Binomial Randomization 3/13/02

Define S™ to be the product space {0,1,...,m;} x --- x {0,1,...,m,} and let S} be the
set of all vectors (sy,...,s,) in S" such that s; + ... +5, =t.

Suppose that (X3,...,X,,) is a multivariate hypergeometric random vector. That is, for
all (sy,...,8,) € S},

P(Xl = S1,..., X, = Sn) — w

(+)

where M =my + ... + myandt =s; +... + s,.

For the purposes of Theorems 1 and 2 which follow we we will suppose that Y7,...,Y,, are
independent binomial random variables parameterized such that for j = 1,2,...,n
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It is well known that in this case Y; + ... + Y, will follow a binomial distribution with
parameters M and 6. Therefore
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Theorem 1.
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where the ¢ in E;( - ) is used to denote that X; + ... + X,, = t.
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Let A C S™and define A; = AN S}. Thenfort¢ > 0,
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Proof.

Apply Theorem 1 with
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For the purposes of Theorem 3 which follows we will suppose that Yi,...,Y, are
independent binomial random variables parameterized such that for j = 1,2,...,n

m;

y >py(1 —p)"Y y=0,1,...,m;.

Py=u - (

Suppose an urn contains m; objectsof Type 1,...,m,, objects of Type n and that objects
are drawn from this urn without replacement. Let M =mq; +... + m,. When g;
objects of Type ¢ have been drawn we will say Type 7 has reached its quota.

Let Wipg,,...q0) (Mm1,...,myin) = Wi represent the waiting time until exactly » different
types have reached their quota.

Let £ (W}:’g) represent the £ ascending moment of W,.q. Thatis,

E(WS%) = E(Weg +0)(Weg + 1)+ (Weg + k= 1))

Theorem 3.
1
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0
where

(1) Ag, isthe event that at least n — r + 1 of the (independent) events A;,..., A,
occur

By, is the event that exactly n — r + 1 of the (independent) events A,,...,A4,
occur

(2) Ajistheeventthat Y; < g;.

Proof

Define N, ....4.)(t) = Ng(t) to be the number of Types that have not reached their quota
after ¢ balls have been drawn out.



Define Ng as the number of events amongst A;,...,.A, that occur.

It follows that
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where

P(N§ >n—r) = P(atleast n — r + 1 types do not obtain their quota|Binomial model)

Therefore,
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where

P(NE =n—r+1) = P(exactly n — r + 1 types do not obtain their quota|Binomial model).
Q

Theorem 4.

Suppose we draw ¢ balls without replacement from an urn initially containing 2, balls of
colorj,j=1,...,n.



Again letting C'; equal the number of times color j is selected, now let D, equal the
number of C's which equal k, k € {0,1,...,t}.

Ifm; =... =m, = m,then

1 dodn

E(\IJ(DU,Dl, ce ,Dt, 0; 0; . )) - (mn)t' d_)\f 4o
‘ !
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where Zy, Z;, ... are independent and Z; ~ Poisson((?)@)@).

Models:

Multivariate Hypergeometric = Grouped Fermi Dirac Distribution, Urns with cells, at
most one ball per cell, balls identical.



Applications

Problem 1.

Suppose we draw t balls without replacement from an urn containing m copies of each of
n different colored balls. Let V,. equal the number of colors which are selected exactly r
times. Find P(V, = v).

Answer

(n) (m ) U n—v
v r
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provided ¢t € {rv,...,rn}.
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It follows from Theorem 2 that
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Let B, represent the event that Y; = . Then by the generalized inclusion-exclusion

principle we have



P((Y1,....Y,) € A)

= P(exactly v of the events By, ..., B,, occur)
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Alternative proof using Theorem 4.

Let Z, ~ Poisson(("”)6A"). Then
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EXTRA

Using Theorem 4,

Let Z; ~ Poisson((?)@)\j). Then
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where C*(m, s,r) = ZZ(Z)
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Is there an expression for the C* ???

Problem 2.

Suppose we draw t balls without replacement from an urn containing m copies of each of
n different colored balls. Find the probability that every color is drawn at least once.

Answer

n!

(nm)tc(t’ n,m)

where C(t,n, m) are the C-numbers defined by
C(t,n,m) n'z n]( > (mg);-

and where we adopt the standard falling factorial notation

(a), = ala — 1)--(a —t + 1) :t!(‘;).
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Proof

The event that every color is drawn at least once is the event that V5 = 0 using the
notation of Problem 1. Therefore, from Problem 1,

Py =0y = DO Sy (mn—m<z‘+0)> (n— 0> (my;

t—0(i +0) i 0

-y 2 o (7))
— (%—n) ;O (1) (T) (?) letting j = n — i

Continuing with this notation we can identify new numbers which we will name the
extended C'-numbers and define by

C(t,n,m,r, U) _ % i (_1)n—v—j (n ; ’U> (mj)t—r(n—j) (t)r(n—j) (Z) (T)n_j
© =0

with the properties that

C(t,n,m,r =0,v=0) =C(t,n,m)

and

Problem 3.

