Binomial Randomization 3/13/02

Define \mathbb{S}^{n} to be the product space $\left\{0,1, \ldots, m_{1}\right\} \times \cdots \times\left\{0,1, \ldots, m_{n}\right\}$ and let \mathbb{S}_{t}^{n} be the set of all vectors $\left(s_{1}, \ldots, s_{n}\right)$ in \mathbb{S}^{n} such that $s_{1}+\ldots+s_{n}=t$.

Suppose that $\left(X_{1}, \ldots, X_{n}\right)$ is a multivariate hypergeometric random vector. That is, for all $\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{S}_{t}^{n}$,

$$
P\left(X_{1}=s_{1}, \ldots, X_{n}=s_{n}\right)=\frac{\binom{m_{1}}{s_{1}} \cdots\binom{m_{n}}{s_{n}}}{\binom{M}{t}}
$$

where $M=m_{1}+\ldots+m_{n}$ and $t=s_{1}+\ldots+s_{n}$.

For the purposes of Theorems 1 and 2 which follow we we will suppose that Y_{1}, \ldots, Y_{n} are independent binomial random variables parameterized such that for $j=1,2, \ldots, n$

$$
P\left(Y_{j}=y\right)=\binom{m_{j}}{y}\left(\frac{\theta}{\theta+1}\right)^{y}\left(1-\frac{\theta}{\theta+1}\right)^{m_{j}-y} \quad y=0,1, \ldots, m_{j}
$$

It is well known that in this case $Y_{1}+\ldots+Y_{n}$ will follow a binomial distribution with parameters M and θ. Therefore

$$
\begin{aligned}
P\left(Y_{1}\right. & \left.=s_{1}, \ldots, Y_{n}=s_{n} \mid \sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) \\
& =\frac{P\left(Y_{1}=s_{1}, \ldots, Y_{n}=s_{n}\right)}{P\left(\sum_{i=1}^{n} \mathrm{Y}_{i}=t\right)} \mathbf{I}_{\{t\}}\left(\sum_{i=1}^{n} s_{i}\right) \\
& =\frac{\prod_{i=1}^{n}\binom{m_{i}}{s_{i}} \theta^{s_{i}}\left(\frac{1}{\theta+1}\right)^{m_{i}}}{\binom{M}{t} \theta^{t}\left(\frac{1}{\theta+1}\right)^{M}} \mathbf{I}_{\{t\}}\left(\sum_{i=1}^{n} s_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{\binom{m_{1}}{s_{1}} \cdots\binom{m_{n}}{s_{n}}}{\binom{M}{t}}\binom{M}{t} \theta^{\sum_{i=1}^{n} s_{i}}\left(\frac{1}{\theta+1}\right)^{M}}{\binom{M}{t} \theta^{t}\left(\frac{1}{\theta+1}\right)^{M}} \mathrm{I}_{\{t\}}\left(\sum_{i=1}^{n} s_{i}\right) \\
& =P\left(X_{1}=s_{1}, \ldots, X_{n}=s_{n}\right) \mathrm{I}_{\{t\}}\left(\sum_{i=1}^{n} s_{i}\right)
\end{aligned}
$$

Theorem 1.

$$
E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)=\left.\frac{1}{\binom{M}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)\right)\right|_{\theta=0}
$$

where the t in $E_{t}(\cdot)$ is used to denote that $X_{1}+\ldots+X_{n}=t$.
Proof.

$$
\begin{aligned}
E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right) & =\sum_{t=0}^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right) \mid \sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) P\left(\sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) \\
& =\sum_{t=0}^{M} \sum_{\mathbb{S}_{t}^{n}} g\left(s_{1}, \ldots, s_{n}\right) P\left(Y_{1}=s_{1}, \ldots, Y_{n}=s_{n} \mid \sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) P\left(\sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) \\
& =\sum_{t=0}^{M} \sum_{\mathbb{S}_{t}^{n}} g\left(s_{1}, \ldots, s_{n}\right) P\left(X_{1}=s_{1}, \ldots, X_{n}=s_{n}\right) P\left(\sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) \\
& =\sum_{t=0}^{M} E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right) P\left(\sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) \\
& =\sum_{t=0}^{M} E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\binom{M}{t} \theta^{t}\left(\frac{1}{\theta+1}\right)^{M}
\end{aligned}
$$

and

$$
(1+\theta)^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)=\sum_{t=0}^{M} E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\binom{M}{t} \theta^{t}
$$

Therefore,

$$
\begin{aligned}
\left.\frac{d^{r}}{d \theta^{r}}\left((1+\theta)^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)\right)\right|_{\theta=0} & =\left.\frac{d^{r}}{d \theta^{r}}\left(\sum_{t=0}^{M} E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\binom{M}{t} \theta^{t}\right)\right|_{\theta=0} \\
& =\left.\sum_{t=0}^{M} E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\binom{M}{t}\left(\frac{d^{r}}{d \theta^{r}} \theta^{t}\right)\right|_{\theta=0} \\
& =\sum_{t=0}^{M} E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\binom{M}{t} r!\mathrm{I}_{\{r\}}(t) \\
& =E_{r}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\binom{M}{r} r!\mathrm{I}_{\{0,1, \ldots, M\}}(r)
\end{aligned}
$$

Hence,

$$
E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)=\left.\frac{1}{\binom{M}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)\right)\right|_{\theta=0}
$$

Theorem 2.

Let $\mathcal{A} \subset \mathbb{S}^{n}$ and define $\mathcal{A}_{t}=\mathcal{A} \cap \mathbb{S}_{t}^{n}$. Then for $t \geq 0$,

$$
P\left(\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{A}_{t}\right)=\left.\frac{1}{\binom{M}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{M} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathcal{A}\right)\right)\right|_{\theta=0}
$$

Proof.

Apply Theorem 1 with

$$
g\left(s_{1}, \ldots, s_{n}\right)= \begin{cases}1 & \left(s_{1}, \ldots, s_{n}\right) \in \mathcal{A} \\ 0 & \text { else }\end{cases}
$$

so that

$$
E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)=P\left(\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{A}_{t}\right)
$$

and

$$
E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)=P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathcal{A}\right)
$$

For the purposes of Theorem 3 which follows we will suppose that Y_{1}, \ldots, Y_{n} are independent binomial random variables parameterized such that for $j=1,2, \ldots, n$

$$
P\left(Y_{j}=y\right)=\binom{m_{j}}{y} p^{y}(1-p)^{m_{j}-y} \quad y=0,1, \ldots, m_{j}
$$

Suppose an urn contains m_{1} objects of Type $1, \ldots, m_{n}$ objects of Type n and that objects are drawn from this urn without replacement. Let $M=m_{1}+\ldots+m_{n}$. When q_{i} objects of Type i have been drawn we will say Type i has reached its quota.

Let $W_{\left(r: q_{1}, \ldots, q_{n}\right)}\left(m_{1}, \ldots, m_{n} ; n\right) \equiv W_{r: Q}$ represent the waiting time until exactly r different types have reached their quota.

Let $E\left(W_{r: Q}^{[k]}\right)$ represent the $k^{t h}$ ascending moment of $W_{r: Q}$. That is,

$$
E\left(W_{r: Q}^{[k]}\right)=E\left(\left(W_{r: Q}+0\right)\left(W_{r: Q}+1\right) \cdots\left(W_{r: Q}+k-1\right)\right)
$$

Theorem 3.

$$
E\left(W_{r: Q}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right)
$$

and

$$
E\left(W_{r: Q}^{[k]}-W_{r-1: Q}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{B}_{Q: r}\right) \mathrm{d} p\right)
$$

where
(1) $\mathbb{A}_{Q: r}$ is the event that at least $n-r+1$ of the (independent) events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur
$\mathbb{B}_{Q: r}$ is the event that exactly $n-r+1$ of the (independent) events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur
(2) \mathcal{A}_{j} is the event that $Y_{j}<q_{j}$.

Proof

Define $N_{\left(q_{1}, \ldots, q_{n}\right)}(t) \equiv N_{Q}(t)$ to be the number of Types that have not reached their quota after t balls have been drawn out.

Define N_{Q}^{B} as the number of events amongst $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ that occur.
It follows that

$$
W_{r: Q}>t \Leftrightarrow N_{Q}(t)>n-r
$$

However, it follows from

$$
E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)=\sum_{t=0}^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right) \mid \sum_{i=1}^{n} \mathrm{Y}_{i}=t\right) P\left(\sum_{i=1}^{n} \mathrm{Y}_{i}=t\right)
$$

that

$$
P\left(N_{Q}^{B}>n-r\right)=\sum_{t=0}^{M} P\left(N_{Q}(t)>n-r\right)\binom{M}{t} p^{t}(1-p)^{M-t}
$$

Thus,

$$
\begin{aligned}
& \int_{0}^{1} p^{k-1}\left(P\left(N_{Q}^{B}>n-r\right)\right) \mathrm{d} p \\
&=\int_{0}^{1} p^{k-1}\left(\sum_{t=0}^{M} P\left(N_{Q}(t)>n-r\right)\binom{M}{t} p^{t}(1-p)^{M-t}\right) \mathrm{d} p \\
&=\int_{0}^{1} p^{k-1}\left(\sum_{t=0}^{M} P\left(W_{r: Q}>t\right)\binom{M}{t} p^{t}(1-p)^{M-t}\right) \mathrm{d} p \\
&=\sum_{t=0}^{M} P\left(W_{r: Q}>t\right)\binom{M}{t}\left(\int_{0}^{1} p^{k+t-1}(1-p)^{M-t} \mathrm{~d} p\right) \\
& \quad= \sum_{t=0}^{M} P\left(W_{r: Q}>t\right)\binom{M}{t}\binom{\frac{(M-t)!}{M-t}(j+k+t)}{j=0} \\
& \quad=\frac{M!}{(M+k)!} \sum_{t=0}^{M} P\left(W_{r: Q}>t\right) \frac{(t+k-1)!}{t!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{M!}{(M+k)!} \sum_{t=0}^{M} P\left(W_{r: Q}>t\right)(t+k-1)_{[k-1]} \\
& =\frac{M!}{(M+k)!} \sum_{t=k-1}^{M+k-1} P\left(W_{r: Q}+k-1>t\right) t_{[k-1]} \\
& =\frac{M!}{(M+k)!} \frac{1}{k} E\left(\left(W_{r: Q}+k-1\right)_{[k]}\right)
\end{aligned}
$$

But

$$
\left(W_{r: Q}+k-1\right)_{[k]} \equiv W_{r: Q}^{[k]}
$$

hence

$$
\int_{0}^{1} p^{k-1}\left(P\left(N_{Q}^{B}>n-r\right)\right) \mathrm{d} p=\frac{M!}{(M+k)!} \frac{1}{k} E\left(W_{r: Q}^{[k]}\right)
$$

and

$$
E\left(W_{r: Q}^{[k]}\right)=\frac{k(M+k)!}{M!} \int_{0}^{1} p^{k-1}\left(P\left(N_{Q}^{B}>n-r\right)\right) \mathrm{d} p
$$

where
$P\left(N_{Q}^{B}>n-r\right)=P($ at least $n-r+1$ types do not obtain their quota|Binomial model)

Therefore,

$$
E\left(W_{r: Q}^{[k]}-W_{r-1: Q}^{[k]}\right)=\frac{k(M+k)!}{M!} \int_{0}^{1} p^{k-1}\left(P\left(N_{Q}^{B}=n-r+1\right)\right) \mathrm{d} p
$$

where
$P\left(N_{Q}^{B}=n-r+1\right)=P($ exactly $n-r+1$ types do not obtain their quota|Binomial model $)$.

