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Abstract

In this paper we derive formulas for transposing expected values of general statistics of certain
random combinatorial objects (e.g. Bose-Einstein allocation of balls into urns, Pélya sampling
and random compositions) which have a component structure of dependent random variables
into equivalent expressions depending only on the joint distribution of independent random
variables.

We use our transposition methods to derive results for unrestricted, urn restricted and group
restricted Bose-Einstein allocation of identical balls into a single row of distinct urns where the
urns have been partitioned into distinct groups. In each of these situations our variables are the
number of balls allocated to each group of urns. We derive results for both finite and infinite
allocations. We then extend these results to the case of multiple rows, with or without
individual row total restrictions. We also extend these results to class size distributions where
our variables are the number of groups with a given number of balls (as opposed to the number
of balls in a given group). Finally, we derive transposition results for a discrete-time Pélya urn
stochastic process, which we show is just an alternative description for grouped Bose-Einstein
allocation.
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1 Introduction

1.1 History

In this paper we refer to the general process of re-expressing expectations in terms of
independent random variables as expectation transposition. Particular methods have gone by
specific names in the literature. The method of determining the generating function

Eg(W(Zy, Z,, ..., Zy)) = Z E.(¥(Cy,Cy) ..., Cp))OT

and extracting the desired coefficient of 8 is sometimes referred to as the method of expectation
inversion. In those situations when the component structure distribution can be expressed as a
compound distribution

F(Cyy o) C) = f fo(Zas e Z)F(0)d0 )
0

then it will follow from the rule of iterated expectations, E(X) = E(E(XIY)) (see Casella and
Berger [11]), that

E(W(Cy, ..., Cp)) = LEQ(‘P(Zl, v Zy))f(0)ds.

This approach is referred to as the method of compounding. Finally, the method of determining
functions g and h such that

Eg(W(Zy, ..., Z,)) = foo E(W(rCy, ..., 7C))g(r)h(8)e 0 dr

and then extracting E(LP(Cl, e Cn)) through the inverse Laplace transform operation will be
referred to as the method of transforms.
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The term “expectation inversion” first appeared in Tweedie’s 1965 paper [46] but the method
dates back at least to the 1952 paper of Domb [18]. Domb uses expectation inversion to solve a
problem posed by Schrodinger [39] equivalent to the classical problem of finding the probability
of m cells being occupied if r balls are randomly distributed among n cells. Dwass [20] uses
expectation inversion to give a unified approach to determining the distributions of rank order
statistics. Mohanty [34] devotes a section to the “Dwass Technique” and is a source for other
references. Both Baclawski, Cerasoli, and Rota [5] and Baclawski, Rota, and Billey [6] elaborate
on the application found in Domb [18] and without giving any references to explain why, label
the approach as “Schrodinger’s Method”. Cerasoli [12] and Buoncristiani and Cerasoli [10] use
expectation inversion in the case of multinomial allocation of balls into urns. Shepp and Lloyd
[40] use expectation inversion in problems pertaining to cycle lengths in random permutations.
Arratia and Tavaré [3, 4], Hansen [26, 27, 28], and Watterson [48, 49] use expectation inversion
in @ manner similar to Shepp and Lloyd [40] and greatly extend the potential of expectation
inversion as an enumerative technique. The papers of Arratia and Tavaré [3, 4] refer to
expectation inversion as the “Shepp and Lloyd Method”. We thought that “expectation
inversion” was the most descriptive of the various names to be found in the literature and so we
have followed Tweedie’s terminology in this paper.

The use of the compounding method dates back at least to Skellam [41]. Skellam gives some
earlier references in his paper as well. Mosimann [36] and Gerstenkorn and Jarzebska [23] are
some early references where the compounding method is used in a manner similiar to how it is
used in this paper. We note that the terms compound, contagious and mixture are used
interchangeably in the literature when referring to distributions formed as in (1).

The method of transforms as defined in this paper appeared in Dwass [19] and then was
developed further by Steutel [43]. More recently it has been used by Huillet [33, 32].

1.2 About This Paper

1.2.1 Binomial Coefficients

A word of caution is in order before implementing results in this paper in your favorite computer
algebra system. We have defined binomial coefficients by

X
Zin] integern =2 0,x ER

G)=1"

0 else
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where forall x € R, X[n]» the nt" falling factorial of x, is given by

x(x—1) - (x—-n+1) n=12,..

1 n=0.

While this definition is widely used it is not universal. In particular, the computer algebra systems
WolframAlpha [54] and Maxima [38] both return—2 instead of 0 to the query binomial[—2, —3].
The definition used by these computer programs does have the advantage of preserving the
symmetry identity

~—~
=
—
Il
—
&
—

n X—n

(:3) - (—2 —_%—3)> - (_12) =2

But the definition for binomial coefficients used in this paper has several advantages of its own
as enumerated in Graham, et al.’s Concrete Mathematics [25] and Wilf's generatingfunctionology
[50]. Most importantly, using this definition can simplify indices of summations and can allow
one to circumvent messy situations with an answer broken into a longish list of conditional cases.
So the reader needs to be aware that they will have to redefine the query binomial[a, b] before
using these (and perhaps other) computer algebra systems to implement the results in this paper.

1.2.2 Appendices

This paper includes many theorems and examples. To aid the reader we only include “highlight”
proofs of each in the main body of the paper and relegate the full proofs of each theorem and
example to Appendix A.

The central theme in this paper of relating random combinatorial objects to probability
distributions of independent random variables necessitates the use of several straightforward
but lesser known results from probability theory. We have collected these results in Appendix B
for easy reference for those cases where more than a simple citation is needed.

Finally, in Appendix C, for the readers convenience we have brought together the definitions,
factorial moments, raw moments and distributional properties for each of the probability
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distributions used in this paper.

1.3 Further Work

This is the first of three planned related papers. In our second forthcoming paper we apply
expectation transposition methods to a class of problems which includes sampling from a line or
circle, coverage of a line or circle and success runs (linear, circular for both overlapping and non-
overlapping cases) and we show how all these results relate to grouped Bose-Einstein allocation
models. In our third planned paper we apply expectation transposition methods to the class of
waiting time or quota fulfillment problems in the case of Pélya urn models. The particular waiting
time problems considered in our third paper include inverse sampling, “sooner and later” waiting
time problems and disaster-modified waiting time problems.

2 Grouped Bose-Einstein Allocation

Imagine that we distribute t identical balls into a row of M distinct urns in such a way that all
(M +t—-1
t
belongs to one of n distinct groups where the j* group contains m; urns withmy + ---+m, =

M.

) possible allocations are equally likely to occur. Further suppose that each urn

my urnsin Group1l  m, urnsin Group 2 m,, urns in Group n

(Note: An equivalent alternative formulation is to consider each group as a single urn where the

jt" urn (group) has m; ordered cells, where we allow any number of balls per cell.)

Now let C; equal the number of balls that get distributed into the jt" groupwhere C; + C, + -+ +

C,, = t. In this case the joint probability distribution of (Cy, ..., C,,) is

P(Cl = Cl' ""CTL = CTL)
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f(c1+m1—1> (cn+mn—1> Gttt =t

my — 1 m, —1 my+--+m, =M
(M+t—1) cgef01,..}, j=1,..,n
=< t m] € {1,2, }, ]= 1,...,71
\ 0 else.

(2)

Distributing identical balls into distinguishable urns without restriction such that all possible
allocations are equally likely to occur is referred to as Bose-Einstein allocation. So we can refer
to this model where the distinguishable urns belong to distinguishable groups as a grouped Bose-
Einstein allocation model.

A difficulty in using this joint distribution for involved combinatorial or probability problems is
that the variables Cy, ..., C,, are dependent. Intuitively, problems would be easier to handle if we
could remove this dependence. With that in mind, one might hope that (??) could be related to
the similar looking joint distribution

P(Zy=c¢q1, 0, Zy =Cp)

my+-4+m, =M
(Cl +my; — 1) (Cn + mnl— 1) (1 —p)Mpert-ten ¢ €{01,..}, j=1,.,n

— 1 —
={% ™ T m; €{1,2,..}, j=1,..,n

0 else
(3)

where Z,, -+, Z,, are independent variables with Z; ~ negative binomial(m;, 1 — p). (The symbol
~ is used here as in statistical applications to mean “is distributed as”.) We notice that apart from
a constant factor there are only two differences in these joint distributions. The support of

(€4, ..., Cy) requires ¢; + -+ ¢, =t and the distribution of (Zy,...,Z,) contains the factor
pertten,

3 Expectation Inversion

In Theorem 1, which follows below, we show how we can exploit this close relationship between
these two joint distributions. In particular, this theorem shows how to recast a problem involving
the dependent variables Cj, ..., C, into its equivalent problem involving the independent
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variables 74, ..., Z,. The insight on this theorem is to see that if we take the distribution of
(4, ...,Z,) conditioned on Z; + ---+ Z,, = t, the support of this conditional distribution will
regain the requirement that ¢; + -+ + ¢,, = t. Simultaneously, conditioningonZ; + -+ Z, =t
will remove all traces of the parameter p, including the factor p€1**n, This is not just a lucky
coincidence. One can use standard methods in statistical inference to show that Z; + ---+ Z,, is
a sufficient statistic for the parameter p and it is a result in statistical inference that conditioning
on a sufficient statistic for a parameter necessarily removes that parameter from the resulting
conditional distribution. Finally, the requirement that total probability equals 1 for (Z,, ..., Z,)
conditioned on Z; + -+ Z,, = t and for (Cy, ..., C,,) will necessitate that their constant factors
match up.

3.1 Identical Balls into Distinct Urns

Theorem 1

For P(C; = ¢4, ..., C,, = c,,) defined by (??) and for a general statistic W( ),

E(W(Cy, ..., C))

1 dt 1 \M
_ T g (1 = p) E(W(Z,, ..., Z,)) (4)
t ' p=0

where Z, ..., Z,, are independent, Z; ~ negative binomial(mj, 1- p) and M =my + -+ m,,.

Proof. The proofs of all theorems are placed in Appendix A.

Example 2

Number of marked urns with a given number of balls

Suppose t identical balls are distributed among n + 1 distinguishable urns. The first n urns each
contain m, (distinguishable) cells or compartments and the last urn contains m, (distinguishable)
cells or compartments. There is no limit on the number of the number of balls that can go into
any of the myn + m,, cells. Assume that all possible allocations of the t balls into the m;n + m,

distinguishable cells are equally likely to have occurred.

Let D; equal the number of urns among the first n which are occupied by exactly i balls. Then
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G
+m, +t—
A

> (37

n

]:

X(m1+i—1)j<m1(n—j)+mz+t—ij—1)
i t—ij

and E((Di)[r]), the 7" falling factoring moment of D;, is given by

(i+m1—1)T(m1(n—r)+m2+t—ir—1)
m1_1 t—LT‘ n
(m1n+m2+t—1) [r]-
t

E((DD) =

(Note: With the definition for binomial coefficients we have adopted it is not necessary in the
result for P(D; = d) above to make explicit in the summation those cases in

(ml(n—j)+m2+t—ij—1)
t—ij

where my(n — j) + m, + t — ij — 1 is positive but t — ij is negative and we need this binomial
coefficient to equal 0. With our definition, the binomial coefficient does the work for us.)
Charalambides and Koutras [13] consider this problem in the case i = 0 and Charalambides [14]
considers this problem for general i but only for the case m; = 1.

Proof. (Only an outline of the proof is given here. A detailed proof of each example in this paper

is placed in Appendix A.)

Let C; equal the number of balls that go into the jt" urn. The first result follows directly from
Theorem 1 and the generalized principle of inclusion-exclusion (Theorem 37 in Appendix B) with

Y(Cy, ..., Cy, Cryq) = I(exactly d of (Cy, ..., C,,) equal i),

Z; ~ negative binomial(m;,1 —p),j = 1,..,nand Z,,; ~ negative binomial(m,, 1 — p).
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Throughout this paper we use the notation

_ (1 eventA occurs
1(A) = {0 else.

The second result also follows from Theorem 1 with

W(Cy, s Cp Cpan) = (I(C = D + -+ 1(C = D), = D)y

on applying the formula for falling factorial moments of sums of indicator functions (see Theorem
36 of Appendix B).

3.2 ldentical Balls into Distinct Urns with Urn Restrictions

In practice the number of balls per urn in a Bose-Einstein (equally likely) allocation is often
restricted. A common restriction is that no urn may be left empty. We consider the restriction of
no empty urns in this section. Further restrictions, such as all urns must contain at least k balls,
can be developed in a natural way from the case of no empty urns.

Imagine distributing t identical balls into a row of M distinct urns in such a way that all (]6[__11)
possible allocations with no urn left empty are equally likely to occur. We will again assume that
each urn belongs to one of n distinct groups where the j* group contains m; urns with my +

ot my, = M.

Let C; equal the number of balls that get distributed into the jt" group where C; + C, + - +
C, = t. In this case the joint probability distribution of (Cy, ..., C,,) is

P(Cl = Cl‘ ...,Cn = Cn)

,
Cl +...+Cn =t
(61_]i>.._<cn_11> my+-+m, =M, M>t
ml_ mn— o
= (t—1) Cje{mj'mj+1:---},]—1,...,n )
M-1 m;€{12,..}, j=1,.,n
\U else.

Now we are back to the question of how to choose independent random variables (Z4, ..., Z,,) so
that their joint distribution “looks similar” to the joint distribution of (Cy, ..., C,,) given in (??).
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One way of distributing identical balls into distinct urns such that all possible allocations with no
empty urns are equally likely is to initially put a single ball into each urn and then to go through
a Bose-Einstein (equally likely) allocation of the remaining balls. This has the effect of shifting
over the count of how many balls can land in any group. Specifically, the support for C; starts at
m; instead of 0 as was the case in Section 3.1.

This suggests that we will need to shift over the support for Z; in a comparable way. To do this
we need the following definition.

Definition 3

For any nonnegative integer a, we will say that a random variable X has a «a - shifted negative
binomial(m, 1 — p) distribution if X = Y + a with Y ~ negative binomial (m, 1 — p). In this case

P =0 =P =x-a)= ("D 1 pympee )

Now let Zj,...,Z, be independent random variables such that Z; ~ m; - shifted negative
binomial(mj, 1-— p) for j = 1, ...,n. Then the joint probability distribution of (Z,,Z,, ..., Z,) is
given by

P(Zl = Cq, ...,Zn = Cn)

my 4+ +my =M

(7:11 __11> (;ln __11> (1 — p)Mp(C1+“'+Cn)—M Cj € {m],mj +1, }
=\ " mef12,..}j=1.,n

0 else

which looks like (??) apart from constants and the missing restriction ¢; + -+ ¢, = t on the
support.

Theorem 4

For P(C, = ¢4, ..., C,, = ¢,,) defined by (??) and for a general statistic ¥( ),

dt M
E(W(Cy,...,Cp) = t_11 <(1fp> E(ty(zl,...,zn))> (8)

(y_y)e

p=0

where Z,,...,Z, are independent random variables such that ZJ- ~ m]-—shifted negative
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binomial(mj, 1-— p) forj=1,..,n.

3.3 Identical Balls into Distinct Urns with Group Restrictions

The second restriction we will consider is the case when each group is required to have at least
one ball. For this problem we will assume that m; = --- = m,, = m. As was the case in Section
3.2 further restrictions, such as general upper and lower bounds on the number of balls per group
or general m; can be developed in the same manner. In this section we will continue to assume
that we are distributing t identical balls into a row of M distinct urns in such a way that all possible
allocations with no group left empty are equally likely to occur. We will again assume that each
urn belongs to one of n distinct groups where the j** group contains m; urns with my + -+
m, = M.

As a starting point towards a general result for finding E(‘P(Cl, e Cn)) in this case where groups
are required to have at least one ball, we need to use Theorem 1 to solve for 3(t, m, n), the total
number of ways to allocate the balls subject to the restriction that no group can be left empty.
We note that the numbers (t!/n!)3(t,m,n) are known as associated Lah numbers in the
literature (Ahuja[2], Ahuja and Enneking[1], Nandi and Dutta[37]).

Example 5

Allocations with no empty groups
n
iMmi+t—-1
= —1ni|(.
3(t,m,n) Z( 1) (])( . )
]:

Proof. (Only an outline of the proof is given here. A detailed proof of each example in this paper
is placed in Appendix 8.)

Let C; equal the number of balls that get distributed into the jt" group where C; + C, + - +
C, = t. We can apply Theorem 1 with

W(Cy, ., CpyCryy) =1(C; >1,C, 21, ...,Cp = 1)

to find
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3(t,m,n)

E(W(Cy,...,C))=P(C; 21,6, 21,...,C, = 1) =
and hence solve for 3(t, m, n).
It follows from here that the joint probability distribution of (Cy, ..., C,) is

P(Cl =C1 '"JC‘I’l = Cn)

(cl+m—1)m(cn+m—1) ci+te, =t

m—1 m=1 ’  ge{12,.}j="1mn
— S(t; m, Tl) m e {1,2, }
0 else

Theorem 6

For P(C; = ¢4, ..., C, = c,,) defined by (??)

E(W(Cy, .., Cy)) = ! d* <g(p, m)

3(t,m,n) t! dpt\ \ (1 — p)m> E(LP(Zl, ...,Zn))

p=0

where Z4, ..., Z, are independent and identically distributed random variables such that

o _ m-—1 .
P(z; = z) e , z€{1,.., 0}
with
gy =Y (PN a-pmp?
z=1
and

(9tm)" = 3(tm, (1 —p)™ p"
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3.4 Asymptotics for Bose-Einstein Allocation

Theorem 7

Suppose the joint distribution of (Cy, C5, ..., C,,) is given by (??), (??) or (??). That is, where G
equals the number of balls allocated to the j!* group in the case when (i) no restrictions are
placed on the number of balls per urn, (ii) each urn must have at least one ball, or (iii) each group
must have at least one ball. In all three cases we have that

lim E <lp (% ﬁ)) (M= 1)t £ <E(‘P(Y1, Yn))>

t—co t M

s=1

for any statistic W(x,, x5, ..., X,,) which is defined on all R and is bounded and continuous on
the simplexx; + x; + -+ x, =1,0<x; <1forj=1.2,..,n

1. L‘l(G(/’L)) = g(s) is the inverse Laplace transform of G (1). That is, for given function G (1),
g(s) is that function of s but not the parameter A such that

[ee)

G(A) =f g(s)e 5ds;
0

2. 11,Y,, .., Y, are independent random variables with ¥; ~ Gamma(mj,ﬂ) forj=1.2,..,n
That is, Y; has the likelihood function

mj

fr; () = (m_—_l)l}’m"_le_lyﬂ(y > 0);
; !

3. M=my +--+m,.

Proof. The proof of this theorem is involved. It can be organized into four key steps which we will
delineate here and will prove individually in Appendix 8.

Step 7a.
Let the joint distribution of

(Cy,Cy, ..., Cy) be given by (??) (i.e. unrestricted allocation),
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(C{,C5, ..., C) be given by (??) (i.e. no empty urns), and

(él, C}, ...,fn) be given by (??) (i.e. no empty groups).

Then
Cy C; Cy
limP(—Sv,—Sv,...,—Sv)
00 t 1 t 2 t n
X C; Cr
=limP<—1Sv,—Sv,...,—Sv)
tow \t g 2 t n
¢ ¢, Cn
=limP|—<v,—<v,,...,— =<1, |
s <t Ve =y =
Step 7b.

Let (V, V5, ..., V) ~ Dirichlet(m,, m,, ..., m,,) (see Appendix 10). Then

. C C; (0
limP (7 < v1,7 < v,, e < vn) =PV, <v,V, v,V S vy)

t—o>oo
forall (vy, vy, ..., v,) suchthatv; + v, + -+ v, =1land 0 <v; < 1forj=12,..,n
G G

e
Dirichlet(m,, m,, ..., m,,) distribution. We denote this as

In the language of probability, we would say ( ,...,CT") converges in distribution to the

c, C C,\ d
(—1,—2, ,%) - (1, V,, ..., V) ~ Dirichlet(my, m,, ..., m,).

Step 7c.

