LINEAR COMBINATIONS OF UNIFORM VARIATES, THE VOLUME OF A SIMPLEX|
EULERIAN NUMBERS, AND e.

(1)

Let S,, denote the simplex given by

S, = {(Xl,XQ,... JXn )| »_a;jx; = k, where x; > 0, a; > 0,and k > 0}
j=1

and let V(S,,) denote the n - dimensional volume of S,,. Show that

V(S,) = K

a-ay---dap-nl o’

(1r)

Suppose Uy, Uy, ... ,U, are independent random variables and that each is distributed uniformly on the
interval (0,8 ). Show for fixed positive a;,... ,a, and k > 0,

P(aU; + aUs + ... + a,U, < k) =

H<07k>(5(a.jl+ aj + ... + aj,,))>.

The inner sum is over all (ji, ... ,j.) € C,, where C, is defined as the set of all samples of size r drawn
without replacement from { 1,2,... ,n}, when the order of sampling is considered unimportant. We note
that when a; = ... = a, = I, the general result simplifies to
LY
r n n
(UL +Upt o + Uy S 0) = ol 5 (- 1) ( r)(k — )",
=
(111)

Suppose Vi, Va,...,V, are independent random variables and that V; is distributed uniformly on the
interval (0,6;). Show

P(Vi4+ Vot ... +V, < k) =

1

B oy nt X

n

(k“ _ zn: (— 1)t (kf (6, + 65 + ... Jr(sjr-))

r=1 C,



x Tiowy (65 + &5 + o +5,;.)).

(Iv)
Suppose Uy, Uy, ... ,U, are independent random variables and that each is distributed uniformly on the
interval (0,1). For integerk € {1,...,n} show that

P(k—=1 < U +... +U, < k) = --A(nk)

k .
where A(n, k) = > (-1 )J( ”?1 ) (k—]j)" are the Eulerian Numbers defined in Problem 7.77?.
=0

(V)

In Problem 7.2?? we defined the Eulerian number A( n, k) to be the number of permutations of { 1,2, ...,
n} with exactly k rises. In (IV) we noticed that Eulerian numbers pop up in the probability that the sum
of uniform variates is between the hyperplanesU; + ... + U, = k— 1 and Uy + ... 4+ U, = Kk but
the proof does not clue us in to why rises and sums of uniform variates are related. In this part of the
problem we will establish a one - to - one relationship between rises and sums of discrete uniform variates.

Let C,;, (k,n) be the set of all ( Xy, ..., X, ) such that
I) Xie{l,...,m—l}
i) X; # X, forany 1 < i< j<n
i) (0,Xy,...,X, ) has exactly k rises.

Let Dy, (k,n) be the setof all ( Yq,...,Y, ) such that
|) Y,—e{l...,m—_l}

m> m

i) k—1 < Y+ ... +Y, <Kk
iii) Y, + ... +Y,isnotaninteger forany 1 < i < j < n.

Notice that the Y; are not necessarily distinct. Establish a one - to - one relationship between C,,(k,n) and
D, (k,n).

Now suppose that Wy, ... , W, are independent discrete uniform random variables on {1,..., m—1}.
Then it follows that

P((Wl,... ,W, ) € (C,,L(k,n)> = P((% , vrvn) c D,,l(k,n)>.
However,

lim P((Wl,... W) € cm(k,n))

m — o0

. ") A(nk)
= mllﬂ oo( ( (m)*l)” )



_ A(nk) T —i _ Ak
mllr—r>loo( nn! 1(m—;)> - nn! :

Also it is not hard to see that

m — o0

lim P((WTWT) S Dm(k,n)) = P(k=1 < Ui +... +U, < k)

where Uy, ... ,U, are independent uniform random variables on ( 0, 1 ). This confirms (IV ).

(VI)

Suppose Uy, Us,... are independent random variables and that each is distributed uniformly on the
interval (0, 1) and suppose ( the random variable ) K,, is defined by the inequalities

U+ U+ ... + U1 <wand U+ Uy + ... +Ug, > w

Show that
E(K,) = > (—=1) % (W — 1) elw=n

and note that E(K; ) = e.