Theorem 4.

Suppose we draw t balls without replacement from an urn initially containing m_{j} balls of color $j, j=1, \ldots, n$.

Again letting C_{j} equal the number of times color j is selected, now let D_{k} equal the number of C_{j} 's which equal $k, k \in\{0,1, \ldots, t\}$.

If $m_{1}=\ldots=m_{n}=m$, then

$$
\begin{equation*}
\mathrm{E}\left(\Psi\left(D_{0}, D_{1}, \ldots, D_{t}, 0,0, \ldots\right)\right)=\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \mathrm{E}\left(\Psi\left(Z_{0}, Z_{1}, \ldots\right)\right)\right)\right|_{\substack{\lambda=0 \\ \theta}} \tag{0.0.1}
\end{equation*}
$$

where Z_{0}, Z_{1}, \ldots are independent and $Z_{j} \sim \operatorname{Poisson}\left(\binom{m}{j} \theta \lambda^{j}\right)$.

Models:

Multivariate Hypergeometric \equiv Grouped Fermi Dirac Distribution, Urns with cells, at most one ball per cell, balls identical.

Applications

Problem 1.

Suppose we draw t balls without replacement from an urn containing m copies of each of n different colored balls. Let V_{r} equal the number of colors which are selected exactly r times. Find $P\left(V_{r}=v\right)$.

Answer

$$
\frac{\binom{n}{v}\binom{m}{r}^{v}}{\binom{v n}{t}} \sum_{j=0}^{n-v}(-1)^{j}\binom{m n-m(j+v)}{t-r(j+v)}\binom{n-v}{j}\binom{m}{r}^{j}
$$

provided $t \in\{r v, \ldots, r n\}$.

Proof

Define

$$
\begin{aligned}
\mathcal{A}_{t} & =\left\{a_{1}, \ldots, a_{n} \mid \sum_{j=0}^{n} \mathrm{I}_{\{r\}}\left(a_{j}\right)=v \text { and } a_{1}+\ldots+a_{n}=t\right\} \\
\mathcal{A} & =\left\{a_{1}, \ldots, a_{n} \mid \sum_{j=0}^{n} \mathrm{I}_{\{r\}}\left(a_{j}\right)=v\right\}
\end{aligned}
$$

It follows from Theorem 2 that

$$
\begin{aligned}
P\left(V_{r}=v\right) & =P\left(\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{A}_{t}\right) \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{m n} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathcal{A}\right)\right)\right|_{\theta=0}
\end{aligned}
$$

Let B_{j} represent the event that $Y_{j}=r$. Then by the generalized inclusion-exclusion principle we have

$$
\begin{aligned}
& P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathcal{A}\right) \\
& \quad=P\left(\text { exactly } v \text { of the events } B_{1}, \ldots, B_{n} \text { occur }\right) \\
& \quad=\sum_{u=0}^{n-v}(-1)^{u}\binom{u+v}{v}\binom{n}{u+v}\left(P\left(Y_{1}=r\right)\right)^{u+v} \\
& \quad=\sum_{u=0}^{n-v}(-1)^{u}\binom{u+v}{v}\binom{n}{u+v}\left(\binom{m}{r}\left(\frac{\theta}{\theta+1}\right)^{r}\left(1-\frac{\theta}{\theta+1}\right)^{m-r}\right)^{u+v} \\
& \quad=\sum_{u=0}^{n-v}(-1)^{u}\binom{n}{v}\binom{n-v}{u}\binom{m}{r}^{u+v} \theta^{r(u+v)}(1+\theta)^{-m(u+v)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P & \left(V_{r}=v\right) \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{m n}\binom{n}{v}\binom{m}{r}^{v} \sum_{u=0}^{n-v}(-1)^{u}\binom{n-v}{u}\binom{m}{r}^{u} \theta^{r(u+v)}(1+\theta)^{-m(u+v)}\right)\right|_{\theta=0} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \theta^{t}}\left(\binom{n}{v}\binom{m}{r}^{v} \sum_{u=0}^{n-v}(-1)^{u}\binom{n-v}{u}\binom{m}{r}^{u} \theta^{r(u+v)}(1+\theta)^{m(n-u-v)}\right)\right|_{\theta=0} \\
& =\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \theta^{t}}\left(\binom{n}{v}\binom{m}{r}^{v} \sum_{u=0}^{n-v} \sum_{j=0}^{m(n-u-v)}(-1)^{u}\binom{m(n-u-v)}{j}\binom{n-v}{u}\binom{m}{r}^{u} \theta^{r(u+v)} \theta^{j}\right) \\
& =\left.\frac{1}{\binom{m n}{t} t!}\binom{n}{v}\binom{m}{r}^{v} \sum_{u=0}^{n-v} \sum_{j=0}^{m(n-u-v)}(-1)^{u}\binom{m(n-u-v)}{j}\binom{n-v}{u}\binom{m}{r}^{u}\left(\begin{array}{c}
d^{t} \\
d \theta^{t}
\end{array} r^{r(u+v)+j}\right)\right|_{\theta=0} \\
& =\frac{1}{\binom{m n}{t} t!}\binom{n}{v}\binom{m}{r}^{v} \sum_{u=0}^{n-v} \sum_{j=0}^{m(n-u-v)}(-1)^{u}\binom{m(n-u-v)}{j}\binom{n-v}{u}\binom{m}{r}^{u} t!\mathrm{I}_{\{r(u+v)+j\}}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\binom{m n}{t} t!}\binom{n}{v}\binom{m}{r} \sum_{u=0}^{v} \sum_{j=0}^{n-v}(-1)^{u}\binom{m(n-u-v)}{j}\binom{n-v}{u}\binom{m}{r}^{u} t!\mathrm{I}_{\{t-r(u+v)\}}(j) \\
& =\frac{1}{\binom{m n}{t}}\binom{n}{v} \sum_{u=0}^{n-v}(-1)^{u}\binom{m(n-u-v)}{t-r(u+v)}\binom{n-v}{u}\binom{m}{r}^{v+u} \mathrm{I}_{\{0, \ldots, m(n-u-v)\}}(t-r(u+v)) \\
& =\frac{\binom{n}{v}}{\binom{m n}{t}} \sum_{u=0}^{n-v}(-1)^{u}\binom{m(n-u-v)}{t-r(u+v)}\binom{n-v}{u}\binom{m}{r}^{v+u} \quad \text { provided } t \in\{r v, \ldots, r n\} \\
& =\frac{\binom{n}{v}\binom{m}{r}^{v}}{\binom{m n}{t}} \sum_{u=0}^{n-v}(-1)^{u}\binom{m n-m(u+v)}{t-r(u+v)}\binom{n-v}{u}\binom{m}{r}^{u} \quad \operatorname{provided} t \in\{r v, \ldots, r n\}
\end{aligned}
$$

Alternative proof using Theorem 4.

Let $Z_{r} \sim \operatorname{Poisson}\left(\binom{m}{r} \theta \lambda^{r}\right)$. Then

$$
\begin{aligned}
& P\left(D_{r}=v\right)=\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} P\left(Z_{r}=v\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \frac{e^{-\binom{m}{r} \theta \lambda^{r}}\left(\binom{m}{r} \theta \lambda^{r}\right)^{v}}{v!}\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{\binom{m}{r}^{v}}{\binom{m n}{t} t!v!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} e^{-\binom{m}{r} \theta \lambda^{r}} \theta^{v} \lambda^{r v}\right)\right|_{\substack{\lambda=0 \\
\theta=0}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{\binom{m}{r}^{v}}{\binom{m n}{t} t v v!} \frac{n!}{(n-v)!} \frac{d^{t}}{d \lambda^{t}}\left(\left((1+\lambda)^{m}-\binom{m}{r} \lambda^{r}\right)^{n-v} \lambda^{r v}\right)\right|_{\lambda=0} \\
& =\left.\frac{\binom{m}{r}}{\binom{m n}{t} t v v!} \frac{n!}{(n-v)!} \frac{d^{t}}{d \lambda^{t}}\left(\sum_{j=0}^{n-v}(-1)^{j}\binom{n-v}{j}\binom{m}{r}^{j}(1+\lambda)^{m(n-v-j)} \lambda^{r(j+v)}\right)\right|_{\lambda=0}
\end{aligned}
$$

EXTRA

Using Theorem 4,

Let $Z_{j} \sim \operatorname{Poisson}\left(\binom{m}{j} \theta \lambda^{j}\right)$. Then

$$
\begin{aligned}
& P\left(D_{0}=0, D_{1}=0, \ldots, D_{r}=0\right)=\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta \theta(1+\lambda)^{m}} P\left(V_{0}=0, V_{1}=0, \ldots, V_{r}=0\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} P\left(V_{0}=0, V_{1}=0, \ldots, V_{r}=0\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \prod_{j=0}^{r} e^{-\binom{m}{j} \theta \lambda^{j}}\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& \left.=\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta\left((1+\lambda)^{m}-\sum_{j=0}^{r}\binom{m}{j} \lambda^{j}\right.}\right)\right)\left.\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& \left.=\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left(\left((1+\lambda)^{m}-\sum_{j=0}^{r}\binom{m}{j} \lambda^{j}\right)\right)^{n}\right)\left.\right|_{\lambda=0} \\
& \left.=\frac{1}{\binom{m n}{t} t!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{m(n-k)}\left(\sum_{j=0}^{r}\binom{m}{j} \lambda^{j}\right)\right)^{k}\right)\left.\right|_{\lambda=0} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{m(n-k)}\left(\sum_{s=0}^{r k} C^{*}(m, s, r) \lambda^{s}\right)\right)\right|_{\lambda=0}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \text { where } C^{*}(m, s, r)=\sum_{\substack{\left.k_{1}, \ldots, k_{r}\right)=\\
k_{1}+\ldots, k_{r}=s \\
k_{j} \in\{0,1, \ldots, r\}}}\binom{m}{k_{1}} \cdots\binom{m}{k_{r}} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{s=0}^{r k} C^{*}(m, s, r) \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{m(n-k)} \lambda^{s}\right)\right|_{\lambda=0} \\
& =\frac{1}{\binom{m n}{t}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{s=0}^{r k} C^{*}(m, s, r)\binom{m(n-k)}{t-s} \\
& =\frac{1}{\binom{m n}{t}} \sum_{k=0}^{n} \sum_{s=0}^{r k}(-1)^{k}\binom{n}{k}\binom{m(n-k)}{t-s} C^{*}(m, s, r)
\end{aligned}
$$

Is there an expression for the C^{*} ???

