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Linear and Circular Success Runs 
 

Ken Suman 
 
 
 
 
1  Sampling from a Line 
 
Theorem 1  
 
Suppose the numbers 1,… , 𝑡 are arranged in a line in increasing order. Let (𝑋1, … , 𝑋𝑛) be a 
random sample of size 𝑛 taken without replacement from these 𝑡 distinct numbers such that 
1 ≤ 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛−1 < 𝑋𝑛 ≤ 𝑡. 
 
Define the variables 𝐶𝑗 by 

 
𝐶1 = 𝑋1 
𝐶2 = 𝑋2 − 𝑋1 
         ⋮ 
𝐶𝑛 = 𝑋𝑛 − 𝑋𝑛−1 

𝐶𝑛+1 = (𝑡 + 1) − 𝑋𝑛 . 
 
Then 
 

E(Ψ(𝐶1, … , 𝐶𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

E(Ψ(𝑍1, … , 𝑍𝑛+1)))|

𝜃=0

 

 
 
where 𝑍1, …,𝑍𝑛+1 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 
random variables (see Definition 6 in the appendix). 
 
 
Lemma 2  
 
Let 𝕊𝑛+1 be the product space {1,2,… } × ⋯× {1,2,… } and let 𝕊𝑡+1

𝑛+1 be the set of all vectors 

(𝑠1, … , 𝑠𝑛+1) in 𝕊𝑛+1 such that 𝑠1 +⋯+ 𝑠𝑛+1 = 𝑡 + 1 and where 𝑡 + 1 ≥ 𝑛 + 1. 

 



2 
 

Let 𝒜 ⊂ 𝕊𝑛+1 and define 𝒜𝑡 = 𝒜 ∩ 𝕊𝑡+1
𝑛+1. Then for all 𝑡 + 1 ≥ 𝑛 + 1 we have 

 

𝑃((𝐶1, … , 𝐶𝑛+1) ∈ 𝒜𝑡) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝑃((𝑍1, … , 𝑍𝑛+1) ∈ 𝒜))|

𝜃=0

 

 
and 
 

𝑁(selections of 𝑛 numbers from 1,2,… , 𝑡|(𝐶1, … , 𝐶𝑛+1) ∈ 𝒜𝑡) 

 

=
1

(𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝑃((𝑍1, … , 𝑍𝑛+1) ∈ 𝒜))|

𝜃=0

. 

 
 
We will first give some examples illustrating Theorem 1 and will then follow with the proof. 
 
 
Example 3 (A selection of success run problems.) 
 
Suppose we arrange 𝑚 𝑆’s and 𝑛 𝐹’s (successes and failures) in a line by randomly selecting 

numbers from 1,… ,𝑚 + 𝑛 to represent the positions in our line of the 𝑛 𝐹’s. 

 
Define the variables 
 

𝐿 : length of the longest success run
𝑅 : number of success runs of length 𝑟
𝑊 : number of success runs of length at least 𝑟.

 

 
Then 
 

𝑃(𝐿 ≤ 𝑘) = ∑

𝑛+1

𝑗=0

(−1)𝑗
(
𝑛 +𝑚 − (𝑘 + 1)𝑗

𝑚 − (𝑘 + 1)𝑗
) (
𝑛 + 1
𝑗
)

(
𝑛 + 𝑚
𝑚

)
(1) 

 

E(𝐿(𝑣)) = 𝑣∑

𝑚

𝑟=0

∑

𝑛+1

𝑗=1

(−1)𝑗−1
(
𝑛 + 𝑚 − (𝑟 + 1)𝑗

𝑚 − (𝑟 + 1)𝑗
) (
𝑛 + 1
𝑗
)

(
𝑛 +𝑚
𝑚

)
𝑟(𝑣−1) (2) 
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𝑃(𝑅 = 𝑘) =
1

(
𝑚 + 𝑛
𝑚

)
∑

𝑛+1

𝑗=𝑘

(−1)𝑗−𝑘 (
𝑗
𝑘
) (
𝑛 + 1
𝑗
) (
𝑚 + 𝑛 − (𝑟 + 1)𝑗

𝑚 − 𝑟𝑗
) (3) 

 

E(𝑅(𝑣)) =
𝑣! (

𝑚 + 𝑛 − (𝑟 + 1)𝑣
𝑚 − 𝑟𝑣

) (
𝑛 + 1
𝑣

)

(
𝑚 + 𝑛
𝑛

)
(4) 

 

𝑃(𝑊 = 𝑘) =
1

(
𝑚 + 𝑛
𝑚

)
∑

𝑛+1

𝑗=𝑘

(−1)𝑗−𝑘 (
𝑗
𝑘
) (
𝑛 + 1
𝑗
) (
𝑚 + 𝑛 − 𝑟𝑗
𝑚 − 𝑟𝑗

) (5) 

and 
 

E(𝑊(𝑣)) =
𝑣! (

𝑚 + 𝑛 − 𝑟𝑣
𝑚 − 𝑟𝑣

) (
𝑛 + 1
𝑣

)