The formula for E(K,, ) was derived by K. G. Russell, “On the Number of Uniform Random Variables
Which Must be Added to Exceed a Given Level", Journal of Applied Probability, 20, 172-177, 1983.
However, the derivation given here is a considerable simplification.

(VII)
Show that
B(Kw) = 2w + 2 + o(1).
The approximation E(K, ) ~ 2w + % is actually quite good even for small w. In fact a numerical

exercise shows that
| E(Kw) — (2w + 2)| < 0.00011 forw > 3.

This approximation is important because the values of w where the exact value of E(K,, ) can be calculated
with any precision is limited.

Proof of (1)
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Nowlet Y; = a;X; for j = 1,2,...,n. Then
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where h] = k, h2: k—Y],...,hn = k—Yl—Yg—... —Y,[,].
Finally, let
T, =Y, Y, =T
T2 =k — Y1 — ... — Y77,71 Y77,71 = T3 - T2
: = :
Tt = k=Y — Y, Y, = T, — T,
T, = k—-Y; Y, = k—-T,.

Then, with this multivariate change of variable, we have

) Frnoon
Vi = == - J [ [ dTy---dT, 1dT,
) 5

0

Ta

[
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We leave it to the reader to verify that the absolute value of the associated Jacobian of this transformation
equals 1. The Jacobian is easily determined because the matrix of partial derivatives is in triangular form.

1

We will use a probabilistic argument to illustrate that this remaining integral simply equals .

Suppose that Ty, To,..., T, are independent observations from a probability distribution with density
function f( - ). Let Tam < Tom < ... < Ty be the ordered values of Ty, To, ..., T,. Because

the T,'s are independent and identically distributed, ( T(1.y, T2:p)> --- » Tinm) ) is equally likely to be any
one of the n! possible orderings of Ty, To,... ,T,. Thatis,

P((T(l:n)sT(?:n)e .- ’T(n:n)> - (Tl,TZe--- aTn>) = %

However,



=P(Ti<T < ... <)
X ooTm o on
= [ [ f J | IIfCT;) ) dTdTy--- dT, ,dT,.
—00 —oo —00—0 J=1

In the case of iid Uniform( 0,k ) observations, this simplifies to

P( (T('l:n) ’T(Q:n)’ R T('H:/L)) - (T],Tg,... ,Tn)>

T T
= ‘] f o f f a dTI dTQ T dT”,| dTIL'
0 0 0

0

Therefore,

o
g}

k
- k.
Vi = ar- ay--- a, ( f
0

T
o f A dTy e AT dT,L).
0
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Note : One standard “proof" of this result involves having the geometric insight that V, must be
proportional to the product of the sides. However this insight is substantiated only by knowing that it leads
to the correct solution, making the argument somewhat circular.

Proof of (1)

The sample space for (Ui, Us,... ,U,) is 2 = {(xl,xz,... Xp) CRY 0<x;, <6, j=12,

.,n } It follows that V(2), the n- dimensional volume of €, equals §". By definition of the uniform
distribution, all points in €2 are equally likely, and hence for any event C C €2,

V(C V(C
P(C) = wgh = X2



As we have illustrated previously, the General Probability Theorem can be applied with any countably
additive set function and is not limited to the special case of a probability measure. In particular, in this
problem we will illustrate its application when our additive set function is n - dimensional volume.

Before proceeding we note that the General Probability Theorem is applied on a fixed sample space. And
when our additive set function is a probability measure, changing the sample space changes the probability
of the set we are measuring. In contrast, the volume of a set C C 2 is not changed by changing the sample
space from 2 to 2*, provided C C 2*. For some problems, including this one, it is possible to simplify
the calculation of V(C) by a judicious choice of a new sample space *.