Suppose we continue to draw balls without replacement from an urn containing m copies
of each of n different colored balls until all » colors have been selected at least & times
each. Let W, equal the required waiting time (number of draws). Find the probability that
it takes w draws to get secure one of every color, i.e. P(W; = w). Then find the
probability that it takes w draws to secure two of every color, i.e. P(Wy = w).+

Answer
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Proof

Continuing with the notation leading up to Theorem 3, we let

Wi = W(n:k,u.,k) (m!' .- ,m;n)

and similarly

It follows that

and

Now consider first the case &k = 1.

By Problem 2,
P(W noc ™ w1
( 1= 'lU) - (nm)w (wanam) - (nm)w_l (’LU - 7n7m)
|
= (”Zﬂ;)w (C(w,n,m) — (nm —w+ 1)C(w — 1,n,m))
nlm
= —1,n—-1
(nm)UJC(w ,n ,m)

This last equality can be verified directly. We see that
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n! =y J
_ %< 1y (7;>< (= n)(mi),_)
=l . il Sy (” ; 1) (mm_l)

Now consider first the case k& = 2.

P(Wy = w) = P(Ny(w) = 0) — P(Ny(w — 1) = 0)

o hQ(wanam) hQ(w_ 17nam)

(mn) - ( mn )
w w—1

where we define

s BE (2)-(2)

1t Tn=
E{k m}, E{l

Now take any set A C {(xy,...,2,)| = € {0,1,...},i € {1,...,n}} and define

Then
hQ (w7 n, m) = V(DQ)

with

Dy ={(x1,...,z0)| 214+ ... +zp=w, 2, €{2,....,m},i€{1,...,n}}.

Now define sets
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B = {(wl,...,xn)] Tt ... o, =w, x;=1, z, € {2,...,m},i e {1,

as subsets of universal set ID;. Then,

D, =B/ N---NB/

Therefore,

16
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P(W - ’lU) mn mn
’ ( w ) (w—l)
S (5) (1) haw = jin = g.m)
JR— '7:
(")
S () (1) e == 1n—jm)
=
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(")
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=
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Problem 4.

Suppose we continue to draw balls without replacement from an urn containing m copies
of each of n different colored balls until all n colors have been selected at least & times
each. Let W, equal the required waiting time (number of draws). Find E (1 )and
E(W5,).

Answer
E(W[’f] ) _ (mnt B g i (57) (“‘Zﬂ')
r(l,...,1) ) = (mn)' e (_ ) (m(n—z—ﬁ-j)-ﬁ—k)
Proof

We have from Theorem 3 that

1

/ p" !t P(W,...,Y,) € Ag,)dp
0

sl - K

where
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(1) Ag, isthe event that at least n — r + 1 of the (independent) events A;,..., A,
occur

(2) Ajistheeventthat Y; < g;.

We consider the two special cases, (r = 1,¢q = 1) and (r = 1,q = 2). Inthis first case
we will find the &*"ascending moment while in the later case we will consider only the first
ascending moment.

If we take ¢, = ... = ¢, = q, then by the general inclusion-exclusion principle,

P((Y1,...,Y,) € Ag,) = P(at least n — r + 1 of the events A4,,...,.A, occur)

= P(atleastn —r+ 1oftheY; < q)

r—1 .
i(n—r—+)
= (_1)j ( >Sn—7'+j+1

J=0 e
S () e o
_7 1 n—r+j S~ (m Y(L—p)" o
S o ) E o)
) B n—r+j+1
::_; (nni—:]>(n—r+j+1>(g(Zj)py(l p)m_y)
Therefore,

1

/ p" !t P(W,....Y,) € Ag,)dp

S E )

Now suppose ¢ = 1. Then
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= Mo (f P ) () ()P =)™ ) +J“dp)

0 7=0

r—1 1
k(M+k)! i (n—r+ij n —_ m(n—r+j
= - M! ) Z (_1)]( n——:]) (n—7'+j+1) (()f pk 1(1 - p) ( +j+1)dp)

J=0

r—1
_ R(M+k)! i (n—rtj n (k=D)!(m(n—r+j+1))!
- M! Z (_1)j( n—rj) (n—7'+j+1) ( (k+m(n—7'+j—i1))! )

r—1
_ (mn+k)! J(n—r+j n kl(m(n—r+j+1))!
- (mn)! Z (_1) ( n—rj) (TL—7'+j+1 ) ( (k+m(n—r+j+1))! )

Pt AT
_ (mntk)! Z(_l)]w

(mn)!