Suppose the joint distribution of (Cy,C,,...,C,) is given by (??), (??), or (??) and let
(", V,, ..., Vi) ~ Dirichlet(m,, m,, ..., m,). Then

c, C, C
limE <lp (?172 T")) = E(Y(V, Vs, ..., V)

for any bounded and continuous function W( ) on the common support, that is for all points
(v1,v2, .., V) suchthat vy + v, + -+ v, =1land 0 <v; < 1forj=12,..,n

Step 7d.

mathcloset.com 19



Let (V,V,,...,V,) ~ Dirichlet(m,,m,, ..., m,,) and let Y;,Y,,...,Y, be independent random
variables with ¥; ~ Gamma(mj,/l) forj = 1,2, ...,n. Then for any function W( ),

E(W(Yy, Yy, .., V)
)

E(W(Vp Vs, 'Vn)) =(M — 1)!L_1 <

Example 8
For P(C; = ¢4, ..., C,, = c,,) defined by (??) we can use Theorem 1 to derive the exact answer
a
a 1 M+t—-1
- - (k]
E((Cl) )_ M+t—1 Z S(a, kym; ( t—k )
T =

where S(n, k) are the Stirling numbers of the second kind and mgk], the k" rising factorial of m,
is defined through

{x(x+1)---(x+n—1) n=12,..
x[nl =
1 n=0.

Then we can use Theorem 7 to derive the asymptotic result

. _
(m1 +a 1)
i (5((2))) - forr=ry
t t (M +:ll 1)
It follows immediately from (10) that
(ml +a-— 1)
E((0)) =t mrre—n
")

for large t. As one simple check we note that in the case m; = 10and M = 20, the exact answer
and the asymptotic approximation for E((C,/t)3) agree to 2 decimals for t = 500 and to 7
decimals for t = 50 million.

Proof. (Only an outline of the proofis given here. A detailed proof of each example in this paper
is placed in Appendix 8.)
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Factorial moments fit naturally with discrete random variables while raw moments (also known
as moments about zero or just moments) fit naturally with continuous random variables.

To compare an exact answer derived from Theorem 1 based on the discrete negative binomial
random variables with an asymptotic answer derived from Theorem 7 based on the continuous

gamma random variables we will need to use the connection between raw moments and factorial
moments via the definition of Stirling numbers of the second kind. Namely, for integer n > 1,

n
th = Z S(n, k)t[n].
k=1

Let C; equal the number of balls that go into the jt" urn. The first result follows directly from
Theorem 1 and the generalized principle of inclusion-exclusion (Theorem 37 in Appendix 9) with

¥(Cy, ..., Cy, Cpyq) = I(exactly d of (Cy, ..., Cy) equal i),

A

i ~negative binomial(m,,1 —p),j = 1, ...,nand Z,,,; ~negative binomial(m,, 1 — p).

The proof of the second part of this example requires Theorem 7. The necessary condition that

W(xy, Xy, e, X)) = X2 is bounded and continuous on the simplex x; + x, + -+ x, = 1 and
0<x;<1forj=12,..,nisclearly satisfied. Hence, for ¥; ~ gamma(m,, 1), we have

i (2((%)')) = - (52)

and the final result follows on simplification.

s=1

4 Class Size Distributions

Let (C, = ¢y, ..., C,, = ¢,) be avector of discrete random variables such that C] €{a,a+1,..,b}
forall j = 1,2, ...,n. Define D, as the number of C;’s which equal k, k € {a,a + 1, ..., b}.

The distribution of (Dg, Dy 41, -.., Dp) is referred to as the class size distribution of (Cy, C5, ..., C,).
Wilks [52, 53] discusses several applications of class size distributions. Tukey [45] (who refers to

this distribution as a group size distribution) derives various moment results for some class size
distributions arising in urn models.

4.1 Class Size Distribution for Bose-Einstein Allocation
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For P(C; = ¢y, ..., Cy, = cy) defined by (??), let D, equal the number of C;’s which equal k, k €
{o,1, .., t}.

We can easily derive the class size distribution for (Cy, Cs, ..., C,) defined by (??) in the case m; =

m, = -+ =m, =mand M = mn. For a given vector (dy, d, ..., d;) define the set B, by
n n
By = {(Cl, ""Cn) Z H(Cj = 0) =d,, ,Z ]I(c]. = t) = dt}
j=1 j=1
Then

P(DO = do,D1 = dl,...,Dt = dt) = Z “'Z P(C1 = Cll ...,Cn = CTL)
Bp

c1+m—1) (cn+m—1)

Z Z t+m;z—1)_1

mn—1
0+m—1)d°(1+m—1)d1_(t+m—1)dt
=) Z G ST
mn—1
do dy d¢
(0+rz—1) (1+rf—1) "'(H_ni_l) !
== (tr-rll—mrll—l) m= 'dO!dln!---dt! (11)
mn—1

where
d0+d1+"'+dt:n
Odo + 1d1 + “’+ tdt = t
M =mn and d; = {0,1,2,...}.

Following the approach used in Theorem 1 we would like to determine a set of independent
random variables Z,, Z, ..., Z; whose joint distribution is “similar looking” to (11) and would
allow us to perform an expectation inversion as we did in Theorem 1.
d; : _
We note that the part of (11) involving just d; has the form % where ¢ = (] -lr_nm 1 1) is a
! —
constant.
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However we recognize that this form is just the kernal of the distribution of a Poisson random
variable with parameter c. That is, for Z; ~ Poisson(c),

c?i

P(z;=z)=¢e° o
But as in Theorem 1, our independent random variables needs to include parameter(s) that allow
us to introduce the necessary restrictions on the support when we condition on the sufficient
statistic(s). In this case we need to impose two restrictions on the support, namely, z, + z; +
-+ 2z, =nand 0zy + 1z, + --- + tz; = t. Therefore, the distribution of Z; should include two
parameters chosen to make z,+z; + -+ 2z, and 0z, + 1z; + -+ tz; jointly sufficient
statistics so that when we condition on these statistics the parameters will fall out but will leave
us the appropriate restrictions on the support.

We can achieve this by taking Z; ~ Poisson ((J -:nni; 1) 911'>. The details of this process are

given in the next theorem.
Theorem 9
For the class size distribution given in (11) we have
E(¥(Dy, Dy, ..., Dy))
_6
1 dt dn / (a-nm

(mn+t— 1)tlﬂd9n \e
t

E(¥(Zy, Z4, ...,Zt))> (12)

where Zy,Z4, ..., Z; are independent and Z; ~ Poisson <(] ;"i; 1) HAJ'>.

Example 10 (Joint Factorial Moments of the Count Size Distribution for Bose-Einstein
Allocation)

Suppose t identical balls are allocated to a row of mn distinct urns according to the Bose-Einstein
scheme (all allocations equally likely) where each urn belongs to one of n distinct groups with m

urns per group.

Let D; equal the number of groups containing exactly j balls. Then
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~

At | (G
j=0
E«D@%T"U%%ﬂ)z (mn+t—1) N[R]
t

where R =1y + -+ 1 and § = 07y + 1ry + --- tr;. Recall that ajg) = 1 by definition so this
result can be used to find the joint factorial moments of any subset of the D;’s. The special case
whenr, =1,7; = 0forall j # k, and m = 1is solved in Hardy [29].

Proof. The result follows on direct application of Theorem 9 if we take
W(Dy, D1, ..., D) = (Do)pry1 *** (D]
and take Z,, Z4, ..., Z; to be independent random variables with

Z; P0|sson<9( m—1 )A , =012, ...

4.2 Class Size Distribution for Bose-Einstein Allocation with No Empty
Urns

For P(C; = ¢4, ..., C, = c,,) defined by (??) in the case m; = -+ = m, = mand M = mn, let D,
equal the number of C;’s which equal k, k € {m,m + 1, ...,t —m(n — 1)}.

For a given vector (dm, Aimsir o dt—m(n—l)) define the set B, by

n

Z ]I(cj =m) =dp, ..., ]I(cj =t—m(n-— 1)) = di—mmn-1) (-

j=1 j=1

B, = {(cl, ey Cp)

Then

P(Dm = dm, Dim+1 = dms1 o Dememmn-1) = dt—m(n—l))

— Z .“Z P(Cl = Cl' ""CTL = CTL)
Bp
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v oy )Gy
_ZBDZ (t—l)

mn—1

— 17\9m 1\ 9m+1 _ _ _ 1\ t-m@n-1)
=Z Z (m_i) ((m;lri)l 1) ..,((t mT(:_ 11)) 1)
Bp (nfn_—ll)

(m - 1)dm ((m +1)— 1)dm+1 ((t —m(n — 1)) _ 1)dt—m(n_1)

m—1 m—1 m—1
(mtn_—ll)

n!
X

! dma! - dt—m(n—l)!

(13)
where
Am + dpyq +- + dt—m(n—l) =n
mdy, + (M + Ddpeq + -+ (t —m(n - 1))dt_m(n_1) =t
M =mn and d; ={0,1,2, ...}
Theorem 11

For the class size distribution given in (13) we have

E (lp(Dm' Dt oo Dt—‘m(n—l)))

[ &5 \
1 dt dr | a-am
:( t— 1 )tlmdenl e E(lp(zm:Zm+1:"-:Zt—m(n—l))) |‘
I
6

mn—1
=0
=0

(14)

where Zp, Zyy 41, o) Zt—mm—1) are independent and Z;~Poisson <(rjn_—11) HAJ'>.
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4.3 Class Size Distribution for Bose-Einstein Allocation with No Empty
Groups

For P(C, = ¢y, ..., C,, = c,,) defined by (??), let m; = --- =m, = m, let M = mn, and let D,
equal the number of C;’s which equal k, k € {1,..,t —n+ 1}. To obtain a general result for
E(W(Dy, ..., Dy_n+1)) in this situation we need to first use Theorem 6 to find the joint distribution
of the D;’s.

Example 12
P(Dy =dy, .., Di_pp1 = di—ns1)
__ 1 n! (1 +m-— 1)d1-..(t—n+m)dt—n+1
3, mmn)dy!--di_piq!\ m—1 m—1
(15)

whered; + -+ di_py; =nand ldy + -+ (t —n+ 1di_pyq = t.

Proof. This result follows on direct application of Theorem 6 with

lP(Cl, ey Cn) = H(Dl = dll "'lDt—YH-l = dt—n+1)-
We note that D, = O forall kK >t —n + 1 when we require that no group can be left empty.

Theorem 13

For the class size distribution given in (15) we have

E(‘P(Dl, s Dt—n+1))

__ 1 atar fomm G
~ 3(t, m,n)t! dAt dOn

E(W(Zy, ) Zeonsr))

I al}
o o
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where Zy, ..., Z;_n44 are independent and Z; ~ Poisson ((] —l”r_nni_l 1) 9/1j>,

j=1,.,t—n+1.

5 Bose-Einstein Allocation with Two Rows of Urns

Now imagine that we distribute t identical balls into two rows of urns. We will assume that the
top row contains a total of M; urns and the bottom row contains a total of M, urns, that all M; +
M, urns are distinct. Further suppose that each urn in the top row belongs to one of n; distinct
groups where the j* group contains myj urns withmyy + -+ + my, = M;. In the same way, we
suppose that each urn in the bottom row belongs to one of n, groups where the j* group
contains my,; urns with my; + --- + my,, = M,.

- S-S S-S

my, umsinRow1  my, urnsin Row 1 My, urns in Row 1
Group 1 Group 2 Group ny
| - | - || ST |
M3, urns in Row 2 M3z urns in Row 2 M3y, urns in Row 2
Group 1 Group 2 Group ny

Define the variables

C;j: the number of balls in group j of row i

and
D;; : the number of groups in row i containing j balls.

(By adopting this notation it becomes straightforward to generalize all the results in this section
to cases of more than two rows.)

We consider two different methods for the distribution of the t identical balls into these M; +

M, distinct urns. The first method is when all (M1 tM;+t-1

" ) possible allocations of these t

balls are equally likely to occur.

The second method occurs when we impose the restriction that the first row is allocated a total
of t; balls and the second row is allocated a total of t, balls where t; + t, = t. In this case we
M+t —1\(M,+t,—1
tl > ( t2
subject to these row total restrictions, are equally likely to occur.

will assume that all ( ) possible allocations of these t = t; + t, balls,
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5.1 Allocation Without Individual Row Total Restrictions

In this section we suppose that t identical balls are distributed into the M; + M, distinct urns
M1 + MZ + t - 1
t
allocations of these t balls are equally likely to occur. In this case we have the following results.

with no restrictions on the number of balls per row and where all ( ) possible

Theorem 14

lfmy; = - =my,, =myandmy = =My, =my,then

E(¥((D1g, Das, -, D1e), (Dao, Doy, -, D)) )
1 dt dm dm e(l_%m1+(1_%mz
(m1n1 +myn, +t— 1) prdat dé?fl d0;2
2 !

X E (‘P((Zlo,le, i Z10), (Z20, 231, s Z2t) ) )

=0
91=0
92=0
. j+m; —1 ; . .
where Z;; ~ Poisson m— 1 0;4 | and where all random variables are independent.
l
Theorem 15
Ifmy =+ = my,, =m, andif we define M, = my; + -+ + my,,, then,

E(W((Dm,Dll,...,Dlt), (s ...,CZnZ))> = (o +M: e

d’ dn ( 1 )MZ % (( ), ( ))

X ———| | —— e(1-2 mlE(‘P 20, Loy e, L Loy e, 2L )
¢ 1 — 100 411 = L1t )y \421) =+ 420,

At de™ \\1-2 M

1=

+m1_1

where Z,; ~ Poisson ((] e — 1
L —

>Hllj>, Z,j ~ negative binomial(mzj, 1- A) and where all

random variables are independent.
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Note: An additional theorem for E(lP ((Cn, Cis, ...,Clnl), (C21, ...,Can))) is not necessary
because this would be equivalent to Theorem 1 when there are not separate row total
restrictions.

Example 16

Suppose we have two rows of empty urns. Assume that Row 1 contains n; groups of urns with
m4 urns in each group. Assume that Row 2 contains m, urns (i.e. n, = 1 group with m, urns in
that group). We will assume that all myn; + m, urns are distinct (e.g. the urns could be
numbered). A total of t identical balls are distributed into these m;n, + m, distinct urns in such
a way that all possible allocations are equally likely to occur.

What is the probability that Row 1 contains exactly j balls and exactly k of the n, groups in Row
1 are empty? In terms of the notation set up for Theorem 15, this question asks for

P(Dlo = k,C21 =t _])

Solution. We can use Theorem 15 with

b4 ((D10'D11' ---:D1t): (C21: ey Can)) = H(Dm =k, Cy =t —j)

to show

P(Dyy = k,Cyy =t — )

(nl) (t —j+m, — 1) ny—k o
_ k m, — 1 Z (=1)ma—k-i (nl — k) (mll +.] - 1).
(m1n1+7r;2+t—1) i j

=0

We can use Theorem 15 with

b4 ((Dlo' Di1, s Dlt): (C21' sy CZnZ)) = (Dlo)[v](C21)[5]

to show that
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(711/1) (mz +56 — 1) (ml(nl - vt)j-gnz +t-— 1) -
(mml +m, +t— 1) viol.
t

E((Dm)[v] (C21)[6]) =

Example 17

Suppose we randomly distribute t identical balls into a row of mn identical urns partitioned into
n groups with m urns per group. Assume that all distinct allocations are equally likely to occur. If
we are given the information that j of the first n, groups are empty then we can expect that

n, n—-j—k

Z Z k-(—l)n—i—j—k n_]:—k im+t—1\/m;

k=0 i=0 ( l )( t )(k )
ny—j

; (—1)mi-i (n1 i_ j) ((n2 + i)r;l +t- 1)

of the remaining n, = n — n,; groups will be empty.

Proof. In the language of Theorem 14 we can think of the first n, groups of urns as our “top row”
and the remaining n, = n — n; groups of urns as our “bottom row”. In the notation of Theorem
14 the problems asks for E(D,y|D1o = j).

We have that

P(Dm = J,Dyo = k)
P(Dlo :f)

n;
E(Dy|D1p =) = Z k
k=0

and we can use Theorem 14 to find each of these probabilities. For the numerator probability we
can apply Theorem 14 with

lP((Dw' Diq, e\ Dlt): (Dzo' D34, o, th)) = H(Dlo =J,Dyo = k)-

For the denominator probability we can apply Theorem 14 with

W((Dw' D11y ees Dlt): (Dzo' D34, -ov) DZt)) = H(Dlo = ])
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5.2 Allocation With Individual Row Total Restrictions

In this section we suppose that t, identical balls are distributed into the M; distinct urns in the
first row and that t, identical balls are distributed into the M, distinct urns in the second row in
My +t,—1\(M,+t,—1
by ) ( t2
balls are equally likely to occur. In this case we have the following results.

a manner such that all ( ) possible allocations of these t; +t, =t

Theorem 18

Recall that we have defined C;; to equal the number of balls allocated to the jt" group in row i.
In this case,

(5 (i G 60)

M;

_ 1 dt  ds <( 1 )Ml ( 1 )
(Ml +tt1 - 1) (MZ +tt2 - 1) t1| t2| dpil dpgz 1-— D1 1-— D>
1 2

X E (1P ((Zu, i Ziny ) (Z21, ---'Zan))>)

p1=0
p2=0

where
le ~ negative binomial(mlj, 1-— pl), j=12,..,n
sz ~ negative binomial(mzj, 1-— pz), j=12,..,n,
Z11y r Zingr L1y - Zon, are all independent
and

Ml =mqq + -+ mlnl, M2 = Mmyq + -+ man.
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Theorem 19

Recall that we have defined D;; to equal the number of groups in row i containing j balls. In this
case,

E (lp ((Dlo' ny Dltl)’ (D20, - Dth)))

3 1 dt1 dtz dTl1 dle < (1_gi)m1+(1_§§)m2

a (m1n1 ‘t|‘ t — 1) (mznz +t — 1) £, t,! dlil dl;z d91n1 d@znz
1

L,

E(I.IJ ((ZIOJ ...,Z1t1>; (ZZOJ '"’ZZtZ))) A1=0

12=0
91=0
92=0

where

. j+my—1 ; .
Z,j ~ Poisson (( m 1 )0&{), j=01,..,t

) _q .
Z,j ~ Poisson ((J -Ir_nmi 1 )92112>, j=01,..,¢t,

and

Z10s -+» L1ty Z20s -+ » L2, are all independent.

Theorem 20

E (lp ((D1os s D1e,), (Cans Can))>

S (mny+t; =1\ (M, +t, -1 tr gg™ dp2
( 1 1t1 1 )( ’ t22 )tl!tzldll d6," dp,
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1\
X (1 - p2> E (lp (210, Z1,), (Zoa, ...,ZZnZ)))) rizo
91=0
p2=0
(17)
where
Z,j ~ Poisson my — 1 0,141),j=01,..,t
Z,j ~ negative binomial(mzj, 1- pz), j=12,..,n,
Z10s 1 Z1t,0 L1, -+ » Zop, are all independent
and

mqyq = = m1n1 =my and MZ = My, + -+ mznz.

We will not provide proofs of these last three theorems in as much as Theorem 18 follows
directly from Theorem 1, Theorem 19 follows directly from Theorem 9 and Theorem 20 follows
from Theorem 15 with only obvious modifications.

Example 21

Consider a 2 X n matrix of urns with m, urns per cell in the first row and m, urns per cell in the
second row. Assume that all myn + m,n urns are distinguishable, that urns are arranged
linearly within a cell (as shown in the diagram) and that the position of an urn within the matrix,
including its position within a cell, is fixed.

Powl | OO  |SS.S
w2 | OO .S - S

Column1 Column 2 Columnn
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A. Suppose that t identical balls are randomly distributed among the m;n + m,n urns in such
a way that all distinguishable allocations are equally likely to occur. Let W, equal the
number of empty columns. (We will say that a column is empty if all m; + m, urns in that
column are empty.) Then

((m1 +my)n—ry) +t— 1)
((ml + ngtn +t— 1) Mro)-

E((Wa)pry) =

B. Suppose that t; identical balls are randomly distributed among the urns in the first row and
that t, identical balls are randomly distributed among the urns in the second row that in
such a way that all distinguishable allocations are equally likely to occur. Let Wy equal the
number of empty columns in this case. Then

(ml(n - To) + tl - 1) (mz(n - ro) + tz - 1)

_ 51 ty

E((Wa)pr) = mn+t, — 1\ (myn+t,—1 Mol
( ty )( tr )

For any fixed value of t = t; + t, in part B, choosing t; and t, as

mit +m, m1t+m2J

t, = J and t, =t —
my +m,

my +m,
will minimize the expected number of empty columns.

Proof. If we identify each column of urns as a group, then the allocation model in Part A is
equivalent to an unrestricted grouped Bose-Einstein allocation of t identical balls into a single
row of urns divided into n groups (columns) with m,; + m, urns per group.

Thus, W, is equivalent to D, in Section 4.1 and

W) re1 = D] = Do) i1 (D1 101 (D207 *** (D) for-
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So, the result for E((WA)[rO]) follows immediately from our work in Example 10 in Section 4.1.

