
Geometric Randomization
Form 1.

Let  be the product space 1, 2, 1, 2,  and let  be the set of all vectors s , s , , s  
            

     in  such that  s s  s .    t

Define X , X , , X  to be that random vector which is equally likely to be any value in  and define    
 

Y , Y , , Y   to be iid geometric random variables on y 1, 2,  with parameter ,      p

i.e.

P Y y   1      y 1, 2,  and  0 1.           p p py 

Let   and define  .  Then for ,       
  t n

P X , X , , X          

    1  P Y , , Y .      
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Form 2.

In many problems it is convenient to define  to be the product space 0,1, 0,1,  and let        
 
 

      be the set of all vectors s , s , , s  in  such that  s s  s .       t

As before define X , X , , X  to be that random vector which is equally likely to be any value in     
 

and define Y , Y , , Y   to be iid geometric random variables on 0, 1,  with parameter ,     p

i.e.

P Y y   1      y 0, 1,   and  0 1.           p p py 

Let   and define  .  Then for ,       
  t n

P X , X , , X          

    1  P Y , , Y .      
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Proof Form 1. 



P Y Y     P Y , Y , , Y                 
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However by the problem of multisets, we have that
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Therefore,
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It follows that
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Thus for ,r n
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Thus for ,r n

P X , X , , X          

    1  P Y , , Y .      
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The proof of Form 2 is nearly identical to the proof of Form 1 and is therefore omitted.



Applications
( I  How many ways are there to select  objects from  distinct objects arranged in a circle such that there is j n

no group of  contiguous objects within the  objects selected ?  ( We will say  objects are contiguous ifk j k
they form an uninterrupted string. )

This problem was solved in “ A direct argument for Kaplansky's theorem on a cyclic arrangement and its
generalization ", F. K. Hwang and Y.C. Yao, , 10, 1991, 241 - 243.  They used anOperations Research Letters
argument relating circular to linear arrangements to show that there are a total of

   1n
n j n j 1 i

n k i 1 n j
  

    




    

such selections.

( II  How many ways are there to select  objects from  distinct objects arranged in a circle such that there j n
are exactly  groups of  or more contiguous objects ?  Show that there arev k

n
n j v n j 1 i

n j n k i v 1 n j v
  

            1   




   

such selections.  ( Clearly ( I  is the special case of 0.  v

 III  How many ways are there to select  objects from  distinct objects arranged in a circle such that the j n j
objects selected form exactly  groups of contiguous objects ?  Show that there arev

n
n j v v 1

n j j 1
 

     

such selections.  This is the special case of (II) with  1.  k

    IV  Suppose we randomly arrange  X's and  Y's in a line.  Find P longest run of X's  .m n k

 V  Gibrat's Law of Proportionality or Polya Sampling.

 VI  The number of ways of selecting  balls from a cycle of length  with exactly  adjacent selected ballsk n p
having exactly  unselected balls between them.t

The number of ways of selecting  balls from a line of length  with exactly  adjacent selectedk n p
balls having exactly  unselected balls between them.t

[ B.S. El-Desouky, “On Selecting  Balls from an - Line Without Unit Separation", k n Indian Journal of
Pure and Applied Mathematics, 19, (2), February 1988, 145 - 148.]



We will show that each of these problems follow directly from the Geometric Randomization Theorem.

Solution I 

Suppose we arrange  different colored balls in a circle.  We pick  of these  balls at random so that then r n
probability of any particular sample is

1
 n

r
.

One way to pick  balls at random is to pick all  at once.  Alternatively, we could pick 1 ball at random andr r
then pick 1 balls at once from the remaining 1 balls.  Both methods assign equal probability to allr n 
possible samples.

Consider the latter sampling scheme and suppose that after we pick the first ball we move clockwise from that
ball and attach the labels 1, 2, , 1 to the balls as we go around the circle.  After we put the labels on the n 
balls we pick the remaining 1 balls.  Clearly attaching the labels does not change the fact that all possibler 
samples are equally likely to occur.

