in Figures 1 and 2) and the system output (𝑦(𝑡)). 

Thus, without integrating any further knowledge about the structure of the controller, the direct approach to 

system identification can be used to convert this input and output data to a transfer function. The coefficients 

of the transfer function (a, b, c, and d in Equation 2, reprinted below) were designated as the fitting parameters, 

and the methods built into the MATLAB “tfest()” function were used to converge to a set of optimal values. 

In this case, the order of the plant was presumed to be known, so a parametric method of fitting was appropriate. 

In future studies, it may be beneficial to establish the facilitative value of IC in contexts where the order of the 

plant transfer function is unknown; however, given that this study is a proof-of-concept, it is reasonable to use 

a known plant structure since this will allow for easier comparison of the fits obtained from IC and PCC. 

𝑌(𝑠)

𝑈(𝑠)
=

𝑑

𝑎𝑠ଶ + 𝑏𝑠 + 𝑐
 

As outlined, the fitting of transfer functions to the input and output data was done using the MATLAB “tfest()” 

function (MathWorks United Kingdom, 2022a). By default, the inputs to the function were the desired number 

of poles and zeros (2 and 0 respectively in this example). Additionally, one could specify the algorithm used 

for initial estimation of the transfer function coefficients: these included the Instrument Variable (herein IV) 

method, the State Variable Filters (SVF) method, the Gauss-Poisson Moment Function (GPMF) approach, the 

Numerical algorithms for System Identification (N4SID) method, and a Frequency Domain (FD) approach 

which is an inbuilt MATLAB algorithm based on a prediction-error approximation model (Ljung, 2003). Only 

the last method necessitated conversion of the input-output dataset to the frequency domain; the others operated 

exclusively from the timeseries data, though each implemented a degree of prefiltering. A full exploration of 

the distinctions between these methods is outside the scope of this report, however more detail is provided in 

the MATLAB “tfest()” function documentation (MathWorks United Kingdom, 2022a). Following the initial 

estimation of the model parameters, the “tfest()” function would iteratively re-estimate these parameter values 

using a mixture of four least-squares gradient descent methods. Again, a full exploration is not relevant to this 

study, but more information is available in (MathWorks United Kingdom, 2022b) 

 

Originally, this study intended to implement all five algorithms for both the stabilised and unstable systems. 

However, following preliminary studies, it became rapidly apparent that not all initialisation algorithms 

provided accurate fits for this system. For example, parameter initialisation using the N4SID approach 

provided significantly worse fits than all other fitting approaches, to the extent that it obscured trends that were 

otherwise evident (c.f. Figure 5). Similarly, when the unstable system was used, only the FD estimation 

algorithm enabled the obtention of sufficiently accurate fits to warrant post-processing. 

 

Equation 2 
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Figure 5: A set of plots justifying the exclusion of the N4SID dataset during post-processing. The top row of subplots shows the 

unaltered data: note the stray line of anomalous points at an almost constant value of median polar distance. After removal, the 

bottom set of plots are obtained, with a much more easily discernible trend. 

 

2.3.4 – Comparing fit quality – minimum polar distance 

As previously emphasised, this project was centred around the identification of transfer functions from input 

and output data. Specifically of interest was the proximity of these fitted transfer functions to the true 

transfer function of the system. However, as of this writing, there is no standard protocol to be found in the 

literature for likeness comparison of transfer functions. Thus, prior to running the simulations, a suitable 

metric of similarity had to be derived. 

Of course, it is important to note that the superficial features of the function (such as the coefficient values) 

are less important than what the transfer function represents i.e., the dynamic behaviour of the system. 

Hence, what is desired is a means of comparing the similarity of two transfer functions in the context of the 

dynamic behaviour of the system. Furthermore, the metric of choice should be independent of whether the 

model was fitted in the time-domain or the frequency domain since both methods would be used in the fitting 

process (c.f. Section 2.3.3). 

 

The system being modelled was also very simple: it had only two poles which were conjugate complexes of 

one another, meaning that there was no pole that dominated the dynamic behaviour of the response. 

Additionally, the lack of zeros further simplified comparison: since zeros would also influence the dynamic 

behaviour of a system (Morud and Skogestad, 1996), their absence means that the system dynamics can be 
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inferred primarily by examining the poles. Thus, on the basis of these factors, it is reasonable to designate 

proximity of the transfer function poles as a proxy for similarity in dynamic behaviour. 