We can express Wpy as
n

Wy = Z 1(Cij + C; = 0)

=1
and so the result for E((WB)[rO]) in Part B follows on application of Theorem 18 with

n

W((Cn; ey Cln); (C21; ey CZn)) = Z H(C1j + C2j = 0)

j=1
[7o]

Finally, to verify that for any fixed value of t = t; + t,

(ml(n—1)+t1—1 my(n—1)+t—t; —1
R [rar
mn+t,—1\/mn+t—t; -1
(" LT

h(ty) = E((WB)[I]) = n

is minimized at t; = [Z22721 it suffices to algebraically verify that
1 m1+m2
h(ty) mit+m
— Y l1efyg<—2
h(tl - 1) ml + m2

6 Compositions
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A composition of the positive integer t is defined as any solution (x;,x,,...) of x; + x, + -+ =t
where x; € {1,2, ... }. The numbers x4, x5, ... are called the parts of the composition. A
composition of £ can consist of anywhere from 1 to t parts. In a composition, the order of the
parts is considered important. That is, the composition 1 + 3 of t = 4 is considered to be
distinct from the composition 3 + 1. (A solution x; + x, + --- = t where the order of parts is
not considered important is called a partition of t.) The set of (distinct) elements in the list of
parts of a composition are called the part sizes of that composition. The multiplicity of a part
size j in a composition (x4, X5, ... ) is defined as the number of times that part size j occurs in
the ordered list of its parts (x4, X5, ... ). The number of part sizes with a given multiplicity (i.e.
the multiplicity of a part size multiplicity) is also a concept defined in the study of compositions
and partitions. See for example [16, 22, 30].

By way of example, the composition2+ 1+ 1+ 3+ 2+ 14+ 1+ 4 of 15 has 8 parts. The set
of distinct numbers (part sizes) in this composition are 1,2,3 and 4. Part size 1 occurs four times
so we say the multiplicity of 1 is 4. Similarly, the multiplicity of part size 2 is 2 and the
multiplicity of part sizes 3 and 4 are both 1. The list of part size multiplicities is 4,2,1 and 1. So
two part sizes have multiplicity 1, one part size has multiplicity 2 and one part size has
multiplicity 4.

The number of compositions of t into n parts is the same as the number of ways to distribute t

identical balls into n distinct urns with no empty urns. So there are (;__11) distinct

compositions of t into n parts. Thus there are a total of 3.f,_, (;__11

t. Arandom composition of t is defined as a composition picked at random from the set of all
2t~1 compositions of t.

) = 271 compositions of

6.1 Random Compositions with a Fixed Number of Parts

We can view a random composition of t with n parts as a Bose-Einstein allocation of t identical
balls into n distinct urns with the restriction that no urn can be left empty. That is, Theorems 4
and 11, with my = --- = m,, = 1 can be applied to random compositions with a fixed number of
parts.

Example 22 Ordered values in a composition with a fixed number of parts
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Let (X, X5, ..., Xp,) be a random composition of t with n parts. Let X(1.py) < X2:n) < =+ < X
be the order statistics (ordered values) of our data X;, X5, ..., X;,. Then for nonnegative integers
m

m 1 Zn Zk t—zk—1
B ((X(J'm)) ) B (t - 1) ] (=pfm (t —zk — n)
n—1 k=n-j+1 z=0

x (523 (D) @+ vm=2m),

n

n
As a check, one can verify that z E(X(j:n)) = Z E(X]-) =t.
j=1

Jj=1

Proof. The result follows from Theorem 4 if we identify the C; in Theorem 4 with the X; in this
example and take W(Cy, ..., C,) = W(Xy, ..., X,) = (X(j:n))™- When applying Theorem 4 we will
have

o)

E ((Zo'm))m) = z P(Z(jmy > 2)(z+ D)™ = 2™)

z=0

by Theorem 39 in Appendix 9 (a general result for expressing raw moments in terms of the
cumulative distribution function for a discrete random variable defined on the nonnegative
integers) and we can solve for

P(Zm) > z) = P(atleastn — j + 1 0f Zy, ..., Zy > 2)

using the generalized inclusion-exclusion principle.

In the next example we will use Theorem 7 to derive the asymptotic value of E ((X(j:n)/t)m)

for m a nonnegative integer. We can then track the large t approximation for E ((X(j:n))m)

against the exact value found in Example 22.
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Example 23

Let (X;,X,, ..., X,,) be arandom composition of t with n parts. Then for large t and nonnegative
integerm,

m m < 4 (T — 1
E((X(j:n)) )zW Z (—1)r—nHi- (;_j)(:)r—m

=n-j+1
m r=n-—j

Proof. The joint distribution of a random composition (X;, X5, ..., X,,) is given by (??) with m; =
-+ =m, = 1 where our X; are the C; in (??). Therefore, as we explain in Section 3.4, Theorem 7
is applicable to the problem of random compositions with a fixed number of parts whenever
our chosen statistic ¥(x4, x5, ..., X,) is defined on all RZ}) and is bounded and continuous on
the simplexx; + x; + -+ x, =1,0<x; <1forj=1.2,..,n

We have 0 < Xj/t < 1foreachj = 1,2,...,nin this problem, so

Lp(’&, )L) _ (X_u=n>)’"
t t t

is clearly a bounded function in the variables (X, /t, X, /t, ..., X,,/t). To show that
V(X1 /t, .., Xn/t) = (X(j.n)/t)™ is a continuous function in the variables

(X,/t,X,/t, ..., X, /t) requires a few extra steps. First, the well-known identity

(a+b)—|a—b|
2

min(a, b) =
makes it clear that

min(f(xl, v X)), 9 (X4, e, xn))
(18)

is continuous provided f( ) and g( ) are continuous. Second, the identity
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min(xl' X2, x3) = min(min(xl, xz); x3)

along with (18) and an induction argument shows that min(xy, x,, ..., x,,) is a continuous
function in the variables (x;, x5, ..., X,).

Finally, letting g(x) = x™ in the pointwise identity (i.e. valid for any given set of numbers
{Xl, XZ, ey Xn})

g(x(j:n)) = Z Z (=1)r—n+i-1 (;:]1) g (min(xkl, ...,xkr))

r=n—j+1 (kq,...k;)€Cs

(19)

given in Suman [44], where C,. is defined to be the set of all subsets of {1,2, ..., n} with r
elements shows that W(X; /t, ..., X, /t) = (X(j.n)/t)™ is a continuous function in the variables
(X,/t,X,/t, ..., X, /t). So we can conclude that Theorem 7 is applicable in this example.

By Theorem 7, we have that

() - ()

(20)

where Y.,y is the j®* order statistic of ¥}, Y, ..., ¥;, iid Gamma(1, 1) = Exponential(4). The final
result follows on simplification of (20).

The following table shows one example (n = 8 and j = 5) of how the asymptotic
approximation developed in Example 23 and the exact answer in Example 22 track for E(X(S:S))
at increasing values of t.

t Exact Approximation
8 1 0.88
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50 5.57 5.53
100 11.11 11.06
500 55.34 55.28

5000 552.89 552.83
50,000 5528.33 5528.27
E(Xss)

6.2 Compositions with a Fixed Number of Parts, all Distinct

To start with, we recall that [[72, (1 + Qj) = ¥2, d(t)0" where d(t) is the number of
partitions of the integer t with distinct parts.

e.g. d(5) = 3 because there are 3 partitions of the integer 5 where each part is distinct. These
three partitions with distinct parts are {1,4}, {2,3} and {5}.

Similarly, it is well known that [[72, (1 +A Hj) =320 2E_, d(t,n)A"0 where d(t, n) is the
number of partitions of the integer t into exactly n distinct parts.

e.g. d(5,1) = 1and d(5,2) = 2. In particular {5} is the only partition of 5 with one part and
{1,4} and {2,3} are the two partitions of 5 with exactly 2 distinct parts.

Define ¢, (t, n) as the number of compositions (ordered partitions) of the integer t into n
distinct parts. Clearly partitions with n distinct parts and compositions with n distinct parts are
related by c,;(t,n) = n! d(t,n).

It is also clear that the set of all d(t,n) partitions of the integer t into n distinct parts
corresponds to the set of all solutions (y,, 5, ..., ¥¢) to the pair of equations 1y, + 2y, + -+ +
tyy=tandy, +y, + -+ y, =nwithy; € {0,1},j =1, ..., t.

Thus, the probability distribution for a partition of the integer t into n distinct parts randomly
picked from the set of all d(¢t, n) such partitions has the form
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ly; +--+ty, =t
—d(t ) it +ye=n
Py =y, Y, =y) =15y e{01}, j=1,..,t

1

0 else.

Theorem 24

For (Y3, ..., Y;) as defined above we have

B0, Y, 1))

A n)nlt! dA" det

1 dar dt ( 1_[ (1+19j) E(Lp(Zl,Zz, ---:Zt))\‘
j=1

I}
oo

where Z4, Z5, ... is an infinite sequence of independent random variables with Z; ~

. . A6/ )
Binomial (1,1+M]. .

Example 25

P(k occurs in a random composition of t into n parts, all distinct)

(5| n-2)

Z (-Dvd(t—-k —kv,n—v—1).

v=0

~dltn)

Proof. The result follows directly from Theorem 24 with W(Y,, Y5, ..., Y;) = 1(Y, = 1).

6.3 Random Compositions
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We can use the rule of iterated expectations, E(X) = E(E(X|Y)), in conjunction with
Theorems 4 and 11 (with m; = --- = m,, = 1), to develop companion results in the case of
compositions without a fixed number of parts.

Theorem 26

If C; represents the size of the j" part in a random composition of the positive integer t, then
for a general statistic (),

E(‘P(Cl, Cy, ..., Ct))

t
1 dt P \" .
261! Z dp* ((1 —p) E(¥*(Z1,Z;, "-'Zn)))

n=1

p=0

(21)

where Z,, Z,, ... are independent random variables such that Z; ~ 1-shifted geometric(1 — p)
and

Y(ay, ay, ...,a,,0,..,0) n<t

¥Y*(aq,as, ..., a,) = {
" Y(ay, ay, ..., az) n=t

with a, 44, ..., a; all being replaced with 0’s in the casen < t.
Theorem 27

If D; represents the multiplicity of j in a random composition of the positive integer t, then for
a general statistic ¥( ),

E(W(Dy, Dy, ..., D}))

t 64

1 dt d* | 1=
:ﬁ WW e E(lp(Zl,Zz, 'Zt))

n=1

E
i
(==
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(22)

where Z4,Z5, ..., Z, are independent and Z; ~Poisson(0/1j).

Example 28

Suppose that we select a part from a random composition of t in a manner such that any
particular part is selected with probability proportional to its size. To put this in some context,
again think of a random composition of t as a random distribution of t identical balls into
ordered urns (i.e. the ordered parts). Then selecting a ball uniformly at random from the set of
t balls as a method of identifying an urn would mean that each urn (part) is selected with a
probability proportional to its size.

Let Y represent the size of this randomly selected part. Then

y(t—y+3)

o €{12,..,t—1}

P(Y=y)=

= y=t

As a corollary to the proof of this result we have that

where D,, represents the multiplicity of y in a random composition of t. As a check on our work
we can verify that Z§/=1 P(Y=y)=1andE(1D, + 2D, + ---+ tD;) = t.
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Proof. Continuing with the balls in urns analogy mentioned in the statement of the problem, if
d urns contained exactly y balls, then the probability of selecting a ball from an urn with y balls
would just be (yd)/t. Interpreted back into the language of compositions this means that

y
P(Y =yIDy = d) =—

and

t

P(Y=y)= Z P(Y =y|D, =d)P(D, =d) = %E(Dy).

a=1

Then we can find E(Dy) and hence P(Y = y) by direct application of Theorem 27 with
lp(Dl, Dz, vy Dt) =D

Example 29 (Number of part sizes with a given multiplicity in a random composition)

1. Let V! represent the number of part sizes with multiplicity w in a random composition of t.

Then

3 ONS oM T)(ETTeY)

n=max{1,w} r=1 j=0

E(Wy) =

As a check on this result, one can verify that 3:{,_, E(Vf) = t as required.

2. The number of distinct part sizes in a random composition of t equals t — V{ and

vtz Y 3 Y o ()2 A7),

n=1 r=1 j=0

Hitczenko and Savage [30] derive an asymptotic approximation for E (V). They show
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lt/2J> o we o g2ew 1
E(VD) ~ 21" (1 =27 ~
o = (" > ) (-2

~w In(2)

for large t. Hitczenko and Stengle [31] show that for large t

E(t —V{) = log,(t) —

where y = 0.5772156649 is Euler’s constant and g is a mean-zero function of period 1

In(2)

14

2

+ g(logz(t)) +0(1)

satisfying |g| < 0.0000016. Goh and Schmutz [24] and Wilf [51] derive companion asymptotic

results for random partitions and we will compare their results with exact expressions in a

separate paper.

The following tables show how Hitczenko and Savage’s [30] and Hitczenko and Stengle’s [31]

asymptotic approximations track with the exact value found in Example 29.

t Exact value of E(V5) t Exact value of E(V)
50 0.480824 140 0.481384
60 0.481359 150 0.481355
70 0.481297 160 0.481199
80 0.480844 170 0.480979
90 0.480460 175 0.480865
100 0.480395 200 0.480476
110 0.480618 250 0.480876
120 0.480959 300 0.481299
130 0.481246 350 0.481008

Asymptotic Approximation
lim E(V) ~ Tz = 480898
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w Exact Value of E(V1°9) Asymptotic Approximation
5 0.290129 0.288539
10 0.138741 0.144270
15 0.100250 0.096180
20 0.058805 0.072135
25 0.071275 0.057708
30 0.048332 0.048090
35 0.016881 0.041220
t Exact Value of E(t — V) Asymptotic Approximation
25 3.980203 3.976602
50 4978260 4976602
75 5.562663 5.561565
100 5.977430 5.976602
200 6.977014 6.976602

Proof

Part A.

V;t, the number of part sizes with multiplicity w, can be expressed as

t
nt = Z I(D, = w).
r=1

Therefore E(V}}) follows from Theorem 27 with

t
W(D,,D,, ..., D,) = Z I(D, = w).
r=1

Part B.

V¢ equals the number of part sizes with multiplicity 0 in a random composition of t. That is, V{
equals the number of part sizes that do not occur in a random composition of t. Thus t — V¢
equals the number of part sizes which do occur in a random composition of t. Therefore,
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E(t — V) =t — EWY) equals the expected number of part sizes which occur in a random
composition of t.

7 Polya Urn Model

Suppose an urn initially contains m; balls of color j,j = 1, ..., n. Balls are drawn at random and
then returned along with another ball of the same color. Let C; equal the number of times a ball
of color j was selected in the first t draws where C; + C, + --- + C,, = t. In this case the joint
probability distribution of (C, ..., C,,) is the same as the joint distribution given by (??) for the
grouped Bose-Einstein allocation model. Namely,

P(Cl = (1, ""C’l’l = Cn)

((c1+my—1 Cp+my, —1 GG+t =t
(et ) et ) mi b=
(M+t—1) cef01,..}, j=1,..,n
= ; t me{1,2,..}, j=1,..,n

\ 0 else.

It is a straightforward proof by induction on t to see how this comes about. We note that

Pt(Cl = Cl' ...,Cn = Cn)

m1+C1_1
:Pt—1(C1:C1—1'C2:C2:-"'ancn).<M+t—1)
mn+cn—1)

+ o4 Pt—l(Clzcll'"ICn—l:Cn_l'Cn:Cn_l)-< M+t—1

The given result is trivial for the case t = 1 and assuming the result is true for the case t — 1,
we get
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Pt(C1 - Cl, "'JCTl - Cn)

(m1+c1—2)<m2+cz—1>m(cn+mn—1)
_ ¢ —1 Cy Cn .(m1+cl—1)
- (M+t—2) M+t—1
t—1

(m1+cl—1>‘_.<mn_1+cn_1—1> (mn+cn—2)
Cq Cn—1 cp—1 .(mn+cn—1)
(M+t—2) M+t—1
t—1

_(m1+cl—1>m<mn+cn—1). ittty

N 1 Cn M+t-2 _
AR (RN

(ml +c— 1) (mn + cn)
1 Cn
(M +f — 1)

It follows that all the results developed in Sections 3, 4, 5, and 6, properly translated, apply to
the Pélya urn model.

Example 30 Ordered Values in the Pélya Urn Model

Let the joint probability distribution of (Cy, C,, ..., C,) be given by (??) withm, =m, = -+ =
my, = 1. Let Cq.p) < Coin) < - < C(nuny be the order statistics of Cy, Gy, ..., Cy.

Then
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n %!
r 1 - -
E ((C(j:n)) ) (Tl Ft— 1) z z (1)t (n * ; — :Eji_ 1; 1)
t k=n—-j+1 z=
(@) (e -2

(23)

As a check, one can verify that 37, E(C(j:n)) == E(C]-) = t. Recall that we proved in
Example 23 that for a random composition (X;, X5, ..., X,,) of t with n parts that

n

lh—p;)E((X(i:n))T) _ (n+i_ 1) Z (—1)i-n+i- 1(; i) (n)%

o S0}
r i=n—j+

(24)

Compositions with a fixed number of parts belong to the case of urn restricted (no empty urns)
Bose-Einstein allocation while this example belongs to the case of unrestricted Bose-Einstein
allocation. However, we proved as part of the formula given in Theorem 7 that unrestricted,
urn restricted and group restricted Bose-Einstein allocation all have the same asymptotic
expectations. Hence (24) applies to this example as well.

Therefore,

n

fli*rgE«C(fn))r):(mi—l) > o (T (0

i=n—j+1

Chen [15] derives recurrence relationships for calculating
Conmy\" 1 C
. (n:n) _ 4yi-1 n +
tlggE(( t >>_(n+r—1)z( D) (l)
r =1
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Chen also includes numerical calculations of

nlk

E(Comy) = (n+t—1 Z Z (=D 1(n+t :gIB_l)(Z)

kle

based on computer simulations for ranges of t from 100 to 20000 and with n ranging from 1 to
25.

Proof. The proof follows the same line developed in Example 22 (ordered values in a
composition with a fixed number of parts) but starting with Theorem 1 (unrestricted Bose-
Einstein allocation) instead of Theorem 4 (urn restricted Bose-Einstein allocation).

7.1 Pdlya Process

Suppose we select a ball at random from an urn initially contains m; balls of color j, j =
1,2,...,nattimesi = 1,2, .... After each draw we note the color of the ball and then replace
the ball along with an additional ball of the same color (i.e. Pélya sampling).

Let X; = (X;q, ..., Xi) Where

1 if i*" ball drawn has color j
Xij =

0 else.

Then {X;,i = 1,2,3, ...} forms a discrete-time Pdlya stochastic process.

LetY; = (Y;q, ..., Y;,) where Y;|py, s, ..., P, ~ Multivariate Bernoulli (py, py, ..., p,)- That s, for
any given vector (py, P, ...,pp) suchthat 0 < p; < 1,andp; +p, + - +p, =1,

P(Yi1 = yi1, Yia = Yigs o0» Yin = Yin|P1, D2, s Pn) = DYDY 2 - pin
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where y;; € {0,1}, yi; + ¥iz + - + ¥in = 1. Then {Yi|p1,p2, e Pl = 1,2,3, ...}forms a
discrete-time multivariate Bernoulli stochastic process.

Our next theorem shows how these two processes are related.

Theorem 31
E(W(Xy, Xy, -, X,)) =f f E(W(Yy, Y, ., Y)ID1, D2y v Pn)
simplex
F(ml + mz + + mn) m1—1 m.,—1
vy dp., - dp....
F(ml)F(mn) p1 pn pl pZ pn
Proof.

It is well known (see for example Feller [21]) and straightforward to establish that

P(Xl = (xll, ...,xln),XZ = (le, ...,x2n), "'lXt = (xtl, ...,xtn))

XqqHtX Xip+tX Xip+o+x
mg 11 t1]m£ 12 2] m1[1 in tnl

= my + o+ my) Gt ) A Gt )]

where x;; + --- + x;; represents the total number of times a ball of color j is selected in these

(X117 + -+ +xp1) + -+ (X1 + -+ + x4) = t draws. Recall that a®l is our notation for a rising
factorial.

But suppose we let (pq, ..., pp) ~ Dirichlet(m,, ..., m,,). That is, let the joint density function of
(p1, P2, -, Pn) be given by

r(my +my + -+ my) pm1—1 mpmn—l
r(my)---T'(my) ! "

f (D1, 02, ) =
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for all points (py, p2, ..., Pp) suchthatp; +p, + - +p, =land0 < p; < 1forj =12,..,n.