=0
_ (mn+k)! " i—1 (ninrfiil)<n:i+‘>
- (mn)! ;(_1)j W

Now suppose r = 1,q = 2,k = 1. Then

1
1 1(mn+1)! _
E(Wl[:(]27~~-72) ) - ((T)’LT;;!) (()f pl ! P((Yi, ,Yvn) S AQl)dp)

OH»—A

e (P9 (Do)

= (mn +1) (()f(l —p)"" Y (1-p+ mp)"dp)
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=<mn+1>(jm-—m“m*>u+wwn—1»%m)

=mm+ni@ym—w<QM—mW“%Q

_ “(n 1y _Am(m-D)!
- (mn + 1) ]:ZO ( j) (m 1) (n(m—1)47+1)!

n (n)
mn+1 J
n(m—1)+1 ¢ <n(m—l)+j+l
J=0 j

)(m— 1)j

Gl jznj (TZLZL_EI) (m—1)’

D

Now suppose r = 1,q = 2.

1
k k(M-+k)! _
E(W1[:(]2,...,2) ) = (z\/; - ((Jf pk ! P((Y1 ,Yn) € AQ:w-)dp)

1 1 n
k(mn+k)! _ m m—
- ((m;;!) fpk 1<Z(y)py(1_p) y) dp
0

y=0

1
= S PP A= ()P

1
k(mn+k)! _ m m—1\"
- ((m;;!) fpk 1((1_]9) +mp(1_p) 1) dp
0
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(mn)!

1
k(mn+k)! _ n(m— n
stk [ = )" (14 p(m — 1))"dp
0

k(mn+k)! < n n(m—
((m;;! : Z:O(])( - 1 (f pk—w 1(1 p) D dp)
‘7:

k(mn+k)! " i [ (k4+j—1)!(n(m—1))!
(mn)! g(])(m_l) ( (n(m—1)+k+j)! )

k(mntk)! <= ( n j [ (k+i=DYn(m-1))!
(mn)! g(])(m_l) ( (n(m—1)+k+j)! )

k 7rm+k < <n> m—1 i
)( )

(mn)' n(m—1) +1 <n m—1) +k+J

Now suppose ¢ = 2.

£

1
k k(mn+k)! _
Ww[:(]Q,...,Q) ) - ((mT;;!) (()f pk ! P((Yla .. ,Yn) € AQZT)dp)

1 o 1 n—r+j+1
k +k)! _ i ( n—r+j Z -
(ZL:LL?L)' : Of pk ! jzo(_l)j(nni—:j) (TL—7':L-]'+1) ( O(ZL)py(l - p)m y) dp
— y=

1 r—1 :
k k)! _ i (n—rti _1\n—r+j+1
L T () () (0= 0 =)

_ k(T)’LTH—k)! =1 1 i n—r+j n
(mn)! ‘]_ZO(_ ) ( n—r ) n—r+j+1

((Jf pk—l ((1 _ p)m +mp(1 — p)m_l)n—7'+j+1dp)

_ k(mn+k)! = 1 J(n—r+j n
- (mn)! Z(_ ) ( n—r ) n—r+j+1

J=0
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1 . n
% (f pk_l(l _ p)(m—l)(n—7'+j+1) (1 + p(m N 1))n—7+]+1dp)

_ k(mn+k)! = 1 J(n—r+j n
— (mn)! ‘]_ZO(_ ) ( n—r ) n—r-+j+1

1=0 0

n—r+j+1 il ; 1 kil (7n—1)(n—7'+j+1)
X > (") m =1 [p (1-p) dp

_ k(TTLTL+I€)' 7§(_1)](7l—7+]) n
— (mn)! 4 ? n—r n—r+j+1
‘7:
n—r+j+1

n—r+j+1 if (k+i—1D)I((m—1)(n—r+j+1))!
X Z;J (" )(m_l)( ((m—l)(n—7'+j+1)+k]+i)! )

- n—r+j+1

o o Y NC G [T Gt

(k+i—1)!((m—1)(n—r+j+1))! i
( ((m=1)(n—r+j+1)+k+i)! )(m_ 1)

_ k(mntk) W 1)/ (nrti n n—r+j+1
— (mn)! Z zZ: (_ ) ( n—r ) n—r+j+1 ( i )

1 1 7
X ((m—l)(n—7'+j+1)+1) (((ml)(nrﬂ‘lﬂwkﬂ) > (’ITL — 1)

k+i

Now suppose ¢ = m

1
E(W7[k]mm ) = k“%ﬁj‘f)' f pk_l P((Yi’ ’Y;L) S AQ7)dp
(m,....m) DI W

1
= i) ( [ P m,...,meAQﬁdp)
0
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= M fp’“*“f(—l)j("*””)( " )<7HZI(”1)py(l—p)’"y>n Wﬂdp\
(mn)! \0 n—r n—r+j+1 = y /

k(mn+k)!

k(mn+k)!

(mn)!

(mn)!

(mn+k)!
(mn)!

(mn+k)!
(mn)!

(mn+k)!
(mn)!

Problem 5.

(mn)!

(mn)!

k(mn+k)!

(mn)!

k(mn+k)!

k(mn+k)!

k(mn+k)!
(mn)!