Problem 2.

Suppose we draw t balls without replacement from an urn containing m copies of each of n different colored balls. Find the probability that every color is drawn at least once.

Answer

$$
\frac{n!}{(n m)_{t}} \mathbf{C}(t, n, m)
$$

where $\mathrm{C}(t, n, m)$ are the C-numbers defined by

$$
\mathrm{C}(t, n, m)=\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(m j)_{t} .
$$

and where we adopt the standard falling factorial notation

$$
(a)_{t}=a(a-1) \cdots(a-t+1)=t!\binom{a}{t}
$$

Proof

The event that every color is drawn at least once is the event that $V_{0}=0$ using the notation of Problem 1. Therefore, from Problem 1,

$$
\begin{aligned}
P\left(V_{0}=0\right) & =\frac{\binom{n}{0}\binom{m}{0}^{0}}{\binom{m n}{t}} \sum_{i=0}^{n-0}(-1)^{i}\binom{m n-m(i+0)}{t-0(i+0)}\binom{n-0}{i}\binom{m}{0}^{i} \\
& =\frac{1}{\binom{m n}{t}} \sum_{i=0}^{n}(-1)^{i}\binom{m(n-i)}{t}\binom{n}{i} \\
& =\frac{1}{\binom{m n}{t}} \sum_{j=0}^{n}(-1)^{n-j}\binom{m j}{t}\binom{n}{j} \quad \text { letting } j=n-i \\
& =\frac{n!}{(n m)_{t}} \mathrm{C}(t, n, m) .
\end{aligned}
$$

Continuing with this notation we can identify new numbers which we will name the extended C-numbers and define by

$$
\mathbf{C}(t, n, m, r, v)=\frac{1}{n!} \sum_{j=0}^{n-v}(-1)^{n-v-j}\binom{n-v}{j}(m j)_{t-r(n-j)}(t)_{r(n-j)}\binom{n}{v}\binom{m}{r}^{n-j}
$$

with the properties that

$$
\mathrm{C}(t, n, m, r=0, v=0)=\mathrm{C}(t, n, m)
$$

and

$$
P\left(V_{r}=v\right)=\frac{n!}{(n m)_{t}} \mathrm{C}(t, n, m, r, v)
$$

Problem 3.

Suppose we continue to draw balls without replacement from an urn containing m copies of each of n different colored balls until all n colors have been selected at least k times each. Let W_{k} equal the required waiting time (number of draws). Find the probability that it takes w draws to get secure one of every color, i.e. $P\left(W_{1}=w\right)$. Then find the probability that it takes w draws to secure two of every color, i.e. $P\left(W_{2}=w\right) .+$

Answer

Proof

Continuing with the notation leading up to Theorem 3, we let

$$
W_{k}=W_{(n: k, \ldots, k)}(m, \ldots, m ; n)
$$

and similarly

$$
N_{k}(t)=N_{(k, \ldots, k)}(t)
$$

It follows that

$$
W_{k} \leq w \Leftrightarrow N_{k}(w)=0
$$

and

$$
\begin{aligned}
P\left(W_{k}=w\right) & =P\left(W_{k} \leq w\right)-P\left(W_{k} \leq w-1\right) \\
& =P\left(N_{k}(w)=0\right)-P\left(N_{k}(w-1)=0\right)
\end{aligned}
$$

Now consider first the case $k=1$.
By Problem 2,

$$
\begin{aligned}
P\left(W_{1}=w\right) & =\frac{n!}{(n m)_{w}} \mathrm{C}(w, n, m)-\frac{n!}{(n m)_{w-1}} \mathrm{C}(w-1, n, m) \\
& =\frac{n!}{(n m)_{w}}(\mathbf{C}(w, n, m)-(n m-w+1) \mathbf{C}(w-1, n, m)) \\
& =\frac{n!m}{(n m)_{w}} \mathrm{C}(w-1, n-1, m)
\end{aligned}
$$

This last equality can be verified directly. We see that

$$
\begin{aligned}
\mathrm{C}(w, & n, m)-(n m-w+1) \mathrm{C}(w-1, n, m) \\
\quad & =\left(\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(m j)_{w}\right)-(n m-w+1)\left(\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(m j)_{w-1}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\left((m j)_{w}-(n m-w+1)(m j)_{w-1}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\left(m(j-n)(m j)_{w-1}\right) \\
& =m\left(\frac{1}{(n-1)!} \sum_{j=0}^{n-1}(-1)^{(n-1)-j}\binom{n-1}{j}(m j)_{w-1}\right) \\
& =m \mathbf{C}(w-1, n-1, m)
\end{aligned}
$$

Now consider first the case $k=2$.

$$
\begin{aligned}
P\left(W_{2}=w\right) & =P\left(N_{2}(w)=0\right)-P\left(N_{2}(w-1)=0\right) \\
& =\frac{h_{2}(w, n, m)}{\binom{m n}{w}}-\frac{h_{2}(w-1, n, m)}{\binom{m n}{w-1}}
\end{aligned}
$$

where we define

$$
h_{k}(w, n, m)=\sum_{\substack{x_{1}+\ldots+x_{n}=w \\ x_{i} \in\{k, \ldots, m\}, i \in\{1, \ldots, n\}}}\binom{m}{x_{1}} \cdots\binom{m}{x_{n}} .
$$

Now take any set $\mathbb{A} \subset\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in\{0,1, \ldots\}, i \in\{1, \ldots, n\}\right\}$ and define

$$
V(\mathbb{A})=\sum_{\mathbb{A}}\binom{m}{x_{1}} \cdots\binom{m}{x_{n}}
$$

Then

$$
h_{2}(w, n, m)=V\left(\mathbb{D}_{2}\right)
$$

with

$$
\mathbb{D}_{2}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\ldots+x_{n}=w, x_{i} \in\{2, \ldots, m\}, i \in\{1, \ldots, n\}\right\} .
$$

Now define sets

$$
\mathcal{B}_{j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\ldots+x_{n}=w, x_{j}=1, x_{i} \in\{2, \ldots, m\}, i \in\{1, \ldots, n\}, i \neq j\right\}
$$

as subsets of universal set \mathbb{D}_{1}. Then,

$$
\mathbb{D}_{2}=\mathcal{B}_{1}^{\prime} \cap \cdots \cap \mathcal{B}_{n}^{\prime}
$$

and

$$
\begin{aligned}
& h_{2}(w, n, m)=V\left(\mathbb{D}_{2}\right) \\
& \quad=V\left(\mathcal{B}_{1}^{\prime} \cap \cdots \cap \mathcal{B}_{n}^{\prime}\right) \\
& \quad=V\left(\mathbb{D}_{1}\right)-V\left(\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{n}\right) \\
& \quad=V\left(\mathbb{D}_{1}\right)-\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} V\left(\mathcal{B}_{1} \cap \cdots \cap \mathcal{B}_{j}\right) \\
& \quad=h_{1}(w, n, m)-\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{m}{1}^{j} h_{1}(w-j, n-j, m) \\
& \quad=\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j}\binom{m}{1}^{j} h_{1}(w-j, n-j, m)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P\left(W_{2}=w\right)= & \frac{h_{2}(w, n, m)}{\binom{m n}{w}}-\frac{h_{2}(w-1, n, m)}{\binom{m n}{w-1}} \\
= & \frac{\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j}\binom{m}{1}^{j} h_{1}(w-j, n-j, m)}{\binom{m n}{w}} \\
& \quad-\frac{\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j}\binom{m}{1}^{j} h_{1}(w-j-1, n-j, m)}{\binom{m n}{w-1}} \\
= & \frac{\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j}\binom{m}{1}^{j} \frac{(n-j)!}{(w-j)!} \mathrm{C}(w-j, n-j, m)}{\binom{m n}{w}} \\
& -\frac{\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j}\binom{m}{1}^{j} \frac{(n-j)!}{(w-j-1)!} \mathbf{C}(w-j-1, n-j, m)}{\binom{m n}{w-1}}
\end{aligned}
$$

Problem 4.

Suppose we continue to draw balls without replacement from an urn containing m copies of each of n different colored balls until all n colors have been selected at least k times each. Let W_{k} equal the required waiting time (number of draws). Find $E\left(W_{1}\right)$ and $E\left(W_{2}\right)$.

Answer

$$
\mathrm{E}\left(W_{r:(1, \ldots, 1)}^{[k]}\right)=\frac{(m n+k)!}{(m n)!} \sum_{j=1}^{r}(-1)^{j-1} \frac{\binom{n-r+j-1}{n-r}\binom{n}{n-r+j}}{\binom{m(n-r+j)+k}{k}}
$$

Proof

We have from Theorem 3 that

$$
E\left(W_{r: Q}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right)
$$

where
(1) $\mathbb{A}_{Q: r}$ is the event that at least $n-r+1$ of the (independent) events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur
(2) \mathcal{A}_{j} is the event that $Y_{j}<q_{j}$.

We consider the two special cases, $(r=1, q=1)$ and $(r=1, q=2)$. In this first case we will find the $k^{\text {th }}$ ascending moment while in the later case we will consider only the first ascending moment.