In MATLAB, this was implemented by finding the absolute distance between each pole resulting from a fit, 

and each true pole of the transfer function. The minimum polar distance from each true pole would be found 

for each fitted pole, and the sum of these would constitute the similarity metric for the study. This is shown 

schematically in Figure 6. 

 

 
Figure 6: A schematic representation of the procedure for finding minimum polar distance. The influence of polar position on 

dynamic properties is outlined in (Morud and Skogestad, 1996). Thus, it is reasonable that greater proximity to the true poles is 

indicative of greater similarity in dynamic properties. 

 

Mathematically, the distance between a fitted pole and a true pole can be written as: 

𝑑 = |�̂� − 𝑝| 

Here, the letters designate a complex value plotted on a two-dimensional plane: �̂� indicates a fitted pole, and 

𝑝 indicates a true pole. Thus, for the 𝑛-th fitted pole, one must calculate the distance to each of the 𝑚 true 

poles, hence: 

𝑑, = |�̂� − 𝑝|    𝑚 =  1,2 

Hence, the minimum polar distance for the 𝑛-th fitted pole can be written as: 

𝑑, = 𝑚𝑖𝑛{𝑑,}  m =  1,2 

Finally, the indicator of fit quality, i.e., the sum of the minimum polar distances can be denoted by Q, hence: 

𝑄 =  𝑑,

ଶ

ୀଵ

 

 

Equation 6 

Equation 7 

Equation 8 

Equation 9 
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Section 3: Results and Discussion 

3.1 – Impact of noise on fit quality 

3.1.1 – Stabilised pendulum 

Figures 7a, 7b, and 7c show the impact of noise on fit quality for the three different types of controller structure 

in the case of the stabilised pendulum. None of the three control systems are able to completely mitigate the 

deterioration in fit quality caused by the increasing amplitude of the noise, and this is reflected in the positive 

gradients of the regression lines of the three graphs. However, as is evident from Table 1, clock-driven 

intermittent control exhibits a substantially more gradual deterioration in fit quality compared to event-driven 

and continuous control. Furthermore, the confidence interval displays no overlap with either of the other two 

control structures, suggesting its superiority in this regard is statistically significant.  

Interestingly, the high gradient of the event-driven regression line would suggest that it is the least robust to 

noise, even when compared to continuous control. However, this interpretation seems superficial when one 

contrasts Figures 7b and 7c, since a visual inspection shows a marked decay in fit quality for the continuously 

controlled system above noise scale factors of 1.3. This is further reinforced by the confidence intervals 

displayed in Table 1, which are overlapping for event-driven and continuous control. As such, the results of 

these simulations are insufficient to validate event-driven control over continuous control. 

 

 
Figure 7a (Top Left), 7b (Top Right), and 7c (Bottom): Logarithmic plots showing the impact of the noise scale factor on median 

polar distance for the stabilised pendulum.  
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Table 1: A tabulation of the coefficients of the least-square regression lines for each of the datasets in Figures 7a, 7b, and 7c (above).  

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Clock-Driven 0.769 0.7196 0.8178 

Event-Driven 1.164 1.1073 1.2209 

Continuous 1.039 0.9624 1.1158 

 

Nonetheless, it is worth contemplating why fit accuracy of the event-driven controller is significantly less 

robust to noise than that of the clock-driven controller. This report believes that it is an unfortunate by-product 

of the increased computational efficiency of the event-driven controller.  

As mentioned, event-driven controllers only update the control trajectory if the error exceeds the threshold set 

by the operator and if their minimum time interval has elapsed. By contrast, a clock-driven controller will enact 

a new control trajectory after every 𝑡, regardless of the amount of correction required. When noise is added 

to the system, this skews the controller’s perception of the state of the plant. This means that, for an event-

driven controller, the impact is twofold: the control action will be faulty (because the 𝑥ො vector being acted on 

by the state feedback controller will be affected), and the system will remain in the open-loop state for longer. 

Therefore, the performance of the controller is impeded in two ways. By contrast, the clock-driven controller 

will initiate new control trajectories independently of the output, so its performance is only hindered to the 

extent that the 𝑥ො vector is affected. This twofold impact of noise on event-driven controllers could explain 

why their ability to facilitate accurate fitting is less robust to noise. 