Then it follows that

P(Yl == (xll, ...,xln), YZ - (le, ...,xzn), sery Yt - (xtl, ...,xtn))

= f "'f P(Yl = (Xn, ...,Xln), ""Yt = (xtl, ...,xtn)lpl, ...,pn)

simplex

X f(p1, P2, ) Pn)dp1dp; -+ dpy

gy TNy b my) _
_ XqpteetXey | XiptoetXen 1 n/_mp-1__ mp-1
= f f p1 Pn T'(my) ---F(mn) Py Pn dp; -+ dpy,

simplex

T(my + -+ my)
B F(ml) F(mn)

T(my + (g + o+ x0)) Ty + (X + - + X))
F(my+ -+ my + Coag + 4 x0) + 04 (g + 0 + X))

Xqq+tx Xip+tX Xip++X
mg 11 t1]m£ 12 2] m1[1 1in tnl

T my + o+ my) [ E D A Gt x|

Thus,

E(W(Xy, Xs, ., X)) = E(W(Y,, Yy, ..., V)

= E(E(¥(0. Yy o, Y) P, s D)

= f f E(lp(yl; Yz; e Yt)lpli D2, "'!pn)

simplex

F(m1+m2+-.-+mn) ml_l... mn_ld d .,.d
l"(ml) F(mn) pl pn pl p2 pn-
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As part of this proof we can see that the random variables X;, X,, ..., X; are not independent
because (x1; + -+ x¢q) + -+ + (X1, + -+ + X4,,) Must equal t so the support cannot be
rectangular. But X;, X5, ..., X; are exchangeable random variables. That is, the probability of
drawing a certain sequence of colored balls depends on the number of each color but not on
the order in which they occur. So, the probability of drawing (Black, Yellow, Green, Yellow) in
that order is the same as the probability of drawing (Green, Black, Yellow, Yellow), etc.

However, the random variables Y3, Y, ..., Y; are independent. So, Theorem 31 is another
example of expectation transposition.

Example 32 Equalization of Colors for the First Time

Suppose an urn initially contains b black and w white balls, with b > w. Balls are drawn at
random and then returned along with another ball of the same color (Pélya sampling). Then the
probability that the number of black balls and the number of white in the urn become equal for
the first time on the t draw equals

b_w< t )F(b_l_w).F<%(t+b+w)>l“<%(t+b+w)>

t %(t —(b-w)) |T(B)rw) T(t+b+w)

Proof. Consider a sequence of independent Bernoulli trials (success probability p, failure
probability 1 — p). A random walker starts at position z = 0 on a number line and at each step
either goes up one (success) or down one (failure) according to the outcome of that Bernoulli
trial. Feller [21] shows that the probability d(z, t) that this random walker will reach the origin
on this number line for the first time on the t" trial is given by

t

A 1. 1
A =1 (1 (t - z)) P20 - p)2 .
2

Therefore, it follows from Theorem 31 that

P (the number of black balls and the number of white balls in the urn

are the same for the first time on the t*" draw)
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1
= f P (random walker starting at b — w will reach the origin for the
0

I'b+w)
r'(b)r(w)

first time on the tt" trial) pP (1 —p)¥ ldp

I'b+w)

NOROL p’~ (1 —p)¥ tdp

f d(b —w, £) ot )

t
=f = W( (t— (b - w))) 20w (1 _ p)3le+e-w)
0

rb+w) , | w1

_b-—w 1 t I'(b+w)
ARV (t— (B -w)))T(b)rw)
< O oy iy
0

_b w t r'h+w)
- (t— (b—w)) JT(b)T(w)

1 —(t—(b—w))+b—1 —(t+(b—w))+w—1
X f p’ 1-p)° dp
0

_b w t r'h+w)

B (t—(b w)) JT(BIT(w)
F(%(t—(b—w))+b)F(7(t+(b—W))+w)
F(%(t—(b—w))+b+%(t+(b—w))+w)
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ot

b-w/(, t I+ w) F(%(t+b+w))[‘<%(t+b+w)>
E(t‘(b‘w)) T(H)T(w) Tt +b+w) '

Example 33 Equalization of Colors at any Time

Suppose an urn initially contains b black and w white balls, with b > w. Balls are drawn at
random and then returned along with another ball of the same color (Pélya sampling). Then the

probability that the number of black balls and the number of white in the urn will ever be the
same equals

r'(b+w) (12

Torw ), P TP

This problem was comes from Wallstrom [47] who solves it by a different method.

Proof.

Consider a sequence of independent Bernoulli trials (success probability p, failure probability

1 —p). Arandom walker starts at position z = 0 on a number line and at each step either goes
up one (success) or down one (failure) according to the outcome of that Bernoulli trial. Feller
[21] has shown that the probability G(z) that this random walker will at any point in the future
reach the origin on this number line is given by
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Therefore, it follows from Theorem 31 that

P (at any point in the future the number of black ball s

and the number of white balls in the urn are the same)

= limP (at some point in the first t trials the number

t—oo

of black balls and the number of white balls in the urn are the same)

1
=lim| P (random walker starting at b — w will reach the origin

t—>oo 0
I'b+w)

F(b)F(W) pb_l(l - p)w_ldp

at some point in the first t trials)

1
= lim P (random walker starting at b — w will reach the origin

0 t—o>o0

I'b+w)

l—-(b)l-(w) pb_l(]- - p)w_ldp

at some pointin the first t trials)

(pulling the limit inside the integral is justified by the bounded convergence theorem because
every probability is uniformly bounded)

1
= f P (random walker starting at b — w will ever reach the origin)
0

I'b+w)

mpb_l(l —p)¥"tdp

t rb+w) , . et
ZIOCI(b—W)WPb 1-p)tdp
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= p"~ 1 (1 —p)* ldp

fl/z L r'(b+w)
0 r(b)rw)

LA\ T W) L
+—[1/2( p ) ORI

r'(b+w) Y2 rb+w) !

B m 0 pb_1(1 - p)w_ldp * m 1/2 pw_1(1 - P)b_ldp.

But by making the change of variable p* = 1 — p we see that

1/2

1
f pW1(1 — p)P-ldp = j (p)P-1(1 — p*)¥-tdp".
1/2 0

So

P (at any point the number of black balls

and the number of white balls in the urn are the same)

r(b+w) (12

=2 Torw) J, p?~t(1 —p)¥dp.

Example 34 Patterns in a Pélya Process

Suppose an urn initially contains b black and w white balls. Balls are drawn at random and then
returned along with another ball of the same color (Pélya sampling). The probability that we
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will get a run of r consecutive black balls drawn before we get a run of s consecutive white balls
drawn equals

r+w) pr T (1-(01-p)*) b-1(1 _ yw—1
F(b)F(W) 0 <pr_1 + (1 - p)s—l - pr—l(l — p)s—1>p (1 p) dp

Proof.

P(a run of r consecutive black balls drawn occurs before s consecutive white balls)

= tlimP(within the next t draws a run of r consecutive black balls
—00

drawn occurs before s consecutive white balls)

1
= lim | P(within the next t draws a run of r successes will occur before

t—o>o0

0

; F(b + W) b—-1 w-1
a run of s failures) -mp (1-p)ldp

1

= lim P (within the next t draws a run of r successes will occur before
t—>oo
0

; F(b + W) b—-1 w-1
a run of s failures) -Wp (1-p)ldp

[h +w) 1P( £ il bef f s failures)
= a run or r successes will occur beiore a run of s raliures
r)rw) J,

PP (A —p)Vhdp

_ r'b+w) (1! p"1(1 = (1 = p)®) b
RONO (PH +(1—p)yt—p1(1- p)5‘1>p (1 =p)*dp.
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The result that

P(a run of r successes will occur before a run of s failures)

) (1= (1 - p)¥)
P+ (L —p)sl—pr i (1 - )t

for a sequence of independent Bernoulli trials with success probability p and failure probability
1 — p is from Bizley [8], page 150.

8 Proofs

8.1 Proof of Theorem 1

Proof of Theorem. It is a standard result that Z; + --- + Z,, ~Negative Binomial(M, 1 — p) for
the Z; as defined above (see Appendix 10). Let S™ be the product space {0,1,...} x - X

{0,1, ...} and let ST be the set of all vectors (s, ..., S,) in S such that s; + ...+ s, = t. Now let
(¢4, ..., Cy) be a vector in ST'. We can easily show formally what we deduced in the discussion
above. Namely, the distribution of (Cy, ..., C,,) is equivalent to the distribution of (Z4, ..., Z,,)
conditionedon Z; + -+ Z,, = t.

P(Zl = Cl' ""ZTL = Cnlzl + "'+Zn = t)

_ P(Zl = Cl""'ZTL = CTUZl + "’+Zn = t)
B P(Zi++Z,=t)

_ P(Zl = Cl' ...,Zn = Cn)
P(Zi+-+Z,=1t)

Cl+m1—1>m(cn+mn—1> oYMyt A My oy Cp Oy
(] o) @ pymtmn s
t+M—1)

M-1

(1-p)Mpt (
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citmy =1\ (e +my — — )M p
(21 ) (e )=
(1-p) p( M—1 )

cit+tmy—1 Cp+tmy,—1
Coazs )= Cmemr )
(t+M—1)
M-1

= P(C1 =C1 ""CTl = Cn).

Now we can use the general rule of iterated expectations, E(X) = E(E(XIY)), to find
E(W(Zy, ..., Zy)) interms of E(W(Cy, ..., Cy)).

E(W(Zy,...,Zy)) =E E<LP(Zl,... n)

= Z Z "'Z lp(Cl, "'ICTL)P (Zl = C1; ...,Zn = Cn

r=0 \ (C1,...Cn)ESH

= i z z Y(cy, .., c)P(C; = ¢4, ..., C, = ;) <Zn: Z;= )

=0 \ (¢q,---Cn)ESH

_ i E(W(C,, ..., C))P <i 7, = r)
= z E(W(Cy, .., C))(1 —p)Mp" (r 4]\-/[1\1; 1).

r=0
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But this is backwards from what we what, namely, E(¥(Cy, ..., C,,)) in terms of

E(¥(Zy, ..., Zn)). We need to invert the above relationship between these two expectations.
Hence the name expectation inversion for this general method.

First, we can move constants to the other side.

M

(%) E(¥(Zy,.... Zn)) = Z) E(W(Cy, .., Cn)) (T Ll‘fz 1) DT,

From here it follows that

dd_; (ﬁ)M E(¥(Zy, . Zn))

p=0

= %(Z E(¥(Cy, -, 6)) (" Ll‘f; h pr)

r=0

=3 B 0) (T ) (% o

r=0

p=0>
oo

= B, ) (" T T @ ie=0)

r=0

= E(¥(Cp, ., C) (¢ L"f; D
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Thus,

E(W(Cy, ..., Cy)) = (t+M1_ 1)t!dd;t (ﬁp) E(W(Zy, ., Zy))
M-1

p=0

8.2 Proof of Example 2

Proof.

Let C; equal the number of balls that go into the j* urn. The first result follows directly from
Theorem 1 and the principle of inclusion-exclusion with

¥(Cy, ..., Cy, Cpryq) = I(exactly d of (Cy, ..., C,) equal i),
Z; ~ negative binomial(m;,1 —p),j = 1,..,n and Z,; ~ negative binomial(m,, 1 — p).

Throughout this paper we use the notation

1 event A occurs
I(A) =

0 else.

In this case,

E(W(Zy, ) Zns1))
=1 P(exactly d of (Z,, ..., Z,,) equal i)

+0- (1 — P(exactly d of (Z4, ..., Z,,) equal i))

= P(exactly d of (Z,, ..., Z,) equal i)
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(By the generalized principle of inclusion-exclusion, Theorem 37, in Appendix B.)
n .
Z ~0i=¢ (1) (5) Pz, = )
n o 1 J
_ _nyvi—d (Y (™M [ (M T~ oYM
> ) <d><,>(< ha-pm)
j=d
Z( D= (D ()M a-pmps.
Thus,

dd_;; ((ﬁ)M E(w(Z,, ---:Zn+1))>
p=0

gt [ o N 1 e Drme
X [

(3 Oy

p=0
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X (00 (‘m1(n—j) -I;sz+k—1)pk>pij>
k=

0

255 o0y

j=d k=0

mn—)+my+k—1\ ik
X( I )pl] )

p=0

Z S com () m Y

X (m1(n +my,+k— 1) (ddpt pl]+k

k

)

= Y o ()Y

*(

*(

Z(nfd
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j=d k=0

ml(n—j)‘l;cmz"‘k_l)(t! I(t = ij + k)

ii( 1) m1+ll 1)

my(n — ])";sz+k BICRICETEN)

m1+l 1) (ml(n ND+my+t—ij—1
i t —ij

)
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Finally, we note that
GG =6
which brings us to

M

dt 1
d_pt <m> E(LP(Z1;---;Zn+1))

p=0

n

()Y o () (g

j=d

Thus,

E(W(Cy, ..., Cns1))

1 dt 1 min+m,
- (mln + mz +t— 1) t' dpt (1 _ p) E(Lp(Zl' '":Zn+1))

t p=0

n n i

: : , — . ]

) (mln + ETcliz)"' t- 1) j=d 0 (7711 —jl> (ml +il 1)
¢ =

y (ml(n—j)+m2+t—ij—1>
t—ij '

The second result also follows from Theorem 1 with
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W(Cy, o, Cpy Cran) = (1C = D) + -+ 1(C, = D), = Dy

on applying the formula for falling factorial moments of sums of indicator functions (see
Theorem 36 of Appendix 9).

Proof. On taking
lP(Cl, vy Gy, Cn+1) = (H(C1 = l) + -+ H(Cn = i))[r]
in Theorem 1 we have

E(l'p(Cl, oy Cnl Cn+1))

1 dt 1 min+m,
- (t+m1n+m2 —1)t,dpt<(1—p)
t .

< E((1(zy = i) 4+ 1(Z, = i))[r])>

p=0

1 dt 1 min+m,
= |
(t+m1n+m2—1)t,dpt<(1—p> "
¢ .

XY Y P(Z, =2 = 1)

Urrdr} p=0

(where the above sum is taken over all r subsets {j, ..., j-} of {1, ...,n})
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p=0

1 dt 1 min+m,
= (t +mn+m, — 1) £l dpt ((1 _ p) T! (Z) (P(Z, = i))r>

t

~ 1 dt ( 1 min+m, ' n
_(t+m1n+m2—1)t!dpt (1_p) r'(r)

t

i+my — 1\ MAT o i1
X( m1_1 ) (1_p) Up

_ 1 dt ( 1 )ml(n_r)+m2 l(n)(i+m1—1)r ir
_(t+m1n+mz—1)t,dp‘ 1-p "I\ my-1 )P

t p=0

B 1 dat Z (ml(n—r)+m2+j—1)r'
C(t+mn+my =1\, dpt\ < J '

( t )t' J=0

i+m; — 1\

ir+j
X(T‘)( ml_l )
p=0

(ml(n—r)+m2 j— 1)r!

(t+m1n+m2—1 ,Z

t H =0

t

ny(i+m -1\ d .
X(r)( my — 1 )d—pt(P )

p=0

_ 1 Z(ml(n—r)+m2+j—1)r'
(1:+m1n+m2 _1)1:!]-:0 j !

t

i +my — 1\ o
x(;})(l mrlnil ) t!H(t=1r+])
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1 . o . PN
=(t+m1n:m2_1)(m1(n r)-lgr_ni:t ir 1)r!(;l)(ur—nrlnill)

(i+m1—1>r(m1(n—r)+m2+t—ir—1)

_\m -1 t—ir n

B (m1n+m2 +t— 1) [l
t

8.3 Proof of Theorem 4

Proof. We need the following lemma to begin the proof.

Lemma35 If Zy,...,Z, are independent and if Z; ~ a;-shifted negative binomial(mj,p), then
S=2Zy+ -+ Z, ~ a*-shifted negative binomial(M,p), where a* = a; + -+ @, and M =
my + -+ my,.

Proof of Lemma LetY;, ..., Y, be independent random variables with Y; ~ negative
binomial(mj,p) forj = 1,2, ...,n. Then by definition

Y; + a; ~ a;-shifted negative binomial(mj, 1-p).

P(S=s)=P((", +a) ++ Y, +a,) =s)

=P+ -+Y,=s—a).

However, we know that ¥; + --- + Y, ~ negative binomial(M, 1 — p). Therefore

Pis=5)=(M*+E )T - ppe

(25)
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But we recognize from (6) that this is just the probability distribution for the a* - shifted
negative binomial(M, 1 — p) random variable.

Thus it follows from Equations (??) and (25) that for independent random variables 74, ..., Z,

with Z; ~ a;-shifted negative binomial(mj,p) and forall (¢, ..., c,) suchthatc; + -+ ¢, =t
P(Zl = Cq, ...,Zn = Cn|Z1 + "'+Zn = t)

_ P(Z1 = Cl, ...,Zn = CTl)
P(Zy++Z,=t)
c—1 Cn_l) — M., (c1++cp)—M
1) (o — ) A=y

(M + (Itw—_l\;l) - 1) (1 — p)Mpt-M

(C1_1>”.<Cn—1)
_ m1—1 mn—l

(t—l) = P(Cy = ¢, ., Cp = Cp)-
M—1

Now we are ready to find E(‘P(Zl, ...,Zn)) in terms of E(LP(Cl, - Cn)). By the general rule of
iterated expectations, E(X) = E(E(XIY)),

5

=1

E(W(Zy,..,Z,)) =E| E <lp(zl, i Zy)

mathcloset.com 69



z Z Y(cy, ooy cn)P(Cy = €1, ., Gy =€) | P <§n: = r)

[ee]
r=M (c1,9Cn)
Zi = r)
(o]

_ Z E(¥(Cy, ... Co)) (lrw__ll) (1—p)Mp™M.

r=M

NgE

r=M

l

1]
-y

Now we need to invert these expectations to make E(‘P(Cl, . Cn)) a function of

E(IP(Zl, e Zn)). Moving constants to the other side we have

(%)M E(¥(Zy, ., Z0)) = ZM B($(Cy -, G) (1Y) v

It follows that

i (25 50
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(00}

_ Z B(¥(Cy, -, 60) (121 ) (0116 = 0)

r=M

= B(¥(Cy, -, ) (1)

Thus,

E(W(C, ..., Cy)) = (t _11 )t!dd;t<(1fp)ME(tP(Zl, ...,zn))>
M-1

8.4 Proof of Example 5

Proof. Let C; equal the number of balls that get distributed into the jt" group where C; + C, +
~++ C, = t.Then

3(t,m,n)
P(C;21,6,21,..,C,>1) = W
t

By Theorem 1, for Z4, ..., Z,, are independent, Zj ~ negative binomial(m, 1 —p)and M = mn,
we have

P(C;>1,C,21,..,C, = 1)
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1 dt 1 mn
=(mn+t_1)t|dpt (1—29) P(Z121,2221,...,Zn21)

t

p=0

p=0

1 dt { \mn n
= (mn +it- 1) s1dpt ((1 _ p) (P(Z, = 1)) >

t

mn

1 dt )
= (mn +t— 1) (1 dpt ((1 = p) (1-(1- p)m)n>

t

p=0

(mn+ . 1 (Z . ] (1 P)m/)

t
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Therefore,

- (mn+t—1) z = (j)(mj +tt_ )

j=1

3(t,mn) = z (=1)nJ (7) (mj +tt — 1).
=1

8.5 Proof of Theorem 6

Proof. Let S =Z; + -+ Z, andlet g(p,m) = Y22, (

Also,

z+m-—1
-1

P(S=s) = Z Z P(Zy =24, o, 2y = 2,)

(Z1,42n)3
Z1++zZp=s
1szjsooj=1,...,n

) (1 — p)™pZ. In this case

(o) LY Can (e o

(Z1,2n)3
Z1++zZp=s
1szj500j=1,...,n

n

- (ﬁ) (1= p)™p* 3(s,m,n).

P(Z,=2y,...,Z,=2,|S=5)

_ P(Zl = Zl' ""ZTL = ZTL)
B P(S=5)

I(zy + 42z, =5)
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) N S T G

(my (1 —p)mps 3(s,m,n)

S P G

3(s,m,n)
= P(C1 = C1y veey CTl = CTl)'

Therefore,

E(W(Zy, .., Zy)) = E(E(¥(Zy, ..., Z)IS))

_ Z E(W(Zy, ..., Z)IS = s)P(S = s)

= i <Z Z W(cy, o, CA)P(Zy = €1y oo Zyy = CnS = s)>P(5 =s)

(01:---rcn)

(Cll-wcn)

= i <Z z Y(cy, o, cp)P(C; = ¢4, ..., Cp = Cn)>P(5 =5)

_ Z E(W(Cy, ..., C))P(S = 5)

= i E(W(Cy, .., Cn)) (m) (1—p)™p* 3(s,m,n).
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Now we need to invert these expectations. Moving constants to the other side we have

( g(p,m)

W) E(W(Zy, .., Zy)) = ; E(W(Cy, ..., Cp))3(s, m, n)p".