(
𝑚 + 𝑛
𝑛

)
. (6) 

 
 
The probabilities 𝑃(𝐿 ≤ 𝑘), 𝑃(𝑅 = 𝑘), and 𝑃(𝑊 = 𝑘) are useful in themselves as well as in 

other calculations. Taking 𝑚 = 𝜔 and 𝑛 = 𝑡 − 𝜔   in this example it follows that 

 
 

𝑃 (
longest success run of length less than or equal to 𝑘
in a series of 𝑡 iid Bernoulli trials with success probability 𝑝 

) (7) 

 

= ∑

𝑡

𝜔=0

𝑃𝜔(𝐿 ≤ 𝑘) (
𝑡
𝜔
) 𝑝𝜔(1 − 𝑝)𝑡−𝜔  

and 
 

𝑃(
longest run of 0's is of length less than or equal to 𝑘

in a sample of size 𝑡 from an urn containing 𝑠10's
and 𝑠2 1's using a Markov-Pólya sampling model

) (8) 

 
 

= ∑

𝑡

𝜔=0

𝑃𝜔(𝐿 ≤ 𝑘)
(
𝜔 + 𝑠1 − 1
𝑠1 − 1

) (
(𝑡 − 𝜔) + 𝑠2 − 1

𝑠2 − 1
)

(
𝑡 + 𝑠1 + 𝑠2 − 1
𝑠1 + 𝑠2 − 1

)
 

where 
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𝑃𝜔(𝐿 ≤ 𝑘) = ∑

(𝑡−𝜔)+1

𝑗=0

(−1)𝑗
(
(𝑡 − 𝜔) + 𝜔 − (𝑘 + 1)𝑗

𝜔 − (𝑘 + 1)𝑗
) (
𝑡 − 𝜔 + 1

𝑗
)

(
(𝑡 − 𝜔) + 𝜔

𝜔
)

. 

 
 
The result in (1) is given in David and Barton [?] while results (3) and (5) are given in Bizley [?]. 

Mood [?] derives formulas for (4) but only for the cases 𝑣 = 1 and 𝑣 = 2. Fu and Koutras [?] 

have developed an algorithm for computing numerical solutions for problems such as the 

probability distribution of the longest success run in the more general case of independent but 

not necessarily identically distributed Bernoulli trials. Results similar to (7) and (8) using 

𝑃(𝑅 = 𝑘) or 𝑃(𝑊 = 𝑘) instead of 𝑃(𝐿 ≤ 𝑟) would follow in the same way. 

 
The purpose of this example is to illustrate how to use Theorem 1 to establish a variety of 
results from the literature on success runs. 
 
 
Proof for Example 3 
 
Take 𝑡 = 𝑛 +𝑚 and let (𝑋1, … , 𝑋𝑛) in Theorem 1 represent the ordered positions of the 𝑛 𝐹’s 
within {1,2,… , 𝑛 +𝑚}. For the variables 𝐶𝑗, 𝑗 = 1,2… , 𝑛 + 1 defined as in Theorem 1, 𝐶𝑗 − 1 

counts the number of 𝑆’s (the length of the success run) between the (𝑗 − 1)𝑠𝑡 and 𝑗𝑡ℎ  𝐹. 
 
With these definitions it follows that 
 

𝐿 ≤ 𝑘 ⟺ max(𝐶1 − 1,… , 𝐶𝑛+1 − 1) ≤ 𝑘  

⟺𝐶1 ≤ 𝑘 + 1,… , 𝐶𝑛+1 ≤ 𝑘 + 1. 

 
We note that for any indicator function 
 

𝐸(𝕀(event 𝐴)) = 𝑃(event 𝐴) 

 
where we take 
 

𝕀(event 𝐴) = {
1 if event 𝐴 occurs

0 else.
 

 
Hence for 
 

Ψ(𝐶1, … , 𝐶𝑛+1) = 𝕀(max(𝐶1 − 1,… , 𝐶𝑛+1 − 1) ≤ 𝑘) 
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we have 
 

𝑃(𝐿 ≤ 𝑘) = 𝑃(max(𝐶1 − 1,… , 𝐶𝑛+1 − 1) ≤ 𝑘) 

= 𝑃(𝐶1 ≤ 𝑘 + 1,… , 𝐶𝑛+1 ≤ 𝑘 + 1) 

= 𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)). 

 
 
Now by application of Theorem 1 with 𝑡 = 𝑚 + 𝑛 we have 
 
 

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) 

 

=
1

(
𝑚 + 𝑛
𝑛

) (𝑚 + 𝑛 + 1)!

𝑑𝑚+𝑛+1

𝑑𝜃𝑚+𝑛+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)))|

𝜃=0

 

 
 

=
1

(
𝑚 + 𝑛
𝑛

) (𝑚 + 𝑛 + 1)!