 

3.2.2 – Unstable pendulum 

The fits obtained for the unstable system provide a decidedly less compelling case for the noise robustness of 

IC systems. The deterioration of fit quality with increasing noise scale factor is more pronounced, and this is 

reflected in the augmented gradients for all controller types. This is most evident in the case of event-driven 

control, where the gradient increases by more than 40% (1.680 for the unstable system compared to 1.164 for 

the stabilised system). Interestingly, Figure 8b shows that the linear fit is much sparser for the unstable case. 

Furthermore, the orderly fanning out of datapoints at higher scale factors is absent, replaced by a more uneven 

pattern. Both these factors provide support for the suggestion that EDC is less robust to noise than the other 

two control systems. A potential explanation for this was provided in the previous section. 

 

Additionally, as shown by the overlapping confidence intervals in Table 2, there is no statistically significant 

difference in gradient between the least-squares lines of clock-driven and continuous control. This contradicts 

the earlier finding and suggests that, in the context of unstable systems, the use of an intermittent controller 

provides no robustness advantage for system identification in the presence of noise. However, it should be 

noted that, as outlined in Section 2.3.3, only one parameter estimation algorithm proved effective for unstable 

systems. Hence, one cannot guarantee that these trends hold true for other estimation methods, so these results 

should be considered with caution. 
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Figure 8a (Top Left), 8b (Top Right), and 8c (Bottom): Logarithmic plots showing the impact of the noise scale factor on median 

polar distance for the unstable pendulum.  

 

Table 2: A tabulation of the coefficients of the least-square regression lines for each of the datasets in Figures 8a, 8b, and 8c (above). 

Note the contrast when compared to Table 1: there is no statistically significant boost to noise robustness with the implementation of 

a clock-driven controller. 

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Clock-Driven 0.967 0.823 1.120 

Event-Driven 1.680 1.477 1.883 

Continuous 1.074 0.941 1.206 

 

 

3.2 – Impact of initial estimation algorithm: stabilised pendulum only 

The results of the Kruskal-Wallis tests show that there are almost no statistically significant differences in 

efficacy between estimation algorithms for the stabilised pendulum model. As shown in Table 3, the only 

fitting method which could be considered to fall short is the FD approach and this is especially notable when 

implemented alongside a continuous controller. This is starkly evident in Figure 9c, which shows the vast 
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range of polar distances produced by fits of the continuously controlled system. However, it is challenging to 

pin down why this is the case: across all sets of simulations, the FD approach was far more prone to anomalies 

than were the other algorithms. However, the breakdown of the FD approach in the continuous controller is 

distinct, with its interquartile range dwarfing even the full ranges of polar distances produced by the other 

estimation methods (c.f. Figure 9c).  

 

The reason for this discrepancy is challenging to isolate due to the large number of interacting variables. 

However, this report believes that, perhaps, the performance of the FD estimation method could be ameliorated 

by the use of a periodic input; as noted in Appendix A, the input was entirely aperiodic, and was selected on 

the basis of its capacity to produce high-quality fits during preliminary trials. However, an examination of the 

literature reveals that periodic inputs are often considered ideal when working with frequency-domain 

identification methods (Ljung, 2006). This, combined with the lack of significant difference between the 

alternative initialisation algorithms, means that this report is not positioned to provide conclusive 

recommendations for selection of estimation method. 

 

Table 3: A table comparing the fit accuracy of the different estimation methods for each of the controller setups. The numbers in 

each of the cells represents the p-value. Note that the reading should be done starting with the row e.g., the cell marked * should be 

read as “Frequency-domain identification provided statistically less accurate fits than the instrument variable approach, with a p-

value of 0.032”. 