[
[

r—1

OH»—A

]

_ i
pk 1 ; ) (TL7L7:_])(7L 7+]+1)(1_p )n r+j+ dp

mi+k—1 Z_: " %_ﬁ_l 1 j+i(n—7'+j) n (n—7'+j+1)d
b ) = ( ) n—r n—r+j+1 7 p

g i +j + [ f k-1
j+i (n—r n n—r e
'Z;) (_1) ( n—rj) (TL—7'+j+1) ( ! ) J pmH_ dp
1=

n—r+j+1 " w it 1
J+i (n—r n n—r
;J (_ 1) ( n—rj) (TL—7'+j+1 ) ( i ! ) mi+k

n—r+j+1

S i1
(_1)j(nni—:j)(n—rij—q—l) Z (_1)1(” 7—zw+ )mzl—&-k

1=0

(_1)j (n—7'+j) n m" T (4 1)!
n—r n—r+j+1 n—r+j+1 )
T (mi+k)
i=0

(_ 1)] (n—7'+j) ( n ) m"’”jfl (n—r+47+1)!

n—r n—r+j+1 n—r+j+1

T (mi+k)

i=1

(_ 1)] (7l—7'+j) ( n ) (n—‘7'+j+1)! mn—THitl

n—r n—r+j+1 n-r4j+l
J T (mi+k)
i=1
) ) n—r+j+1
_ 1\ (n—r+J n mi
( 1) ( n—r )(n—7'+j+1) H mi+k
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Suppose we draw t balls without replacement from an urn containing m copies of each of
n different colored balls. Let V,. equal the number of colors which are selected r times.
Find E(V}.).

Answer
OIGED
(")
Proof
E(V,)=FE (Z'{r} (Xj)) =Y E(l(X))
7=0 7=0
= Y P(Xj :7")
=0
NI
2
e 5
("")
Problem 5.
Show that
MY\ SR gy (M= mi ) (ny (n—d fmy it
( t )_1_0 pan (-1) ( t—r(i+7) >(Z)( j )(7’)

By the law of total probability
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(mn —m(i +j)> (n — z) (m)iﬂ'
t—r(i+j) J r
from which the first identity follows immediately.

To establish the second identity, we note from Problems 1 and 2 taken together that,

(sn (m)(mn—m) _ B = ioip(vr 4
() (R (mn =i ) (=i (myd
S (S (TR

t =0
-3 Sl (TR ()

It follows that

Problem 6a.

Suppose we draw n balls without replacement from an urn containing » copies of each of
m different colored balls. Let Z equal the number of different colors that are selected in

this sample.

where
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References:

Walton

Korwar

Charalambides, “On a Restricted Occupancy Model and its Applications”, Biom. Journal,
Vol. 23, no. 6, 1981, pages 601-610.

Problem 6b.

Suppose we draw n balls without replacement from an urn containing » copies of each of
m different solid colored balls and s identical striped balls. Let U equal the number of

different solid colors that are selected in this sample and let V' be the number of different
striped balls that are selected in this sample.

n> Sz ) (Tm)(j)G(n k,r,s)

PU=kV=n—j=["
( J) (] (rm + s)

where

G(”? k? T? S) =

mey(rm —rv + s)(n) nery(rm — rv)(T)

E((m - U)(”)(V)(T)) - (rm+s) (rm —rv+ )
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Charalambides, “On a Restricted Occupancy Model and its Applications”, Biom. Journal,
Vol. 23, no. 6, 1981, pages 601-610.

Problem 7.

We have n + r distinguishable urns, each with s distinguishable cells. A cell cannot hold
more than ball. Identical balls are randomly distributed (all empty cells equally likely at
each turn) until £ urns, among the n specified urns, are occupied by at least one ball. Let
M equal the number of turns required.

S TU(k)
PM=m)=—  Ccm-1,k-1
( m) (S’)’L-i—S?")(m) (m ? 787 TS)

form=Fkk+1,...

where

1SS k1Y,
Cim—1,k—1,s,1s) = = 1)!2(—1) j (sj+ 37“)(m—1)

J=0

is the non-central C'-number (Charalambides, Koutras, “On the Differences of the
Generalized Factorials at an Arbitrary Point and Their Combinatorial Applications”,
Discrete Mathematics, Vol. 47, 1983, pages 183 - 201.)

Charalambides, Ch. A., “A Unified Derivation of Occupancy and Sequential Occupancy
Distributions”, Advances in Combinatorial Methods and Applications to Probability and
Statistics, N. Balakrishnan (editor), 1997, pages 259 - 273

E(MY) = (Z : i)%(_l)k_i_l (k: - 1> jlsn(sn + s+ )

g i (sn — si+ j)(j+1)

Problem 8.
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An urn consists of m = 2 balls of each of s different colors. Balls are drawn without
replacement until both balls of some color have been drawn out. Let NV equal the number
of draws required.

(2s)!

