Geometric Randomization

Form 1.

Let S be the product space {1,2,... } x --- x {1,2,... } and let S} be the set of all vectors (s, S, ... ,S,
) inS*suchthat s; + So + ... +5, =t

Define (Xi;, Xog, ..., Xy, ) to be that random vector which is equally likely to be any value in S} and define
Y1,Ya, ..., Y, tobeiid geometric random variablesony € {1,2,... } with parameter p,
i.e.

P(Y=y) =p(l-p' ye{l2...tand0<p<1l

Let A C S" anddefine A, = AN S}. Thenfort > n,

P((Xl,t, Xopy-o s Xy ) € At)

- e () & <<1—p)“”P(<Y1,...,Yn) s A))

p=1

Form 2.

In many problems it is convenient to define S” to be the product space {0,1,... } x --- x {0,1,... } and let

S} be the set of all vectors (s;,S2,-.-,S,) inS™suchthat s; + S, + ... +5, = t.

As before define (X, Xay, ..., X, ) to be that random vector which is equally likely to be any value in S}
and define Y1,Ys,...,Y, tobeiid geometric random variables on {0, 1, ... } with parameter p,

i.e.

P(Y =y) = p(l—-p)Y ye{01...}and 0 <p <1l

Let A C S" anddefine A, = AN S}. Thenfort > n,

P((Xl,t, Xopy-o s Xy ) € At)

- B (e e )

p=1

Proof (Form 1.)



POYi + oo Y, =t) = P((YI,YQ,...,Y,L) € S;L)
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However by the problem of multisets, we have that

N(S}) = (””iﬂ“) = (23):

Therefore,

P((Yl,YQ,---,Yn) EAIYIF ... + Y = t)

P((Yl, Yo Yu)EAand Y+ .. +Y, :t)
P(Yi+...+Y, =t)

Z p" (17p )(sl+...+s”)—u
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Therefore,



Thus forr > n,

P((Xl,m Xogyeee , Xny) € A7,)



However,

and

Thus for r > n,

P((Xl,m Xogyeeo  Xpy) € A7,)

- S0P (@ (ne v € )

p=1

The proof of Form 2 is nearly identical to the proof of Form 1 and is therefore omitted.



Applications

(1)  How many ways are there to select j objects from n distinct objects arranged in a circle such that there is
no group of k contiguous objects within the j objects selected ? (We will say k objects are contiguous if
they form an uninterrupted string. )

This problem was solved in “A direct argument for Kaplansky's theorem on a cyclic arrangement and its

generalization ", F. K. Hwang and Y.C. Yao, Operations Research Letters, 10, 1991, 241-243. They used an
argument relating circular to linear arrangements to show that there are a total of

2y 5 - () ()

such selections.

(1) How many ways are there to select j objects from n distinct objects arranged in a circle such that there
are exactly v groups of k or more contiguous objects ? Show that there are

B () R () ()

such selections. ( Clearly (1) is the special case of v = 0.)

(1) How many ways are there to select j objects from n distinct objects arranged in a circle such that the j
objects selected form exactly v groups of contiguous objects ? Show that there are

_n_ ([ n-j -1

= (V) ()
such selections. ( This is the special case of (I1) with k = 1.)

(IV) Suppose we randomly arrange m X'sand n Y'sin a line. Find P( longest run of X's < k).

(V) Gibrat's Law of Proportionality or Polya Sampling.

(V1) The number of ways of selecting k balls from a cycle of length n with exactly p adjacent selected balls
having exactly t unselected balls between them.
The number of ways of selecting k balls from a line of length n with exactly p adjacent selected

balls having exactly t unselected balls between them.

[ B.S. El-Desouky, “On Selecting k Balls from an n - Line Without Unit Separation”, Indian Journal of
Pure and Applied Mathematics, 19, (2), February 1988, 145-148.]



We will show that each of these problems follow directly from the Geometric Randomization Theorem.

Solution (1)

Suppose we arrange n different colored balls in a circle. We pick r of these n balls at random so that the
probability of any particular sample is

One way to pick r balls at random is to pick all r at once. Alternatively, we could pick 1 ball at random and
then pick r — 1 balls at once from the remaining n — 1 balls. Both methods assign equal probability to all
possible samples.

Consider the latter sampling scheme and suppose that after we pick the first ball we move clockwise from that
ball and attach the labels 1, 2, ... ,n — 1 to the balls as we go around the circle. After we put the labels on the
balls we pick the remaining r — 1 balls. Clearly attaching the labels does not change the fact that all possible
samples are equally likely to occur.