𝑑𝑚+𝑛+1

𝑑𝜃𝑚+𝑛+1
( (

𝜃

1 − 𝜃
)
𝑛+1

 

× 𝑃(𝑍1 ≤ 𝑘 + 1)⋯𝑃(𝑍𝑛+1 ≤ 𝑘 + 1))|

𝜃=0

 

 
 

=
1

(
𝑚 + 𝑛
𝑛

) (𝑚 + 𝑛 + 1)!

𝑑𝑚+𝑛+1

𝑑𝜃𝑚+𝑛+1
((

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘+1)𝑛+1)|
𝜃=0

 

 

=
1

(
𝑚 + 𝑛
𝑛

) (𝑚 + 𝑛 + 1)!

𝑑𝑚+𝑛+1

𝑑𝜃𝑚+𝑛+1
(∑

𝑛+1

𝑗=0

∑

∞

𝑖=0

(−1)𝑗 (
𝑛 + 1 + 𝑖 − 1

𝑖
) 

× (
𝑛 + 1
𝑗
) 𝜃(𝑛+1)+𝑖+𝑗(𝑘+1))|

𝜃=0

 

 
 

=
(𝑚 + 𝑛 + 1)!

(
𝑚 + 𝑛
𝑛

) (𝑚 + 𝑛 + 1)!
∑

𝑛+1

𝑗=0

∑

∞

𝑖=0

((−1)𝑗 (
𝑛 + 1 + 𝑖 − 1

𝑖
) 

× (
𝑛 + 1
𝑗
) 𝕀((𝑛 + 1) + 𝑖 + 𝑗(𝑘 + 1) = 𝑚 + 𝑛 + 1)) 
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=
1

(
𝑚 + 𝑛
𝑛

)
∑

𝑛+1

𝑗=0

(−1)𝑗 (
𝑛 + 1
𝑗
) (∑

∞

𝑖=0

(
𝑛 + 𝑖
𝑖
) 𝕀(𝑖 = 𝑚 − 𝑗(𝑘 + 1))) 

 
 

=
1

(
𝑚 + 𝑛
𝑛

)
∑

𝑛+1

𝑗=0

(−1)𝑗 (
𝑛 + 1
𝑗
) (
𝑛 + 𝑚 − 𝑗(𝑘 + 1)

𝑚 − 𝑗(𝑘 + 1)
) 

 
which proves (1). 
 
Equation (2) follows directly from (1) and Theorem 7 in the appendix (which gives a general 
formula for factorial moments in terms of the cumulative probability distribution). 
 
Part (c) follows from Theorem ?? and inclusion-exclusion with 
 

Ψ(𝐶1, … , 𝐶𝑛+1) = 𝕀(exactly 𝑘 of 𝐶1, … , 𝐶𝑛+1 equal 𝑟 + 1). 
 
In part (d) it follows from ?? that 
 

E(𝑅(𝑣)) = 𝑣! (
𝑛 + 1
𝑣

) E(Ψ(𝐶1, … , 𝐶𝑛+1)) 

 
where Ψ(𝐶1, … , 𝐶𝑛+1) = 𝕀(𝐶1 = 𝑟 + 1, … , 𝐶𝑣 = 𝑟 + 1) and the final result follows from 
Theorem ??. 
 

Parts (e) and (f) follow as in (c) and (d) by replacing 𝑃(𝑍𝑗 = 𝑘 + 1) with 𝑃(𝑍𝑗 ≥ 𝑘 + 1) = 𝜃
𝑘  

throughout.  Parts (g) and (h) are obvious. 
 
 
Example 3 Runs of empty urns in a Markov-Pólya Model 
 
Suppose balls are distributed into urns according to the manner and notation of Model 5. Then 
 

𝑃(no run of 𝑟 + 1 or more empty urns) 
 

=
1

(
𝑚𝑛 + 𝑡 − 1

𝑡
)
∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

∑

𝑛−𝑖

𝑠=0

(−1)𝑗+𝑠 (
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) 

 

× (
𝑛 − 𝑖 + 1

𝑗
)(
𝑛 − 𝑖
𝑠
) (𝑚

(𝑛 − 𝑖 − 𝑠) + 𝑡 − 1
𝑡

). 
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Proof 
 
The result follows from Theorem ?? and part (g) of the previous example with 
 

Ψ(𝐶1, … , 𝐶𝑛) = 𝕀(there is no 𝑗 such that 𝐶𝑗 = 𝐶𝑗+1 = ⋯ = 𝐶𝑗+𝑟 = 0), 

 
and 𝑍𝑗 ∼Negative Binomial(𝑚, 1 − 𝑝), 𝑗 = 1,… , 𝑛. In part (g) of the previous example we show 

that 
 

𝑃(longest success run of length less than or equal to 𝑟 in a series of 𝑛 iid Bernoulli trials) 
 

=∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(−1)𝑗 (
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
)𝜙𝑖(1 − 𝜙)𝑛−𝑖  

 
where 𝜙 = 𝑃(success). In this problem 𝜙(𝑝) = 𝑃(𝑍𝑖 = 0) = (1 − 𝑝)

𝑚. Hence, 
 

E(Ψ(𝑍1, … , 𝑍𝑛)) =∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(−1)𝑗 (
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
) (𝜙(𝑝))

𝑖
(1 − 𝜙(𝑝))

𝑛−𝑖
 

 
and the result follows on simplification. 
 