E(N) = (2s — 1)l

E(N(N +1)) = 2(2s + 1)

Reference:

Blom, Gunnar and Holst, Lars, “Embedding Procedures for Discrete Problems in
Probability”, Mathematical Scientist, 16, 29-40, 1991.

Problem 9.

Suppose we draw ¢ balls without replacement from an urn containing m copies of each of
n different colored balls. Let D, equal the number of colors which are selected exactly r

times. The joint descending factorial moment E((DO)( )"'(Dt)(n)) Is given by

0]

E((DO)(TO)"'(Dt)(”)) _ ”(R)((:#ﬁ(?)u

t 7=0

where R=rq+7r +... + r,and S = 0ry + 1r; + ... + tr;. The special case
E((Do)(m)) (i.e.ry = ... = ry = 0) simplifies to

£ (D)) = e

in agreement with C. Charalambides, On a Restricted Occupancy Model and its
Applications, Biom. Journal 23 (1981), no. 6, 601-610.
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Proof

(0000 = (4 (0

A=0
0=0

t
J=0

Lodd" | paay |
= (Y dN dor (e VIE(@))

>

i
L d d" gy ((m> ‘>”
= — OV
(7rzn)t! d)\t d@n (6 g j

ne)” .

— j:O JE—
- (7rzn)t! d)\t d@n

A=0
0=0

(69(1+)\)m QRAS)

A=0
0=0

where R=ro+7r;+... +r,and S =0rg + 1r; + ... +try

¢ T
It

A=0

}ﬁo(a) ) (m(n - R)>t!

("Mt n—R)I\ t—S

_ (") 11 (m>
(mn) j

t
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Method 2

Blom, Gunnar and Holst, Lars, “Embedding Procedures for Discrete Problems in Probability",
Mathematical Scientist, 16, 29-40, 1991.

Let ((Yl,l,. o Yim ) (Yt oo Yim) e oo (Yo, - ,Yn,m”)) be a random sample of size M =m; +
... + m, from the continuous Uniform(0,1) distribution.

Let Y1) < Yo < ... < Yy bethe ordered values of Y ;.

We will say that Y ;) is from the i’ group provided Yi € (YitseesYim,)

For 1 <t <M, let N;; equal the number of values among Y, < ... < Y, which are from the ith
group.

Now consider drawing objects one by one at random and without replacement from an urn initially
containing m; objects of color i, i = 1,...,n.

For1l <t < M, let C;; equal the number of objects of color i drawn in the first t draws from this urn.

“Clearly"forall 1 <t < M,

(Nig - Nag) & (Craan Co).

When q; objects of color i have been drawn (or equivalently when g; values from the i*" group of uniform

variates (Y;1,...,Yim,) have appeared in the list Yo <Y < ... < Y(M>) we will say this color (or
group) has reached its quota.

Let C(k;Qs,---,0,) = Cy represent the draw (index) when exactly k non-specified colors (groups) reach
their quota.

Our goal is to find a formula for E ((Ck).

Define Yoy = 0. We note that

where D; = Y — Y(_;). Furthermore “it is well know" that D;,...,D,, are “exchangeable" random
variables following a Beta distribution with parametersland M =m; + ... + m,.

That is the density function f(y) of D; is

fly) = M(1— y)* .
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Now let Yy < Yo < ... < Y(n) be the ordered values of the iid Uniform(0,1) variates
(Yi,li- .- iYZ.,mr,j)‘

It follows that
Y, = k'™ largest value in the set of independent variates {Y(L(ﬂ), Y(2,4)r - Y(n,qu)}.

However “it is well know" that the j' largest value from a set of n iid Uniform(0,1) variates follows a Beta
distribution with parameters q; and m; — q; + 1.

That is the density function f(y) of Y, is

fly) = m yu—(1 — y)mia,

Finally “we can show" that C;, is a “stopping time". Hence

=g(c) - E(py)
=E(C) - it

Therefore,

E(Cy) = M+ 1) - E(Yeey)
where

Y c,) is the k™ largest value in the set of independent Beta variates {Y(L(ﬂ), Y (2,00) -+ Y(n,q“)}

where Y(; ., ~ Beta distribution (g;, m; —q; + 1).
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In our particular problem

m=...=m,=m and qy=... =Q,=1.
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For the purposes of Theorem 3 which follows we will suppose that Y7,...,Y, are
independent binomial random variables parameterized such that for j = 1,2,...,n

my; 1 mi—
PY;=y)= ( yj>p"(1—p) oy =0,1,...,m;

Suppose an urn contains m; objectsof Type 1,...,m,, objects of Type n and that objects
are drawn from this urn without replacement. Let M =mq; +... + m,. When g;
objects of Type ¢ have been drawn we will say Type 7 has reached its quota.

Let Wipg,,...q0) (Mm1,...,myin) = Wi represent the waiting time until exactly » different
types have reached their quota.

