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Lecture for Thursday, June 27  

 

The celestial sphere is the imaginary sphere where the stars live. The connection of the celestial 

sphere and spherical trigonometry comes from the astronomical triangle 𝑃𝑍𝑆 as seen in the 

figure below. 

 

 

 

The point 𝑃 (north celestial pole) is located by drawing a line from the center of the Earth, 

through the North Pole (NP) and continuing up to the celestial sphere. 

The point 𝑍 (observer’s zenith) is located by drawing a line from the center of the Earth, 

through the point 𝑋 (the observer’s location) and continuing up to the celestial sphere. 
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The point 𝑆 can be any star, but in these notes it will always be our Sun. 

To understand the celestial horizon, suppose our observer at point X is on a tiny little island 

sitting in a vast ocean.  Then our observer’s horizon would be the border of the limited region 

they could see because of the curvature of the Earth. (On a clear day the observer’s horizon 

would be a circle with a radius of about 2.5 miles.) 

 

 

 

The celestial horizon is that imaginary circle created by drawing a line from X through every 

point on your earthly horizon and continuing onward to the celestial sphere. 
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The celestial equator is that imaginary circle created by drawing a line from the center of the 

Earth through every point on the Earth’s equator and continuing onward to the celestial sphere. 
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Altitude and Azimuth 

 

 

Consider the great arc 𝑍𝑆⏜  continued on till it reaches the celestial horizon at a right angle at the 

point 𝑇2. The measure in degrees of the green arc 𝑆𝑇2
⏜ is called the altitude of 𝑆 (and in our case 

𝑆 is our Sun). 

The length (in degrees) of the great arc from 𝑍 down to the celestial horizon at 𝑇2 equals 90°. 

Therefore, the red arc 𝑍𝑆⏜  has length 90° − 𝑎.  𝑍𝑆⏜  is sometimes called the co-altitude. 

 

Consider the great arc 𝑍𝑃⏜  continued on till it reaches the celestial horizon at a right angle at the 

point 𝑇1. 

The measure 𝑨 of the great arc 𝑇1𝑇2
⏜ in degrees going clockwise is called the azimuth of 𝑆. 

It follows that the measure of the great arc 𝑇1𝑇2
⏜ in degrees going counter-clockwise measures 

360° − 𝐴. 

Furthermore, this tells us that the spherical angle ∢𝑃𝑍𝑆 measure 360° − 𝐴. 
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Celestial Latitude 

 

The angular measure 𝜙 of the great arc connecting the observer’s location on Earth at 𝑋 to the 

earth’s equator at a right angle is how latitude on Earth is defined. 

It follows that the angular measure of the great arc 𝑍𝑇3
⏜ connecting the zenith point 𝑍 to the 

celestial equator at a right angle will also equal 𝜙. 

And because the angular measure of the great arc 𝑃𝑍3
⏜  equals 90°, it follows that  

𝑃𝑍⏜ = 90° − 𝜙. 

 

meridian). Clearly, 45 = 3 ⋅ 15, so in the above diagram, the sun is 3 hours past solar noon. 

 

  

T𝟑 
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Declination and Right Ascension 

 

The measure 𝛿 of the great arc 𝑆𝑇5
⏜ connecting the star S to the celestial equator at a right 

angle is called the declination of the star S (which in our case will be the declination of the sun). 

 

 

The point 𝑇4 on the celestial equator where 𝛿 = 0° in the spring (about March 20) is called the 

vernal equinox. 

The measure of the great arc connecting the point 𝑇4 to the point 𝑇5 going counterclockwise is 

called the right ascension of the star (sun) 𝑆. 

By contrast on the Winter and Summer Solstice (respectively, the shortest and longest days of 

the year), the declination 𝛿 = 23.45, its maximum value and 𝛿 = −23.45, its minimum value. 

 

  

T𝟒 

T𝟓 
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Hour Angle 𝑯 

Great circles on the celestial sphere that go through the two poles of the celestial sphere are 

called hour circles (and sometimes called meridians). 

Hour circles on the celestial sphere are analogous to meridians (or longitudes) on Earth 

(terrestrial sphere) which are great circles on Earth that go through both the North Pole and 

South Pole. 

The hour angle, 𝑯, is the angle between the hour circle that goes through 𝑋 (the observer) and 

the hour circle that goes through 𝑆 (the sun).   

The hour circle that goes through 𝑋 (the observer) is generally called the local meridian. 

The west moving angular displacement of the sun (due to rotation of the earth on its axis at 15° 

per hour) with morning being negative and afternoon being positive.  That is, the hour angle is 

changing at the rate of 𝟏𝟓° per hour. 
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• When the sun is east of the local meridian (i.e. the morning), 𝐻, the hour angle, 

is negative. 