If we take $q_{1}=\ldots=q_{n}=q$, then by the general inclusion-exclusion principle,
$P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right)=P\left(\right.$ at least $n-r+1$ of the events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur $)$

$$
=P\left(\text { at least } n-r+1 \text { of the } Y_{j}<q\right)
$$

$$
=\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r} \mathbb{S}_{n-r+j+1}
$$

$$
=\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(P\left(Y_{j}<q\right)\right)^{n-r+j+1}
$$

$$
=\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1}
$$

$$
=\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1}
$$

Therefore,

$$
\begin{aligned}
& \int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p \\
& \quad=\int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1} \mathrm{~d} p
\end{aligned}
$$

Now suppose $q=1$. Then

$$
\begin{aligned}
& E\left(W_{r:(1, \ldots, 1)}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right) \\
& =\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\binom{m}{0} p^{0}(1-p)^{m-0}\right)^{n-r+j+1} \mathrm{~d} p\right) \\
& =\frac{k(M+k)!}{M!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\int_{0}^{1} p^{k-1}(1-p)^{m(n-r+j+1)} \mathrm{d} p\right) \\
& =\frac{k(M+k)!}{M!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\frac{(k-1)!(m(n-r+j+1))!}{(k+m(n-r+j+1))!}\right) \\
& =\frac{(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\frac{k!(m(n-r+j+1))!}{(k+m(n-r+j+1))!}\right) \\
& =\frac{(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j} \frac{\left.\sum_{n-r}^{n-r+j}\right)\binom{n}{n-r+j+1}}{\binom{k+m(n-r+j+1)}{k}} \\
& =\frac{(m n+k)!}{(m n)!} \sum_{j=1}^{r}(-1)^{j-1} \frac{\binom{n-r+j-1}{n-r}\binom{n}{n-r+j}}{\binom{m(n-r j)+k}{k}} .
\end{aligned}
$$

Now suppose $r=1, q=2, k=1$. Then

$$
\begin{aligned}
& E\left(W_{1:(2, \ldots, 2)}^{[1]}\right)=\frac{1(m n+1)!}{(m n)!}\left(\int_{0}^{1} p^{1-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: 1}\right) \mathrm{d} p\right) \\
& =(m n+1)\left(\int_{0}^{1}\left(\binom{m}{0} p^{0}(1-p)^{m-0}+\binom{m}{1} p^{1}(1-p)^{m-1}\right)^{n} \mathrm{~d} p\right) \\
& =(m n+1)\left(\int_{0}^{1}(1-p)^{n(m-1)}(1-p+m p)^{n} \mathrm{~d} p\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(m n+1)\left(\int_{0}^{1}(1-p)^{n(m-1)}(1+p(m-1))^{n} \mathrm{~d} p\right) \\
& =(m n+1) \sum_{j=0}^{n}\binom{n}{j}(m-1)^{j}\left(\int_{0}^{1} p^{j}(1-p)^{n(m-1)} \mathrm{d} p\right) \\
& =(m n+1) \sum_{j=0}^{n}\binom{n}{j}(m-1)^{j} \frac{j!(n(m-1))!}{(n(m-1)+j+1)!} \\
& =\frac{m n+1}{n(m-1)+1} \sum_{j=0}^{n} \frac{\binom{n}{j}}{\binom{n(m-1)+j+1}{j}}(m-1)^{j} \\
& =\frac{1}{\binom{m n}{n}} \sum_{j=0}^{n}\binom{m n+1}{n-j}(m-1)^{j} \\
& =\frac{1}{\binom{m n}{n}} \sum_{j=0}^{n}\binom{m n+1}{j}(m-1)^{n-j}
\end{aligned}
$$

Now suppose $r=1, q=2$.

$$
\begin{aligned}
& E\left(W_{1:(2, \ldots, 2)}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \int_{0}^{1} p^{k-1}\left(\sum_{y=0}^{1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n} \mathrm{~d} p \\
& =\frac{k(m n+k)!}{(m n)!} \int_{0}^{1} p^{k-1}\left(\binom{m}{0} p^{0}(1-p)^{m-0}+\binom{m}{1} p^{1}(1-p)^{m-1}\right)^{n} \mathrm{~d} p \\
& =\frac{k(m n+k)!}{(m n)!} \int_{0}^{1} p^{k-1}\left((1-p)^{m}+m p(1-p)^{m-1}\right)^{n} \mathrm{~d} p
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k(m n+k)!}{(m n)!} \int_{0}^{1} p^{k-1}(1-p)^{n(m-1)}(1+p(m-1))^{n} \mathrm{~d} p \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{n}\binom{n}{j}(m-1)^{j}\left(\int_{0}^{1} p^{k+j-1}(1-p)^{n(m-1)} \mathrm{d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{n}\binom{n}{j}(m-1)^{j}\left(\frac{(k+j-1)!(n(m-1))!}{(n(m-1)+k+j)!}\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{n}\binom{n}{j}(m-1)^{j}\left(\frac{(k+j-1)!(n(m-1))!}{(n(m-1)+k+j)!}\right) \\
& =\frac{k(m n+k)!}{(m n)!(n(m-1)+1)} \sum_{j=0}^{n} \frac{\binom{n}{j}}{\binom{n(m-1)+k+j)}{k+j-1}}(m-1)^{j}
\end{aligned}
$$

Now suppose $q=2$.

$$
\begin{aligned}
& \mathrm{E}\left(W_{r:(2, \ldots, 2)}^{[k]}\right)=\frac{k(m n+k)!}{(m n)!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1} \mathrm{~d} p \\
& =\frac{k(m n+k)!}{(m n)!} \int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left((1-p)^{m}+m p(1-p)^{m-1}\right)^{n-r+j+1} \mathrm{~d} p \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1} \\
& \quad\left(\int_{0}^{1} p^{k-1}\left((1-p)^{m}+m p(1-p)^{m-1}\right)^{n-r+j+1} \mathrm{~d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\int_{0}^{1} p^{k-1}(1-p)^{(m-1)(n-r+j+1)}(1+p(m-1))^{n-r+j+1} \mathrm{~d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1} \\
& \times \sum_{i=0}^{n-r+j+1}\left(\begin{array}{c}
n-r+j+1
\end{array}\right)(m-1)^{i}\left(\int_{0}^{1} p^{k+i-1}(1-p)^{(m-1)(n-r+j+1)} \mathrm{d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1} \\
& \times \sum_{i=0}^{n-r+j+1}\binom{n-r+j+1}{i}(m-1)^{i}\left(\frac{(k+i-1)!((m-1)(n-r+j+1))!}{((m-1)(n-r+j+1)+k+i)!}\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1} \sum_{i=0}^{n-r+j+1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\binom{n-r+j+1}{i} \\
& \times\left(\frac{(k+i-1)!((m-1)(n-r+j+1))!}{((m-1)(n-r+j+1)+k+i)!}\right)(m-1)^{i} \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1} \sum_{i=0}^{n-r+j+1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\binom{n-r+j+1}{i} \\
& \times\left(\frac{1}{(m-1)(n-r+j+1)+1}\right)\left(\frac{1}{\left(\begin{array}{c}
(m-1)(n-r+j+1)+k+i \\
k+i-1 \\
\hline
\end{array}\right)}\right)(m-1)^{i}
\end{aligned}
$$

Now suppose $q=m$.

$$
\begin{aligned}
& \mathrm{E}\left(W_{r:(m, \ldots, m)}^{[k]}\right)=\frac{k(m n+k)!}{(m n)!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k(m n+k)!}{(m n)!}\left(\int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{m-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1} \mathrm{~d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!}\left(\int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(1-p^{m}\right)^{n-r+j+1} \mathrm{~d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!}\left(\int_{0}^{1} p^{m i+k-1} \sum_{j=0}^{r-1} \sum_{i=0}^{n-r+j+1}(-1)^{j+i}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\binom{n-r+j+1}{i} \mathrm{~d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1} \sum_{i=0}^{n-r+j+1}(-1)^{j+i}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\binom{n-r+j+1}{i}\left(\begin{array}{c}
1 \\
0
\end{array} p^{m i+k-1} \mathrm{~d} p\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1} \sum_{i=0}^{n-r+j+1}(-1)^{j+i}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\binom{n-r+j+1}{i} \frac{1}{m i+k} \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{i=0}^{n-r+j+1}(-1)^{i}\binom{n-r+j+1}{i} \frac{1}{m i+k}\right) \\
& =\frac{k(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\begin{array}{c}
\frac{m^{n-r+j+1}(n-r+j+1)!}{n-r+j+1}(m i+k)
\end{array} \prod_{i=0}^{n}\right) \\
& =\frac{(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\frac{m^{n-r+j+1}(n-r+j+1)!}{\prod_{i=1}^{n-r+j+1}(m i+k)}\right) \\
& =\frac{(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\begin{array}{c}
\frac{(n-r+j+1)!}{\prod_{i=1}^{n-r+j+1}(m i+k)}
\end{array}\right) m^{n-r+j+1} \\
& =\frac{(m n+k)!}{(m n)!} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\prod_{i=1}^{n-r+j+1} \frac{m i}{m i+k}\right)
\end{aligned}
$$

Problem 5.

Suppose we draw t balls without replacement from an urn containing m copies of each of n different colored balls. Let V_{r} equal the number of colors which are selected r times. Find $E\left(V_{r}\right)$.

Answer

$$
n \cdot \frac{\binom{m}{r}\binom{m n-m}{t-r}}{\binom{m n}{t}}
$$

Proof

$$
\begin{aligned}
E\left(V_{r}\right) & =E\left(\sum_{j=0}^{n} \mathrm{I}_{\{r\}}\left(X_{j}\right)\right)=\sum_{j=0}^{n} E\left(\mathrm{I}_{\{r\}}\left(X_{j}\right)\right) \\
& =\sum_{j=0}^{n} P\left(X_{j}=r\right) \\
& =\sum_{j=0}^{n} \frac{\binom{m}{r}\binom{m n-m}{t-r}}{\binom{m n}{t}} \\
& =n \cdot \frac{\binom{m}{r}\binom{m n-m}{t-r}}{\binom{m n}{t}}
\end{aligned}
$$

Problem 5.

Show that

$$
\binom{m n}{t}=\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j}\binom{m n-m(i+j)}{t-r(i+j)}\binom{n}{i}\binom{n-i}{j}\binom{m}{r}^{i+j}
$$

and

$$
\begin{equation*}
n\binom{m}{r}\binom{m n-m}{t-r}=\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j}\binom{m n-m(i+j)}{t-r(i+j)}\binom{n}{i}\binom{n-i}{j}\binom{m}{r}^{i+j} \tag{i}
\end{equation*}
$$

Proof

By the law of total probability

$$
1=\sum_{i=0}^{n} P\left(V_{r}=i\right)=\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j} \frac{\binom{n}{i}}{\binom{m n}{t}}\binom{m n-m(i+j)}{t-r(i+j)}\binom{n-i}{j}\binom{m}{r}^{i+j}
$$

from which the first identity follows immediately.