 
 
Proof of Theorem 1 
 
Because (𝑋1, … , 𝑋𝑛) is a random sample of size 𝑛 taken without replacement from 1,2,… , 𝑡, we 
have that 
 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) =
1

(
𝑡
𝑛
)

 

 
for all 1 ≤ 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 ≤ 𝑡. 
 
But for all (𝑐1, … , 𝑐𝑛 , 𝑐𝑛+1) such that 𝑐𝑗 ∈ {1,2,… } and 𝑐1 +⋯+ 𝑐𝑛 + 𝑐𝑛+1 = 𝑡 + 1, it follows 

that 
 

𝐶1 = 𝑐1  𝑋1 = 𝑐1 
𝐶2 = 𝑐2  𝑋2 = 𝑐1 + 𝑐2 

⋮ ⟺ ⋮ 
𝐶𝑛 = 𝑐𝑛  𝑋𝑛 = 𝑐1 +⋯+ 𝑐𝑛 

𝐶𝑛+1 = 𝑐𝑛+1   
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with 1 ≤ 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛−1 < 𝑋𝑛 ≤ 𝑡. Hence, for all such (𝑐1, … , 𝑐𝑛 , 𝑐𝑛+1) 
 

𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛+1 = 𝑐𝑛+1) 
 

=

{
 
 

 
 
1

(
𝑡
𝑛
)

(𝑐1, … , 𝑐𝑛+1) ∈ 𝕊𝑡+1
𝑛+1

0 else.

 

 
For 𝑍1, … , 𝑍𝑛+1 independent and identically distributed 1-shifted geometric(1 − 𝜃) random 
variables, the joint probability distribution becomes 
 

𝑃(𝑍1 = 𝑧1, … , 𝑍𝑛+1 = 𝑧𝑛+1) = (1 − 𝜃)
𝑛+1𝜃(𝑧1+⋯+𝑧𝑛+1)−(𝑛+1) 

 
 
and by Theorem A?? in the appendix 𝑍1 +⋯+ 𝑍𝑛+1 ∼ (𝑛 + 1)-shifted negative binomial 
(𝑛 + 1,1 − 𝜃). Thus, 
 
 

𝑃(𝑍1 +⋯+ 𝑍𝑛+1 = 𝑡 + 1) = (1 − 𝜃)
𝑛+1𝜃(𝑡+1)−(𝑛+1) (

𝑡
𝑛
). 

 
Now let (𝑧1, … , 𝑧𝑛+1) be a vector in 𝕊𝑡+1

𝑛+1. Then 
 

𝑃(𝑍1 = 𝑧1, … , 𝑍𝑛+1 = 𝑧𝑛+1|𝑍1 +⋯+ 𝑍𝑛+1 = 𝑡 + 1) 

=
𝑃(𝑍1 = 𝑧1, … , 𝑍𝑛+1 = 𝑧𝑛+1)

𝑃(𝑍1 +⋯+ 𝑍𝑛+1 = 𝑡 + 1)
 

=
(1 − 𝜃)𝑛+1𝜃(𝑧1+⋯+𝑧𝑛+1)−(𝑛+1)

(1 − 𝜃)𝑛+1𝜃(𝑡+1)−(𝑛+1) (
𝑡
𝑛
)

 

=
(1 − 𝜃)𝑛+1𝜃(𝑡+1)−(𝑛+1)

(1 − 𝜃)𝑛+1𝜃(𝑡+1)−(𝑛+1) (
𝑡
𝑛
)

 

=
1

(
𝑡
𝑛
)
= 𝑃(𝐶1 = 𝑧1, … , 𝐶𝑛+1 = 𝑧𝑛+1). 