• When the sun is on the local meridian then 𝐻 = 0°.  𝐻 = 0° exactly at solar 

noon, when the sun achieves its maximum altitude (i.e. the highest point in the 

sky. 

• When the sun is west of the local meridian (i.e. afternoon), 𝐻 is positive. 

 

In the above figure the hour angle 𝐻 = 45° (positive because the sun is west of the local 

meridian). Clearly, 45 = 3 ⋅ 15, so in the above diagram, the sun is 3 hours past solar noon. 

 

Summary 

 

𝝓 Observers Latitude 𝑷 Celestial Pole 

𝒂 Altitude of the Sun 𝒁 Observer’s Zenith 

𝜹 Declination of the Sun 𝑺 Sun 

𝑯 
Solar Hour Angle 
(negative in mornings, 
positive in afternoons) 

𝑵𝑷 North Pole 

𝑨 Azimuth 𝑿 Observer 

𝝎𝟎 

The solar hour angle at 
either sunrise or sunset, 
negative for sunrise and 
positive for sunset. 
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Relating Latitude, Declination and Maximum Altitude 

 

The spherical law of cosines for sides states that 

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos(𝛼) 

 

  

Applied to the astronomical triangle we find 
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cos(90 − 𝑎) = cos(90 − 𝜙) cos(90 − 𝛿) + sin(90 − 𝜙) sin(90 − 𝛿) cos(𝐻) 

or 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻). 

 

It follows that 

𝑎 = sin−1 (sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻)  ). 

 

Solar noon is by definition the point during a day when the sun reaches its maximum altitude 

and at solar noon 𝐻 = 0°. 

Thus, on any given day 

 

max(𝑎) = 

max (sin−1 (sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻)  )) 

= sin−1 (sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻 = 0°) ) 

= sin−1(sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿)) 

= sin−1 (cos(𝛿 − 𝜙) ). 

 

But we also know that  

cos(𝑥) = sin(90° + 𝑥). 

So 

max(𝑎) = sin−1 (cos(𝛿 − 𝜙) ) 

= sin−1 (sin (90° + 𝛿 − 𝜙) 

= 90° + 𝛿 − 𝜙. 
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Theorem 

maximum altitude of the sun on a given day = 90° + 𝛿 − latitude 

 

 

So, over the course of a year 

maximum altitude of the sun during the year 

= 90° − latitude + maximum declination of the sun during that year 

= 90° − latitude + 23.45° 
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Problem 1. 

When does the sun rise on the longest day of the year (at which time 𝛿 = +23°27′) in Boston 

(𝜙 = 42°21′), and what is the length of the day from sunrise to sunset?  

Solution 

The altitude of the sun at sunrise is not 0 because of two factors, refraction and the fact that 

sunrise is  

From 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻) 

 

we have 

cos(𝐻) =
sin(𝑎) − sin(𝜙) sin(𝛿)

cos(𝜙) cos(𝛿)
. 

 

cos(𝐻) =
sin(−((15 + 34)/60)°) − sin(42°21′) sin(23°27′)

cos(42°21′) cos(23°27′)
 

 

=
sin(−0.8333333333) − sin(42.35) sin(23.45)

cos(42.35) cos(23.45)
 

= −0.4168485326 

Therefore, 

𝐻 = 114.6357814°. 
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Notice that we took the altitude of the sun at sunrise to be  

𝑎 = − (
15 + 34

60
)

°

 

instead of 𝑎 = 0.  Why? 

There are two reasons.   

The first reason is refraction of sunlight.  Refraction at sunrise causes the sun to appear 

34/60 degrees higher than it really is. So we have to subtract (34/60)°. 

The second reason is that this equation 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻) 

 

assumes the sun is a point in the sky (like other stars). This point represents the center of the 
sun. But sunrise is defined as when we first see the sun break the horizon.  The center of the 
sun is 15/60 degrees below that. 

So we have to subtract an additional (15/60)° from the assumed 0° for sunrise. 

This gives an altitude of 

𝑎 = − (
15 + 34

60
)

°

 

for the sun at sunrise. 

 

The hour angle at a given moment is the angular distance between the sun and solar noon, the 
position of the sun at its maximum altitude. 

The sun travels 15° every hour.  So, it takes 

114.6357814

15
= 7.642385427 hours 
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= 7 hours 38 minutes 32 seconds 

under the given parameters the sun rises 7 hours 38 minutes 32 seconds before solar noon. 

However solar noon (when the sun is at its maximum height) is not the same as noon on our 
clocks. The difference between “clock noon” and “solar noon” is called the equation of time 
and changes from day to day through a complicated cycle. 

Fortunately, this cycle repeats itself every year and the daily equation of time is recorded for 
each day of the year. 

Checking nautical tables (and/or the web) the equation of time correction for June 20, 2024 is 

−1.71 = −(1 min 43 sec. ). 