It follows that

d* (g(p,m)

i (1_p)m> E(W(Zy, ..., Zy))

p=0

d* (<
= d_pt<z E(W(Cy, ..., C,))3(s,m,n)p*

Ss=n p=0

p=0)
(o]

- z E(W(Cy, ..., C))3(s,m,n) (¢! I(s = 1))

S=n

oo dt
= Z E(W(Cy, ..., C))3(s,m,n) <d_pf p*

S=n

= E(¥(Cy, ..., C,))3(t, m,m)t.

Thus,

E(W(Cy, ..., Cp)) =

1 d* <g(p,m)

S(t, m, Tl)t! dpt (]_ — p)‘m> E(lp(Zli 'Zn))

p=0

Finally, we note that
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(Q(P,m))r=<z zrm ha —p)mpZ)

z=1

[oe] [oe]

Z Z 21 +m— 1) _ (zr + ml— 1) (1 = p)ymrpzt-—+zr
m—

z1=1 Zy=1

_ oNmroat zz+m—-1\ (z.+m-—-1
_Z(l P™p Z Z(m—l) (m—l)
t=r (z1,.42y)3
Zl+"'+Zr=t
1Sszooj=1,...,r

= > 3Em A -p)"p,
t=r

8.6 Proof of Theorem 7

8.6.1 Step 7a.

Proof. Let the joint distribution of
(Cy,Cy, ..., Cy,) be given by (??) (i.e. unrestricted allocation),
(€{,C5, ..., Cy) be given by (??) (i.e. no empty urns), and

(él, C,, ...,fn) be given by (??) (i.e. no empty groups).

Now suppose that we distribute t identical balls into a row of M distinct urns in such a way that
all possible (unrestricted) allocations are equally likely to occur. Assume that each urn belongs
to one of n distinct groups where the j"* group contains m; urns with my + -« +m,, = M.
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Let X;; be the number of balls allocated to the j** urn in the i*" group, i = 1,2, ...,n, j =
1,2, ,m]

We note that by definition, for every vector c,
P(C* <c) = P(C< c|X;; > 0foralliand )

and

P(C<c)=P(C<c|C; > 0foralli).

Now let C/t represent the random vector (%, ., CT") It follows from the law of total

probability for each t > 0 and every vector v that
P(C/t<v)
= P(C/t< v|X;; > Oforalliandj)P(X;; > 0 foralliand j)
+ P(C/t < v |X;; = 0 for some ij pair)P(X;; = 0 for some ij pair).

Thus,

lim (P(c/t< V)

= lim (P(C/t < v|X;; > 0foralliand j)) - lim (P(X;; > 0forall iand j))

+ tll_fg (P(C/t < v|X;; = 0 for some ij pair)) . }l_)l‘([)lo (P(Xij = 0 for some ij pair)).

We can also see that

lim (P(X;; = 0 for some ij pair) ) < lim (M - P(Xy; = 0))

t—ooo
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M-1D+t—-1

= lim | M £ —im(m- M Voo
= m M (M+t—1) _tLTo( 'M+t—1)_
t

Hence,
lim(P(C/t < v))
= lim (P(C/t < v| X;; > O foralliand ) - 1
+ thrg (P(C/t <v| X;j = 0 for some ij pair)) -0
= lim (P(C/t < v| X;; > 0foralliand j)) = lim(P(C'/t < V).
That is,

C C C ’ C, C:
limP (71 < vl,?z < vy, 'Tn < vn> = limP (Tl < vl,Tz < vy, ’Tn < vn).

t—oo t—ooo

We can make the same kind of argument to show that

Cl CZ Cn CA‘1 CA‘Z An
i — < —_ < e — < = li — < — < LL—< .
th_)rgP(t_vl,t_vz, ,t_vn> tll_)n;P t_vl't_vz' ,t_vn
8.6.2 Step 7b.

Proof. Suppose we allocate t identical balls into M = m; + m, + --- + m,, distinct (e.g.
numbered) urns where each urn belongs to one of n distinct (e.g. different colored) groups
where the j group contains m; urns. In our (unrestricted) grouped Bose-Einstein allocation
scheme all possible allocations of these t balls into the M distinct urns are equally likely events.
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Let X;; be the number of balls allocated to the j** urn in the i*" group, i = 1,2, ...,n, j =
1,2,..,mj. Let (; = Xj; + -+ + X;p, represent the total number of balls allocated to the ith

group.

Let (V, V5, ..., V) be a random vector following the Dirichlet(m,, m,, ..., m,;) distribution. That
is, let the joint density function of (V,V,, ..., ;) be given by

F(ml +my;+ -+ mn) vml—l vmn—l
r(my)--r(m,) "

f(vl, UZ' ...,Vn) =

for all points (v, v, ..., v,) suchthatv; + v, + -+ v, =1land 0 < v; < 1forj =1,2,..,n.

Blackwell and MacQueen [9] showed that in this case

(& le) (@ X2m2> (& Xnmm)
L (L), (L

converges in distribution to

(Y11 s Vi, ), (Vo o Yo, )s o (Y o Ym,))

~ Dirichlet((1, ...,1),(1, ...,1), ..., (1, ...,1))

Thus, it follows the Cramér-Wold Theorem [7] that

((&+ B ...+Xnmn>) (el 5)
t t t t t t t t t

converges in distribution to

((Y11 + oot Vi, ) (Yor + 4 Yam, )y ooy (Vg + -+ + Ynmn)).

But by the aggregation property of the Dirichlet distribution, (Wilks [53], Theorem 7.7.5) if
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(a1 0 Vi, )s (Vo o Yoy )s o (Y o Yom,))
~ Dirichlet((1, ...,1), (1, ...,1), ..., (1, ...,1))
then
((Yll + + Ylml)' (Y21 + + YZmZ), ey (Ynl + + Ynmn))
~ Dirichlet((1 + -+ 1),(1 + -+ 1),..,(1 + -+ 1))

= Dirichlet(m,, m,, ..., m,,).

So, for any positive integers m;, m,, ..., my,

c, C Cy\ d
(71,72, 'Tn> - (1, V,, ..., V) ~ Dirichlet(my, m,, ..., m,)
ast — oo,
(26)
8.6.3 Step 7c.
Proof. Suppose the joint distribution of (Cy, C,, ..., C,) is given by (??), (??), or (??) and let
(", Vs, ..., V) ~ Dirichlet(m,, m,, ..., m,). Then by the Portmanteau Theorem [7],
c, C C,\ d
(?1,?2, ,%) - (1, V,,...,V,,) ~ Dirichlet(m,, m,, ..., m,)
ast — oo implies
(27)
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for any bounded and continuous function W( ) on the common support, that is for all points
(v1,v2, .., vy) suchthat v; + v, + -+ v, =1land 0 <v; < 1forj=12,..,n

8.6.4 Step 7d.

Proof. Let (V;, V5, ...,V,,) ~ Dirichlet(m,, m,, ..., m,)) and let Y;,Y,, ..., ¥, be independent
random variables with Y; ~ Gamma(mj,/l) for j = 1,2, ...,n. Itis a standard exercise to show
that

n
Z Y; ~ Gamma(M, 1)
i=1

and

(Yl, Y, ..., Y, Z Y, = s) L (sVy, sV, o, SV)

where (V1,V,, ..., ;) ~ Dirichlet(m,, m,, ..., m,,). Therefore,

n
1
o — M-1,-1s M
E Y; s>(M_1)!s e MAMds

=1

E(W(Y,..,Y,)) =E|E <‘P(Y1, oY)

= fow E (tp(yl, oY)

[s) 1 o
:-](-) E(LP((SVI,SVZ,...,SVn)))mSM 1e AS/’{MdS.

Thus,

%E(q}(yb YZl :Yn)) = foo E (‘P((sVl,sVz, ...,SVn)))SM_le—lst.

0
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(28)

One can also establish that )’ Y; is a sufficient statistic for Y3, Y, ..., Y;,,. Therefore,
E(‘P(sVl, sV,, .., sVn)) is free of the parameter A.

This tells us that (28) is of the form

[oe)

GA) =f g(s)e *ds
0

with
(M —1)!
G(A) = TE(W(Yl, Yy, oy ¥))
and
g(s) =E (‘P((sVl, sV, ...,sVn))) sM-1,
That is,
9(s) = E(®((sV,5Vy, .., sW)) ) sM 7 = L72(G(D)).

Thus,

E(W(WVy, Vs, .o V) = SMl_lﬁ-l(G(A)) )
_ | -1y E(W(Y,, ;24 v ¥))
=M-1! L} (E(‘*’(Yv;’; ---'Yn))>
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8.7 Proof of Example 8

Proof. We begin by recalling the connection between raw moments and factorial moments via
the definition of Stirling numbers of the second kind, namely, for integern > 1,

n
th = Z S(n, k)t[n]
k=1

By Theorem 1, for Z, ~negative binomial(m;,1 —p) and M = m; + --- + m,,, we have

1 dt 1\
E((c)?) = (T (1_p) E((Z)%)
t

p=0

1 dt 1 \M<
E((C)?) = (M Yt— 1) nrdpt (1 — p) ; S(a,E(Z)
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X Z(M+k+] 1>pk+jt”1(t=k+j)

j=0

B((C)*) = WZ s kym (M 110,

t

Now we can verify the second part of this example using Theorem 7. First note that the
condition that W(xy, x5, ..., X,,) = (x;)% is bounded and continuous on the simplex x; + x, +
~+x, =1land 0 < x; < 1forj=1,2,..,nis clearly satisfied. Hence, for ¥; ~
Gamma(my, 1), we have

tli_glo (E <(%>a>) =M-1) L1 <w>

H (E ((%))) = (M- 1)L <FF(($+;)W>

(5 (2) = 0 i = )

. Cl . _ F(ml + a) ™M
o (E ((7) )) R ey I

. G (ml +aa - 1)
im ()= =y
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8.8 Proof of Theorem 9

Proof. We begin by deriving the joint probability distribution of Z,, Z, .... We have

P2 = 1020 = ) = 0~ Lt ()

Zotz1+ ((0 ;Tﬁ; 1) AO>ZO <(1 ;rz; 1) Al)zl

ZO!Zl! b

X

Zy Zq
O g <(o bm - 1) AO) <(1 tm 1) /11>

=e
ZO!Zl!

Therefore,

P(Zy+Zi+ - =n0Zy+1Z;+ - =1t)

_ Z Z P(Zy=2y,2,=24,..)

(z9,21,...)3
zj€{0,1,..} j=0,1,..
Zo+Zl+"'=n
OZO+1Z]_+"'=t

6 (0+m—1)Z°(1+m—1)Zlm

m—1

. a-am g z z m—1
20!21!"'

(Zo,Zl,... )3
zj€{0,1,..} j=0,1,..
Zo+Zl+"'=n
OZO+1Z]_+"'=t
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_ﬁ (0+m—1)20_”(t+m—1)2f
Zg! - z!
(20,21, ,2¢)3
zj€{0,1,..} j=0,1,..t
Zo+Z1++zZe=n
0zp+1z1+--+tze=t

[asz; =0forall j = t + 1 by the restriction 0z, + 1z, + --- = t]
__6 t+mn—1

a=am ( mn— 1 )

=e At on BT

This last simplification follows on noting that

1= Z “‘Z P(Dozdo,Dlzdl, ""thdt)
(do,dq,...,dy)3
d;€{0,1,..} j=0,1,..t
d0+d1+"'+dt=n
0d0+1d1+"'+tdt=t

(0 +m-— 1)d° (t +m— 1)dt
M Y m =1 m—1
(t+mn—1 dy! - d,!
_ (do,d,.,dr)>
mn — 1 dje{0,1,..} j=0,1,...,t
d0+d1+"'+dt=n
0d0+1d1+"'+tdt=t

Hence, forall (z,2;,..) 32 €{0,1,..} j=01,..., zp+2z +--=n and 0z, + 1z +
-« = t we have

P(ZO = ZO'Zl = Z1, - |ZO + Zl + .= n, OZO + 1Zl + - = t)
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6 (O+m—1)z"___(t+m—1

e(l_l)ml’ltan, m_l m_l

.

Zg Zt
(O+rz—1) ._.(t+n—1—1)
S

= P(DO = Zy, D1 = Zq, ...,Dt = Zt)'
With these preliminary results we are in position to finish the proof.

E(W(Zy, Z4, ., Z1))

z@zﬂ])
j:O j=0

—E|E (‘P(ZO,Zl, wir Zt)
_ Z Z E(lp(zo,zl, 7)) i i

o(Sa=rSs
j=0

j=0

(20,21,
zje{0,1,.. }] 0,1,

Zot+z1+=1

OZO+1Z1+ =S

|
= Z Z Ik . W(zy, 21, o) Z¢)
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YY| ey we

(29,21, ,25)3

sz{O,l,...} j=0,1,..,s
Zo+z1++zZg=T
0zp+1z1+--+52Z5=S

X P(DO = ZOJDl =7, ""DS = ZS)

X P z Z] =T, ]Z] =S
j=0 j=0
where
W(zy, 21, «n) Z¢) t<s
¥ (z) =
Y(zy, 24, ) Z5,0,...,0) t>s

with zg, 4, ..., Z; all being replaced with 0’sinthe caset > s
- z z E(¥*(D))P Z 7= r,z jZj=s
S r j=0 j=0
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s+mr—1)

0
Ta-om
=ZZE(W*(D)).6 Aser( mr — 1
r!

So, we have now established that

whe )

E(IP(ZO'Zl' 'Zt)) = Z Z E(W*(D)) -e AS anlT

or

e i)m (s+mr—1)

e E(W(ZoZy,20) = ZZ B(w (D))~ =1 7

It follows that

6
dt dn / (-nm

e | € E(¥(Zo, 2y, ...,Zt))/
A=0
6=0
s+mr—1
dt ( mr 1 )
=T agw Z Z E(w'(D)——=~.25¢
A=0
6=0
(s + mr — 1) gt gn
N Z Z B ()" — <d,1t aon ™ 9r>
S r A=0
6=0
(s + mr — 1)
_ Z Z E(W*(D))%'_l-t! nl I(s = OI(r = n)
S r
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(t + mn — 1)
= E(¥(Dy, D1, ...,Dt))%- tinl

or

1 dt dn
(mn +t— 1) prdAtdon
) !

E(¥(Dgy, Dy, ..., D)) =

(e(l%mE(W(ZO,Zl, ...,Zt))> |

=0
=0

8.9 Proof of Example 10

Proof.

Let

lp(Do, Dl’ ey Dt) = (DO)[T()] oo (Dt)[rt]

andlet Z,,Z4, ..., Z; be independent random variables with
Z; ~ Poisson (9 (] tm-— 1) Aj), j=0,1.2,..

m—1

Then by Theorem 9 we have

E(¥(Do, Dy, ..., Dy))

o
1 dt dn / @ \
= (mn+t— 1) X der \e E((ZO)[rO](Zl)[rl]"'(Zt)[rt])/
. !

_6
1 dt dm [ a-am
(mn +t— 1) (1 dAt dom
. !

~

E <(Zj)[rj]>

j=0

o~
T
o o
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[
B 1 dt dn 6(1—/1)"1 (j +m
_(nn1+t——1)ﬂdgtd0n | m—
t ' /=0

~

T
—1 1) ]Hrjljrj

> >
I
[

(applying the formula for factorial moments of a Poisson random variable given in Appendix 10)

0
4 (1-—1m

1 (j+m—1)r1'd_'t dan e(l—/l) oR 25

(mn+t—1)t, ; m—1 datden
]:
t A=0
6=0
t © oo
= 1 H(j+m_1 ndodr ZZl mi+v - )9i+RAV+5
(mn+t—1)t,_ m—1 dat der L'
¢ : =0 i=0 v=0 A=0
6=0
t © o

_ 1 ]+m—1r122( mt+v—1)
_(mn+t—1)t,_

¢ * j=0 i=0 v=0

X nl UG =i+R) €1t =v+5))
t .
_ 1 (j+m—1)r1(m(n—R)+(t—S)—1) n!
(mn+t—1) m-—1 t—S (n—R)!
t J=0

(m(n R)t-l;(;f—S)—l) (]+m—1)'
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8.10 Proof of Theorem 11

Proof. We begin by deriving the joint probability distribution of Z,,, Z,;,11, .... We have

o((m oD
P(Zy =2Zm Zoms1 = Zimyq, ) =€ N1 m-1

g (0= 2)r) " (4 D2 1) )

X

Zm! Zm+1

0" pamtzmarte ((m — 1) Am>2m <((m +1) - 1) Am+1>zm+1
(1-nHm . m—1 m-—1

Zm: Zm+1

Therefore,

PZy+Zpyr+=nmZy+(Mm+1)Zyq +=1t)

= b E P(Zm =Zm,Zm+1 =Zm+1, ...)
(Zmzm+1,--)3
z;€{0,1,...} j=mm+1,..
Zm+Zm+1+"'=n
mzm+(Mm+1)zymqpq+-=t

L S e

Zm! Zmaq e
(ZmzZm+1,--)3

z;€{0,1,...} j=mm+1,..
Zm+Zmprt+=n

mzm+(m+1)zy4q+=t
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o™ (m —~ 1)Zm ((t -mn-1)) - 1)2“"’("‘“

=e_(1—/1)m g Z z m—1 m—1

(ZmZt—m(n-1))?
zj€{0,1,...} j=m,..t-m(n-1)
ZImt T Ziomn-1)=N
mzm+-+(t-m(n—1))z;_mn-1)=t

Zp! o Zt—m(n—l)!

[as z; =0forall j > t — m(n — 1) by the restrictions z,;, + -+ + Z;_pm(n—1) = nand mz,, +
et (t —m(n — 1))zt_m(n_1) = t taken together]

__6am t—1
=™ ()
— e At g Tnn—'
n:

This last simplification follows on noting that

1= z z P(Dm = dm, ...,Dt_m(n—l) = dt—m(n—l))
(dm -t —m(n-1))3
dj€{0,1,..} j=m,..t—m(n-1)
Am++dp_mn-1)=n
Mdm+--+(t-mm—1))d¢_mn—1)=t

(m - 1)dm (t -m(n—-1) - 1)dt‘m(”‘1)
o m—1 m—1

( t—1 ) Ao dy—mn1)!

mn—1 (dm:--vdt—m(n—l))3

djef0,1,..} j=m,..,t-m(n-1)
Am+-+di_mn-1)=n
Mmdp+-+(t—m(n-1))d¢_mmn-1)=t

Hence, forall (z, Zm41,-.) 22 €{0,1,..} j=mm+1,..., 2y, + Zypyq + - = nand mz,, +
(m+1)zy4q + - =t we have

P(Zm = Zm Zimar = Zmsts o | Zon + Zanas + = 1 MZpy + (M + Dy +- = t)
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_gam m— 1\%m t— m(n _ 1) — 1\ %t-mn-1)
a-nm (m_l) ( m—1 )
e Ao ] |
_ Zm: " Zt—m(n-1)-
- __6eam t—1
-2 t gn (mn - 1)
e Ao T

) B G e B

(t + mn — 1) Z! e Ze_mm-1)!
mn-—1

= P(Dm = Zym, D1 = Zm+1s o Demmn-1) = Zt—m(n—l))-

With these preliminary results we are in position to finish the proof.

E(¥(Zn, - Ze-mn-n) )

5 15.0)

J=m J

=m
RN
j:m j=m

=E| E (‘P(Zm: ---:Zt—m(n—l))

= Z Z E (lp(zml ---;Zt—m(n—l))
s T

= z z z Z ‘P(zm, ...,Zt_m(n_l))

S r (ZmzZm+1,--)3
z;€{0,1,...} j=mm+1,..
Zm+Zmeq =T
mzm+(m+1)zym4q+--=s
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515 e

j=m j=m

X P (Z = Zmr Lma1 = Zmats -

3y Y e

s T (Zm'---'zs—m(r—l))3
zje{0,1,...} j=m,..s—m(r-1)
Zmt ot Zsom@r-0) =T
Mz +--+(5—M(r=1))Zs_m(r—1)=5

X P(Dm = Zmy s Dsomr-1) = Zs—m(r—l))

where
W(Zm) Zms1s - Zt-m(n-1)) t—mn—-1)<s—-m@r-1)

¥ (z) =
Y(Zm, Zm+1, wer Zs—m(r-1), 0, 20) t=mn—-1)>s—m@-1)
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With Zs_n(r—1)+1s -+» Zt—mn-1) all being replaced with 0’s inthe caset —m(n —1) > s —
m(r—1)

Z]'=T,

[oe] (0]
j=m j=m

]Z]=S

= z z E(¥*(D))P

am (ST1)
=Z Z E(W*(D)>€ s QTL_l
r!
s T

So, we have now established that

!