Let £ (W}:’g) represent the k' ascending moment of W,.,. That is,
k
E(ch]g) = BE(Weg+0)(Weg +1)---(Weg + k- 1))

Theorem 3.

1

/ p" !t P(W,...,Y,) € Ag,)dp
0

where

(1) Ag, isthe event that at least n — r + 1 of the (independent) events A;,..., A,
occur

(2) Ajistheeventthat Y; < g;.

P((Y1,...,Y,) € Ag,) = P(at least n — r + 1 of the events A4,,...,.A, occur)

= P(atleastn —r+1ofthe Y; < ¢;)

r—1

B Z%(_l)] (") Snrgjn
‘7:
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J=0

r—1 . ) g1 n—r+j+1
— n—r—+ m _
S, (B

1 r—1 -1 n—r+j+1
= [ ) () (Z (7)p - p)?“‘y) dp
0 J=0 y=0
Suppose r = 1.

(oo

y=0
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= using Gould's identity (1.41)

_ f P p)" (14 (m - 1)p)dp

=2 () m =1y Ofl P (1= p)" dp

_ n i (k+j—1)!(m-1)!
=2 (j)(m -1 (kzkj—km—l)!

For the special case k£ = 1, this simplifies to

15 -1
=0 m

= S (m - 1)

However, it is well known that for nonnegative integers a and b,
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alb!

/ﬁﬂl_m%p:(a+b+n!

[y

P03<®={:(Zﬁﬂl—mmﬂ

=]

Sn—7'+j+1 = (7L_7':L_j+1) (P(Y} < q))n_7.+j+1 1 S n—r+ ] +1 S n
n—r+j+1=0

n—m

P(Hzm) = ;J (_1)j(";;i—1~_j)gm+j

Suppose Aq,A,,...,A, are sets within a universal set 2. Define :

Hs,, = {x € Q| z is an element of at least m of the n sets A;,A,,...,A,}

Define

(S PA,N---NA,) 1<k<n

Sk = (J1y---1 Ji)eCy,
1 k=0

where Cy, is the set of all samples of size k£ drawn without replacement from {1, 2, ...

where the order of sampling is not considered important. Then,

P(Hzm) -

36

7”}7



(m—l)Sm _( m )Sm+1+ L+ (_1)k—m(k‘—1)8k+-u +(_1)n—m(n—1)gnl

m—1 m—1 m—1 m—1

n—m

= ;J (=1 (") Sy

Sampling Without Replacement Model or Grouped Fermi-Dirac Allocation Model

Problem 3.
Define S™ to be the product space {0,1,...,m;} x --- x {0,1,...,m,} and let S} be the
set of all vectors (sy,...,s,) inS" such that s; + ... +5, =t.

Suppose that (X3,...,X,,) is a multivariate hypergeometric random vector. That is, for
all (sy,...,8,) € S},

(a)-- ()
()

P(Xl = S51y..- lXTL = Sn) =

where M =my + ...+ myandt =s; +... + s,.

For the purposes of Theorems 1 and 2 which follow we we will suppose that Y7,...,Y,, are
independent binomial random variables parameterized such that for j = 1,2,...,n

e (MY (N (o T _ |
P(Yj—y)—(y>(9+1> (1 0+1> y=0,1,...,m;.

Theorem 1.

1 g (1+0OME(g(V,....Y,))

E(g(X1,..., X)) = It y
t /)Y _

where the ¢ in E;( - ) is used to denote that X; + ... + X,, = t.

Theorem 2.

Let A C S™and define A; = AN S}. Thenfort¢ > 0,
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t

d y
(M)uﬁ(“ +0)"P((V1,....,) € A)) .

t

P((X1,...,.X,) € Ay) =

For the purposes of Theorem 3 which follows we will suppose that Y7,...,Y, are
independent binomial random variables parameterized such that for j = 1,2,...,n

m;

y >py(1 —p)"Y y=0,1,...,m;.

Py=u - (

Suppose an urn contains m; objectsof Type 1,...,m,, objects of Type n and that objects
are drawn from this urn without replacement. Let M =mq; +... + m,. When g;
objects of Type 7 have been drawn we will say Type 7 has reached its quota.

Let Wipg,,...q0) (Mm1,...,myin) = Wi represent the waiting time until exactly » different
types have reached their quota.

Let £ (W}:’g) represent the k' ascending moment of W,.,. That is,

E(WS%) = E(Weg +0)(Weg + 1)+ (Weg + k= 1))

Theorem 3.

1

/ p" !t P(W,....Y,) € Ag,)dp
0

and

1

/ " P(W,....Y,) € By, )dp
0

(k] (K] k(M +k)!
Bl - W) — M)

where

(1) Ag, isthe event that at least n — r + 1 of the (independent) events A;,..., A,
occur

By, is the event that exactly n — r + 1 of the (independent) events A,,...,A4,
occur
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()

Aj is the event that Y; < g;.

Problem 1.