To establish the second identity, we note from Problems 1 and 2 taken together that,

$$
\begin{aligned}
\frac{n}{\binom{m n}{t}}\binom{m}{r}\binom{m n-m}{t-r} & =E\left(V_{r}\right)=\sum_{i=0}^{n} i P\left(V_{r}=i\right) \\
& =\sum_{i=0}^{n} i \frac{\binom{n}{i}\binom{m}{r}^{i}}{\binom{m n}{t}}\left(\sum_{j=0}^{n-i}(-1)^{j}\binom{m n-m(i+j)}{t-r(i+j)}\binom{n-i}{j}\binom{m}{r}^{j}\right) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j} i \frac{\binom{n}{i}}{\binom{m n}{t}}\binom{m n-m(i+j)}{t-r(i+j)}\binom{n-i}{j}\binom{m}{r}^{i+j}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
n\binom{m}{r}\binom{m n-m}{t-r}=\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j}\binom{m n-m(i+j)}{t-r(i+j)}\binom{n}{i}\binom{n-i}{j}\binom{m}{r}^{i+j} \tag{i}
\end{equation*}
$$

Problem 6a.

Suppose we draw n balls without replacement from an urn containing r copies of each of m different colored balls. Let Z equal the number of different colors that are selected in this sample.

$$
P(Z=k)=\frac{m_{(k)}}{(r m)_{(n)}} C(n, k, r)
$$

where

$$
C(n, k, r)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(r j)_{(n)}
$$

$$
\mathrm{E}\left((m-Z)_{(s)}\right)=m_{(s)} \frac{(r(m-s))_{(n)}}{(r m)_{(n)}}
$$

References:

Walton
Korwar
Charalambides, "On a Restricted Occupancy Model and its Applications", Biom. Journal, Vol. 23, no. 6, 1981, pages 601-610.

Problem 6b.

Suppose we draw n balls without replacement from an urn containing r copies of each of m different solid colored balls and s identical striped balls. Let U equal the number of different solid colors that are selected in this sample and let V be the number of different striped balls that are selected in this sample.

$$
P(U=k, V=n-j)=\binom{n}{j} \frac{s_{(n-j)}(r m)_{(j)}}{(r m+s)_{(n)}} G(n, k, r, s)
$$

where
$G(n, k, r, s)=$

$$
\begin{gathered}
\mathrm{E}\left((m-U)_{(\nu)}(V)_{(\tau)}\right)=\frac{m_{(\nu)}(r m-r \nu+s)_{(n)}}{(r m+s)_{(n)}} \frac{n_{(\tau)}(r m-r \nu)_{(\tau)}}{(r m-r \nu+s)_{(\tau)}} \\
\mathrm{E}\left((m-U)_{(\nu)}\right)=\frac{m_{(\nu)}(r m-r \nu+s)_{(n)}}{(r m+s)_{(n)}}
\end{gathered}
$$

References:

Charalambides, "On a Restricted Occupancy Model and its Applications", Biom. Journal, Vol. 23, no. 6, 1981, pages 601-610.

Problem 7.

We have $n+r$ distinguishable urns, each with s distinguishable cells. A cell cannot hold more than ball. Identical balls are randomly distributed (all empty cells equally likely at each turn) until k urns, among the n specified urns, are occupied by at least one ball. Let M equal the number of turns required.

$$
P(M=m)=\frac{s n_{(k)}}{(s n+s r)_{(m)}} C(m-1, k-1, s, r s)
$$

for $m=k, k+1, \ldots$
where

$$
C(m-1, k-1, s, r s)=\frac{1}{(k-1)!} \sum_{j=0}^{k-1}(-1)^{k-j-1}\binom{k-1}{j}(s j+s r)_{(m-1)}
$$

is the non-central C-number (Charalambides, Koutras, "On the Differences of the Generalized Factorials at an Arbitrary Point and Their Combinatorial Applications", Discrete Mathematics, Vol. 47, 1983, pages 183-201.)

Charalambides, Ch. A., "A Unified Derivation of Occupancy and Sequential Occupancy Distributions", Advances in Combinatorial Methods and Applications to Probability and Statistics, N. Balakrishnan (editor), 1997, pages 259-273

$$
\mathrm{E}\left(M^{(j)}\right)=\binom{n-1}{k-1} \sum_{i=0}^{k-1}(-1)^{k-i-1}\binom{k-1}{i} \frac{j!s n(s n+s r+j)_{(j)}}{(s n-s i+j)_{(j+1)}}
$$

Problem 8.

An urn consists of $m=2$ balls of each of s different colors. Balls are drawn without replacement until both balls of some color have been drawn out. Let N equal the number of draws required.

$$
\begin{gathered}
\mathrm{E}(N)=\frac{(2 s)!!}{(2 s-1)!!} \\
\mathrm{E}(N(N+1))=2(2 s+1)
\end{gathered}
$$

Reference:

Blom, Gunnar and Holst, Lars, "Embedding Procedures for Discrete Problems in Probability", Mathematical Scientist, 16, 29-40, 1991.

Problem 9.

Suppose we draw t balls without replacement from an urn containing m copies of each of n different colored balls. Let D_{r} equal the number of colors which are selected exactly r times. The joint descending factorial moment $\mathrm{E}\left(\left(D_{0}\right)_{\left(r_{0}\right)} \cdots\left(D_{t}\right)_{\left(r_{t}\right)}\right)$ is given by

$$
\mathrm{E}\left(\left(D_{0}\right)_{\left(r_{0}\right)} \cdots\left(D_{t}\right)_{\left(r_{t}\right)}\right)=\frac{n_{(R)}\binom{m(n-R)}{t-S}}{\binom{m n}{t}} \prod_{j=0}^{t}\binom{m}{j}^{r_{j}}
$$

where $R=r_{0}+r_{1}+\ldots+r_{t}$ and $S=0 r_{0}+1 r_{1}+\ldots+t r_{t}$. The special case $\mathrm{E}\left(\left(D_{0}\right)_{\left(r_{0}\right)}\right)$ (i.e. $\left.r_{1}=\ldots=r_{t}=0\right)$ simplifies to

$$
\mathrm{E}\left(\left(D_{0}\right)_{\left(r_{0}\right)}\right)=n_{\left(r_{0}\right)} \frac{\left(m\left(n-r_{0}\right)\right)_{(t)}}{(m n)_{(t)}}
$$

in agreement with C. Charalambides, On a Restricted Occupancy Model and its Applications, Biom. Journal 23 (1981), no. 6, 601-610.

Proof

$$
\begin{aligned}
& \mathrm{E}\left(\left(D_{0}\right)_{\left(r_{0}\right)} \cdots\left(D_{t}\right)_{\left(r_{t}\right)}\right)=\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \mathrm{E}\left(\left(Z_{0}\right)_{\left(r_{0}\right)} \cdots\left(Z_{t}\right)_{\left(r_{t}\right)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& \quad=\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \prod_{j=0}^{t} \mathrm{E}\left(\left(Z_{j}\right)_{\left(r_{j}\right)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \prod_{j=0}^{t}\left(\binom{m}{j} \theta \lambda^{j}\right)^{r_{j}}\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& \quad=\left.\frac{\prod_{j=0}^{t}\binom{m}{j}^{r_{j}}}{\binom{m n}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \theta^{R} \lambda^{S}\right)\right|_{\substack{\lambda=0 \\
\theta=0}}
\end{aligned}
$$

$$
\text { where } R=r_{0}+r_{1}+\ldots+r_{t} \text { and } S=0 r_{0}+1 r_{1}+\ldots+t r_{t}
$$

$$
=\left.\frac{\prod_{j=0}^{t}\binom{m}{j}^{r_{j}}}{\binom{m n}{t} t!} \frac{n!}{(n-R)!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{m(n-R)} \lambda^{S}\right)\right|_{\lambda=0}
$$

$$
=\frac{\prod_{j=0}^{t}\binom{m}{j}^{r_{j}}}{\binom{m n}{t} t!} \frac{n!}{(n-R)!}\binom{m(n-R)}{t-S} t!
$$

$$
=\frac{n_{(R)}\binom{m(n-R)}{t-S}}{\binom{m n}{t}} \prod_{j=0}^{t}\binom{m}{j}^{r_{j}}
$$

Method 2

Blom, Gunnar and Holst, Lars, "Embedding Procedures for Discrete Problems in Probability", Mathematical Scientist, 16, 29-40, 1991.

Let $\left(\left(\mathrm{Y}_{1,1}, \ldots, \mathrm{Y}_{1, m_{1}}\right), \ldots,\left(\mathrm{Y}_{i, 1}, \ldots, \mathrm{Y}_{i, m_{i}}\right), \ldots,\left(\mathrm{Y}_{n, 1}, \ldots, \mathrm{Y}_{n, m_{n}}\right)\right)$ be a random sample of size $\mathrm{M}=m_{1}+$ $\ldots+m_{n}$ from the continuous Uniform $(0,1)$ distribution.

Let $\mathrm{Y}_{(1)}<\mathrm{Y}_{(2)}<\ldots<\mathrm{Y}_{(\mathrm{M})}$ be the ordered values of $\mathrm{Y}_{i, j}$.

We will say that $\mathrm{Y}_{(j)}$ is from the $i^{\text {th }}$ group provided $\mathrm{Y}_{(j)} \in\left(\mathrm{Y}_{i, 1}, \ldots, \mathrm{Y}_{i, m_{i}}\right)$.
For $1 \leq t \leq \mathrm{M}$, let $\mathrm{N}_{i, t}$ equal the number of values among $\mathrm{Y}_{(1)}<\ldots<\mathrm{Y}_{(t)}$ which are from the $i^{t h}$ group.

Now consider drawing objects one by one at random and without replacement from an urn initially containing m_{i} objects of color $i, i=1, \ldots, n$.

For $1 \leq t \leq \mathrm{M}$, let $\mathrm{C}_{i, t}$ equal the number of objects of color i drawn in the first t draws from this urn.
"Clearly" for all $1 \leq t \leq \mathrm{M}$,

$$
\left(\mathrm{N}_{1, t}, \ldots, \mathrm{~N}_{n, t}\right) \stackrel{\underline{d}}{=}\left(\mathrm{C}_{1, t}, \ldots, \mathrm{C}_{n, t}\right)
$$

When q_{i} objects of color i have been drawn (or equivalently when q_{i} values from the $i^{\text {th }}$ group of uniform variates $\left(\mathrm{Y}_{i, 1}, \ldots, \mathrm{Y}_{i, m_{i}}\right)$ have appeared in the list $\left.\mathrm{Y}_{(1)}<\mathrm{Y}_{(2)}<\ldots<\mathrm{Y}_{(\mathrm{m})}\right)$ we will say this color (or group) has reached its quota.