(Ifgnm ( s—1 )
E (lp(Zm, ""Zt—m(n—l))) = Z Z E(W*(D))e A5 97 mr—1
s T

or

oA™

s—1
a-om ()
e E(¥(Zns s Zeomn-) ) = Z Z E(W*(D))% 256,
S T
It follows that
[ \
dt 40 | a-am
Wﬁ |\e E (lp(Zm, . Zt—m(n—l)))/l‘
A=0
=0
s—1
d* d" % (mr — 1)
= grae| 2, 2, B @) s
S T _
60
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( s —_11) dt 4r
_ z z E(W*(D)) m‘rr! (d,{t 707 AS 91")
(e 1)

= z z E(W*(D))—rl- t!n! (s = )I(r = n)

T
(Trfn_—l 1 )

n!

A
6

0
0

=E(¥(Dmy e Decmen-1) ) - tin!

or

E (W(Dm; Oy Dt—m(n—l)))

gA™
1 dt dn ( a-nm \‘
- t—1 'den e E(Lp(zml"'lzt—m(n—l)))
(mn - 1) t \

A=0
6=0
8.11 Proof of Example 12
Proof. Using Theorem 6 we have
P(Dy =dy, ..., Diops1 = deops1)
= E(¥(Cy, ..., C))
_ 1 atgm\" B, ...2,))
 3@,mn)tldpt\ \(1 —p)m Ly ®n
p=0

1 dt gp,m) \" n!
(G

- 3, mn)t'dpt\ \(1—p)™ !

1 dengd!
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y (1 +m— 1)d1 (t —n+ m)dt—n+1 (1- p)m"p(1d1+'"+(t—n+1)dt—n+1)
m—1 m -1 (g, m))"

_ 1 n! 1+m-—1\%"  t—n+m@nf db
_S(t,m,n)t!dl!---dt_n+1!( m—1 ) ( m-—1 ) dpt(p)

)

_ 1 n! (1 +m-— 1)d1 (t —-n+ m)"lt—nJr1 "
J,mn)tldy! - dipiq!\ m—1 m—1 '
__ 1 n! (1 +m-— 1)d1 (t —-n+ m)"lt—nJr1

3t,mn)dy! - dipiq!\ m—1 m—1

whered; + -+ di_py =n and 1d; + -+ (t—n+ Dd;_,41 = t.

(29)

8.12 Proof of Theorem 13

Proof. The joint probability distribution of Z, Z5, ... can be determined as

P2 22, = 22, ) = o~ O i

Zq Z2
QZ1tzz+ <(1 :;lniz 1) /11> <(2 -l‘r;l‘rz; 1) /11>

Zl!ZZ! b

X

1 N\ 2 n .\
S (P L B (G T

Zl!ZZ! A

Therefore,
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_ Z Z P(Zy = 21,2 = 2, ...)

(z1,22,..)3
zj€{0,1,..} j=12,...
Z1+2Zy+=n
1z1+22z5+--=t

o 1+m—1\"/24+m—1\*
_ ‘92?21(;:?1 1)’11 t an ( m—1 ) ( m—1 )
—e At g . PPN
AR

(21,22,..)3
zj€{0,1,..} j=12,..
Z1+Zy+=n
1z1+2z5+-=t

oz () R T (i

=e At gn

yA ! oo Zo !
(211221'-~:Zt—n+1)9 1 t—n+1

z;€{0,1,...} j=12,.,t-n+1
Z1+Zy++Z_pny1=n
1Zl+222+"'+(t—n+1)Zt_n+1=t

[asz; =0forall j = t —n + 2 by the restrictions z; + z, + -+ 2z;_p4; = nand 1z; + 2z, +
o+ (t —n+1)z,_,41 = t taken together]

-8 21031 (L'+1Tl—1)/1i

. 4t gn . 3EMT)

n!

This last simplification follows on noting that
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1= § P(Dy =dy,D; = dy, ., Di_ny1 = dt_ny1)
(dlrer"'rdt—n-l-l)a
dje{o,l,...} j=1,2,.,t—-n+1
d1+d2+"'+dt_n+1=n
1d1+2d2+"'+(t—n+1)dt_n+1=t

= n—| (1 :’nTEI 1)d1 (t :nn_+1m)dt—n+1
3(t,m,n) Al dy !

(dl’dZI---:dt—n+1)9
dj€{0,1,..} j=1,2,..,t-n+1
dq +d2+"'+dt_n+1=n
1d1 +2d2+"'+(t—n+1)dt_n+1=t

Hence, forall (z;,2;,...) 22 €{0,1,..} j=1.2,..., z+2z,+--=n and 1z + 2z, + -

we have
P(Zy=2,2, =23, .| Ly 4 Zy o = 1,12, + 22, + - = t)

(G I A

Zy! Zp !

-9 2?21 (1+m—1 2

m-1 ) L/—lt on . 3(tlnr?l n)

Z1 — Zt-n+1
(1 + rz; 1) (t n_+1m)
- 3(, m,:; "z Zpne!

n!

=P(Dy = 21,03 = 73, ., Dt_ny1 = Ze—ny1)-

With these preliminary results we are in position to finish the proof.

E(W(Zy, ) Z-ns1))
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505 )

=E| E <lp(zli ---'Zt—n+1)

j=0 j=0
= z z E(lP(Zl, wirZt—pa1) z Zj = r,z JZ; = 5>
s T j=1 j=1

j=1 j=1

= Z Z Z Z W(Zy, o) Ze—ms1)

(Zl,Zz,... )3
Zl

zje(0,1,..} j=12,..
21+ZZ+-~-=T
= Z Z z Z W*(z) P(Dy = 21, ) Ds_ry1 = Zs_r41)

1z1+2z5++=s
s T (z1)0Zs-r+1)3
z;€{0,1,..} j=1,.,s—1+1
Z1ttZs—r41=T
1z1++(s—1r+1)Zg_y41=S

”M8

X P<Zl =Z1,ZZ =27

||'M 8

Z _
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where

IP(ZIJZZJ"'JZt—‘I’H-l) t—TL+1 SS_T+1

IP(ZIJZZJ"'JZS—T+1J 0,,0) t—TL+1 >S—T+1

=> > B m)P i Z; = r,i jZ;=s
- = =t

oo L+m1
ZZE(W ) S L (C10)

r!

So, we have now established that

E(Lp(Zl, Zt n+1)) Z Z E(‘P (D)) e z:?ol(m 1 ) 15 o7 3(5 m, T')

T

or

392;}01("1 1 )’1 E(W(Zl, ---,Zt_n+1)) _ Z Z <E(W*(D))M> L1507,

It follows that
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dt dn 932, (i+m—1)/1i

m-—1

YT e E(LP(Zp ---;Zt—n+1))

o~
i

o o

dt dn 3(s,m,7)
=WW<ZZE(‘P*“”> s "”)

A=0
6=0

,m, dt dr
— Z Z E(W*(D))s(srr'n r) . <dlt e A5 9r>

A
6

0
0

= Z Z E(‘P*(D))M- t! n! I(s = )I(r =n)

3(t,mn)
= E(¥(Dy, ...,Dt_nﬂ))T- tin!
or
1 dt dr [ ez, (G
B¥ Dy Denin)) = g —snamragn| ¢ (PG Zenan)

SN
T
o o

8.13 Proof of Theorem 14

Proof.

Following the ideas developed in the proofs of Theorems 9, 11 and 13, we can see that
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P (((Dm» R Dlt); (DZO' R DZt)) = ((dw' R dlt); (dZOJ e dZt)))

exactly d;; of the n, groups in row 1 contain j balls, j = 0,1, ..., t

=P and
exactly d; of the n, groups in row 2 contain j balls, j = 0,1, ..., t

n,! (0 +m; — 1)d10 (t +m, — 1)d1t
_ (d10)! (dlt)! m; — 1 m; — 1

(m1n1 + mznz + t - 1)
: J
y n,! (0 +m, — 1>d10 (t +m, — 1)d2t
(dzo)! (dZt)' mZ - 1 mZ - 1 .

Also,

p (((210:211; v (Z20,Z 1, )) = ((2101211: ), (220, 221, )))

o)

oo
_ o E) el [ (J' +my — 1>Z” [ (j +my — 1>ZZJ
m; —1 m, —1
j:O ]=0
0210+211+"' 9220+Z21+"' /1(02104.12114....)+(0220+1221+...)
1

% 2

(z10)! (Z11)! -+ (Z30)! (Z31)! -+

Therefore,
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(OZIO + 1211 + ) + (OZZO + 1221 + ) = t,
P Zig+ Zyp+ =1y,
ZyotZy t=ny

P (((Zlo, Z11; ); (220,221, )) =

((z10,211,--).(Z20,221,--))3
(0z19+1z19+)+(0z20+1221 4+ )=t ((ZIOJ ARTRLE ), (Zzo, Z9qy een )))
Z10%Z11t =Ny
Z20%Z21t =N

1 \™ 1 \™2
91210+Z11+“' 92220"'221"'"'
((210,211,---),(220,221,---))3
(0210+1211+"')+(0220+1221+"')=t
Z10%Z11t =Ny
Z20%Z21F =N

o

(100 0y
| m, —1

j=0 j=0

X 2‘(0201+1211+"')+(0220+1221+"')

(1! (Z1)! -+ (Zo0)! (Z5)! -+

m2

) (ﬁ) 91711 H;IZAt

o

< oxey (e ey

((z10.211,-)/(220,221,--))3 J /
(0210+1Z]_1+"')+(0220+1221+"')=t
Z10+Z114=n04 (z10)! (211! (Z20)! (221! -+
Z20tZz21t=Ny
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t t
(j +my — 1)211' 1—[ (j +m, — 1)221'
X Z Z m; —1 m, — 1

Jj=0 j=0
((210’211’---’th)’(ZZO’ZZL ---,Zzt))9

(0z10+1z11 4+ +tZ1)+(0Z20+ 1221+ +tZy¢)=t
R zlo+zlltl+---+2201t=n211 “ (Z10)!+ (Z1)! (220)! +++ (220)!

Z20t 221+ +Zt=N2

[as z;; = z,; = 0 forall j > t + 1 by the restriction (0z; + 1245 + ++-) + (023 + 12, +
...) — t]

m (m1n1 +myn, +t — 1)

=e‘91(1—i/‘1) -62(127) 016122t 't '
nl.nz.

Hence, for all ((z10, 211, ), (Z20, Z21, --)) D z,; €{0,1,..} andz,; €{0,1,...} j=
0,1, AT\ + Z11 + = Ny, Zpp + Zy1 + .= n, and (0Z10 + 1Z11 + ) + (OZZO + 1221 +
.+) = t we have

p ((Z10»Z11» vy (Z0,Z51, )) = ((2101211» ), (220, 221, ))

(0210 + 1211 + “’) + (OZZO + 1221 + “') =t
Zig+Zyypt=m
ZytZyt=n

(0 +my — 1)210 (t +my — 1)2“ (0 +m, — 1)220 (t +m, — 1)2” o
m1—1 m1_1 m2_1 m2_1 nl.nz.

(mlnl + minz T 1) (210)! -+ (210)! (230)! -+ (250!

mathcloset.com 106



=P (((Dm» '"iDlt)' (DZO' R DZt)) = ((210' "'let); (Zzo; "'JZZt)))-

With these preliminary results we are in position to finish the proof.

E(¥((Zao, Z1ys o Z1e), (Zao, Zos s Z2t)) )
=E| E{ W((Z1o, -\ Z10), Z2g) 1 Z2t)) Z Z“”Z sz,z Jj(Zy; + Z))

Jj=0 Jj=0 Jj=0

4

= 2 Z Z (E W((Z1os r Z1)y Zagy oer Z31))
k q

zzlqu,z szzv,Z](le‘l‘ZZ]):k X
j=0 j=0

co
j=0

j=0

P Z Zy; = q,z Zyj = U»Z j(Zyj+Z5) = k \’
=0 =0 /

_ Z Z Z z Z W((210) er Z16)s (Zagy +oer Z21))
k q

v ((z10.211,-):(220.221,--))3
(0210+1211+"' )+(0220+1221+"' )=k
Z10tz11t=q
220+221+"'=U

X P ((Zlo' wir Z1t), (Z 0, ---'ZZt)) = ((210' e Z1¢), (Z0, ""ZZt))

mathcloset.com 107



[ee] (o]

Z le = q,z sz = v,z ](le +Z2]) = k
j=0 j=0

j=0

X P Zzlj:q,z sz=v,2j(zlj+zzj)=k
j=0 j=0

j=0

- Z Zq: Z Z Z ¥ (z,,2,)

v ((210,211,---'Zlk)'(Zzo,Zm,---,sz))a
(0210+1le+"‘+k21k)+(0220+1221+"'+k22k)=k
Z10tz11++Z1k=q
Zzo+221+"'+22k=v

X P ((210' vy Z1), (Z20, ---:ZZt)) = ((Z1o: s 216), (220, ""ZZt))

t t
Z le = q,z ZZ] = U,Z ](le +sz) =k
j=0 j=0

¢
j=0

t t
X P Z Zyj = q,z Zy; = v,Zj(le+sz) =k
j=0 j=0

t
Jj=0

where

W((Z10) - r Z16), (Z20) o) Z2¢)) t<k

l'I'”(Zli ZZ) = {
Y((z10) +» Z1%, 0, ...,0), (220, v ) Z2k, 0, ...,0)) t>k
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With Zy(k41)s s Z16s Z2(k+1)s -2 Z2¢ all being replaced with 0’s in the case t > k

= Z Z Z E(¥*(D,,D,))P Z Zyj = qu Zyj = ”;Z j(Z1j+ 7)) = k
k q v j=0 j=0

j=0

m m mqg+muv+k—1
o) e L )
= Z Z Z E(W*(D;,D,))e 7 M plgpak q!"v!
k q v
So, we have now established that
E(%((Zao, Zay, s Z10), (Zao Za, 1 Z30)) )
m m mq.q + myv +k—1
) * o)), p )
- Z Z Z E(¥*(D,,D,))e 69622 ke
e q!v!
or
or(2n) + oty
e = =4 E (W((Zloizll» ---»th); (220:221: ""ZZt)))

(mlq +myv+k — 1)

_ z z z E(¥*(Dy,D,)) qlkv' 6362 2%.
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It follows that

b dmam (el el
2t de™ a6l \

X E(¥((Zao, Z1 o Zae), (Z2o, Zos, ...,ZZt))))

= tl n,! ! <E (W((D10, D11, e D1e), (Do, Dy e

or

E (W((Dw' Dyy, .., D1t)» (Dzo» Dy, ..., Dzr))) =

A=0
91=0
92=0

(m17’L1 + mznz + t - 1

nq!n,!

D)) ‘ )>

1

(m1n1 + mznz + t - 1

dt dm ( or() +6a()
X ————F|e
dAt do;" de,”?

x E(¥((Zi0, Z11, -+, Z10), (Z2o, Zos, ...,ZZt)))>

8.14 Proof of Theorem 15

Proof.

2 ) ol

=0
6,=0
0,=0

I (((Dw' s D1p), ((:21' e Can)) = ((dlo' e die), (C21' -'C2n2))>

mathcloset.com

110



exactly d,; of the n, groups in row 1 contain i balls, j = 0,1, ..., ¢t
=P and

there are c,; balls in the j®* groupinrow 2, j = 0,1, ..., t

nl! (O + ml - 1)d10 (t + m1 - 1)d1t x (C21 + m21 - 1) (Can + man -1
_ (dyp)!- (di )\ my —1 m; —1 My — 1
- (m1n1+M2+t_1)
t

Also,
P (((210, ZlZ; ), (221; -..;ZZnZ)) = ((Zl(); Z11, ), (Z21, ...,ZZnZ)))
_ 2o W ﬁ (’ +my — 1)211 g7t J0motizy
- (Z10)! (Z11)!
j=0
% (Z21 + myq — 1) (ZZTLZ + mZle - 1) (1 _ ){)M2)1221+"'+22n2
6 (L)ml o o g
. 1\1-2 1—[ <] + my — 1>21] 9110 11 /10210+1211+...
= (z10)! (1)}
j=0
x (ZZl + le - 1) . (ZZTLZ + mznz - 1) (1 _ A)MZ/'{ZZl‘I""'I'Zan
my; — 1 Myp, — 1 .
Therefore,
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P (OZ10+1le+"')+(Z21+"'+ZZn2) = t,
ZigtZypt+=mny

_ Z Z P ( (210211, ), (221, Z20,) ) =

((210,211,--- ),(221,---,22712))3

(0210+1211+“')+(221+“'+22n2)=t ((Zlo, Z11, e ), (Z21, ey Zznz))
Z10+Z11+ =N

mq

~0:(:57)

SRS IO Y (F (Grb

((210,211,...),(221,...,22712))3 ]=0
\(0210"‘1211"‘"' )+(221+"'+22n2)=t
Z10tZ11+ =N

Zy1 + myq1 — 1 ZZTLZ + mZle -1
m21 - 1
gZrotzut /1(0210"'1211""")+(221+"'+22n2)

(z10)! (zg)! - !

-6 % i / @ : Zyj
. (1 /1) (1_/1)M2| ZZ 1_[<]+m1—1) 1j
| g m;—1
(210211221, Zan)) J=0
\(0210+1211+ V+(zz1++22n,)=t
Z10+Z11+=nq
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(ZZI + myq — 1) (Zzn2 + m2n2 - 1)
le - 1 man - 1

(z1)! (2! -+

6, At

)

_ e_el(m (1— )Mo At Z Z ﬁ (f my 1)

=0
((210,211,---),(221,---,Zzn2))3 J
(0210+1211+'“ )+(221+"'+22n2)=t
Z10tZz11t =1

(Z21 + myq — 1) (ZZle + mZnZ - 1)
my; — 1 Map, — 1

(z1)! (21! -

S~—

=e  (1=A)MgMpt

. Z4i
(_] + m1 - 1) 1
L ml - 1
((2101211:---1210,(2211---,ZZnZ))3 J=0
(0210+1Z]_1+"'+t21t)+(221+"'+Zz-n_2)=t
Z10tz11+ - +Z1=nq

X
/—_ﬁ

(221 +my — 1) (Zan + Moy, — 1)\

m2n2 - 1

(z10)! - (Z1p)!
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[as z,; = Oforall j =t + 1 by the restriction 0z;¢ + 1z + --- = ¢]

mq

_ MM gt | m1n1+M2+t—1i
(1 - M6yt - . )nll.

-6:(1=7)
=e

Hence, for all ((210,211, ), (221, ...,Zan)) 52;€{01,..}j=01,..andz €{0,1,..}, j =
1,..,7, 239+ 291 + - =nq, and (0249 + 124, + ) + (221 + -+ zan) = t we have

P (((zm,zn, D (Zon, ...,ZZnZ)) - ((zm,zn, 2 (201, ...,zZnZ))

ZigtZyt=m

(0210 + 1211 + ) + (Z21 + -4+ ZZnZ) = t,)

(0 +m; — 1>21° (t +m,; — 1>th <221 +my; — 1) (Zan + Myp, — 1)
n,!
m; — 1 m;—1 my; — 1 My, — 1

(m1n1 + I\ZZ +t— 1) (2,0)! - (21,)!

=P (((Dlo, ., D1p), (621, - Can)) = ((Zlo, s Z1t), (221, ...,Zan))>.