 Clock-Driven Event-Driven Continuous 

 FD GPMF IV SVF FD GPMF IV SVF FD GPMF IV SVF 

FD X 0.297 0.310 0.300 X 0.256 0.032* 0.315 X 0.000 0.000 0.000 

GPMF 0.297 X 1.000 1.000 0.256 X 0.808 0.999 0.000 X 0.830 0.998 

IV 0.310 1.000 X 1.000 0.032 0.808 X 0.740 0.000 0.830 X 0.729 

SVF 0.300 1.000 1.000 X 0.315 0.999 0.740 X 0.000 0.998 0.729 X 

Key  Statistically more accurate  Statistically less accurate  No statistical difference 
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Figures 9a (Top), 9b (Middle), and 9c (Bottom): Figures 9a, 9b, and 9c show a set of boxplots of the median polar distances 

obtained when implementing each of the different parameter initialisation algorithms for the stable system. All diagrams have been 

truncated for ease of reading; in every case, the FD approach exhibited a propensity to produce models with abnormally high polar 

distances, with the largest for all controller types nearing 3.0. Note the differing scales on the horizontal axes. 
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3.3 – Impact of open-loop interval on fit quality: stabilised and unstable pendulums 

Figures 10a and 10b show the influence of median open-loop interval on fit quality for the stable pendulum. 

Both systems clearly display a propensity for fit quality to improve with larger values of 𝑡, as shown by the 

negative gradients of the regression lines. This trend was very similar for the unstable system, so the graphs 

for the unstable system have not been included here (however they are available in Appendix B). Furthermore, 

Table 4 demonstrates that this improvement in fit quality exceeds the threshold for statistical significance, 

since the 95% confidence intervals do not extend to zero or positive gradients. Interestingly, the decline is 

more salient in the case of EDC which one can note by contrasting Figures 10a and 10b, and this is even more 

pronounced in the unstable system (c.f. Figures 18a and 18b in Appendix B). 

 

 
Figure 10a (Left), 10b (Right): Logarithmic plots showing the impact of median open-loop interval on median polar distance for the 

stabilised pendulum. Note that the open-loop intervals in clock-driven control are evenly spaced since 𝑡  for any single controller is 

constant. 

 

Table 4: A tabulation of the regression line gradients for Figures 10a and 10b (above), with confidence intervals. 

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Clock-Driven -0.500 -0.585 -0.415 

Event-Driven -0.781 -0.849 -0.713 

 

The fact that longer open-loop intervals tend to elicit superior fits is reasonable from the earlier theory: since 

the direct approach is more suitable for open-loop systems (Forssell and Ljung, 1999), the longer that an IC 

system spends in an open-loop state, and the more effective the DA should become. However, the question 

remains as to why this improvement is more pronounced for EDC systems. 

The explanation for this observation could be linked to control quality: in CDC, improvements in fitting 

resultant from augmented 𝑡 will be offset by the accompanying deterioration in control quality, and this leads 

to the shallower gradient seen in Figures 10a and 18a. Indeed, if one examines Figure 11a, it is visible that 

there is a dramatic increase in median polar distance as control quality deteriorates. By contrast, this is not 

necessarily the case in event-driven control, since the system is remaining in the open-loop state for the longest 

possible time before the error threshold is exceeded; thus, longer open-loop intervals need not necessarily come 
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at the expense of control quality. Overall, this longer open-loop interval without loss of control quality could 

enable more accurate estimates to be obtained. 

 

 

Figure 11a (Left) and 11b (Right): Logarithmic plots showing the relationship between median error and median polar distance. 

Note that, for CDC, as the median error increases (i.e. control quality decays), the median polar distance increases. However, this 

deterioration in fit quality is not matched in EDC: the influence of control quality appears to be less significant. This may be because 

higher thresholds lead to both worse control quality and longer open-loop intervals, so the detriment to fitting quality of the former 

offsets the benefit of the latter. 

 

Table 5: A tabulation of the regression line gradients for Figures 11a and 11b (above), with confidence intervals. 

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Clock-Driven 0.757 0.677 0.837 

Event-Driven 0.369 0.211 0.528 

 

 

This hints at a more nuanced view of the original inference that larger 𝑡 facilitates system identification; longer 

open-loop intervals do allow for better system identification, provided that they do not undermine the quality 

of control. However, this conjecture is not directly provable since it is not possible to extricate the impact of 

each of these interlinked variables. For example, if it is assumed that open-loop interval does not directly affect 

control quality, there should ideally be no association between the two variables. Despite this, as shown in 

Figure 12, there exists a positive association between median error and open-loop interval. Without context, it 

is tempting to assume a causal link. Nonetheless, it is critical to remember that threshold value can act as a 

confounding variable: high threshold values lead to both poorer quality of control and longer open-loop 

intervals. 
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Figure 12: A logarithmic plot showing the relationship between median open-loop interval and median error. If taken at face value, 

this graph contradicts the reformulated explanation, since it could suggest a decay in control quality with longer open-loop intervals. 