This means that we must add 1 minute and 43 seconds to our clock’s noon (12: 00 p.m.) to get 

solar noon (which is also the time midway between sunrise and sunset).   

So, on June 20, 2004 solar noon in Boston occurs at 12: 01: 43 p.m. 

From our calculations we know that sunrise at Boston on June 20, 2024 occurs 7 hours 38 

minutes 32 seconds before solar noon. 

Therefore, sunrise is at 

12: 01: 43 p.m.  –  7 hours 38 minutes 32 seconds = 4: 23: 11 a.m. 

and by symmetry, sunset is at 

12: 03: 40 +  7 hours 38 minutes 32 seconds = 19: 41: 72 = 7: 42: 12 p.m. 

 

But these times are not taking time zones or daily light savings time into account. 

The longitude of Boston is 71.0589°W which is 3.9411° before the beginning of the Eastern 
time zone (75 meridian) 

Converting from degrees to time have that 

3.9411 degrees = 3.9411° ⋅
24 hours

360°
 

= 0.26274 hours = 15 min 46 seconds. 
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So, we have to subtract 15 minutes 46 seconds from the non-time zone corrected time of 

sunrise in Boston. 

4: 23: 11 a.m.  −   15 min 46 seconds =  4: 07: 25 a.m. 

  

Finally, we have to adjust for daily savings time by adding one hour.  So sunrise on June 20, 

2004 occurs at 5: 07: 25 a.m. in Boston. 

 

How much daylight was there on this day in Boston?  We determined that the sun rose 

7 hours 38 minutes 32 seconds before solar noon. And we know that solar noon is the 

midpoint in time of the hours of daylight. 

Therefore, there were 

7 hours 38 minutes 32 seconds +  7 hours 38 minutes 32 seconds 

= 15 hours 7 minutes 4 seconds 

 

of daylight on June 20, 2004 in Boston. 

 

Problem 2. 

Find the latitude of an observer who finds that the altitude of the sun is 24°15′ at 2: 15 local 

solar time, on a day when the sun’s declination is −12°20′. 

Solution 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻). 
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sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻) 

 

sin(24°15′) = sin(𝜙) sin(−12°20′) + cos(𝜙) cos(−12°20′𝛿) cos(2 hours 15 minutes) 

 

Find the latitude of an observer who finds that the altitude of the sun is 24°15′ at 2: 15 local 

solar time, on a day when the sun’s declination is −12°20′. 

 

sin(24°15′) = sin(𝜙) sin(−12°20′) + cos(𝜙) cos(−12°20′𝛿) cos(2 hours 15 minutes) 

 

sin(24.25°) = sin(𝜙) sin(−12.33333333°) + cos(𝜙) cos(−12.33333333°) cos(33.75°) 
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0.8122805184 cos(𝜙) + (−0.2135987722) sin(𝜙) = 0.4107188526 

 

So we need to find the latitude 𝜙 that satisfies this equation.  We could resort to graphing but 

its actually possible to solve this equation analytically. 

(And solving this analytically has been given on previous MSHSML exams.) 

 

0.8122805184 cos(𝜙) + (−0.2135987722) sin(𝜙) 

= √0.81228051842 + (−0.2135987722)2 ⋅ cos(𝜙 − 𝜃) 

= 0.8398952768 ⋅ cos(𝜙 − 𝜃) 

 

tan(𝜃) =
𝑏

𝑎
=

−0.2135987722

0.8122805184
= −0.2629618307 

 

𝜃 = tan−1(−0.2629618307) = −14.73305626 

 

𝜃 in fourth quadrant 

cos(𝜃) =
𝑎

√𝑎2 + 𝑏2
  and   sin(𝜃) =

𝑏

√𝑎2 + 𝑏2
 

 

0.8122805184 cos(𝜙) + (−0.2135987722) sin(𝜙) = 0.4107188526 

 

0.8398952768 ⋅ cos(𝜙 + 14.73305626) = 0.4107188526 

 

cos(𝜙 + 14.73305626) =
0.4107188526

0.8398952768
= 0.4890119804  or − 0.4890119804 

 

𝜙 + 14.73305626 = cos−1(0.4890119804) = 60.72433742  or − 60.72433742 
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𝜙 = 60.72433742 − 14.73305626 = 45.99128116 = 45°59′28.6″ 

 

or  

𝜙 = −60.72433742 − 14.73305626 = −75°27′. 

 

 

 
Useful Identity:   
 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = √𝑎2 + 𝑏2 ⋅ cos(𝑥 − 𝜃) 
 
where 𝜃 is that angle in 0 ≤ 𝜃 ≤ 2𝜋 such that  
 

cos(𝜃) =
𝑎

√𝑎2 + 𝑏2
  and   sin(𝜃) =

𝑏

√𝑎2 + 𝑏2
. 