Therefore,

E (LP ((ZlO,le, o Z1t), (Zzp ---:Zan))>

[’} [’} np
=E( E| ¥((Zi0 Z11, - Z10), (Za, ...,ZZnZ))|Z le,z JZy 4 Y Zy
=0 =0 =1
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_ Z z E\ ¥ ((Zuo Z1s, o Z1), (Zots s Zon,))
k q
oo oo np
D Zy=a) jZy+ ) Zy=k
7=0 =0 =1
oo o0 np
7=0 =0 =

-3 >y ¥ (210,211, - 210), (221, Z21,)
kq

((210,211,--- ),(221,---,22n2))9
(0210+1211+"‘ )+(221+"'+22n2)=k
Z10tZ11+=4q

P < (10 210), (Za1, s Z2ny) ) = (@100 s 210D, (221, o Z2m,))

‘ (0210 + 1211 + ) + (221 + -+ Zan) = k>
ZigtZy+=q

/

o 00 n
=0 =0 =1
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=§k:§q: Z Z W (2,,2,)

((210,211,---,Z1k),(221,---,22n2))9
\(0210+1Z11+“'+k21k)+(221+'“+22n2)=k
Z10tz11t++Z1k=q

P (((Dw, s D10, (Con, ...,CZnZ)) = ((zm, w210, (221, ...,zan)))

J

) o' na
=0 =0 =1

where

y ((zlo,zll, o Z1), (221, ...,ZZnZ)) t<k

‘P*(szz) =
y ((zlo,zll, v Z13, 0, .,0), (221, ...,Zan)) t>k

With Z3 k41, Z1(k+2)» --» Z1¢ all being replaced with 0’s inthe case t > k

I ) nz
= z z E(Lp*(DL Cz))P z Zyj = CI,Z JZ1j +Z Zyj =k
kK q j=0 j=0 J=1
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1 \™

* _gl(m) M qI1k m1q+M2+k_ 1 1
- z Z E(W*(Dy, C,))e (1 — M08k ( : )E'
k q

So, we have now established that

E (lp (210, 211, - Z10), (Zo1, ---:ZZnZ)))

1 \™
~01{17 i1
= Z Z E(W*(Dy, Cp))e (1 - D)Mz0] 2k (mlq + Mkz +k 1)_'
k q q'
or
1 \™
61(7=7)
e (1 - A)_MZE (l'p ((Zl()’ Z11, th)l (221, ...,ZZnZ)))
" miq+M, +k—1y1
= z z E(lp (Dl, Cz))( 19 ; )a Hf/lk.
k q
It follows that
gt qm [ 6 }
T (1= D™EMW((Z10, Z11, - Z16), (Z21) ) Z2n,)))
' A=0
9120

—1\ny!t!
—E (Lp (D10, D11, e, D1), (Cts o cznz))) (am + Mt e =1 o

or
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E (IP ((Dloi Dlll ey Dlt)' (C21, ey Can))>

1 gt qm [ )
= = e (1—-A)M
(m1n1 + M, +t— 1) £l \d/lt e

t

E (lp (210211, - Z10), (2o, ---:ZZnZ)))

o
1]
o ©

8.15 Proof of Example 16

Part 1. If we take

k4 ((D10'D11' ey D1t), (C21: e Can)) =1(Dyo =k, Coy =t —J)

in Theorem 15 then

P(Dyg =k,Cyy =t —j) =E (lp ((D10»D11» oy D1t), (C21» "-'Can)))

1 dt dm 1 \™ _6 __
= — e-D™P(Zg=k,Zyy =t —j
(m1n1 tmy +t— 1) 1 dAt dort (1 — A) (Z1o 2 2

t

A=0
9120

where Z;, ~ Poisson(6,), Z,; ~ negative binomial(m,,,1 — 1) and where Z,, and Z,, are
independent random variables
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1 dt dm 1 \™ 0 e 01(0))*
_ 4 ( ) eG-m s 1
(m1n1 + mz +t—- 1) t' d/'lt da;ﬁ 1 _ /1 k|
¢ .

t_]+m2—1 _ Zt_-
(T amama )

A=0
91=0
t n (4
_ my — 1 d* d ; eme_gl(el)klt_j
(m1n1 +m; +t— 1) Kl ¢! dAt de;t 1=0
¢ It! 6. =0
t n 1
— mZ - 1 d d ; eel(m_l)(el)klt_j
(m1n1 +m,; +t— 1) Kl ¢! At de;* 1=0
¢ It! 6. =0
t—j+m2—1> - ,,( 1 )"
— ( m; — 1 d_t d™ Z (01) (1 — A)ml . (9 )k/‘{t—j
B (m1n1+m2 +t— 1)k|t| dAat d@;ll v! 1
¢ L v=0 1=0
91_0

(t—j+m2—1> o b

m, — 1 dt d™ oi (V

T mn, +m, +t—1 dAt dg™ Z (=1 (L)
( 1M 2 )k!t! ae, :

v=0 i=0
t

1

% T 1(91)k+v/1t J> )

6,=0

— mz _— 1 dt dnl Z Z ( 1)17 l
(m1n1 +m, +t— 1) Kl ¢l dit dglnl

v=0 i=0 w=0
t
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1 m1i+W_1 k+vyt—j+w
x—( » )(91) A

v! 1=0
91=0
- mT(L+TT:lLZIt1 (Z z( D )1|(mll+w_1)
1741 2 k't' - - - V! w
( t v=0 i=0 w=0

dt dm .
. k+vt—j+w

* Ao (@)= >

91=0

(t—j+m2—1>

— (m1n1+m2 i k|t|<z Z Gk l (m1l +WW—1)

v=0 i=0 w=0
t

X ting!I(n, =k+v)]1(t=t—j+w))

(t—]+m2—1>
_ m; — 1 Z nlkl - 1 <m1i+j_1)l l
(Mam Mz T D g g v i)(nl—k)! jo)Em
t

t—]+m2—1>
:( m, —1 ( Z( 1)n1kl )<m1l+]—1)
(m1n1+m2+t i Ji '

i=

Proof of Part 2.
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If we take

b4 ((Dw; D11, en) Dlt)' (Czp vy CZnZ)) = (DIO)[V](CZI)[S]
in Theorem 15 then

E((D10) ) (C21)1s7)

1 dt dm 1 \™ _61__
= JE— —-A)m1
(m1n1 tm, +t— 1) L A g™ (1 — A) e -V E((Z10) ) (Z21)16))

t

91 =0

where Z,, ~ Poisson(8,), Z,; ~ negative binomial(m,, 1 — 1) and where Z,, and Z,, are
independent random variables

1 dtodm 1\ 6
— il a-A)m
(P M T =) @i e (1 - A) e B((Z0)p)E(Z0e) ||

t 91=0

But we know (see Appendix 10) that

E((Zw)[v]) = (91)V

and

E((Zzl)[é‘]) = (%)6 mg&]_

Therefore,
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E((D10)p(C21)s7)

mi! dt dm ([ 1 \™ _6_ VN
: s () o (5)
(m1n1+m2+t_1)t!dltd011 1—)1 1_1 A=0

t 91=0
_ iil(mll+m2+6+]—1)
(m1n1+m2+t l'
t P\=0 5=
dt dm
_ v+i 6+j
* Ax o™ (@)
91=0
)
_ my tin,! (ml(nl—v)+m2+5+(t—6)—1)
(m1n1+m2+t_1)t| (nl—V)' t_5
t
)
_ mg : (nl)v' (7r11(n1 —Vv)+m,+t— 1)
(m1n1+m2+t—1) v/ t—9o6
t
_ 1 nl m2+8_1 ml(nl_V)‘l'mz""t_l
= O™ i ) via.

(mlnl +m2 + t - 1)
t

8.16 Proof of Example 17
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Proof. In the language of Theorem 14 we can think of the first n, groups of urns as our “top
row” and the remaining n, = n — n, groups of urns as our “bottom row”. In the notation of
Theorem 14 the problems asks for E(D,,|D1o = j).

We have that
E(D20|D10 = ])

nz
= Z kP(Dzo = k|D1o =j)
k=0

n;
= Z k_P(DIO =J, D30 = k)
e P(Dw =j)

and we can use Theorem 14 to find each of these probabilities. For the numerator probability
we take

lP((Dlo, Dll' ""Dlt)l (Dzo, D21, "'IDZt)) = H(Dlo =j, DZO = k)

In this case
P(D1o =J,Dyo = k)
1 dt d™m J"e 61, 6
(e + €= 1) 2 d0] 463 eQD™ QRP(Z1g = J, Z30 = k) iz
t ' 1=
92=0

where Z;, ~ Poisson <(O -rl;zrﬁz 1) 9M°> and Z,, ~ Poisson <(0 :;ln_lz 1) BZA()) and where

Z10and Z,, are independent

1 dt dm dnz 61, 0, o=019] ¢=62pk
= — @™ D™
(mn1 +mn, +t— 1) £ A" dO™ d6)? J! k! A=0
t ' =0
2=0
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1
=(mn1 +mn2+t—1)t!

t
© o T+S
X d_t_dnl dr z z z ( 1)r+s i T+S) 1 97’+]95+k 1
dx d6;” d6y? a—nm o % st a0
r=0 s=0 i= 6,=0

92=0

1
=(mn1 +mn2+t—1)

t!

d' dm dm SN r+s
_ r+s—i
* dfltdefldeZ”ZZZZZ(( 2 lklrlsl( i )

r=0 s=0 i=0 b=0

x (im +b— 1) 91r+j95+k/1b)

21=0
b 6,=0
62=0
_ 1
_(mn1+mn2+t—1)t,
; !
oo © r+s oo 1
aNrs—i r+s\(im+b-1
XZZ Z<( D j!k!r!s!( [ )( b )
r=0 s=0 i=0 b=0

X ting!'ny! 1(t =b)I(n, =71+ jI(n, =s+ k))

1
:(mnl +m?2+t—1)t!

(n1=N+(nz—k)

) . 1
g Z <(_1)(n1_1)+(n2_k)_lﬂ K1y = 1 (ny — 0!
x ((n1 —j) -I; (n, — k)) (im +tt — 1) t!nllnzl)
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(1))
(’mn1 + m‘:z +t— 1)

n1+n2—j—k

X z (—1)na+na—j—k=i (n1 + nz._j - k) (im +tt - 1).

- l
i=0

For the denominator probability we take

l{J((D10' Dll) ---,D1t), (DZOJDZIJ "'JDZt)) = H(DIO = ])

In this case

P(Dw =j)
1 dt dm dne 61 + 0,
= R 1-A)m (1-A)™ =7
(mnl tmn, +t - 1) 1 dAt dg;™ do,)? e TP =) )|
¢ t! 1 2 0,=0
92=0

where Z;, ~ Poisson ((0 :;:EI 1) 01/1°>

1
- (rrm1 +mn2+t—1)t,
" !
dt dm dm 61, 6, o619/
X e@-Dm (a-pm "1
d/lt denl denz ]I A=0
1 2 9120
9220

1

(mn1 +mn, +t— 1) £l
" !
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dt d™ d™ o TS|
0 nZZZ(l)“ —91 65 -
d/lt d@ 1 d@zz A)m(sﬂ) jlristfa=o
r=0 s=0 i=0 6,=0
92=0
_ 1
(mn1 +mn, +t— 1) £
¢ !

dt dm dm ¢ . 1
d/ltde?’11 d@”zz Z Z Z <(_1) lj!r!s! (1)
S=

m(s+i)+b—1\  r+j,5 b
x ( ) )6; 951)

1
=(mn1+m?2+t—1)t!

xii i((_ )Tl'r'S'(l)(m(S‘l‘l)‘l‘b—l)

r=0 s=0 i=0 b=0

X t'ng!n,! I(t =b)I(n, =7+ j)l(n, = s)>

1
- (mn1 +mn2+t—1)t|
; !
ny—j
. 1
x > ((—1)’11-1-1 __
pr jt(ny — j)iny!

y (nli_j) (m(n2 + ? +t— 1) t!n1!n2!>

<n1) ni—j ' . .
_(mn1+milz t—1)z (—1ym-i=i (M l_ J)(m(nz+lt)+t— )

t
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Therefore,

P(D10 =Jj,Dy0 = k)

nz
E(D20|D10 =j) = Z k -
k=0

P(Dyo =)
n, n—j-k
Z Z k- (—1)n—i—j—k n_]:—k im+t—1\/m;
k=0 i=0 ( l ) ( t ) ( k )
- n{—j .

; (—1)m-i-i (nli—j) ((nz + i)TZl +t— 1)

8.17 Proof of Example 21

Proof.

If we identify each column of urns as a group, then the allocation model in Part A is equivalent
to an unrestricted grouped Bose-Einstein allocation of t identical balls into a single row of urns
divided into n groups (columns) with m; + m, urns per group.

Thus, W, is equivalent to D, in Section 4.1. So, it follows immediately from our work in Example
10 in Section 4.1 along with the identity ajg) = 1, that

E((WD 1) = E((D) 1) = E((D) g (P 101 (Do) +** (Do)

((m1 +my)(n—r1y) + (¢ —0) — 1) (0 + (my +m,) — 1)%

= t=0 (my +my) —1

- ((ml +my)n+t— 1) Nry]
t
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((m1 +my)(n—ry) +t— 1)
t
(my +mn+c—1y o
(m +mtn+t 1)

(Part B)

To find E((WB)[TO]) we need to use the results developed in Section 5.2. For C;; as defined in

Theorem 18 we can express Wy as

n

Wy = Z 1(Cy; + Cy; = 0).

j=1

Taking W((Cyy, -, C1n), (Car, s Can)) = (Efy 1(Cyj +Cz5 = 0)) in Theorem 18, we have
To

E((Ws)pr,)

= B( ((Cotr e i), (Catr oo Cony))

B 1 dt db ( 1 ) ( 1 )
(mln -I; t; — 1> (mzn -I; t, — 1) b1t dpfl dpgz \ 1—p, 1-p,
1 2

n

( \
X E| Zn(zlj+zzj=0) |
\ J

j=1

N~N—

=T
o o

where

Zy; ~ negativebinomial(m;, 1 —p;), j=12,..,n
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Z,; ~ negativebinomial(m,,1 —p,), j=12,..,n

Zi1y wrZins 221, -, Loy are all independent

man

3 1 dt  d} <( 1 )mln ( 1 )
(mln ‘|t': tl - 1) (mzn ‘lt': tz - 1) t1| tzl dpil dp;2 1 —_ pl 1- pz
1 2

X 75 (:;) (P(Zyy + Zp1 = 0))”°>

p1=0
p2=0
1 dt  dt 1 \™" 1\
B (mln ‘: ty — 1) (mzn ‘: t; — 1) £t dp;* dp;? <(1 - P1) (1 - Pz)
1 2

X 1! (:(l)) (P(Zn = 0)P(Zy, = 0))r0>

p1=
p2=0
1 dt d} 1 man 1 mzn
— (mln + tl - 1) (mzn + tz - 1) t1| t2| dpil dpgz <(1 - pl) (1 - pz)
ty t2
xro! () (L = p)™o (1 = pp)memo
To p1=0
p2=0
1 n
= |
(mln + tl - 1) (mzn + tz - 1>t 't | TOI (ro)
tl t2 1- 2-

y di d% << 1 >m1(n—r0)( 1 >m2(n—1‘o)>
dp;* dpy2 \\1 — s 1-p,

1

n
|
m1n+t1_1 m2n+t2_1 rO.(rO) X
t,1t,!

t ty
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d1 dz ml(n—r0)+l—1 my(n—rp) +j—1\ ; j
) X 1215
dp;* dpy* \ & ].:0 J p1=0

p2=0

(ml(n - To) + tl - 1) (mz(n - To) + tz - 1)
t t,
— — Mr)-
(mln + & 1) (mzn +t; 1) 0
ty ta

Finally, to verify that

mn-1D+t;,—-1\mnh—-1)+t—t; -1
()M
mn+t;—1\/mn+t—t; —1
(T T)

h(t1) = n

1t+my

is minimized at t; = [m J it suffices to show that

mytm;

h(t,) 1ot <m1t+m2
h(tl - 1) 1 m1 + mz '

After simplification we have

h(t,)  (min—1)+t, —D(myn+t—t;)
h(t,—1) (mmn+t;—Dmymn—1)+t—t;)

and

h(ty)
e, —1)
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mn—1)+t; —D(myn+t—ty)
(mmn+t,—1D(m,n—-1)+t—t;)

Smh-D+t,—-1Dmn+t—t)—(mmn+t;,—1D)(m,n-1)+t—1t;) <0
= (m1 +m2)t1 _mlt _mz < 0

myt +m,
o< ——
my, +m,

8.18 Proof of Example 22

Proof. By Theorem 4

m 1 dat n m
E((X(j:n)) ) = (:l: 11) " dpt <(1 3 p> E((Z(i:n)) ))

p=0

where Zy, ..., Z,, are independent random variables such that Z; ~ 1-shifted

geometric(1 —p) forj =1, ..,n.

And by Theorem 39 in Appendix 9 we have that

E((Zom)™) = ), P > 2) (G + 0" = 27)

Now

P(Zjmy > 2z) = P(atleast n — j + 1 of Zy, ..., Zp, > 2)

_ Z (—1)k-(n=j+D) ((n _i‘; }) B 1) (Z)P(Zl > 2,02 > 7)

k=n—j+1
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- z (=Dt ((n —5‘?4_-11) - 1) (Z) (P(z, > Z))k

k=n—j+1

_ zn: N PN () (Z Pz, = o)

k=n—j+1 i=z+1

=k=;+1 (_1)k_(n_j+1)<(n 1+1) 1) <l2+:1 (1=pIp" 1)

D N ] (A S 1 3

k=n—j+1

Therefore,
E((Zgm)") = Z P(Z(jmy > 2)((z + D™ — 2™)
z=0
D D I G il P ) [ () P (CRRVLE)!
z=0 k=n—j+1
Thus,

E ((X(j:n))m)
- (t :11) " ddz:t ((1 . p)n E((Z(j:n))m)) .
NG 11> <<1 ) 2, 2, e

% ((n —?If) = 1) ()P (@ + 1™~ Z’")>

p=0
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k—(n—j+1) Tl+l—1
ZO< 1) 1

% (ﬁ:j) (Z) pi+n+zk((z + 1)m _ Zm))

p=0

) (“11)52 DI G

)

(t—l i i i( 1)k=(n~ ;+1) n+;_1)

n—1 t'z:O k=n-j+1 i=0

T e

X (ﬁ:j) (Z) ((z+ 1)"‘—2"‘) t' 1(t =i+n+ zk)

Z > (i (e

n—1 t'zOkn]+1

x (k_?)(Z)((zﬂ)m—zm)t!n(t—n—zk20)

n—j

n l—

|
DI )

n—1 =n-

X (fl :]1> (Z) ((z + 1™ — Zm).
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8.19 Proof of Example 23

Proof. The joint distribution of a random composition (X;, X,, ..., X,,) is given by (??) with m; =
- =m, = 1 where our X; are the ; in (??). Therefore, as we explain in Section 3.4, Theorem 7
is applicable to the problem of random compositions with a fixed number of parts whenever
our chosen statistic W(xq, x5, ..., X,) is defined on all RZ}) and is bounded and continuous on
the simplexx; + x; + -+ x, =1,0<x; <1forj=1.2,..,n

We have 0 < Xj/t < 1foreachj = 1,2,...,nin this problem, so

q,(ﬁ, X_) _ (m)m
t t t

is clearly a bounded function in the variables (X, /t, X, /t, ..., X,,/t).

To show that W(X; /t, ..., X, /t) = (X(j.n)/t)™ is a continuous function in the variables

(X,/t, X, /t, ..., X, /t) requires a few extra steps. First, the well-known identity

(a+b) —|a—b|
2

min(a, b) =

makes it clear that

min(f(xli LR xn): g(xli Ty xn))
(30)

is continuous provided f( ) and g( ) are continuous. Second, the identity
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min(xy, x5, x3) = min(min(xy, x5), x3)

along with (30) and an induction argument shows that min(xy, x5, ..., X,,) is a continuous
function in the variables (x;, x5, ..., X,).

Finally, letting g(x) = x™ in the pointwise identity (i.e. valid for any given set of numbers
{xl, xZ, ey Xn})

g(xmy) = Z Z (—pr—mti-1 (:L__j)g (min(xkl, ...,xkr))

r=n—j+1 (kq,...ky)ECy

(31)

given in Suman [44], where C,. is defined to be the set of all subsets of {1,2, ..., n} with r
elements shows that W(X; /t, ..., X, /t) = (X(j.n)/t)™ is a continuous function in the variables
(X,/t,X,/t, ..., X,/t). So, we can conclude that Theorem 7 is applicable in this example.

By Theorem 7, we have that

limE ((@>m> =(mn-1DLT E((Y(]—n))m>

t—>o0 /11'1
s=1
(32)

where Y(j.,,y is the j™ order statistic of ¥y, Yy, ..., ¥;, iid Gamma(1, 1) = Exponential (1).

But it is well known (see for example [17]) that in this case Y(;.,) ~ Gamma(1,nl) =
Exponential(nAd). Furthermore, it is a standard result (see Mood, Graybill and Boes [35]) that

['(r+m)

™) =B
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for X ~ Gamma(r, B). It follows from these two well known results that

m!
E ((Y(lin))m) = Ampm’

Additionally, Srikantan [42] has proven that for general independent and identically distributed
random variables X3, ..., X,,,

n

E (g(X(j:n))) = Z (—r-mti-t (:L__j) (7:) E (Q(X(1:r)))-

r=n—j+1

(33)

We might note that (33) is also an immediate consequence of (31) which also gives some
intuition into this result.