This, by extension, would imply that loss of control quality is not to blame for the less dramatic improvement of fit accuracy of CDC 

systems with increased 𝑡. However, this neglects the existence of threshold value as a confounding variable. 

 

Table 6: A tabulation of the regression line gradient for Figure 12 (above), with confidence intervals. 

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Event-Driven (Error/𝑡 ) 0.266 0.227 0.305 

 

This new explanation is again validated when one examines the impact of threshold value on median polar 

distance (c.f., Figure 13 and 18c). High values of threshold have a less pronounced impact on fit quality than 

median open-loop interval (as shown by the shallower gradient). Framing this in the context of the reformulated 

explanation, it could be that this is because the improvement arising from longer open-loop intervals is offset 

by the accompanying decay in control quality. 

 

 
Figure 13: A logarithmic plot showing the relationship between median polar distance and threshold. 
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Table 7: A tabulation of the regression line gradient for Figure 13 (previous page), with confidence intervals. 

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Event-Driven -0.567 -0.688 -0.446 

 

 

3.4 – Impact of time delay on PCC fit quality: stabilised and unstable pendulums 

The relationship between time delay and fit quality for the stabilised pendulum is shown in Figures 14a and 

14b. As can be seen, the variation in median polar distance is highly dependent on estimation method: for ease 

of reading, the results obtained with the FD algorithm have been separated from the rest. Starting with Figure 

14a, it is clear that the increase of time delay not only improves fit quality but also dramatically reduces the 

spread of results. Indeed, the range decreases from approximately 3.0 at a time delay of 0.1s to less than 0.4 at 

a time delay of 0.8s. By contrast, the improvement in fit and reduction in result spread is significantly less 

evident in all other initialisation algorithms (c.f. Figure 14a): the decrease in range is irregular, and the decrease 

in minimum polar distance is modest (though is, nonetheless, statistically significant with a p-value of 4.06E-

08).  

 

This result is surprising since, as mentioned, no parameter was available in the model to allow for the 

introduction of a time-delay. As such, given the absence of such a provision, the quality of fitting should have 

decayed significantly as its magnitude was augmented. Additionally, the quality of control deteriorated with 

increasing time-delay: this is expected but further cements the impression that the quality of fitting should have 

suffered as the time delay increased. However, the difference in behaviour between the FD algorithm and the 

timeseries initialisation algorithms points towards an explanation based on the different influences of time 

delay in the time and frequency domains. This is supported by the comparatively strong performance of the 

FD algorithm for EDC and CDC systems (as covered in Section 3.2). However, as of this writing, the author 

has been unable to find a satisfactory explanation in the literature to justify this conjecture. 

 

Nonetheless, the author believes that this trend merits further exploration, since the quality of fitting of the 

continuous system at high time-delays occasionally rivalled that obtained when the intermittent control 

systems were implemented. Nonetheless, this is covered more thoroughly in the next section. 
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Figure 14a (Top Left), 14b (Top Right), and 14c (Bottom): Figures 14a and 14b show the variation in median polar distance with 

increasing time delay for the stabilised system. The separation into two plots was made necessary by the unusual behaviour of the 

frequency-domain estimation method (note the differences in scale of the vertical axes). For the unstable system, only the FD 

approach was able to consistently identify the plant transfer function to a good degree of accuracy; the impact of time delay on the 

median polar distance is shown in Figure 14c. 

 

3.5 – Comprehensive analysis: intermittent control vs predictive continuous control 

3.5.1 – Stable System 

Based on the available data, there is good evidence to suggest that clock-driven intermittent controllers can act 

as facilitators to the direct approach to system identification for stable systems. This is most clearly visible in 

Table 8: for every method of system identification, the median polar distance was statistically smaller for fits 

of pendulums controlled by CDC systems than for continuously controlled pendulums. This remained true 

when data from all fitting methods was combined, as shown by the positive accuracy deficit of 0.065. 