Let $\mathbb{C}\left(k ; q_{1}, \ldots, q_{n}\right)=\mathbb{C}_{k}$ represent the draw (index) when exactly k non-specified colors (groups) reach their quota.

Our goal is to find a formula for $\mathrm{E}\left(\mathbb{C}_{k}\right)$.

Define $\mathrm{Y}_{(0)}=0$. We note that

$$
\mathbf{Y}_{\left(\mathbb{C}_{k}\right)}=\sum_{j=1}^{\mathbb{C}_{k}} \mathbf{D}_{j}
$$

where $\mathrm{D}_{j}=\mathrm{Y}_{(j)}-\mathrm{Y}_{(j-1)}$. Furthermore "it is well know" that $\mathrm{D}_{1}, \ldots, \mathrm{D}_{n}$ are "exchangeable" random variables following a Beta distribution with parameters 1 and $\mathbf{M}=m_{1}+\ldots+m_{n}$.

That is the density function $\mathrm{f}(y)$ of D_{j} is

$$
\mathrm{f}(y)=\mathrm{M}(1-\mathrm{y})^{\mathrm{M}-1}
$$

Now let $\mathrm{Y}_{(i, 1)}<\mathrm{Y}_{(i, 2)}<\ldots<\mathrm{Y}_{\left(i, m_{i}\right)}$ be the ordered values of the iid Uniform $(0,1)$ variates $\left(\mathrm{Y}_{i, 1}, \ldots, \mathrm{Y}_{i, m_{i}}\right)$.

It follows that
$\mathrm{Y}_{\left(\mathbb{C}_{k}\right)}=k^{\text {th }}$ largest value in the set of independent variates $\left\{\mathrm{Y}_{\left(1, q_{1}\right)}, \mathrm{Y}_{\left(2, q_{2}\right)}, \ldots, \mathrm{Y}_{\left(n, q_{n}\right)}\right\}$.

However "it is well know" that the $j^{\text {th }}$ largest value from a set of n iid $\operatorname{Uniform}(0,1)$ variates follows a Beta distribution with parameters q_{j} and $m_{j}-q_{j}+1$.

That is the density function $\mathrm{f}(y)$ of $\mathrm{Y}_{\left(j, q_{j}\right)}$ is

$$
\mathrm{f}(y)=\frac{m_{j}!}{\left(q_{j}-1\right)!\left(m_{j}-q_{j}\right)!} y^{q_{j}-1}(1-y)^{m_{j}-q_{j}}
$$

Finally "we can show" that \mathbb{C}_{k} is a "stopping time". Hence
$\mathrm{E}\left(\mathrm{Y}_{\left(\mathbb{C}_{k}\right)}\right)$
$=\mathrm{E}\left(\sum_{j=1}^{\mathbb{C}_{k}} \mathrm{D}_{j}\right)$
$=\mathrm{E}\left(\mathbb{C}_{k}\right) \cdot \mathrm{E}\left(\mathrm{D}_{1}\right)$
$=\mathrm{E}\left(\mathbb{C}_{k}\right) \cdot \frac{1}{\mathrm{M}+1}$

Therefore,

$$
\mathrm{E}\left(\mathbb{C}_{k}\right)=(\mathrm{M}+1) \cdot \mathrm{E}\left(\mathrm{Y}_{\left(\mathbb{C}_{k}\right)}\right)
$$

where
$\mathrm{Y}_{\left(\mathbb{C}_{k}\right)}$ is the $k^{\text {th }}$ largest value in the set of independent Beta variates $\left\{\mathrm{Y}_{\left(1, q_{1}\right)}, \mathrm{Y}_{\left(2, q_{2}\right)}, \ldots, \mathrm{Y}_{\left(n, q_{n}\right)}\right\}$
where $\mathrm{Y}_{\left(i, q_{i}\right)} \sim \operatorname{Beta}$ distribution $\left(q_{j}, m_{j}-q_{j}+1\right)$.

In our particular problem

$$
m_{1}=\ldots=m_{n}=m \text { and } q_{1}=\ldots=q_{n}=1
$$

For the purposes of Theorem 3 which follows we will suppose that Y_{1}, \ldots, Y_{n} are independent binomial random variables parameterized such that for $j=1,2, \ldots, n$

$$
P\left(Y_{j}=y\right)=\binom{m_{j}}{y} p^{y}(1-p)^{m_{j}-y} \quad y=0,1, \ldots, m_{j} .
$$

Suppose an urn contains m_{1} objects of Type $1, \ldots, m_{n}$ objects of Type n and that objects are drawn from this urn without replacement. Let $M=m_{1}+\ldots+m_{n}$. When q_{i} objects of Type i have been drawn we will say Type i has reached its quota.

Let $W_{\left(r: q_{1}, \ldots, q_{n}\right)}\left(m_{1}, \ldots, m_{n} ; n\right) \equiv W_{r: Q}$ represent the waiting time until exactly r different types have reached their quota.

Let $E\left(W_{r: Q}^{[k]}\right)$ represent the $k^{\text {th }}$ ascending moment of $W_{r: Q}$. That is,

$$
E\left(W_{r: Q}^{[k]}\right)=E\left(\left(W_{r: Q}+0\right)\left(W_{r: Q}+1\right) \cdots\left(W_{r: Q}+k-1\right)\right)
$$

Theorem 3.

$$
E\left(W_{r: Q}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right)
$$

where
(1) $\mathbb{A}_{Q: r}$ is the event that at least $n-r+1$ of the (independent) events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur
(2) \mathcal{A}_{j} is the event that $Y_{j}<q_{j}$.
$P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right)=P\left(\right.$ at least $n-r+1$ of the events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur $)$
$=P\left(\right.$ at least $n-r+1$ of the $\left.Y_{j}<q_{j}\right)$
$=\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r} \mathbb{S}_{n-r+j+1}$

$$
\begin{aligned}
& =\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(P\left(Y_{j}<q\right)\right)^{n-r+j+1} \\
& =\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1} \\
& =\sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1}
\end{aligned}
$$

$$
\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p
$$

$$
=\int_{0}^{1} p^{k-1} \sum_{j=0}^{r-1}(-1)^{j}\binom{n-r+j}{n-r}\binom{n}{n-r+j+1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n-r+j+1} \mathrm{~d} p
$$

Suppose $r=1$.
$\int_{0}^{1} p^{k-1}\left(\sum_{y=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n} \mathrm{~d} p$

If $q=1$

$$
\begin{aligned}
& \int_{0}^{1} p^{k-1}\left(\binom{m}{0} p^{0}(1-p)^{m-0}\right)^{n} \mathrm{~d} p \\
& =\int_{0}^{1} p^{k-1}(1-p)^{m n} \mathrm{~d} p \\
& =\sum_{j=0}^{m n}(-1)^{j}\binom{m n}{j} \int_{0}^{1} p^{k-1+j} \mathrm{~d} p \\
& =\sum_{j=0}^{m n}(-1)^{j}\binom{m n}{j}\left(\frac{1}{k+j}\right)
\end{aligned}
$$

$$
=\frac{k}{\binom{m+k}{m n}} \quad \text { using Gould's identity (1.41) }
$$

If $q=2$

$$
\left.\begin{array}{l}
\int_{0}^{1} p^{k-1}\left(\sum_{y=0}^{1}\binom{m}{y} p^{y}(1-p)^{m-y}\right)^{n} \mathrm{~d} p \\
=\int_{0}^{1} p^{k-1}\left(\binom{m}{0} p^{0}(1-p)^{m}+\binom{m}{1} p^{1}(1-p)^{m-1}\right)^{n} \mathrm{~d} p \\
=\int_{0}^{1} p^{k-1}\left((1-p)^{m}+m p(1-p)^{m-1}\right)^{n} \mathrm{~d} p \\
=\int_{0}^{1} p^{k-1}(1-p)^{m-1}(1+(m-1) p)^{n} \mathrm{~d} p \\
=\sum_{j=0}^{n}\binom{n}{j}(m-1)^{j} \int_{0}^{1} p^{k+j-1}(1-p)^{m-1} \mathrm{~d} p \\
=\sum_{j=0}^{n}\binom{n}{j}(m-1)^{j} \frac{(k+j-1)!(m-1)!}{(k+j+m-1)!} \\
\left.=\frac{1}{m} \sum_{j=0}^{n}(m-1)^{j} \frac{\binom{n}{j}}{(m+k+j-1}\right) \\
m
\end{array}\right)
$$

For the special case $k=1$, this simplifies to

$$
\begin{aligned}
& \frac{1}{m} \sum_{j=0}^{n}(m-1)^{j} \frac{\binom{n}{j}}{\binom{m+j}{m}} \\
& =\frac{1}{m\binom{m+n}{m}} \sum_{j=0}^{n}(m-1)^{j}\binom{m+n}{m+j} \\
& =
\end{aligned}
$$

However, it is well known that for nonnegative integers a and b,

$$
\int_{0}^{1} p^{a}(1-p)^{b} \mathrm{~d} p=\frac{a!b!}{(a+b+1)!}
$$

$P\left(Y_{j}<q\right)=\sum_{k=0}^{q-1}\binom{m}{y} p^{y}(1-p)^{m-y}$
$\mathbb{S}_{n-r+j+1}= \begin{cases}\binom{n}{n-r+j+1}\left(P\left(Y_{j}<q\right)\right)^{n-r+j+1} & 1 \leq n-r+j+1 \leq n \\ 1 & n-r+j+1=0\end{cases}$
$P\left(\mathbb{H}_{\geq m}\right)=\sum_{j=0}^{n-m}(-1)^{j}\binom{m-1+j}{m-1} \mathbb{S}_{m+j}$

Suppose $A_{1}, A_{2}, \ldots, A_{n}$ are sets within a universal set Ω. Define :

$$
\mathbb{H}_{\geq m}=\left\{x \in \Omega \mid x \text { is an element of } \underline{\text { at least }} m \text { of the } n \text { sets } A_{1}, A_{2}, \ldots, A_{n}\right\}
$$

Define

$$
\mathbb{S}_{k}= \begin{cases}\sum_{\left(j_{1}, \ldots, j_{k}\right) \varepsilon \mathbb{C}_{k}} P\left(A_{j_{1}} \cap \cdots \cap A_{j_{k}}\right) & 1 \leq k \leq n \\ 1 & k=0\end{cases}
$$

where \mathbb{C}_{k} is the set of all samples of size k drawn without replacement from $\{1,2, \ldots, n\}$, where the order of sampling is not considered important. Then,
$P\left(\mathbb{H}_{\geq m}\right)=$

$$
\begin{aligned}
& \binom{m-1}{m-1} \mathbb{S}_{m}-\binom{m}{m-1} \mathbb{S}_{m+1}+\ldots+(-1)^{k-m}\binom{k-1}{m-1} \mathbb{S}_{k}+\ldots+(-1)^{n-m}\binom{n-1}{m-1} \mathbb{S}_{n} . \\
& =\sum_{j=0}^{n-m}(-1)^{j}\binom{m-1+j}{m-1} \mathbb{S}_{m+j}
\end{aligned}
$$

Sampling Without Replacement Model or Grouped Fermi-Dirac Allocation Model

Problem 3.