 
Note: We can determine which of the four quadrants 𝜃 belongs in according to which 

combination of positive and negative cos(𝜃) and sin(𝜃) are. 

To understand why this works, notice that with these substitutions we have 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = cos(𝑥) cos(𝜃) + sin(𝑥) sin(𝜃) = cos(𝑥 − 𝜃). 

Furthermore, these are valid substitutions because with these substitutions we have −1 ≤

cos(𝜃) ≤ 1, −1 ≤ sin(𝜃) ≤ 1 and sin2(𝜃) + cos2(𝜃) = 1. 
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Problem 3. 

In what latitude is the shortest day of the year just one hour long? 

Solution 

 

The spherical law of cosines for sides states that 

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos(𝛼) 

 

  

Applying to the astronomical triangle 
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cos(90 − 𝑎) = cos(90 − 𝜙) cos(90 − 𝛿) + sin(90 − 𝜙) sin(90 − 𝛿) cos(𝐻) 

or 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻). 

 

 

On the shortest day of the year 𝛿 = −23.44°.  Because daylight is only 1 hour long, 𝐻 at sunrise 

equals 1/2  hour. Converted to an angle, at 15° per hour (remember, 𝐻 is taken as negative in 

the morning) we have 

𝐻 = −
15°

2
degrees = −7.5°. 

Again using the factor that 𝑎 = −50/60 degrees (and not 0°) at sunrise we have 

 

sin (−
50

60
) = sin(𝜙) sin(−23.44) + cos(𝜙) cos(−23.44) cos(−7.5°) 

 

−0.01454389765

= sin(𝜙) ⋅ (−0.3977885074)  + cos(𝜙) (0.9174771405)(0.9914448614) 
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(0.9096279964) cos(𝜙) + (−0.3977885074) sin(𝜙) = −0.01454389765. 

 

Notice this is another problem of the form 
 

𝑎 cos(𝜙) + 𝑏 sin(𝜙) = 𝑐 
to solve. 

 

 

√(0.9096279964)2 + (−0.3977885074)2 ⋅ cos(𝜙 − 𝜃) = −0.01454389765 

 

 

tan(𝜃) =
𝑏

𝑎
=

−0.3977885074

0.9096279964
= −0.4373089977 

 

𝜃 = arctan(−0.4373089977) = −23.62019162 

 

cos(𝜃) > 0, sin(𝜃) < 0 so in 4th quadrant 

 

 

√(0.9096279964)2 + (−0.3977885074)2 cos(𝜙 − (−23.62019162)) = −0.01454389765 

 

cos(𝜙 + 23.62019162) =
−0.01454389765

√(0.9096279964)2 + (−0.3977885074)2
 

 

=
−0.01454389765

0.9928034994
= −0.0146493215 

 

𝜙 + 23.62019162 = cos−1(−0.0146493215) 
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𝜙 = cos−1(−0.0146493215) − 23.62019162 = 67.2191827° 

= 67°13′9″ 

 

 
Useful Identity:   
 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = √𝑎2 + 𝑏2 ⋅ cos(𝑥 − 𝜃) 
 
where 𝜃 is that angle in 0 ≤ 𝜃 ≤ 2𝜋 such that  
 

cos(𝜃) =
𝑎

√𝑎2 + 𝑏2
  and   sin(𝜃) =

𝑏

√𝑎2 + 𝑏2
. 

 
Note: We can determine which of the four quadrants 𝜃 belongs in according to which 

combination of positive and negative cos(𝜃) and sin(𝜃) are. 

To understand why this works, notice that with these substitutions we have 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = cos(𝑥) cos(𝜃) + sin(𝑥) sin(𝜃) = cos(𝑥 − 𝜃). 

Furthermore, these are valid substitutions because with these substitutions we have −1 ≤

cos(𝜃) ≤ 1, −1 ≤ sin(𝜃) ≤ 1 and sin2(𝜃) + cos2(𝜃) = 1. 

 

Where is latitude 𝜙 = 67°13′9″? 



23 
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Note the Arctic Circle is roughly at 66° 33' 49.83"N. 

The imaginary circle round the earth, parallel to the equator, at latitude 66° 32′ N; it marks the 

northernmost point at which the sun appears above the level of the horizon on the winter 

solstice. 
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Problem 4 

Find an observer’s position if the sun’s greatest altitude is 57°7′ and is obtained at 3: 43 p.m. 

Greenwich time, on a day when the sun’s declination is 14°13′. 

 

Your turn! 

Hint:  

maximum altitude of the sun on a given day = 90° + 𝛿 − latitude 

 

 

Problem 5. 

What is the latitude of the place at which the sun rises exactly in the northeast on the longest 

day of the year? 