 

Therefore, 
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𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)) = 𝐸 (𝐸 (Ψ(𝑍1, … , 𝑍𝑛+1)|∑

𝑛+1

𝑖=1

𝑍𝑖)) 

= ∑

∞

𝑟=𝑛+1

𝐸 (Ψ(𝑍1, … , 𝑍𝑛+1)|∑

𝑛+1

𝑖=1

𝑍𝑖 = 𝑟)𝑃(∑

𝑛+1

𝑖=1

𝑍𝑖 = 𝑟) 

= ∑

∞

𝑟=𝑛+1

(∑

𝕊𝑟
𝑛+1

Ψ(𝑧1, … , 𝑧𝑛+1)𝑃 (𝑍1 = 𝑧1, … , 𝑍𝑛+1 = 𝑧𝑛+1|∑

𝑛+1

𝑖=1

𝑍𝑖 = 𝑟))𝑃 (∑

𝑛+1

𝑖=1

𝑍𝑖 = 𝑟) 

= ∑

∞

𝑟=𝑛+1

(∑

𝕊𝑟
𝑛+1

Ψ(𝑧1, … , 𝑧𝑛+1)𝑃(𝐶1 = 𝑧1, … , 𝐶𝑛+1 = 𝑧𝑛+1))𝑃 (∑

𝑛+1

𝑖=1

𝑍𝑖 = 𝑟) 

= ∑

∞

𝑟=𝑛+1

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1))𝑃 (∑

𝑛+1

𝑖=1

𝑍𝑖 = 𝑟) 

= ∑

∞

𝑟=𝑛+1

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1))(1 − 𝜃)
𝑛+1𝜃𝑟−(𝑛+1) (

𝑟 − 1
𝑛

). 

 
Thus 
 

(
𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)) = ∑

∞

𝑟=𝑛+1

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) (
𝑟 − 1
𝑛

) 𝜃𝑟 . 

 
It follows that 
 

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)))|

𝜃=0

 

=
𝑑𝑡+1

𝑑𝜃𝑡+1
( ∑

∞

𝑟=𝑛+1

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) (
𝑟 − 1
𝑛

) 𝜃𝑟)|

𝜃=0

 

= ∑

∞

𝑟=𝑛+1

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) (
𝑟 − 1
𝑛

) (
𝑑𝑡+1

𝑑𝜃𝑡+1
 𝜃𝑟|

𝜃=0

) 
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= ∑

∞

𝑟=𝑛+1

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) (
𝑟 − 1
𝑛

) ((𝑡 + 1)! 𝕀{𝑡+1}(𝑟)) 

= 𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) (
(𝑡 + 1) − 1

𝑛
) (𝑡 + 1)!. 

 
Thus, 
 

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)))|

𝜃=0

. 

 
 
 
1.1  Sampling from a circle 
 
 
Theorem: Sampling from an Oriented Circle Model 
 
Theorem 4  
 
Suppose the numbers 1,2,… , 𝑡 are arranged clockwise and in increasing order around a circle. 
Let (𝑋1, … , 𝑋𝑛) be a random sample of size 𝑛 taken without replacement from these 𝑡 distinct 
numbers such that 1 ≤ 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛−1 < 𝑋𝑛 ≤ 𝑡. 
 
Define the variables 𝐶𝑗 by 

 
𝐶1 = 𝑋2 − 𝑋1 
𝐶2 = 𝑋3 − 𝑋2 
         ⋮ 

𝐶𝑛−1 = 𝑋𝑛 − 𝑋𝑛−1 
𝐶𝑛 = 𝑡 − 𝑋𝑛 + 𝑋1. 

 
Then 
 

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

 

 
 
where 𝑍1, …,𝑍𝑛−1 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 
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random variables and where the random variable 𝑍𝑛 is independent of 𝑍1, … , 𝑍𝑛−1 and follows 

a 1-shifted negative binomial(2,1 − 𝜃) distribution. 

 
Proof 
 
A critical distinction with how the 𝐶𝑗’s are defined in this theorem as opposed to Theorem 12 is 

that now the 𝐶’s do not completely determine the 𝑋’s. 
 
However, it remains true that (𝑋1, … , 𝑋𝑛) is a random sample of size 𝑛 taken without 
replacement from 1,2, … , 𝑡, so we have that 
 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) =
1

(
𝑡
𝑛
)

 

 
for all 1 ≤ 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 ≤ 𝑡. Now let (𝑐1, 𝑐2, … , 𝑐𝑛) be a vector of positive integers such 
that 𝑐1 + 𝑐2 +⋯+ 𝑐𝑛 = 𝑡. Then 
 

𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛−1 = 𝑐𝑛−1, 𝐶𝑛 = 𝑐𝑛) 
 

= 𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛−1 = 𝑐𝑛−1, 𝑡 − (𝐶1 +⋯+ 𝐶𝑛−1) = 𝑡 − (𝑐1 +⋯+ 𝑐𝑛−1)) 

 
= 𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛−1 = 𝑐𝑛−1) 

 

= ∑

all 𝑥1

𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛−1 = 𝑐𝑛−1 and 𝑋1 = 𝑥1) 

= ∑

all 𝑥1

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥1 + 𝑐1, 𝑋3 = 𝑥1 + 𝑐1 + 𝑐2, … , 𝑋𝑛 = 𝑥1 + 𝑐1 +⋯+ 𝑐𝑛−1). 