Define \mathbb{S}^{n} to be the product space $\left\{0,1, \ldots, m_{1}\right\} \times \cdots \times\left\{0,1, \ldots, m_{n}\right\}$ and let \mathbb{S}_{t}^{n} be the set of all vectors $\left(s_{1}, \ldots, s_{n}\right)$ in \mathbb{S}^{n} such that $s_{1}+\ldots+s_{n}=t$.

Suppose that $\left(X_{1}, \ldots, X_{n}\right)$ is a multivariate hypergeometric random vector. That is, for all $\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{S}_{t}^{n}$,

$$
P\left(X_{1}=s_{1}, \ldots, X_{n}=s_{n}\right)=\frac{\binom{m_{1}}{s_{1}} \cdots\binom{m_{n}}{s_{n}}}{\binom{M}{t}}
$$

where $M=m_{1}+\ldots+m_{n}$ and $t=s_{1}+\ldots+s_{n}$.

For the purposes of Theorems 1 and 2 which follow we we will suppose that Y_{1}, \ldots, Y_{n} are independent binomial random variables parameterized such that for $j=1,2, \ldots, n$

$$
P\left(Y_{j}=y\right)=\binom{m_{j}}{y}\left(\frac{\theta}{\theta+1}\right)^{y}\left(1-\frac{\theta}{\theta+1}\right)^{m_{j}-y} \quad y=0,1, \ldots, m_{j} .
$$

Theorem 1.

$$
E_{t}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)=\left.\frac{1}{\binom{M}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{M} E\left(g\left(Y_{1}, \ldots, Y_{n}\right)\right)\right)\right|_{\theta=0}
$$

where the t in $E_{t}(\cdot)$ is used to denote that $X_{1}+\ldots+X_{n}=t$.

Theorem 2.

Let $\mathcal{A} \subset \mathbb{S}^{n}$ and define $\mathcal{A}_{t}=\mathcal{A} \cap \mathbb{S}_{t}^{n}$. Then for $t \geq 0$,

$$
P\left(\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{A}_{t}\right)=\left.\frac{1}{\binom{M}{t} t!} \frac{d^{t}}{d \theta^{t}}\left((1+\theta)^{M} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathcal{A}\right)\right)\right|_{\theta=0}
$$

For the purposes of Theorem 3 which follows we will suppose that Y_{1}, \ldots, Y_{n} are independent binomial random variables parameterized such that for $j=1,2, \ldots, n$

$$
P\left(Y_{j}=y\right)=\binom{m_{j}}{y} p^{y}(1-p)^{m_{j}-y} \quad y=0,1, \ldots, m_{j} .
$$

Suppose an urn contains m_{1} objects of Type $1, \ldots, m_{n}$ objects of Type n and that objects are drawn from this urn without replacement. Let $M=m_{1}+\ldots+m_{n}$. When q_{i} objects of Type i have been drawn we will say Type i has reached its quota.

Let $W_{\left(r: q_{1}, \ldots, q_{n}\right)}\left(m_{1}, \ldots, m_{n} ; n\right) \equiv W_{r: Q}$ represent the waiting time until exactly r different types have reached their quota.

Let $E\left(W_{r: Q}^{[k]}\right)$ represent the $k^{t h}$ ascending moment of $W_{r: Q}$. That is,

$$
E\left(W_{r: Q}^{[k]}\right)=E\left(\left(W_{r: Q}+0\right)\left(W_{r: Q}+1\right) \cdots\left(W_{r: Q}+k-1\right)\right)
$$

Theorem 3.

$$
E\left(W_{r: Q}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{A}_{Q: r}\right) \mathrm{d} p\right)
$$

and

$$
E\left(W_{r: Q}^{[k]}-W_{r-1: Q}^{[k]}\right)=\frac{k(M+k)!}{M!}\left(\int_{0}^{1} p^{k-1} P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{B}_{Q: r}\right) \mathrm{d} p\right)
$$

where
(1) $\mathbb{A}_{Q: r}$ is the event that at least $n-r+1$ of the (independent) events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur
$\mathbb{B}_{Q: r}$ is the event that exactly $n-r+1$ of the (independent) events $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ occur
(2) \mathcal{A}_{j} is the event that $Y_{j}<q_{j}$.

Problem 1.

(a) Suppose we draw t balls without replacement from an urn containing m copies of each of n different colored balls. The probability that exactly v colors are selected exactly r times equals

$$
\frac{1}{\binom{m n}{t}} \sum_{j=v}^{n}(-1)^{j-v}\binom{m n-m j}{t-r j}\binom{j}{v}\binom{n}{j}\binom{m}{r}^{j}
$$

provided $t \in\{r v, \ldots, r n\}$.

References

The special case of $v=0$ and $r=0$ is equation 6.1 of Charalambides, "A New Kind of Numbers Appearing in the n-Fold Convolution of Truncated Binomial and Negative Binomial Distributions", SIAM Journal of Applied Mathematics, Vol 33, No. 2, September 1977, pages 279-288. Charalambides's expresses his solution in the form

$$
\frac{n!}{(n m)_{(t)}} \mathrm{C}(t, n, m)
$$

where $\mathrm{C}(t, n, m)$ are the C-numbers defined by

$$
\mathrm{C}(t, n, m)=\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(m j)_{(t)}
$$

(b) The probability that at least v colors are selected exactly r times equals

$$
\frac{1}{\binom{m n}{t}} \sum_{j=v}^{n}(-1)^{j-v}\binom{m n-m j}{t-r j}\binom{j-1}{v-1}\binom{n}{j}\binom{m}{r}^{j}
$$

provided $t \in\{r v, \ldots, r n\}$.
(c) The expected number of colors that are drawn exactly r times equals

$$
\frac{n\binom{m}{r}\binom{m n-m}{t-r}}{\binom{m n}{t}}
$$

Problem 2.

Suppose we continue to draw balls without replacement from an urn containing m copies of each of n different colored balls.
(a) The probability that w draws will be required to secure at least one ball of every color equals

$$
\frac{n!m}{(n m)_{w}} \mathrm{C}(w-1, n-1, m)
$$

References

This result is equation 6.2 of Charalambides, "A New Kind of Numbers Appearing in the n-Fold Convolution of Truncated Binomial and Negative Binomial Distributions", SIAM Journal of Applied Mathematics, Vol 33, No. 2, September 1977, pages 279-288.
(b) The probability that w draws will be required to secure at least two balls of every color equals

$$
\frac{n!m_{(2)}(w-1)^{2}}{(m n)_{(w)}} \sum_{j=1}^{n-1}(-1)^{j-1} m^{j}\binom{w-2}{j} C(w-j-2, n-j-1, m)
$$

Note
The result in 2(b) can be derived from 2(a) by an inclusion-exclusion argument and the waiting time to secure at least three balls of every color could be derived from 2(b) by the same inclusion-exclusion argument. Unfortunately continuing in this way does not seem to lead to a succinct formula for the waiting time to secure at least k balls of every color.

The probability that w draws will be required to secure k balls of every color can be expressed in terms of the Generalized C-Numbers (Equation 3.13, Charalambides, "The Generalized Stirling and C numbers", Sankhyā, Series A,

Vol. 36, Pt. 4, 1974, pp. 419-436), but there is no succinct formula for the generalized C-numbers, even though many properties and applications of these numbers are well known.
(c) The $k^{\text {th }}$ ascending factorial moment of the number of draws required to secure r of the n different colored balls equals

$$
\frac{(m n)!}{(m n+k)!} \sum_{j=1}^{r}(-1)^{j-1} \frac{\binom{n-r+j-1}{n-r}\binom{n}{n-r+j}}{\binom{m(n-r+j)+k}{k}}
$$

The special case $k=1$ and $r=n$ simplifies to

$$
1+n m\left(1-\prod_{j=1}^{n-1} \frac{m j}{m j+1}\right)
$$

We can compare this result with its well known formula with replacement analog

$$
n\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}\right)
$$

for the expected number of draws required to secure all n different colored balls when sampling with replacement from an urn with n different colored balls.

Problem 3.

(a) Suppose we draw n balls without replacement from an urn containing r copies of each of m different solid colored balls and s identical striped balls. Let U equal the number of different solid colors that are selected in this sample and let V be the number of different striped balls that are selected in this sample.

$$
P(U=k, V=n-j)=\binom{n}{j} \frac{s_{(n-j)}(r m)_{(j)}}{(r m+s)_{(n)}} G(n, k, r, s)
$$

where $G(n, k, r, s)$ are the Gould-Hopper numbers.
(b)

$$
\mathrm{E}\left((m-U)_{(\nu)}(V)_{(\tau)}\right)=\frac{m_{(\nu)}(r m-r \nu+s)_{(n)}}{(r m+s)_{(n)}} \frac{n_{(\tau)}(r m-r \nu)_{(\tau)}}{(r m-r \nu+s)_{(\tau)}}
$$

(c)

$$
\mathrm{E}\left((m-U)_{(\nu)}\right)=\frac{m_{(\nu)}(r m-r \nu+s)_{(n)}}{(r m+s)_{(n)}}
$$

References

Charalambides, "On a Restricted Occupancy Model and its Applications", Biom. Journal, Vol. 23, no. 6, 1981, pages 601-610.

Problem 4.

We have $n+r$ distinguishable urns, each with s distinguishable cells. A cell cannot hold more than ball. Identical balls are randomly distributed (all empty cells equally likely at each turn) until k urns, among the n specified urns, are occupied by at least one ball. Let M equal the number of turns required.
(a)

$$
P(M=m)=\frac{s n_{(k)}}{(s n+s r)_{(m)}} C(m-1, k-1, s, r s)
$$

for $m=k, k+1, \ldots$
where

$$
C(m-1, k-1, s, r s)=\frac{1}{(k-1)!} \sum_{j=0}^{k-1}(-1)^{k-j-1}\binom{k-1}{j}(s j+s r)_{(m-1)}
$$

is the non-central C-number (Charalambides, Koutras, "On the Differences of the Generalized Factorials at an Arbitrary Point and Their Combinatorial Applications", Discrete Mathematics, Vol. 47, 1983, pages 183-201.)