(@)

(b)

Suppose we draw t balls without replacement from an urn containing m copies of
each of n different colored balls. The probability that exactly v colors are selected
exactly r times equals

a2 v ()G

provided ¢t € {rv,...,rn}.

References

The special case of v = 0 and » = 0 is equation 6.1 of Charalambides, “A New
Kind of Numbers Appearing in the n-Fold Convolution of Truncated Binomial and
Negative Binomial Distributions”, SIAM Journal of Applied Mathematics, Vol 33,
No. 2, September 1977, pages 279-288. Charalambides's expresses his solution in
the form

where C(t,n, m) are the C-numbers defined by

nj .
C(t,n,m) n,Z (> (M)

The probability that at least v colors are selected exactly r times equals

GR i G [ 6}

J=v

provided ¢t € {rv,...,rn}.
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(©)

The expected number of colors that are drawn exactly r times equals

m mn—m
TL( r ) ( t—r )
( mn )

t

Problem 2.

(@)

(b)

Suppose we continue to draw balls without replacement from an urn containing m
copies of each of n different colored balls.

The probability that w draws will be required to secure at least one ball of every
color equals

n!m

Clw—1,n—1,m)

(nm)w

References

This result is equation 6.2 of Charalambides, “A New Kind of Numbers Appearing
in the n-Fold Convolution of Truncated Binomial and Negative Binomial
Distributions”, SIAM Journal of Applied Mathematics, Vol 33, No. 2, September
1977, pages 279-288.

The probability that w draws will be required to secure at least two balls of every
color equals

! -1 2 n-1 ‘ ‘ _
nhmz (w — 1) Z(—1)J‘1mﬂ(w , 2>C(w—j—2,n—j—1,m)

(mn)(w) j=1

Note

The result in 2(b) can be derived from 2(a) by an inclusion-exclusion argument and
the waiting time to secure at least three balls of every color could be derived from
2(b) by the same inclusion-exclusion argument. Unfortunately continuing in this
way does not seem to lead to a succinct formula for the waiting time to secure at
least % balls of every color.

The probability that w draws will be required to secure & balls of every color can

be expressed in terms of the Generalized C-Numbers (Equation 3.13,
Charalambides, “The Generalized Stirling and C' numbers”, Sankhya, Series A,
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Vol. 36, Pt. 4, 1974, pp. 419-436), but there is no succinct formula for the
generalized C-numbers, even though many properties and applications of these
numbers are well known.

(c) The k' ascending factorial moment of the number of draws required to secure r
of the n different colored balls equals
. n—r+j—1 n
(mn)' i(—l)j_l ( n—g' )(n—7'+j)
(mn + k?)' = (m(n—z—ﬁ—])-ﬁ—k)
The special case £ = 1 and » = n simplifies to
n—1 m]
1 1-—
+nm ( jlj[l i+ 1)
We can compare this result with its well known formula with replacement
analog
LN S|
n 1 5 e n
for the expected number of draws required to secure all n different colored balls
when sampling with replacement from an urn with » different colored balls.

Problem 3.

(@) Suppose we draw n balls without replacement from an urn containing r copies of
each of m different solid colored balls and s identical striped balls. Let U equal
the number of different solid colors that are selected in this sample and let V' be the
number of different striped balls that are selected in this sample.

S(n—y (rm);
P(U = k’, V = n—]) = (@)MG(TL,]{?,T,S)
j/) (rm+s)y,
where G(n, k,r, s) are the Gould-Hopper numbers.
(b)
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(©)

mey(rm —rv + s)(n) nery(rm — rv)(T)

E((m - U)(V) (V)(T)) N (Tm‘i's)(n) (Tm — v+ S)(T)

References

Charalambides, “On a Restricted Occupancy Model and its Applications”, Biom.
Journal, Vol. 23, no. 6, 1981, pages 601-610.

Problem 4.

(@)

We have n + r distinguishable urns, each with s distinguishable cells. A cell
cannot hold more than ball. Identical balls are randomly distributed (all empty cells
equally likely at each turn) until k& urns, among the n specified urns, are occupied
by at least one ball. Let M equal the number of turns required.

STk

P(M =m)= Cim—1,k—1,s,rs)

(STL + ST) (m)

form=Fkk+1,...

where

o -1
Cm—1,k—1,s,rs) = (1)t (k j > (85 + 87) (1)

is the non-central C'-number (Charalambides, Koutras, “On the Differences of the
Generalized Factorials at an Arbitrary Point and Their Combinatorial
Applications”, Discrete Mathematics, Vol. 47, 1983, pages 183 - 201.)

References
Charalambides, Ch. A., “A Unified Derivation of Occupancy and Sequential

Occupancy Distributions”, Advances in Combinatorial Methods and Applications
to Probability and Statistics, N. Balakrishnan (editor), 1997, pages 259 - 273
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(b)

. 1\ L » _ lsn(sn + sr+ j)
k—1)% i (s — si+ J) (1)

1=

References

Charalambides, Ch. A., “A Unified Derivation of Occupancy and Sequential
Occupancy Distributions”, Advances in Combinatorial Methods and Applications

to Probability and Statistics, N. Balakrishnan (editor), 1997, pages 259 - 273

Problem 5.