 
We can determine the range of possible 𝑥1 values by looking for those values of 𝑥1 where 1 ≤

𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 ≤ 𝑡. The restrictions on 𝑥1 are that 𝑥1 ≥ 1 and 𝑥𝑛 = 𝑥1 + 𝑐1 +⋯+

𝑐𝑛−1 ≤ 𝑡. That is, 1 ≤ 𝑥1 ≤ 𝑡 − (𝑐1 +⋯+ 𝑐𝑛−1) = 𝑐𝑛. Thus, 

 
𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛−1 = 𝑐𝑛−1, 𝐶𝑛 = 𝑐𝑛) 

= ∑

𝑐𝑛

𝑥1=1

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥1 + 𝑐1, … , 𝑋𝑛 = 𝑥1 + 𝑐1 +⋯+ 𝑐𝑛−1) 

= ∑

𝑐𝑛

𝑥1=1

1

(
𝑡
𝑛
)
=
𝑐𝑛

(
𝑡
𝑛
)
. 

 
 
Now we will verify that for any vector (𝑐1, 𝑐2, … , 𝑐𝑛) of positive integers such that 𝑐1 + 𝑐2 +
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⋯+ 𝑐𝑛 = 𝑡 and for random variables 𝑍1, … , 𝑍𝑛 as defined above that 
 

𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛) = 𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛| 𝑍1 +⋯+ 𝑍𝑛 = 𝑡). 

 
 
To show this we will first state two standard results from statistical distribution theory. But first 

recall the definition of the shifted negative binomial distribution with parameters 𝑚 and 𝑝. For 

𝑍 ∼ 𝑐 - Shifted Negative Binomial Distribution(𝑚, 𝑝) we have 

 

𝑃(𝑍 = 𝑧) = (
𝑧 − 𝑐 + 𝑚 − 1

𝑚− 1
) 𝑝𝑚(1 − 𝑝)𝑧−𝑐       𝑧 ∈ {𝑐, 𝑐 + 1, … }. 

 
 
(I) 𝑐 - shifted negative binomial(1, 𝑝) ≡ 𝑐 - shifted geometric(𝑝)  
 

(II) If 𝑌1, … , 𝑌𝑛 are independent and if 𝑌𝑗 ∼ 𝑐𝑗  - shifted  negative binomial(𝑚𝑗, 𝑝), then  

 𝑆 = 𝑌1 +⋯+ 𝑌𝑛 ∼ 𝑐
∗ - shifted negative binomial(𝑚∗, 𝑝), where 𝑐∗ = 𝑐1 +⋯+ 𝑐𝑛 and 

 𝑚∗ = 𝑚1 +⋯+𝑚𝑛.  

 
We note that the 𝑚 - shifted negative binomial(𝑚, 𝑝) is simply referred to as the negative 

binomial distribution in many textbooks. However, the negative binomial and the shifted 

negative binomial are both used in this paper, sometimes in the same problem. Thus, to avoid 

confusion, it is necessary for us to delineate between these related models. 

 
Using these two results together we can state that 𝑍1 +⋯+ 𝑍𝑛 ∼ 𝑐

∗ - shifted Negative 

Binomial(𝑚∗, 1 − 𝜃) with 𝑐∗ = 1+⋯+ 1+ 1 = 𝑛 and 𝑚∗ = 1 +⋯+ 1 + 2 = 𝑛 + 1. 

Therefore, 

 

𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛| 𝑍1 +⋯+ 𝑍𝑛 = 𝑡) 

 
 

=
𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛 and  𝑍1 +⋯+ 𝑍𝑛 = 𝑡)

𝑃(𝑍1 +⋯+ 𝑍𝑛 = 𝑡)
 

 

=
𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛)

𝑃(𝑍1 +⋯+ 𝑍𝑛 = 𝑡)
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=
  

(∏

𝑛−1

𝑗=1

(1 − 𝜃)𝜃𝑐𝑗−1) (
𝑐𝑛 − 1 + 2 − 1

2 − 1
) (1 − 𝜃)2𝜃𝑐𝑛−1

  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶

(
𝑡 − 𝑛 + (𝑛 + 1) − 1

(𝑛 + 1) − 1
) (1 − 𝜃)(𝑛+1)𝜃𝑡−𝑛

   

 
 

=
(1 − 𝜃)(𝑛+1)𝜃𝑐1+⋯+𝑐𝑛−𝑛 (

𝑐𝑛
1
)

(
𝑡
𝑛
) (1 − 𝜃)(𝑛+1)𝜃𝑡−𝑛

 

 

=
(1 − 𝜃)(𝑛+1)𝜃𝑡−𝑛 𝑐𝑛

(
𝑡
𝑛
) (1 − 𝜃)(𝑛+1)𝜃𝑡−𝑛

 

 

=
𝑐𝑛

(
𝑡
𝑛
)
= 𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛). 