For fixedk > 0,and a; > 0 (j = 1,2,...,n), and sample space €, define

C = {(Xl,Xg,...,Xn) QQ EanjS k}
J=1

Then,
P(aiUy + aUs + ... +a,U, < k) = 49

Now define a new sample space 2%,

Q*:{(xl,xQ,... Xp) € R Y ajx; < kand 0 < x; < o0 forj=1,2,... ,n}.
=1

Clearly, C C Q*. Also, we recognize that * is the simplex described in (T). Now, for j = 1,2,...,n,
define,

A {(Xl,xQ,...,xn) C| 6 <x5 <00 }

Then, with sample space Q* in mind, C = A; N Ay N --- N A,. By the General Probability Theorem,
we have

V(C) = V(AN AbN---N Ay)

= V(QY) — Z:l %: (— 1)’"71 V( Ailﬁ A,L'2 n---N A,‘y,).

where we define C, to be the set of all samples of size r drawn without replacement from {1,2,...,n},
when the order of sampling is considered unimportant. From our formula for the volume of a simplex,

V(Sr) - a;- az-i-(ila,,- n! °

Now let Z, = {iy,li2,...,i, }. Then

AN Ay N---N A



—{ e x) c @y > o frje T}

= {(y1,y2,-~-;}’77,)‘ Yoajy; < k—6(a; + a, + ... +a),
=1
where y; > 0, a; > 0, and k

x.j—é ]EI,

X ¢ T.

We recognize this set as a simplex, provided k — 6 (a;, + a;, + ... + a;, ) > 0, and hence from the
formula for the volume of a simplex,

»
(k—é(aqﬁr a,2+...+a7,,))
aj-az---a,-n!

V(AN A, N---N A;) =

Wenote that V(A;, N A, N ---N A ) = 0ifk—6(a; + a;, + ... + a;,) < 0. Therefore,

P( a Uy + aalUs 4+ ... 4+ a,U, < k) =

(k”-— XS =1y (k= Sat ay o )

H(o,k)(é(% + a, + ... + ay;)) )-D

Proof of (1II)
Define U; = % We leave it to the reader to verify that U; ~ Uniform(0,1). It follows that

P(Vi+ Vot ... +V, < k)

= P( U1 + 6Us + ... + 6,U, < k)



(k” - I e )

Proof of (IV)

From (11l ) we have

P(k—l < U + ...
== P(U1+--- +Un

= (-0 k=i - 5y

_ ;,.jé)(w(r;)(k,)u ,:,.j_igw(,"l)(k %

= -1 (3) (k-0 + ﬁjﬁ(—”’((?)ﬂj”l))“‘—””
:%(—1)0(”31)“ 0)" + ﬁé(—l)f(”ﬁl)(k i)
=%jio<—1>f("+,-l)<k i
— L A(nk)

Proof of (V)
Xn) € Cp(k,n)andletx, = 0. Define the mapping f(c)

Letc = (Xl,...

]I(ﬂyk)(‘s.h + byt + 5;))

= (yn--

,Yn ) where



Xim1 =X if X; < X1

Yi

Il
—

1 + % if X, > X—-1.

i) Clearly f(c) is uniquely defined. Show that f(c) € Dy (k n).|

1) Isyie{i,...,mT*l}? Obvious.

m
2) Isk—1 <y + ... +vy, < k? Yes!

We note that

n n
Y1 + ...+ Yn — ZI(X,>X,'—1) + Z %
i=1 =1

= #risesin (0,X(,... , %) + (— )

— K — X

m

and itisclearthat (k—1) < k — 2> < k.

m

3) Isy; + ... + y;anintegerforany 1 < i < j < n? No!

i i
Vit oes b Y= X sy 2 e
U=

u=t

= (#risesin(xi,l,... ,Xj)) + (% — %)

We see that
0 < |#(XJ—X,')| <1

and hence cannot be an integer. However the number of rises must be an integer. It follows that their sum
cannot be an integer. Therefore we can conclude that f(¢) € D,,(k,n).

|ii) Ifc € C,c* € C,andc # c*, then show f(c) # f(c*).|

Let ¢ = (x,..-,% ) and c¢* = (X{,...,x}) be distinct elements of C,(kn). Define
f(c) = (Yi,---,¥n) andletf(c*) = (yi,...,¥;).

Suppose that X; # X} and that x; = X7 forall i < j. Itis easy to see that in this case y; # Y} and hence f
(c) # f(c).

|iii) Ifd € D, then show there exists ac € C such thatd = f(c).|




Letd = (y1,.--,Y,) € Dand define

m:m(%%wrhn+vﬁf(w+n-+wﬁ i=1...