 

Solution 

 

The spherical law of cosines for sides states that 

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos(𝛼) 

 

  

Applying to the astronomical triangle 
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cos(90 − 𝛿) = cos(90 − 𝜙) cos(90 − 𝑎) + sin(90 − 𝜙) sin(90 − 𝑎) cos(360 − 𝐴) 

 

If the sun rises in exactly the Northeast then it rises 45° east of north.  Thus, the azimuth, 𝐴 

equals 45°. 

 

Remember that on the longest day of the year 𝛿 = 23.44 and that in general, at sunrise 

𝑎 = −
50

60
. 

 

Now we can use the fact that 𝐴 = 45°. 

 

sin(23.44) = sin(𝜙) sin (−
50

60
) + cos(𝜙) cos (−

50

60
) cos(360 − 45) 

 

0.3977885074 = sin(𝜙) (−0.01454389765) + cos(𝜙) (0.9998942319)(0.7071067812) 

 

= (0.7070319919) cos(𝜙) + (−0.01454389765) sin(𝜙) 
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= √(0.7070319919)2 + (−0.01454389765)2 ⋅ cos(𝜙 − 𝜃) 

 

where  

tan(𝜃) =
−0.01454389765

0.7070319919
= −0.02057035299 

 

𝜃 = −0.02057035299 

 

Cos pos, sin neg, 4th quadrant 

 

0.7071815626 ⋅ cos(𝜙 − (−0.02057035299)) = 0.3977885074 

cos(𝜙 + 0.02057035299) =
0.3977885074

0.7071815626
= 0.562498414 

𝜙 + 0.02057035299 = cos−1(0.562498414) = 55.77124358 

 

𝜙 = 55.77124358 − 0.02057035299 = 55.75067323 

= 55°45′2″ 
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Useful Identity:   
 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = √𝑎2 + 𝑏2 ⋅ cos(𝑥 − 𝜃) 
 
where 𝜃 is that angle in 0 ≤ 𝜃 ≤ 2𝜋 such that  
 

cos(𝜃) =
𝑎

√𝑎2 + 𝑏2
  and   sin(𝜃) =

𝑏

√𝑎2 + 𝑏2
. 

 
Note: We can determine which of the four quadrants 𝜃 belongs in according to which 

combination of positive and negative cos(𝜃) and sin(𝜃) are. 

To understand why this works, notice that with these substitutions we have 

𝑎 cos(𝑥) + 𝑏 sin(𝑥) = cos(𝑥) cos(𝜃) + sin(𝑥) sin(𝜃) = cos(𝑥 − 𝜃). 

Furthermore, these are valid substitutions because with these substitutions we have −1 ≤

cos(𝜃) ≤ 1, −1 ≤ sin(𝜃) ≤ 1 and sin2(𝜃) + cos2(𝜃) = 1. 
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Problem 6. 

On April 13th, 1937, the shortest shadow of a pole was exactly equal to its height, and pointed 

due north.  This happened when a BBC British radio program timed for 12: 10 p.m. began.  

Where were these observations made? 

Solution 

The standard direction we need to take in celestial sphere problems is to figure out what all the 

parameters in the diagram of the astronomical sphere equal. 

 

 

 

On any given day, the shortest shadow of an object occurs at solar noon.  If the shadow points 

due north at solar noon then the direction of the sun must be due south and furthermore we 

must be in the northern hemisphere.  

It follows that at solar noon the Azimuth 𝐴 = 180°. 

From declination tables we know that on April 13th, 𝛿 = 8° 50′ = 8.833333333°.  
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If the (vertical) pole 𝐵𝐶 has the same length as the shadow 𝐵𝐴 then Δ𝐴𝐵𝐶 is a right isosceles 

triangle. 

 

It follows that the altitude angle 𝑎 of the sun at solar noon at this location equals 45°. 

𝐻, the hour angle, measures the time between the observer’s current time and solar noon.  So 

in this problem 𝐻 = 0. 

There is one more thing we can glean from this problem.  We can find the clock time of solar 

noon. We will see how that will allow us to find the longitude of our observer. 

But first we will concentrate on finding the latitude of the observer. 

 

Now let’s apply all of this information. 

 

The spherical law of cosines for sides states that 

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos(𝛼) 
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Applying the spherical law of cosines to the astronomical triangle 
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we have 

 

cos(90 − 𝛿) = cos(90 − 𝜙) cos(90 − 𝑎) + sin(90 − 𝜙) sin(90 − 𝑎) cos(360 − 𝐴) 

 

which we can simplify to 

sin(𝛿) = sin(𝜙) sin(𝑎) + cos(𝜙) cos(𝑎) cos(360 − 𝐴) 

 

 

Plugging in all the parameter values we have 

 

sin(8.833333333) = sin(𝜙) sin(45) + cos(𝜙) cos(45) cos(360 − 180) 
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0.1535607383 = (
1

√2
) sin(𝜙) + (

1

√2
) (−1) cos(𝜙) 

 

= (
−1

√2
) cos(𝜙) + (

1

√2
) sin(𝜙). 