 
 
Let 𝕊𝑛 be the product space {0,1,… } ×⋯× {0,1,… } and let 𝕊𝑡

𝑛 be the set of all vectors 

(𝑐1, … 𝑐𝑛) in 𝕊𝑛 such that 𝑐1 + …+ 𝑐𝑛 = 𝑡. Then 

 

𝐸(Ψ(𝑍1, … , 𝑍𝑛)) = 𝐸 (𝐸 (Ψ(𝑍1, … , 𝑍𝑛)|∑

𝑛

𝑖=1

𝑍𝑖)) 

=∑

∞

𝑟=0

𝐸 (Ψ(𝑍1, … , 𝑍𝑛)|∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟)𝑃(∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

 

=∑

∞

𝑟=0

(∑ ⋯∑

(𝑐1,…,𝑐𝑛)∈𝕊𝑟
𝑛

Ψ(𝑐1, … , 𝑐𝑛)𝑃 (𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛|∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟))𝑃(∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

=∑

∞

𝑟=0

(∑ ⋯∑

(𝑐1,…,𝑐𝑛)∈𝕊𝑟
𝑛

Ψ(𝑐1, … , 𝑐𝑛)𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛))𝑃(∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛))𝑃 (∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟
𝑛
) (1 − 𝜃)𝑛+1𝜃𝑟−𝑛 
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and thus 
 

(
𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛)) =∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟
𝑛
)𝜃𝑟+1. 

 
It follows that 
 

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

 

=
𝑑𝑡+1

𝑑𝜃𝑡+1
(∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟
𝑛
)𝜃𝑟+1)|

𝜃=0

 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟
𝑛
)(

𝑑𝑡+1

𝑑𝜃𝑡+1
𝜃𝑟+1|

𝜃=0

) 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟
𝑛
) ((𝑡 + 1)! 𝕀{𝑡+1}(𝑟 + 1)) 

= 𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑡
𝑛
) (𝑡 + 1)!. 

 
Thus, 
 

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

. 

 
 
 
 
Theorem: Sampling from a non-oriented circle model 
 
 
Theorem 5  
 
Suppose we randomly pick 𝑛 out of 𝑡 different colored but unnumbered balls arranged in a 

circle. Then our sample space consists of (
𝑡
𝑛
) equally likely outcomes. 
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One way to pick 𝑛 balls at random is to pick all 𝑛 at once. Alternatively, we could pick 1 ball at 
random and then pick 𝑛 − 1 balls at once from the remaining 𝑡 − 1 balls. Both methods assign 
equal probability to all possible samples of size 𝑛. 
 
Consider the latter sampling scheme and suppose that we attach the label 𝑡 to the first ball 
picked and attach the labels 1,… , 𝑡 − 1 to the remaining balls going clockwise around the 
circle. After attaching the labels we randomly pick 𝑛 − 1 balls from the balls labeled 1 to 𝑡 − 1. 
Clearly attaching the labels does not change the fact that all possible samples are equally likely 
to occur. 
 
Let 1 ≤ 𝑋1 < ⋯ < 𝑋𝑛−1 ≤ 𝑡 − 1 be the labels on the 𝑛 − 1 balls drawn at this second phase of 
our sample. Define the variables 𝐶𝑗 by 

 
𝐶1 = 𝑋1 
𝐶2 = 𝑋2 − 𝑋1 
         ⋮ 

𝐶𝑛−1 = 𝑋𝑛−1 − 𝑋𝑛−2 
𝐶𝑛 = 𝑡 − 𝑋𝑛−1. 

 
 
Then we have the following two results. 
 
Theorem, Part I 
 

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

 

 
where 𝑍1, … , 𝑍𝑛 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 

random variables. 

 
Theorem, Part II 
 
For some arbitrary set ℬ  
 

𝑁 (selections of 𝑛 of 𝑡 distinct objects arranged in a circle | (𝐶1, … , 𝐶𝑛) ∈ ℬ) 

 

=
(
𝑡
𝑛)

𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝑃((𝑍1, … , 𝑍𝑛) ∈ ℬ))|

𝜃=0

 

 
where the random variables 𝑍1, … , 𝑍𝑛 are defined as in Part I. 
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Theorem 14 is as an appropriate shortcut on the more general Theorem 13 for situations where 

the problem does not depend on knowing which particular gap “closes the circle”. For example, 

if the problem asks for the number of selections such that exactly 𝑟 of the 𝑛 gaps have property 

𝒜 then the gap which closes the circle is not distinguished and Theorem 14 would be 

appropriate. We note that in principle Theorem 13 could also be used to solve this problem but 

it would be necessary to separate out the cases when the 𝑟 gaps with property 𝒜 included the 

gap which “closes the circle” and the cases when they do not. Theorem 14 proves to be a 

considerable shortcut for this and other similar problems. 

 
To appreciate intuitively why the gap which “closes the circle” is distinct, consider that this gap 

is known to contain the numbers “1” and “𝑡”. (We cannot make a similar kind of claim about 

any other gap.) Now if the gaps were revealed but with the numbers covered up and we were 

asked to guess which gap contains the numbers “1” and “𝑡”, (i.e. closed the circled), we would 

intuitively pick the longest interval. Formally, we can use Theorem 13 to show for all 𝑐 that 

 

𝑃(𝐶𝑛 ≥ 𝑐) ≥ 𝑃(𝐶𝑗 ≥ 𝑐)        𝑗 ∈ {1, … , 𝑛 − 1}. 