 

By contrast, EDC systems lacked the definite facilitative value of their clock-driven counterparts. Upon initial 

inspection of Table 8, it may appear that they can enable more accurate system identification, since the 

aggregated data shows a positive accuracy deficit (suggesting that the fitted transfer function poles were closer 
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to the true poles if an event-driven controller was implemented compared to a continuous controller). However, 

closer inspection shows that this result is dominated by the polar distances fitted using the FD method; those 

obtained using any other algorithm demonstrated that continuously controlled pendulums produced closer fits 

than those controlled by EDC systems. Indeed, when one recalculates the mean and p-value in the absence of 

the FD data, the continuous controller is proven to enable statistically significantly better fits, with a mean 

accuracy deficit of -0.0112 and a p-value of 1.46E-17. 

 

Figure 15 provides a good summary of these results: the median polar distances obtained using clock-driven 

control (the blue points) consistently sit closer to zero than both the other datasets. Conversely, the polar 

distances obtained when implementing an event-driven controller (the red points) are significantly more 

variable, alternating above and below the line of continuously controlled data. Notably, at the very lowest point 

on the plot, the fits obtained when implementing an event-driven controller outperform those obtained when 

implementing any other controller type. 

This, combined with the information from Section 3.1.1 (in which the impact of noise was explored), provides 

an explanation for the contrast in performance of the two intermittent controller variations. As outlined earlier, 

the ability of event-driven control to produce accurate fits is less robust to noise than that of clock-driven 

control. This is due to the variation in trajectory intervals combined with the inaccuracy of state estimates 

output by the observer. This explains why, as the noise level gets higher (shown by larger datapoints in Figure 

15), the quality of fits obtained decreases dramatically for pendulums controlled by EDC systems. However, 

at very low noise levels, the event-driven controller outperforms both other controller types in terms of its 

ability to enable accurate fits: this is because, unimpeded by excessive noise, the event-driven controller can 

sustain longer open-loop intervals without the loss of control quality demonstrated by CDC systems (as 

discussed in Section 3.3). 

 

 
Figure 15: A plot of median polar distance against fit rank for all fitting methods of the stable system (FD, GPMF, IC and SVF). The 

size of a data point represents its noise scale factor. Note that the vertical axis is logarithmic. 
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Table 8: A tabulation of the results of the comprehensive analysis: for each fitting method, the mean accuracy deficit (i.e., difference 

between the continuous and intermittent median polar distances) was calculated and displayed in the rightmost column. The p-values 

indicate the confidence that the mean accuracy deficit in each case is significantly different from zero. As can be seen, both clock-

driven and event-driven intermittent control outperform continuous control when all fitting methods are considered. However, in the 

case of event-driven intermittent control, this is due to a large difference in the frequency-domain initialisation algorithm. Indeed, when 

it is removed, the continuous controller is statistically superior to the event-driven controller with a mean accuracy deficit of -0.0112 

and a p-value of 1.46E-17. 

Clock-Driven 

Estimation Algorithm Reject Null? p Mean Accuracy Deficit 

All Yes 1.95E-17 0.065 

FD Yes 3.82E-13 0.374 

GPMF Yes 1.77E-12 0.006 

IV Yes 1.29E-54 0.011 

SVF Yes 8.38E-07 0.005 

Event-Driven 

Fitting Reject Null? p Mean Accuracy Deficit 

All Yes 2.57E-11 0.053 

FD Yes 4.31E-14 0.298 

GPMF Yes 1.31E-08 -0.015 

IV No 1.23E-01 -0.002 

SVF Yes 3.02E-09 -0.016 
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3.5.2 – Unstable System 

 

 
Figure 16: A plot of median polar distance against fit rank for the unstable system. The size of a data point represents its noise scale 

factor. Note that the vertical axis is logarithmic. Once again, EDC begins as the control structure that enables fitting of the most 

accurate models, however it is rapidly overtaken by both other control structures. 

 

As shown in Figure 16, the results derived from fitting models to the unstable system are aligned with those 

obtained from the stabilised pendulum. At the lowest levels of noise, implementation of an event-driven 

controller enables the best fits to be obtained; indeed, the contrast is even more marked in Figure 16, with the 

line of EDC fits sitting far below the other two datasets. However, increases in output noise cause a marked 

degradation of the fit quality, and the event-driven controller is shortly outperformed by both the other two 

setups. This echoes the results seen in Section 3.1.2, which showed that, when modelling the unstable 

system, the median polar distance degraded even more rapidly in response to increasing noise, particularly 

for event-driven control. Thus, the EDC performed statistically worse than PCC as a facilitator of system 

identification, a fact further demonstrated by the negative mean accuracy deficit in Table 9. 