References

Charalambides, Ch. A., "A Unified Derivation of Occupancy and Sequential Occupancy Distributions", Advances in Combinatorial Methods and Applications to Probability and Statistics, N. Balakrishnan (editor), 1997, pages 259-273
(b)

$$
\mathrm{E}\left(M^{(j)}\right)=\binom{n-1}{k-1} \sum_{i=0}^{k-1}(-1)^{k-i-1}\binom{k-1}{i} \frac{j!s n(s n+s r+j)_{(j)}}{(s n-s i+j)_{(j+1)}}
$$

References

Charalambides, Ch. A., "A Unified Derivation of Occupancy and Sequential Occupancy Distributions", Advances in Combinatorial Methods and Applications to Probability and Statistics, N. Balakrishnan (editor), 1997, pages 259-273

Problem 5.

The $k^{\text {th }}$ ascending factorial moment of the number of draws required to draw out all m copies of any color of ball when sampling without replacement from an urn containing m copies of each of n different colored balls equals

$$
\frac{(m n+k)!}{(m n)!} \prod_{j=1}^{n}\left(\frac{m j}{m j+k}\right)
$$

References

The two special cases $m=2, k=1$ and $m=2, k=2$ are given in Blom, Gunnar and Holst, Lars, "Embedding Procedures for Discrete Problems in Probability", Mathematical Scientist, 16, 29-40, 1991.

Example 7

Suppose we draw n balls without replacement from an urn containing r copies of each of m different solid colored balls and s identical striped balls. Let U equal the number of different solid colors that are selected in this sample and let V be the number of striped balls that are selected in this sample.

$$
\begin{equation*}
P(U=k, V=n-j)=\binom{n}{j} \frac{s_{(n-j)}(r m)_{(j)}}{(r m+s)_{(n)}} G(n, k, r, s) \tag{a}
\end{equation*}
$$

where $G(n, k, r, s)$ are the Gould-Hopper numbers.

$$
G(n, k, r, s)=\frac{n!}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\binom{r j+s}{n}
$$

Proof

$P(U=k, V=n-j)=P\left(C_{0}=m-k, 0 D_{0}+1 D_{1}+\ldots+t D_{t}=n-j\right)$

Suppose an urn containins m copies of each of n different colored solid balls and s copies of each of $r=1$ different colored striped balls.

The number of ways to select t balls without replacement from this urn and get a sample with k of the n solid colors and a total of $t-j$ striped balls equals

$$
\binom{s}{t-j}\binom{n}{k} \frac{k!}{j!} C(j, k, m)
$$

where the C-numbers where defined earlier by

$$
\frac{k!}{j!} C(j, k, m)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}\binom{i m}{j}
$$

Charalambides [] considers this problem. There is a misprint where he uses $C(j, k, s)$ instead of $C(j, k, m)$.

Proof

In the notation of Theorem 6 with $r=1$, the problem asks us to find $\binom{m n+s}{t} P\left(C_{0}=n-k, Y_{1}=t-j\right)$. By Theorem 6

$$
\begin{aligned}
& P\left(C_{0}=n-k, Y_{1}=t-j\right) \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} P\left(W_{0}=n-k, Z_{1}=t-j\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}}
\end{aligned}
$$

where $W_{0} \sim \operatorname{Poisson}(\theta)$ and $Z_{1} \sim \operatorname{Binomial}\left(s, \frac{\lambda}{1+\lambda}\right)$

$$
\begin{aligned}
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} \frac{e^{-\theta} \theta^{n-k}}{(n-k)!}\binom{s}{t-j}\left(\frac{\lambda}{1+\lambda}\right)^{t-j}\left(\frac{1}{1+\lambda}\right)^{s-(t-j)}\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{\binom{s}{t-j}}{\binom{(n n+s}{t} t!(n-k)!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta\left((1+\lambda)^{m}-1\right)} \theta^{n-k} \lambda^{t-j}\right)\right|_{\substack{\lambda=0 \\
\theta=0}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{\binom{s}{t-j}}{\binom{m n+s}{t} t!(n-k)!} \frac{d^{t}}{d \lambda^{t}}\left(\left((1+\lambda)^{m}-1\right)^{n-(n-k)} \frac{n!}{(n-(n-k))!} \lambda^{t-j}\right)\right|_{\lambda=0} \\
& =\left.\frac{\binom{s}{t-j}}{\binom{m n+s}{t} t!(n-k)!} \frac{n!}{k!} \frac{d^{t}}{d \lambda^{t}}\left(\left((1+\lambda)^{m}-1\right)^{k} \lambda^{t-j}\right)\right|_{\lambda=0} \\
& =\left.\frac{\binom{s}{t-j}\binom{n}{k}}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left(\left((1+\lambda)^{m}-1\right)^{k} \lambda^{t-j}\right)\right|_{\lambda=0} \\
& =\left.\frac{\binom{s}{t-j}\binom{n}{k}}{\binom{m+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left(\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}(1+\lambda)^{i m} \lambda^{t-j}\right)\right|_{\lambda=0} \\
& =\frac{\binom{s}{t-j}\binom{n}{k}}{\binom{m n+s}{t} t!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}\binom{i m}{t-(t-j)} t! \\
& =\frac{\binom{s}{t-j}\binom{n}{k}}{\binom{m n+s}{t}} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}\binom{i m}{j}
\end{aligned}
$$

Therefore,
$\binom{m n+s}{t} P(U=k, V=n-j)=\binom{s}{t-j}\binom{n}{k} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}\binom{i m}{j}$.

Example

Suppose we draw t balls without replacement from an urn containing m copies of each of n different solid colored balls and s identical striped balls.

$$
\mathrm{E}\left(\left(C_{0}\right)_{(\nu)}\left(Y_{1}\right)_{(\tau)}\right)=\frac{s_{(\tau)} n_{(\nu)}(s+m(n-v)-r)_{(t-r)}}{(m n+s)_{(t)} t_{(\tau)}}
$$

Proof

$$
\begin{aligned}
& \mathrm{E}\left(\left(C_{0}\right)_{(\nu)}\left(Y_{1}\right)_{(\tau)}\right)= \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} \mathrm{E}\left(\left(W_{0}\right)_{(\nu)}\left(Z_{1}\right)_{(\tau)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t}!!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} \mathrm{E}\left(\left(W_{0}\right)_{(\nu)}\right) \mathrm{E}\left(\left(Z_{1}\right)_{(\tau)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}}\left(\theta^{\nu}\right)\left(\left(\frac{\lambda}{1+\lambda}\right)^{\tau} s_{(\tau)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{s_{(\tau)}}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s}\left(\frac{\lambda}{1+\lambda}\right)^{\tau} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \theta^{\nu}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{s_{(\tau)}^{n!}(n-v)!}{\binom{m n+s}{t}!!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s+m(n-v)-\tau} \lambda^{\tau}\right)\right|_{\lambda=0} \\
& =\frac{s_{(\tau)} \frac{n!}{(n-\nu)!}}{\binom{n n+s}{t} t!}(\underset{t-\tau}{s+m(n-v)-\tau}) t! \\
& =\frac{s_{(\tau \tau)}^{n!} \frac{n!}{(m n-v)!}}{\left(\begin{array}{c}
m+s
\end{array}\right)}\binom{s+m(n-v)-\tau}{t-\tau} \\
& =\frac{s_{(\tau)} n_{(\nu)}}{\binom{m n+s}{t}}\binom{s+m(n-v)-\tau}{t-\tau} \\
& =\frac{s_{(\tau)} n_{(\nu)}(s+m(n-v)-\tau)_{(t-\tau)}(t-\tau)!}{(m n+s)_{(t)} t!} \\
& =\frac{s_{(\tau)} n_{(\nu)}(s+m(n-v)-r)_{(t-r)}}{(m n+s)_{(t)} t_{(\tau)}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left(\left(C_{0}\right)_{(\nu)}\right)= \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{\lambda}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} \mathrm{E}\left(\left(W_{0}\right)_{(\nu)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} \theta^{\nu}\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s} \frac{d^{n}}{d \theta^{n}}\left(e^{\theta(1+\lambda)^{m}} \theta^{\nu}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s}(1+\lambda)^{m(n-\nu)} \frac{n!}{(n-\nu)!}\right)\right|_{\lambda=0} \\
& =\left.\frac{\frac{n!}{(n-\nu)!}}{\binom{m n+s)}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s+m(n-v)}\right)\right|_{\lambda=0} \\
& =\frac{\frac{n!}{(n-\nu)!}}{\binom{m n t s)}{t} t!}\left({ }_{t}^{s+m(n-v)}\right) t! \\
& =\frac{\frac{n!}{(n-v)!}}{\binom{m n+s}{t}}\binom{s+m(n-v)}{t} \\
& =\frac{n_{(v)}}{(m n+s)_{(t)}}(s+m(n-v))_{(t)} \\
& \mathrm{E}\left(\left(Y_{1}\right)_{(\tau)}\right)= \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}} \mathrm{E}\left(\left(Z_{1}\right)_{(\tau)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t}!!} \frac{d^{t}}{d \lambda^{t}} \frac{d^{n}}{d \theta^{n}}\left((1+\lambda)^{s} e^{\theta(1+\lambda)^{m}}\left(\left(\frac{\lambda}{1+\lambda}\right)^{\tau} s_{(\tau)}\right)\right)\right|_{\substack{\lambda=0 \\
\theta=0}} \\
& =\left.\frac{1}{\binom{m n+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s}\left(\left(\frac{\lambda}{1+\lambda}\right)^{\tau} s_{(\tau)}\right)(1+\lambda)^{m n}\right)\right|_{\lambda=0} \\
& =\left.\frac{s_{(\tau)}}{\binom{m+s}{t} t!} \frac{d^{t}}{d \lambda^{t}}\left((1+\lambda)^{s-\tau+m n} \lambda^{\tau}\right)\right|_{\lambda=0} \\
& =\frac{s_{(\tau)}}{\binom{m n+s}{t}!!}\binom{s-\tau+m n}{t-\tau} t!
\end{aligned}
$$

$$
=\frac{s_{(\tau)}}{\binom{m n+s}{t}}\binom{s-\tau+m n}{t-\tau}
$$