 

We could continue to solve problems of this type analytically, but at some point one gets tired 

and resorts to graphing! 

 

Graphing we find the only feasible solution is 𝜙 = 53.8333°. 

 

Alternatively, we could solve for 𝜙 through the angle 𝐻 = 0. 

 

cos(90 − 𝑎) = cos(90 − 𝜙) cos(90 − 𝛿) + sin(90 − 𝜙) sin(90 − 𝛿) cos(𝐻) 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(0) 

 

sin(45) = sin(𝜙) (0.1535607383) + (0.9881392107) 

 

1

√2
= sin(𝜙) (0.1535607383) + cos(𝜙) (0.9881392107) 

 

Graphing we will once again find the only feasible solution is 𝜙 = 53.83333°. 

 

How do we find the longitude? 

 

From the website https://planetcalc.com/9198/  the equation of time for April 13, 1937 is 

−0.603404 minutes.  Recall that  

Equation of Time = Solar Noon − Standard Clock Noon. 

 

https://planetcalc.com/9198/
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We know that in solar time, solar noon is just 12: 00 p.m. 

 

So, we can use the above result to find the clock time of solar noon. 

 

−0.603404 minutes = 12: 00 − Standard Clock Noon 

or 

Standard Clock Noon = 12: 00: 00 + 0.603404 minutes 

= 12: 00: 00 + 36.2024 seconds 

≈ 12: 00: 36 

So, on April 13, 1937 solar noon at the observer’s location occurs at 12: 00: 36 p.m. and at that 

exact same moment it is 12: 10: 00 at the BBC Broadcasting House in Westminster (a borough 

of London) with coordinates (51° 31′ 6.8″N  00° 8′ 37.8″W).  

As BBC radio programs all come from their Broadcasting House based in London, then its 12:10 

pm program starting time is 9 minutes 24 seconds = 9.4 minutes after my time. 

As the (apparent) movement of the sun is from east to west, I must be west of the prime 

meridian. 

Let my longitude be 𝑥. 

That is 12: 00: 36 at longitude 𝑥 equals 12: 10: 00 at longitude 00° 8′ 37.8″W.  The sun moves 

15° per hour or equivalently 0.25° per minute. 

 

9.4 minutes = 9.4 minutes ⋅
0.25°

1 𝑚𝑖𝑛𝑢𝑡𝑒 
= 2.35°. 

 

So my longitude is 2.35° west of the meridian of the BBC.  That is, my longitude is  

00° 8′ 37.8″ +  2.35° = 0.1438333333° + 2.35° 

= 2.493833333 W 

 

So my coordinates (latitude, longitude) are (53.83333° N, 2.493833333 W). 
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Where is this?  Google it! 
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So it looks like I’m in a wooded area not too far from The Tolkien Trail.  Could this be Fangorn 

forest? Might I meet some Ents along the trail? 
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Problem 7 

 

Sunrise and Sunset in Murphy Square 

What are the times for sunrise and sunset in the center of Murphy Square at Augsburg 
University in Minneapolis, Minnesota on Thursday, June 27, 2024? 

 

 

 

Make sure to check out historic Murphy Square during your stay at 

Augsburg. It happens to be the oldest park in Minneapolis. Look 

carefully for the “hidden” flower made by the sidewalks. Perhaps a case 

of not being able to see the forsythia for the trees? 

 

 

 

Your Turn Again.   
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Problem 8 

 

Find the length of the day and the bearing of the rising sun at Minneapolis, latitude 45°N, on 

the shortest day of the year. 

Solution 

sin(𝑎) = sin(𝜙) sin(𝛿) + cos(𝜙) cos(𝛿) cos(𝐻). 

 

 

Remember that on the shortest day of the year 𝛿 = −23.44° and when the sun is rising 𝑎 =

−50/60. 

 

sin (−
50°

60
) = sin(45) sin(−23.44) + cos(45) cos(−23.44) cos(𝐻) 
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cos(𝐻) =
sin (−

50°
60 ) − sin(45) sin(−23.44)

cos(45) cos(−23.44)
= 0.4111495681 

 

𝐻 = 65.72293065° 

 

But this is in the morning so 𝐻 = −65.72293065°. 

 

65.72293065

15
⋅ 2 = 8.76305742 ℎ𝑜𝑢𝑟𝑠  

= 8 hours 45 minutes 

 

Do I need to make any adjustments for the Equation of Time, Time Zones or Daylight Savings 

Time? 

No.  Why not? 