Let X X  X  be the labels on the 1 balls drawn at this second phase of our sample.  We      r
note that X , X , , X  is equally likely to be any one of the   

 n 1
r 1



possible samples from 1, 2, , 1 .   n

Let

 S  X  X  S    

 S  X X  X  S  S        

       
 S  X X  X  S S + S          
 S  X .  n

We see that S 1, S 1, , S 1 count the number of unselected objects between each of the selected    
objects and that  S S + S S .n       

It follows that

 P S , S , , S        s s s

   P  X , X , , X        s s s s s + s      

      for all   .   1
 n 1

r 1



s , s , , s   


Now we can show how to use this result in connection with our theorem on Geometric Randomization to solve
the stated problem.



We note that

 there is no group of  contiguous objects among the  objects selectedk j


 the gap between each of the   objects not selected contains less than  objects.n j k

Therefore,

N samples of size  such that there is no group of  contiguous objects j k

  N samples of size  such that the gap between each of the  objects not selected contains  j n j
  less than  objectsk 

  N samples of size  such that the gap between each of the  objects selected contains  n j n j 
  less than  objectsk 

      [ Selecting  out of  objects  not selecting  out of  objects.j n n j n 

  N S 1 , S 1 , , S 1           k k k

  N S , S , , S        k k k

  P S , S , , S        n
n j   k k k

  P S , S , , S      n
n j     

where   s , s , , s 1 s , , 1 s   and  s + s .                   k k n

Now we can apply the Geometric Randomization Theorem to find  P S , S , , S .  By this       

theorem,

P S , S , , S       

         1  P Y , , Y 
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where  is any set such that   and  and Y , , Y  are iid Geometric random       
  

 

variables.

It is easy to see that
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Therefore,

P Y , , Y   P Y , , Y             k k

  1 P Y   1 1 .            
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Thus,

P S , S , , S       
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Thus, we have

N samples of size  such that there is no group of  contiguous objects j k

  P S , S , , S      n
n j     

     1 .   n
n j n j 1 i

n k i 1 n j
  

    




   

Solution II 

Following the pattern developed in ( I , we note that

N samples of size  such that there are exactly  groups of  or more contiguous objects j v k

  N samples of size  such that exactly  of the gaps between the  objects not selected  n j v n j 
 contain  or more objectsk 

  P S , S , , S      n
n j     

where

        s , s , , s exactly  of components of s , s , , s  are values strictly      v

 greater than  and s + s .k n   

In this case we have

P Y , , Y   P exactly  of the statements Y , , Y  are true             v k k



  P Y 1 P Y           n j
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It follows that the only value of  we need consider is .  Therefore,u u j k i v    

P S , S , , S       

    1  P Y , , Y      
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After simplifying we have that

   n
n j P S , S , , S      



        1 .   n
n j v n j 1 i

n j n k i v 1 n j v
  

             




 

Solution III 

Substituting 1 into the general solution developed in (II) we have that there arek 

n
n j v n j 1 i

n j n 1 i v 1 n j v
  

                  1




  

such solutions.  In Problem ??? we showed that

    




   1   .n x k x n
k r r n   



It follows from this identity that

    




  1  n j v n v 1) i j 1
i n j 1 v 1

     
  

(     

which establishes the solution.

Solution IV 

One method of randomly arranging the  X's and  Y's is to consider placing an urn before, after, and betweenm n
each Y and to then distribute the  X's into these urns in such a manner that allm

       n 1 m 1 n m
m m  

distributions are equally likely.

Let X  the number of X's that are put into the  urn,   1, 2, , 1.  It follows that   j j n 
 X , X , , X   is a random vector which is equally likely to be any value in .   

 

Therefore,

 P longest run of X's    P( X , , X     k k k 

  P X , X , , X           



where   s , s , , s 0 s , , 0 s   and  s + s .                   k k m

Define   s , s , , s 0 s , , 0 s  .  Then by the Geometric              k k
Randomization Theorem,

P longest run of X's    k

  P X , X , , X           

    1  P Y , , Y      
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