 

As found when modelling the stable system, the clock-driven controller enabled consistently more accurate 

models to be fitted than the continuous controller. Table 9 further cements this point by demonstrating that 

the clock-driven controller enabled distinctly more accurate modelling, and that this improvement far 

exceeded the threshold for statistical significance (p = 6.93E-18). This again suggests that, although both 

intermittent controller variations may have facilitative value, this quality is not robust to noise in the case of 

event-driven control. 
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Table 9: A tabulation of the results of the comprehensive analysis for the unstable system. Recall from Section 2.3.3 that the only 

method that consistently produced high-quality fits for the unstable system was the FD approach. Note that, as with the stabilised 

system, CDC enabled more accurate system identification than PCC, whereas EDC did not. 

 

Clock-Driven 

Fitting Reject Null? p Mean Accuracy Deficit 

FD Yes 6.93E-18 0.121 

Event-Driven 

Fitting Reject Null? p Mean Accuracy Deficit 

FD Yes 1.06E-04 -0.126 
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Section 4: Conclusions and Limitations of the Current Study 

Section 4.1 – Limitations 
 
This study had a narrow focus: to determine the facilitative value of IC systems when implementing the direct 

approach to system identification in the presence of noise. As such, several other factors demand consideration 

prior to implementation in real system identification problems, especially in the context of human movement. 

For example, all simulations were done in the absence of disturbance. This was decided because, given the 

constraints on computing power and time, the impact of disturbance could not be tested sufficiently rigorously 

to enable the establishment of robust conclusions. However, disturbance features prominently in real-world 

systems: for example, as outlined by Tanabe et al. in their 2016 study, adaptation to external disturbances is 

essential to the maintenance of balance during quiet standing. Thus, the results outlined herein may not 

perfectly reflect the properties of systems subject to disturbance. 

 

However, the most important limitation of this study was that, as a simulation based on empirical dynamic 

equations, it represents an ideal case for system identification. For example, the number of poles and zeros 

were known in advance, enabling the fitting of perfectly representative models. This is rarely the case in 

instances of system identification, and several model types are tested with the risk of over or underfitting. 

Furthermore, sources of noise and disturbance are not always identifiable or measurable: this is especially 

relevant when considering implementation of an event-driven controller since it may not be clear whether the 

level of noise would render it an acceptable choice. Finally, as a fully computerised simulation, all parameters 

were modifiable, and there was no risk of damage to the system or alteration of system properties. Therefore, 

in systems that require very fine control, the findings of this study may not be applicable due to the loss of 

control quality that results from the replacement of a continuous control system with an intermittent one. 

 

Section 4.2 – Conclusions 
 
To conclude, this report believes that intermittent control structures do have facilitative value in the direct 

approach to system identification, and this is supported by the findings of Section 3.5. Indeed, for all 

initialisation algorithms, the clock-driven controller enabled the fitting of more accurate models than the 

predictive continuous controller. The event-driven controller may have some value as an enabler of the direct 

approach, but its efficacy in this role is confined to low-noise environments since, as established, its ability to 

facilitate accurate fittings lacks robustness in this regard. These results are consistent for both stable and 

unstable systems suggesting that, if human movement operates intermittently, the direct approach may 

constitute a valid means of system identification. Nonetheless, further studies will be required prior to its 

implementation in this context, as will be discussed in the next section. 
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Section 5: Opportunities for Further Study 

As mentioned previously, the implementation of these findings in real-world applications (especially in the 

context of human standing) is contingent on the outcomes of future studies. These investigations are needed 

to confirm the validity of the current findings in alternative contexts, and to devise optimal strategies for the 

application of intermittent controllers to system identification problems. 

 

Building on this latter point, it would be tremendously beneficial to have a study examining whether there 

exists an optimal input type for identification using intermittent control systems. Such studies do exist in the 

literature, although they are focused exclusively on continuously-controlled systems (Narasimhan and 

Bombois, 2012; Krinitsyn et al., 2016); as such, further validation is required to confirm that the same trends 

exist for IC systems. This is especially relevant if a frequency-domain method to system identification is being 

considered since, as outlined in Section 3.2, this study did not use a periodic input so would not be 

representative of the optimal performance in such contexts. 