Let X; < Xy < ... < X,_1 be the labels on the r — 1 balls drawn at this second phase of our sample. We
note that ( Xy, Xs, ..., X,_1 ) is equally likely to be any one of the

(")

possible samples from {1,2,... ,n—1}.
Let

S =X X1 =35

Sy, = Xy — X; Xo =851+ S

: < :
Sio1 = Xeor = X Xi-1 =81+ S+ ...+5

S, =n—X,._;.

We see that S; —1,S, —1,...,S, —1 count the number of unselected objects between each of the selected

objectsandthat n = S; + Sy + ... +S,_;1 + S,.

It follows that

P(Sl =5,5 = %,...,S, = 57,)

P(Xl =5,Xy =S+ S3,..., X1 =8 + S+ ... "'37’71)

= (:E) for all (s1,s,...,s,) € S..

Now we can show how to use this result in connection with our theorem on Geometric Randomization to solve
the stated problem.



We note that

there is no group of k contiguous objects among the j objects selected
- the gap between each of the n — j objects not selected contains less than k objects.
Therefore,

N( samples of size j such that there is no group of k contiguous objects )

= N(samples of size j such that the gap between each of the n — j objects not selected contains
less than k objects)

= N(samples of size n — j such that the gap between each of the n — j objects selected contains
less than k objects)

[ Selecting j out of n objects = not selecting n — j out of n objects. |

=N(Si-1<kS-1<k...,8 ,;-1<k)

= N(S1 < kS < K. \Suj < k)

n—j

_ ( n )P(Slg KSy < K... ,Suj < k)

- (n[j)P((sl,sg,... Su;) € An)
where A4, = {(sl,sg,... ,sn,j)‘ 1<s<Kk...,1<s, ;< kands; +...+s,_; = n}.

Now we can apply the Geometric Randomization Theorem to find P((SI,SQ, 0 S,) € An). By this
theorem,

P((51,52,--- Sn—j) € 'A”)

e G o CRUSL CARERY)

p=1

where A is any set suchthat A ¢ S"7and A4, = AN S" 7 and Yy,... , Y,—; are iid Geometric random
variables.

It is easy to see that



Therefore,

P((Yl,... Ya) € A) = P(Y1 < K.oY < k)

n—i

= (1-pvi>K0)) = (1 a-py)

=& ((1—p>"j+“ (1- <1—p>k)"j>

= (") =17 (=28 e (1) ).

=0

nj

= > (") =1 (=1t ().

=0

Thus,

P((51,S2,--- ,Snj) € An)
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Thus, we have

N( samples of size j such that there is no group of k contiguous objects )

= () P((81,80,. 80 5) € A)

Solution (1)
Following the pattern developed in (1), we note that
N( samples of size j such that there are exactly v groups of k or more contiguous objects )

= N(samples of size n — j such that exactly v of the gaps between the n — j objects not selected
contain k or more objects )

= () P((5180180) € A)

A, = { (81,82, .-+ Sn—j) ‘ exactly v of components of (s, Sy, ... ,S,—; ) are values strictly

greater thankands; + ... +s,_; = n }
In this case we have

P((Yl,... v Ynoj) € A) = P(exactlyv of the statements Y1 > Kk,...,Y,_; > k aretrue)



- & (()E o

It follows that the only value of u we need consider isu = j — k(i + v). Therefore,
P((S1,8,--- .80 5) € A )

After simplifying we have that

n
n—j

)p((51,82,--- ,Snj) € An)



Solution (111)

Substituting k = 1 into the general solution developed in (I1) we have that there are

ol (n;j) . HZJ;“( _1y (nfrll(iijtvifl) (n—g—v)

such solutions. In Problem ??? we showed that

It follows from this identity that

e () () = (5)

which establishes the solution.

Solution (1V)

One method of randomly arranging the m X's and n Y's is to consider placing an urn before, after, and between
each Y and to then distribute the m X's into these urns in such a manner that all

( (n+1)m+m—1 ) _ ( nEm )
distributions are equally likely.

Let X;,, = the number of X's that are put into the j* urn, j = 1,2,...,n+ 1. It follows that
(X1ms Xogmy - -~ Xng1,m ) isarandom vector which is equally likely to be any value in S7;™.
Therefore,

P(longestrunof X's < k) = P(Xim < K, ..o, Xpgpim < K)

= P( (Xims Xogmy oo Xngim ) € Ap, )



where A4,, = { (S1,S2y--- 4

Define A = {(31,32,
Randomization Theorem,

P(longest run of X's < k)
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