The k' ascending factorial moment of the number of draws required to draw out
all m copies of any color of ball when sampling without replacement from an urn
containing m copies of each of n different colored balls equals

S L)

J=1

References
The two special cases m = 2, k = 1 and m = 2, k£ = 2 are given in Blom,

Gunnar and Holst, Lars, “Embedding Procedures for Discrete Problems in
Probability”, Mathematical Scientist, 16, 29-40, 1991.
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Example 7

Suppose we draw n balls without replacement from an urn containing » copies of each of
m different solid colored balls and s identical striped balls. Let U equal the number of
different solid colors that are selected in this sample and let V' be the number of striped
balls that are selected in this sample.

n> S5 (rm)

G(”? k? T? s)

where G(n, k,r, s) are the Gould-Hopper numbers.

G(n,k,r,s) = Z—fi(—n’“‘j(?) (Tj:zrs>

Proof

PU=kV=n—j)=PCy=m-—£k,0Dy+ 1Dy + ... +tD; =n — j)
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Suppose an urn containins m copies of each of n different colored solid balls and s copies
of each of » = 1 different colored striped balls.

The number of ways to select ¢ balls without replacement from this urn and get a sample
with k of the n solid colors and a total of ¢ — j striped balls equals

(.2 )0 g nm

where the C'-numbers where defined earlier by

fogam- 5o () ()

=0 J

Charalambides [] considers this problem. There is a misprint where he uses C(j, k, s)
instead of C'(j, k, m).

Proof
In the notation of Theorem 6 with » = 1, the problem asks us to find
(" YP(Co =n —k,Y; =t — j). By Theorem 6

t

— ﬁ AL (LN LN P(Wy =n—k, Zy =t — 7))

A=0
0=0

where W, ~ Poisson() and Z; ~ Binomial(s, )

1 d' d s .0 me gk s A N7 1 \s—(t—))
=t e (1 0 25 () () () )

- <()t7<>—k> e g (Mg

A=0
0=0
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- ('ﬂ<)t7<)—k> e (@ =1y s )

A=0

- (771()1572_@1? o (((1 +A)" - 1)’w—j)

A=0

)0 t k —i 1M\ t—j
= E%él(ﬂ? %(Z(—l)k (5)a+xn"x )

A=0

tf]. (" k i im
= Emjgs)ﬂ > (1) (ﬁ)(t—u—j))t!

Therefore,

()P =k V =n—3) = (%) () S (1)) ().

1=0
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Example

Suppose we draw t balls without replacement from an urn containing m copies of each of
n different solid colored balls and s identical striped balls.

S(r) M) (stm(n —v) = 1),

E((Co)y (M) = (mn + ) tr)
Proof
E((Co)y (V)) =
— de_;t% ((1 + )\)‘gee(l“)mE((WO)(y)(Zl)(T))) 20

= ke ((1+)\)560(1+A)mE((WO)(V))E((Zl)(T))) .

= ey g (L )7 (07)((125) "s0)) -

= i (L4 )" (25) i (1" 0))

A=0
0=0

n!

= [ ((1 - A)”’”‘"‘”)‘W)

A=0

n!
5@ =) (s+m(n—v)—T 1
- (m"t*s)t!( t—T )t'

n!
30 =) ( s+m(n—v)—1 )

= (s

t

_ Sm"w) (s+m(n—v)—7—)
- mntJrs) t—1

8N (s+m(n—v)—7);_ (¢—7)!
(mn+s)yt!

S (stm(n—v)—r),_,)
(mn+s) 4yt
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E((Co)(y)) =

1 d d"
(") dAT doT

_1_ d d
(") AT do"

= (m%*)tld)\f ((1

n!

n!

_ (n—v)!

- (mnrJre)t'( t
n!

=) (s+m(n—

- (M) t
TL(,)

1 d d"
(") dAT doT

_1_ d d
(") AT do"

= (m%*)tld)\f ((1

- (mn(ﬁz'Z)ﬂ d)\f ((]—

CARTAEa

(mt' 4 ((1 + )\)ﬁ—m n— 1;)) ‘

((1 n )\)560(1+)\)mE((WO)(y)))

((1 + )\)860(1+)\)m0y)

A=0
0=0

+ )" ("1 07))

A
(4

It

= i ) ix ((1 + )" (14 )" (=) )‘A »

A=0

s+m(n—v) )t'

v) )

7(3 +m(n —v))y,

((1 n )\)560(1+)\)mE((Z1)(T)))

A
(4

(T+ XV ((25) sm))

+ 0" ((555) 50) L+ 2)™) |

+ )\)Ls T+T)’LTL)\7—)

A=0

S(7) (S—T+TTLTL ) t'
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A=0
0=0



sS—T+mn

)
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