 

Furthermore, as more studies examine the influence of controller selection on system identification, it would 

be tremendously valuable to have standardised measures with which to compare the quality of a model fit. A 

potential starting point was provided in this study, in the form of minimum polar distance. However, as 

research is extended to more complex systems, methods will need to be devised that account for the presence 

of zeros, or poles that have an outsized impact on the dynamic response of the system (sometimes called 

dominant poles). For the latter, perhaps a weighted sum could be used to represent this disparity in influence. 

Nonetheless, the development of versatile comparison metrics will be central to the validation of the facilitative 

value of IC in diverse contexts. 

 

Finally, in order to apply these findings to the study of human movement, several further investigations are 

required. Firstly, it is necessary to confirm applicability of the current results to systems with multiple inputs 

and outputs. For example, an examination of the literature on postural control shows that more detailed models 

of human standing tend to be based on multi-segment inverted pendulums with several inputs (van der Kooij 

et al., 1999; Alexandrov et al., 2005). As such, validation in this regard will be crucial to the implementation 

of the direct method in human standing. 

Of course, more clarity is also needed regarding the nature of the human movement control system: if human 

motion is continuously controlled, the facilitative value of intermittent control systems is moot. The literature 

review of Section 1.3 showed that, although several teams of researchers have worked diligently to solve this 

problem, the results remain conflicting. Nonetheless, as the volume of published literature in this area grows, 

it is hoped that the results of this study can serve as a lens through which to view the direct approach in a new 

light. 
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Appendix A: Default Values, Constants, and Software Information 

 
Table 10: A tabulation of the default values that were implemented in simulations with each controller configuration 

 Open-Loop Interval 

(Δை) (s) 

Threshold (rad) Time Delay (s) 

Clock-Driven VoI 0 0 

Event-Driven 0.10 VoI 0 

Continuous 0 N/A VoI 

 

For all simulations, a ladder of step inputs was used for the setpoint, as shown in Figure 17. The magnitudes 

were as follows: +0.25 at   t = 5, +0.25 at t = 10, +0.25 at t = 15, -0.25 at t = 20. All simulations were allowed 

to run for thirty seconds. 

 

 
Figure 17: A plot showing the variation of the setpoint input 𝑤(𝑡) over time 

 

Table 11: A tabulation of the constant values implemented for simulations of the Álvarez Doublein model 

Constant Value Constant Value 

J 77 𝑘𝑔𝑚ଶ c 0.85 (no units) 

V 2.9 𝑁𝑚(𝑟𝑎𝑑)ିଵ h 0.92 𝑚 

m 70 𝑘𝑔 g 9.81 𝑚𝑠ିଶ 

 
 
Important Note: 
All simulations were completed using MATLAB R2021b, as published by The MathWorks, Nantick, 
Massachusetts, United States. Additionally, the following MATLAB add-on packages were used: the Signal 
Processing Toolbox Version 8.7, the Statistics and Machine Learning Toolbox Version 12.2, the System 
Identification Toolbox Version 9.15, and the Control System Toolbox Version 10.11. All add-on packages are 
published by The MathWorks, Nantick, Massachusetts, United States. 
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Appendix B – Unstable System Results for Section 3.3 

 

 

 

 

Figure 18a (Top Left), 18b (Top Right), and 18c (Bottom): Figures 18a and 18b are logarithmic plots showing the impact of 

median open-loop interval on median polar distance for the unstable pendulum. Note that the open-loop intervals in clock-driven 

control are evenly spaced since 𝑡  for any single controller is constant. Figure 18c is a logarithmic plot displaying the impact of 

threshold on median polar distance. 

 

Table 12: A tabulation of the gradients of the least-square regression lines for each of the datasets in Figures 18a, 18b, and 18c 

(above), with confidence intervals 

 𝑥ଵ coefficient Lower Bound 𝑥ଵ CI Upper Bound 𝑥ଵ CI 

Clock-Driven (𝑡) -0.728 -0.944 -0.5124 

Event-Driven (𝑡) -1.684 -1.864 -1.5045 

Event-Driven (Threshold) -0.928 -1.3017 -0.5551 
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