So, we have
m
E((Yu:n)) )
c 1
— P r— n m
- S o () Os(e0)
r=n—j+1
n 1 |
— _1yr-n+j-1 (T~ ) n_m
r=nz—;‘+1( Y (n—] (T)ﬂmrm'
Therefore,

i (42 ”) = 0 1 (ALl ))
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=(mn-1iL? (r‘nzfﬂ o (;:j) (TTl) A’:lnr!m\‘

\ ‘ J

ca o ()0 (e
r=n—j+1

n . _ [ n+m-1
~ (n— 1) (Z o (C20 () ﬁm> (m)

I A [GF

_ r=n—j+1
(n + Z - 1)
Hence, for large ¢,
n
() =gy, 3, () O
m

8.20 Proof of Theorem 24

Proof.
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Let Z4,Z5, ... be an infinite sequence of independent random variables with Z;~

167 .
—) In this case we see that

Binomial (1, 107

P(Zy=y1,Z, = y,,...) HP(Z —y]

=1 AN A8\ 90\
_H<yj)<1+,wf> <1_1+,191'>
]:
yig Jvj
-1 G) ) e

j=1

_ A(Y1+YZ+”')9(1Y1+ZYZ+"')_

o)

1_[ (1+267)

j=1

It follows from this joint distribution that

P(Zy+Zy++ =nand 12, + 22, + -+ = t)

= ZZ P(Zi=y1,2Z, =Y, ..)

1y2,)3
yj€{0,1} j=1,2,..
yityz+--=n
Yit2y,+--=t

= zz (1 ) ) A4y +) gy +2yz+-)
2.+ 26/
j=1

Y1.¥2,--)3
yj€{0,1} j=12,..
Y1ty t+--=n
Y1+2yz+--=t
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- 1 gt Z Z 1
I, (1 +267)

1y2,-)3

yj€{0,1} j=12,..
Y1tyz2+--=n
Y1+2yp+--=t

= 1 — A" gt. ZZ 1
21 (1+200)

(Y1;---,Yt)3
vj€{0,1} j=1,..t
yittye=n
Y1+2y,+-+tye=t

1
ST araen 4O e
j=1

Thus, for all (¥, y;, ...) suchthat y; € {0,1} j = 1,2, ..., y; + ¥, + - =nand 1y; + 2y, +
.- = t we have that

P(Zy=y1,Z, = yp..|2s + Zo + - =nand 12, + 22, + - = t)

_P(Zy=y,Z, =y, .andZy + Z, + - =nand 1Z; + 2Z, + - =1t)
B P(Z,+Zy+ - =nand 1Z; + 2Z, 4+ - =1t)

_ P(Zy =y1,Z, = Y3, )
P(Z,+Zy+=nand1Z;+2Z,+ - =1t)

1
1 (1 + 167)
1
e (1 + 167)

gt

An 6t - d(t,n)
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ZMZ P(Y1 =Y ...,Yt =yt)'

With these preliminary results we are in position to finish the proof.

B(W(Z0 2, ., 2)

E E<1P(Z1JZ2J---JZL‘)

ZZ]=T',Z]Z]=S)
j=1 j=1

= Z Z E(‘P(Zl,ZZ,...,Zt) Z Z] = rlz ]Z] = S)
S r j=1 ]':1
X P ZJZT,ijjzs
j=1 j=1

OPAIDISINTE

(21,23 ...25)3

zj€{0,1} j=1,2,..,8
Zl+Zz+"'+ZS=T
1z1+2z5+--+5zg=5

Z Z] :T',Z]Z] :S>
j=1 j=1

X P (Zl = leZZ = Z3, .-

[o9) [o9]

X P ZZ]:T,Z]Z]:S
j=1 j=1
where
Y(zq, ) 2¢) t<s
¥ (z) =
Y(z4, ., 25, 0,...,0) t>s
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with z¢, 4, ..., Z; all being replaced with 0’s in the case t > k

¥y 33, ve

s r (21,22 ..25)3

sz{O,l} j=1,2,..,s
Zy+Zy++Zg=T

1Zl+222+"'+525=$

X P(Y1=Zl,Y2=Zz,...,YS=ZS) P ZZ]=T,Z]ZJ=S

J

~.
1l
[y

~.
1}
[y

- Z Z E(W*(Y))P i i =

1
= Z Z E(W*(Y)) - T Aej)d(s,r)/l 0°.

So, we have now established that

E(W(Z,Zy ., 2Z,)) = ZZE(I{J W) == (1+/w])d(s,r),1r 6s

or

1_[ (1+207) |E(W(Zy, 25, ..., 2))) = Z Z E(W*(Y))d(s,r)A765.
j=1 S r
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It follows that

1_[ (1 + /10]) E(lP(Zl,ZZ, JZt))\

dimder| | 1
j=1

dr dt{
\

o~
i
o o

= E(W(Yy,Y,, ..., Y))d(t,n) - n! t!

or

1 dr dt
d(t,n)n! t! dAndot

( (1+267) |- E(W(Zy,2,, ...,Zt))\‘

j=1

E(W(Yy, Yy, ..., Y)) =

11
oo

8.21 Proof of Example 25

Proof. By Theorem 24,

P(k occurs in a random composition of t into n parts, all distinct)

=P, =1)
/- |
) d(t’nl) _ ;/:n ddett |\ 1:1[ (1+267) |-P(Z), = 1)/|

A=0
6=0
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L e [ o200 .<W>>

“ditmnt! dindet| |l ] 1+ A6F
j=
A=0
6=0
1 drd o O
“dGnnlt! ditdet Z) o 1+ A6%
=R =0
6=0

1 dn dt (o] S (o]
=A@ nl o dAn dot 2. D D, Dl rrigeies
’ T s=0 r=1 v=0

A=0
6=0

t

d +v+1 gs+k+kv
d(tn)n' t! ZZZ( D d(sr)ﬁﬁ(l 1 gsticrk)

s=0 r=1 v=

I}
oo

WZZZ< DYd(s,)nl t!l(n =7+ v+ DI =5+ k + kv)

s=0 r=1 v=

1 ] S [ee)
— e > Y Y (DM I G = =y = DI = ¢ — k —kv)

s=0 r=1 v=0

- )Z (—1)%d(t =k —kv,n—v— DI(n— v —1 > DIt — k — kv > 0)
sin([ -2

1
= 10D z (-1)vd(t —k —kv,n—v —1).
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8.22 Proof of Theorems 26 and 27

Proof. We will take the proofs of these two theorems together because they are so closely

related. Let the random variable N represent the number of parts in a random composition of

the integer t. Then

E(‘P(Cp Cy, ..., Ct))

= E(E(W(Cy, Gy, ..., CIN))

- Z E(W*(Cy, Cyy ... ,CIN =1n) - P(N = n)
t 1 dt n
DN (G L)
n—1/" p=0

t
1 dt p \"
- zt-lt!z dpt<<1 —p) E(Y (21, 2;, ---:Zn)))

n=1

[

2t-1

p=0
The proof of Theorem 27 follows in the same way.

8.23 Proof of Example 28

Proof.

t

P(Y =y)= Z P(Y =y|D, = d)P(D, = d)

=1

:dZ %P(D =d)=> dZ d-P(D, = d) =>E(D,).

But from Theorem 27
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t
1 dt dn 1-1
E(DY) = 2t—1t! d/lt d@n e E(Zy)

n=1

where Z,, ~ Poisson(61”). However,

- SR l+]—1 S
=ZZ( ).!el,vﬂ and E(Z,)=0.

i=0 j=0

Therefore,

t [ee) o)
1 dt dn i+j—1\1 . . ...
E(Dy) = 3055 2, dw g™ ZZ( e

n=1 i=0 j=0

Il
o o

- — 1\ t!n!
Z(l+] )—]I(n—t+1)]1(t—t+]+y)
j=0

MH
Ms

T2 11:'

S
1l
=
~
Il
(=}

<l+]_1>M Ii=n-DI(j=t—-y—(n-1))

INGE
Ms

-7,

n=

=
I

o
I

o

i j

z <n—1)+(t—y—(n—1))—1> tin!
~ ot 1t' i t—y—(—-1) (n—1)!

X ]I(n—lZO)]I(t—y—n+120))
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t

1 —y — tin!
Z( t-y—1 )—H(lSnSt—y+1)

2 \t—y—-n+1) (- 1!
n=1
" t—y+1
t—y-—1
= <
ﬁ‘lzz n(t—y—(n—lﬁﬂgh‘o'
n=1
So, we have shown that
" t—y+1
_ t—y-—1
E(Dy) T t1 Z n(t—y—(n—l))
n=1

fory € {1,2, ..., t}. However, after some simplification, we find

t—y+1
t—y—1
> n(t—y—y(n— 1)) = I(t = y) + 207 2(¢ — y + 3).
n=1
Therefore,
t—y+3
W yE {1,2,...,t—1}
E(Dy) =
ot-1 y=t
and
(y(t—y+3)
——o €{1,2,..,t—1}
P(Y — y) =
|
\5e y =t

8.23 Proof of Example 29

mathcloset.com

146



Proof of Part A. Recall that D; in Theorem 27 is defined as the multiplicity of the part size j in a

random composition of t. It follows that, V/{, the number of part sizes with multiplicity w, can

be expressed as

t
yt = Z (D, = w).
r=1

Thus, it follows from Theorem 27 that

Zt: I(D, = w)

t Nz t

1 dt dn 1-1

=omin/l, antaen| ¢ B Z 1z, = w)
r=1

n=1

I}
oo

where Z4,Z5, ..., Z, are independent and Z; ~ Poisson(@ﬂ). Hence

t

i 1(Z, =w) =Z E(1(Z, = w)) =Zt: P(Z, =w) =Zt: eﬂ\f}ﬂ

r=1 r=1 r=1

From here we have

t ﬂ t T
1 dt an 1_/12 e—GA (Q/V)W
2t-1¢! dAt dom

n=1 r=1

E(Wy) =

w!

Il
o o

A oy
dn o(x25")

t t
dt
T 2t gyl 1t'w Z Z artder\ € oA

SN
i
(==
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d n ® 1 i '

_ (= ar i+wqrw

ditd <ZL'( /1)9 A >
i=0

IIMH

t
- 2t- 1t' Z

A=0
6=0

t t [ i
dt dr 1 (0
s, 2 amaon| 2 2 1l ()
T2ty datdeo i!
n=1 r=1 i=0 ]=0
J
% (1/1/1) Ar(i—j)>9i+wlrw
A=0
6=0

T2 1t'WZZ:_d9nn ) Z( Dljil!(li')

i=0 j=0 k=0

J+k =1\ pitw g jtktriitw—))
x ( ; )6 A

X ]I(n=i+W)]1(t=j+k+r(i+W—j))>

“gi 2 2 o ) (TG T ez

> o (M (TR

n=max{l,w} r=1 j=0

3
S
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Proof of Part B. V{ equals the number of part sizes with multiplicity 0 in a random
composition of t. That is, V{ equals the number of part sizes that do not occur in a random
composition of t. Thus t — V{ equals the number of part sizes which do occur in a random
composition of t. Therefore, E(t — V{) = t — E(V{) equals the expected number of part sizes
which occur in a random composition of t. To finish the proof we only need to substitute the
result in Part A for E(V{).

8.24 Proof of Example 30

Proof. By Theorem 1

E ((C(j:n))r) = (n + tl— 1) £l ddptt <(1 i p)n E ((Z(j:n))r)>
t

p=0

where Z,, ..., Z,, are independent random variables such that Z; ~ geometric(1 — p) for j =
1,..,n.

P(Z(jmy>z) = P(atleastn —j + 1 0f Zy, ..., Z, > 2)

_ Z (=1)k-(=j+D) ((n _i‘; :) _ 1) (Z) P(Zy > 2,., 2 > 7)
k=n—j+1
= Z (=D ((n —?;11) - 1) () (P21 > 2)"
=n-j+1
. o K
- Z G ((n—?-l_-ll) - 1) (%) Z PZi=1D
=n-—j+1 1=z+1
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- k
= > (ke ((n_ﬁ;)—l) (Z)< 2, (1_p)pi>

k=n—j+1 i=z+1
N k-1

= —1)k-(n=j+1) - ™ pk(@+D)

DG ((n—j+1)—1)(k)pkz+1'
k=n—j+1

Therefore,
E((Zgm)") = Z P(Z(jy > 2) (G + D)7 = 2")
z=0

- ; k:nz;-ﬂ (—1)k-(=j+D) <(n _']‘; 11) ~ 1) (Z) e ((z+ )7 —27).

Thus,

((C(] ) ) (n + tl— 1) !dd;t ((1 i p)nE ((Z(j:n))r)>
t

p=0

:(n+t1—1)t!dd;t<<1— ) Z nz (—1)k-(=i+D)

t

(bt ho @)

p=0

_ (n . tl_ 1) ddptt (z Z Z (—1)k—(n=j+D) (n + ; - 1)

p=0
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n

=(n+§_1)t!z Z

Nk

z=0 k=n—j+1 i

<(_1)k(nj+1) (n + i - 1)

1]
o

(2D (o 0r-) (i)

S CEEE S

t—k(z+1)

/E
_|_
~
)—\
"Ms
3M3

( (_1)k—(n—j+1) <Tl + (t - k(Z + 1)) - 1>
—-j+1

x (ﬁ_})( ) (@+1r-27) o H(t—k(z+1)20)>

n k-
1 -n+j-— _k( 1)_1
(n+§_1)k=nzj+1 ;) (e 1(n+§_kéj‘_1) )

AERICIEER)

9 Ready Reference
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Definition for Factorial Moments

k" Rising Factorial Moment
a¥l'=a(a+1)(a+k—-1)
k" Falling Factorial Moment

agy = ala—1) - (a—k+1).

Identity Connecting Falling and Rising Factorial Moments

k
k!'rc—j )
= — ]
(x”)["]_zj'! (k—j)x]
j=0
k Sk
E((n - X)) =D 1})‘()@ ey BX(5)-
=0 ’
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However, a multivariate generalization of Charles Jordan's inversion formula (see Takacs
[128] for references) allows us to express joint probabilities in terms of joint descending
factorial moments.

In particular, under conditions given in Takacs [128], Brandt, Brandt and Sulanke [15],
and Lenard [98]. we have that for general discrete random variables defined on {0.1,... }

P|:_X1 SE SRR .Xn =:-.r'";"l:'

o0 o0 . .
:Z Z ( 1::,'3,1"1—--.—,.‘}—_I—lj.r1—...—.zr_|(J1 )(Jﬂ )

1=r1 jn=tn 1 "

1 P o
< G B Kl )

A sufficient condition for this representation to hold is the existence of some ¢ < oo such

that P(X1 <e¢.... XAn =¢c)=1.

Theorem 36 (k" Falling Factorial Moment of the Sum of Indicator Variables)

Consider an experiment with probability space (Q, A, P) and suppose A4, ..., A, are all events
within A. Suppose the experiment is performed and let w € () be the outcome of this
experiment. Define

X = number of events among 44, ..., A, that w is an element of

=I(w€A)+ -+ 1(w € Ap).
Then,
1
= E(Xm) = z P(4;, NN 4;)

U1 Jr)ECy

where C, is the set of all r subsets of {1,2, ..., n}.
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Theorem 37 (Generalized Principle of Inclusion-Exclusion for Probabilities)
Suppose 4;,...,4,, are sets within a universal set ().

Define :

H,, = {x € (| x is an element of exactly m of the n sets 44, ..., An}

Hs,, = {x €  |x is an element of at least m of the n sets 44, ..., An}

He,, = {x € Q |x is an element of at most mof the n sets A4;, ...,An}.

Define

Z P(A4,n--N4A;) 1<k<n
P(Sk) = (jlr---,jk)E((:k

1 k=0

where Cj, is the set of all subsets of {1, ..., n} with k elements. Then,

P(H,) = Y (~DF(*)psy
k=m
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and

P(H.) = Y (k™ (X 1) psy)
k=m

and

P(HSm) =1- P(H2m+1)-

In the event P(Aj1 N-N Ajk) is the same for all (jy, ..., i) € C, then

(Z)P(Al N-nA4) 1<k<n
P(Sk)=

1 k=0.

Theorem 38 (Factorial Moments in Terms of Cumulative Distribution)

Let X be a discrete random variable definedon S € {0,1, ... }. Then

,Ll[r] =T Z P(X > n)n[r_l].
n=0

In the special case r = 1 we have the familiar result
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Proof.

with g(t) = Z P(X =n)t™
n=0

(dtrg(t))

Now define h(t) = Y-, P(X > n)t™. We note that

1+ (t—1h(t)

=1+(t—-1) <Z P(X > n)t")
n=0

=(1-PX>0))t°+ (P(X >0)— P(X > 1)t
+ (P(X>1)—P(X>2)t?+
=(PX =0t + (P(X = 1)t + (P(X =2)t* +
=g(®).

Therefore,

d‘r
dtrg(t) == (1 + (¢t — Dh(®))

(©) =

((t — A1)

der g der
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ar—’
dtrg(t Z <@ (t- D) <dtr j h(t)>

[Leibniz's Product Rule for Differentiation]

) o )(d[,fﬂ h(t)>

T

0= () - 0) (3

Hence,

d
E(X) = <dtr g(t))

dr—l
=r (dtr‘l h(t))
t=1
dr—l s
=71\ g5 Z P(X >n)t"
n=0
had dr—l
:TZ P(X > n)(dtr_l tn>
n=0

= rz P(X > n)np_q.
n=0

t=1

Theorem 39 (Raw Moments in Terms of Cumulative Distribution)

Let X be a discrete random variable definedon S € {0,1, ... }. Then
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E(X") = i ((n + 1) — nr)P(X > ).

In the special case r = 1 we have the familiar result

U= i P(X > n).
n=0
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10 Probability Distributions: Definitions and Properties

Negative Binomial

Pix =x)=(* Tn’fz 1) o™ (1 — 6)*1(x € {0,1, ..}) where m € {1,2, ...} and 0 <
o< 1.

e | We write this as "X ~ negative binomial(m, 0)".

1—6\"
* | E(Xp) = (T) mlr]

If X;~ negative binomial(mj, 9),j = 1,2 and if X; and X, are independent, then
(X; + X,) ~ negative binomial(m,; + m,, ).

Geometric

e | Special case m = 1 of the negative binomial distribution.

a - shifted negative binomial

P(X =x)= (m + (:l: clr) B 1) m(1—-6)**I(x € {a,a+1,..}) wherem €
{1,2,..},a €{0,1,2,..}and 0 < 6 < 1.

e | We write this as “X~ a — shifted negative binomial(m, 8).”

* |E((X-—a)y) = (#)r ml"]

e | If X~negative binomial(m, 8) then (X + a) ~ a — shifted negative binomial(m, ).

If Xj~a —shifted negative binomial(mj, 9),] = 1,2 and if X; and X, are independent,
® | then
(X, + X,) ~ (a; + a,) — shifted negative binomial(m,; + m,, 6).
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Poisson

-A9yx
o |PX=x)="""I(x€{01.}),1>0.

e | We write this as “X~Poisson(1).”

o |E(Xp) =2

If X;~ Poisson (Aj),j = 1,2 and if X; and X, are independent, then (X; + X,) ~

°
Poisson(4; + 4,).
Dirichlet
F(m1+m2++mn) mq—1 m,—1
° X1, X0, e, Xpy) = X, b T eex, v
f( 142 n) F(ml) ---F(mn) 1 n
for all points (xy, X, ..., Xp) suchthat x; + x, + -+ x, = 1,0 < x; < 1forj =

1,2,..,n,

andm;e{ },j=12,..,n

e | We write this as “(X, ..., X;,) ~ Dirichlet(my, ..., m,,)".

mlrlplr2] |l

(ml +m, + -+ mn)[r1+rz+...+rn]

* | E(XIX - X") =

(Aggregation Property) Let (X4, ..., X,,) ~ Dirichlet(mg, ..., m,) and let sets S, ..
be a

.S,

partition of {1,2, ..., n}, then

z Xi, ,Z X; | ~ Dirichlet Z m;, ,Z m;

i€S; i€S, i€S; i€S,
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Gamma

m

I'(m)

° fx(x) = x™ e X[(x > 0),A1> 0

wherem e { }.

e | We write this as “X~Gamma(m, 1)”.

I'(m+71)
[ ] E XT = —
(X" ATT(m)
o If X;~ Gamma(mj,l),j = 1,2 and if X; and X, are independent, then (X; + X,) ~
Gamma(m, + my,, A).
Exponential

® | Special case m = 1 of the gamma distribution.

If X1, X5, ..., X, are independent with X; ~ exponential(4), then X(;.,,) ~
exponential(nA).
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