We must show that ¢ = (Xg,...,%,) € C,,(kn) and that (yy,...,y,) = f(c).
1) Isx e {l..., m=—1}? Yes!
0<1-— ((y1+... +yi)— v+ ... +y7;j) <1
and hence
0 < m(l + i+ Y-+ +y,-)) < m.
Furthermore,
(Yi+ .o +Vyi) = ¢ and |y +... +y] =2
for some integers ov; and 5. Therefore
m(l + yi+ s Y — (v - +yi))
must be an integer. Thatis,x; € {1,..., m—1}.

2) Does x; = X; forany 1 < i < j < n? No!

Xj — X
m

(14 i+ syl =i+ )

- (1 + i+ Y=+ +Y£))

= integer — noninteger # 0.

It follows that x; # X;.

3) Does (0,Xg,.-. ,X, ) have exactly krises ? Yes!

For integeri > 2,
Xj — X1 = m(l il + Yl -+ +Y7')>

— m(l oyt e Vi = (1 + e +y7-,1)>

(Lw+”.+wj—Lw+.u+y4)—(ml+u.+w)



= m( i+ oYl = i+ Y] - y)

Therefore,
Xi = X1 >0 [yi+ .o by bVl - it s Y >y >0
S |yt s Y Y] - s Y] = L

That is, there is exactly one integer between y; + ... + ¥;_1 and y; + ... + y;. Put another way,
there is arise in ( Xy, ... ,X, ) everytime (yrl, (Vvi+V¥e), (Yi+Y2+Y3)eee, (i + -0 + y,L)) jumps
to the next higher integer.

But k—1 < y; + ... +V, < k. Hence, there must be exactly k — 1 rises in ( Xp, ... , X, ) and exactly
krises in (0,Xy, ... , X, ). Therefore ¢ = (X1,...,%X,) € Cn(kn).
Finally, we must show that f(¢) = f(xi,... ,X,) = (y1,--.,V¥n ) if we define

xo=m(1+ i+ Y] = (i +y))  i=1o.n

To see this, let f(xy,-.. ,X,) = (t,...,t,) where
A if X, < X1
L - {
1 + % if x; > Xi_1.

We previously noticed that
Xi —%-1>0 = |yi4+ ... Y +Yi]l — i +... +yia] =L

Xi — %1 <0 = |1+ --- +Via+Vi] — y1+ .- +vyia] = 0.

and that
e ( [ S o A I /i s +y7'71J)-
m ,
Therefore,
y; — 0 if X, < X1
L - {
1+(y7_1) if X, > X_1.
Thatis, t; = ;. O

Proof of (VI)



P(Ky > k) = P(Ut + Uy + ... + Up < W) = o 3 (—1)r($)(w—r)k k> 1.
We note that
Lw]
%Z(—l)’"(?)(w—r)ozl for all w
r=0

and hence the above formula is valid for the case K = 0 as well. Therefore

E(Ky) = 3 P(Ky > K)
k=0
S (eSS () ey
fr W r
_ LWJ(_])T i L(k)(w_r)]‘
=0 = k! r
= %ﬁ(”'(é Q,(f)(wr)]“) [(E):Ofork<r.]
[w] 20
= ZZIO (— 1)’”7(W—f)r<k2 = (W—f)k‘i)
Lw)
= (= 1) L (W) et O
Proof of (VII)

We can think of S,, = U; + ... + U, as the time of the n* arrival in a process. Define
N(t) = sup{n:S, < t}.
Our interarrival times Uy, Us, ... are independent and identically distributed, so the counting process { N{

t),t > 0} is in fact a renewal process. From the theory of renewal processes, we have that for any
renewal process with a continuous interarrival time distribution with mean ;¢ and finite variance o



E(N(t)) = L+ 2 4 oo(1).

[ see Sheldon Ross, Stochastic Processes, Corollary 3.4.7].

We note that
E(K,) — E(N(w) + 1) = L 4 ZH 4 o(1).
It is easy to demostrate that p = E(U;) = 1 ando? = var(U;) = <. Simplifying we have

E(Ky) = 2w + 2 + o(1).

Reference : The Mathematical Gazette, John Haigh.