 

 

The second part of this problem is to find the bearing of the sun.  
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cos(90 − 𝛿) = cos(90 − 𝜙) cos(90 − 𝑎) + sin(90 − 𝜙) sin(90 − 𝑎) cos(360 − 𝐴) 

 

𝛿 = −23.44°, 𝑎 = −50/60, 𝜙 = 45° 

 

Find the length of the day and the bearing of the rising sun at Minneapolis, latitude 45°N, on 

the shortest day of the year. 

 

sin(−23.44) = sin(45) sin (−
50

60
) + cos(45) cos (−

50

60
) cos(360 − 𝐴) 
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cos(360 − 𝐴) =
sin(−23.44) − sin(45) sin (−

50
60)

cos(45) cos (−
50
60)

 

 

= −0.548071973 

 

360 − 𝐴 = 123.2348425° 

 

𝐴 = 236.7651575° or  𝑆 56.7651575° 𝐸 = 𝑆 56°45.9′𝐸 

 

 

Let 𝑟 equal the radius of sphere 𝑆.  Then  

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos(𝛼) 
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Problem 9 

 

Virtual Geocache 

The following is an entry from a sea captain’s log dating from 1910. Your virtual 
geocache challenge is to find the name of the lighthouse mentioned in the historic log 
and to determine its latitude and longitude. 

February 22. We sailed up the coastline for most of the day. By midafternoon 
we reached a cape jutting out into the Atlantic. The cape was appealing so we 
dropped anchor at the bottom south side and rowed our skiff ashore. We took 
time to explore and soon chanced upon an unobstructed view of a beautiful 
sunset.  That night we slept on deck to enjoy the sea air which never got below 
fifty degrees [Fahrenheit]. 

February 23. We rose early that morning to the sun rising over the ocean. We 
opted for a fresh look of the lighthouse we had spotted the day before. We 
were struck by the familiar and pleasing aroma of the old growth yellow pine 
wide plank stairs of the lighthouse. At the top of the tower, from a height of one 
hundred and ten feet, we could study the marshes and wildlife. We recorded 
having seen any number of great egrets, blue herons and white ibises and a 
smaller number of raptors including peregrine falcons and merlins. 

 

We took photographs yesterday and today, one taken only moments before 
sunset on our first day and the other of the lighthouse we visited. 
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For the log, sunset occurred at 6:02:00 p.m., sunrise at 6:48:48 a.m. and from 
the ephemeris tables the declination of the sun was −10.11°. 

Recall from astronomy that sunset and sunrise are defined as the moments when the 
upper limb of the sun has just disappeared below or appeared above horizon. Also recall 
that declination is the angle 𝛿 formed by the line connecting the centers of the Earth 
and Sun and the Earth’s equator. Declination varies seasonal between −23.45 and 
23.45. Declination angles are tabled in nautical almanacs. 

 

Solution 

The sunrise equation is 

cos(𝜔𝑜) =
sin(𝑎) − sin(𝜙) sin(𝛿)

cos(𝜙) cos(𝛿)
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where 

𝝎𝟎 is the solar hour angle at either sunrise or sunset, negative for sunrise and positive for 
sunset. 

One way to picture solar hour angle is to image a clock with two hour hands 
(and no minute hands) where the two hour hands point to different times. 
Let one hour hand point to the time when the sun rises and let the other 
hour hand point to the time (called solar noon) when the sun is at its highest 
point in the sky on a given day.  The angle between these two hour hands is 
the solar hour angle for that day. 

It is useful to know that the time when the sun is at solar noon for that day is 
necessarily halfway in time between sunrise and sunset for that day.  So, by 
symmetry, the angle between between solar noon and sunrise equals the 
angle between solar noon and sunset in absolute value. But definition the 
angle between solar noon and sunrise is taken to be negative (and the angle 
between solar noon and sunset is taken to be positive). 

Also, to convert from hours to degrees remember that 360° = 24 hours so  

𝑥 hours =
360𝑥

24
= 15𝑥 degrees. 

So, in this problem we see that  

sunset − sunrise = 6: 02: 00 p.m. − 6: 48: 48 a.m. 

= 6: 02 + (noon − 6: 48: 48) 

= 6: 02 + 5: 11: 12 = 11: 13: 12 hours 

= 11 +
13

60
+

12

602
= 11.22 hours. 

Therefore,  

𝜔0 =
11.22

2
= 5.61 hours 

= 15(5.61)° = 84.15°. 

Note: Solar noon does not often occur at the same time as “noon” on your 
clock. When and if they do agree depends on many factors including 
longitude, time zones, daylight saving time among other factors. 
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𝝓 is the latitude of the observer on Earth 

𝜹 is the declination of the sun 

𝒂 is the altitude angle of the center point of the sun at sunrise.  When the upper limb of the 

sun is on the horizon the center point will be (16/60)° below the horizon.  Altitude angle is also 

affected by refraction. The average correction for refraction is about (34/60)°. Together, these 

two corrects make 𝑎 = −((15 + 34)/60)° at sunrise instead of 0° as you might initially think. 

Recall that the density of Earth's atmosphere decreases with increasing 
altitude. Refraction is the bending of light according to Snell’s Law as it passes 
through our atmosphere with varying density. Refraction makes celestial 
objects appear higher in the sky than they really are. This means that we start 
to see the Sun a few minutes before it actually rises above the horizon. 

 

Solving for Latitude 

Notice that in this problem we know the altitude angle 𝑎 = −((15 + 34)/60)° at sunrise, we 

are given 𝛿, the declination of the sun and we can calculate 𝜔0, the solar hour angle at sunrise, 
because we are the times of sunrise and sunset. 

Thus, the only unknown in the sunrise equation 

cos(𝜔𝑜) =
sin(𝑎) − sin(𝜙) sin(𝛿)

cos(𝜙) cos(𝛿)
 

is 𝜙, the latitude of our observer, which in theory means we can solve for 𝜙.  We start by 
rewriting the sunrise equation in the form 

(sin(𝛿) ) sin(𝜙) + (cos(𝜔0) cos(𝛿) ) cos(𝜙) = sin(𝑎). 
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Graphing 

(sin(−10.11°) ) sin(𝜙) + (cos(84.15°) cos(−10.11°) ) cos(𝜙) = sin (−
16 + 34

60
) 

 we can use the zoom feature to determine that 

latitude = 𝜙 ≈ 0.59128519 radians = 33.87815° = 33°53′. 

But what about longitude? Fortunately, longitude does not require any extra mathematics. 

Longitude is fixed by the story line because we know the ship is on the Atlantic coastline. So, we 

need only follow a map along latitude 𝜙 = 33.87815° = 33°53′ until we hit the Atlantic 

coastline. 

A first cut (using Google Earth) shows that latitude 33°53′ hits the Atlantic coastline 

somewhere between Myrtle Beach, SC and Wilmington, NC. 

 

Zooming in further we find that latitude 33°53′ hits the Atlantic Ocean at Bald Head Island, NC. 

 

We can pinpoint the lighthouse on Bald Head Island using Google Maps. 



47 
 

 

Finally, we can ask Google for the coordinates of Old Baldy Lighthouse. 
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Reminder: It is possible to solve the equation 

𝐴 sin(𝑥) + 𝐵 cos(𝑥) = 𝐶 

analytically for known 𝐴, 𝐵 and 𝐶. [You might recall that getting an explicit 
solution for this equation is part of the MSHSML Test 3 Event C curriculum.]  

The strategy comes down to seeing that there exists a unique 𝜃 in 0 ≤ 𝜃 <
2𝜋 such that 

𝐴 sin(𝑥) + 𝐵 cos(𝑥) = √𝐴2 + 𝐵2 ⋅ sin(𝑥 + 𝜃) 

where 𝜃 is determined from the equation 

tan(𝜃) =
𝐵

𝐴
 

with the quadrant of 𝜃 determined by the pair of constraints 

cos(𝜃) =
𝐴

√𝐴2 + 𝐵2
  and   sin(𝜃) =

𝐵

√𝐴2 + 𝐵2
. 
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Problem 10 

Suppose I start at some point 𝐴 and hike one mile due south. Then I decided to hike one mile 

due west and finally hiked another mile due north. If I find myself back at point 𝐴, where did I 

start? 
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Homework 

You are captaining a hover ship (it can sail over land or water) that is set to sail the great circle 

route from point 𝐵 (latitude 23.91040°N, longitude 0.016490327°W) to point 𝐴 (latitude 

26.756156°N, longitude 123.627661°W).  

But right after taking off your hover ship developed an engine problem that causes the engines 

to fail if you ever go north of the 40.0297954 north parallel. 

Your new course plan is to sail the great circle path between 𝐴 and 𝐵 until this path reaches the 

40.0297954 north parallel (point 𝐷 on the diagram below). Then you will stay on the 

40.0297954 north parallel until you get to point where the great circle path is once again 

below the 40.0297954 north parallel (point 𝐶). Then you will be able to safely continue on the 

great circle path all the way to point 𝐴. 

 

 

(1) Find the latitude and longitude of 𝑉, the vertex of the great circle connecting points 𝐴 and 

𝐵. 

(2) Find the latitude and longitude of points 𝐶 and 𝐷. 

 

Answers:   

   𝑉 (latitude 45.180439° N, longitude 63.694547° W) 

   𝐶 (latitude 40.0297954° N, longitude 97.1086735° W) 

   𝐷 (latitude 40.0297954° N, longitude 30.2804212462° W) 