 
In the language of probability, the gap which closes the circle is stochastically larger than any of 

the other gaps. 

 
The close relationship between the line model and the non-oriented circle model is obvious 

from comparing Theorems 12 and 14. In particular, if we take (𝐶1, … , 𝐶𝑛+1) to be the vector of 

spacings formed when selecting randomly 𝑛 of 𝑡 objects arranged in a line and take 

( 𝐶1, … , 𝐶𝑛+1) to be the vector of spacings formed when randomly selecting 𝑛 + 1 of 𝑡 + 1 

objects arranged in a non-oriented circle then for general Ψ, 

 

𝐸(Ψ(𝐶1, … , 𝐶𝑛+1)) = 𝐸 (Ψ(𝐶1, … , 𝐶𝑛+1)). 

 
Furthermore, it follows for general 𝒜 that 
 

𝑁(selections of 𝑛 + 1 of 𝑡 + 1 distinct objects arranged in a circle|( 𝐶1, … , 𝐶𝑛+1) ∈ 𝒜) 

 

= (
𝑡 + 1

𝑛 + 1
)𝑁 (selections of 𝑛 of 𝑡 distinct objects arranged 

                                                                   in a line |(𝐶1, … , 𝐶𝑛+1) ∈ 𝒜) 

 
Koutras and Papastavridis [ ] establish this connection between selecting objects arranged in a 
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line and selecting objects arranged in a circle for the special case of sets 𝒜 of the form 
 

𝒜 = {exactly 𝑠 of (𝑎1, … , 𝑎𝑛+1) ∈ ℬ} 
 
for arbitrary sets ℬ. They point out that Kaplansky [   ] established this connection for sets 𝒜 of 
the form 
 

𝒜 = {none of (𝑎1, … , 𝑎𝑛+1) ∈ {3,4,… }}  and  𝑛 = 𝑡 − 𝑘 

 
in his solution of the “Probléme des Ménages”. 
 
Whether selecting objects from a line or circle it is important to distinguish whether the 

question of interest concerns restrictions on the gaps of adjacent selected objects or 

restrictions on the gaps of any pair of selected objects. The theorems and examples in this 

section deal with restrictions on the gaps of adjacent selected objects.  Some pointers to the 

literature when restricting the gaps of any pair of selected objects would include Prodinger [ ], 

Hwang, Korner, and Wei [ ], Hwang [ ], Prodinger [ ], Moser [ ], Konvalina and Liu [ ], [ ]. 

 
Proof, Part I 
 
Let ℎ1, ℎ2, … , ℎ𝑡  be the names of the hues of the 𝑡 different colored balls in this circle. Let 𝐻 be 

the name of the hue of the ball initially drawn (and numbered 𝑡). Then  

 
 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛−1 = 𝑥𝑛−1) 

=∑

𝑡

𝑗=1

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛−1 = 𝑥𝑛−1|𝐻 = ℎ𝑗)𝑃(𝐻 = ℎ𝑗) 

=∑

𝑡

𝑗=1

1

(
𝑡 − 1
𝑛 − 1

)
⋅
1

𝑡
=

1

(
𝑡 − 1
𝑛 − 1

)
. 

 
 
But for all (𝑐1, … , 𝑐𝑛) such that 𝑐𝑗 ∈ {1,2,… } and 𝑐1 +⋯+ 𝑐𝑛 = 𝑡, it follows that 

 
𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛 ⟺ 𝑋1 = 𝑐1, 𝑋2 = 𝑐1 + 𝑐2, … , 𝑋𝑛−1 = 𝑐1 +⋯+ 𝑐𝑛−1 

 
with 1 ≤ 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛−1 ≤ 𝑡 − 1. Hence, for all such (𝑐1, … , 𝑐𝑛) 
 

𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛) 
 

= 𝑃(𝑋1 = 𝑐1, 𝑋2 = 𝑐1 + 𝑐2, … , 𝑋𝑛−1 = 𝑐1 +⋯+ 𝑐𝑛−1) 
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=

{
 
 

 
 1

(
𝑡 − 1
𝑛 − 1

)

𝑐1 +⋯+ 𝑐𝑛 = 𝑡

𝑐𝑗 ∈ {1 … ,∞}, 𝑗 = 1,… , 𝑛

𝑛 ≤ 𝑡 ≤ ∞

0 else.

 

 
 
Now we will verify that for any vector (𝑐1, 𝑐2, … , 𝑐𝑛) of positive integers such that 𝑐1 + 𝑐2 +

⋯+ 𝑐𝑛 = 𝑡 and for random variables 𝑍1, … , 𝑍𝑛 as defined above that 

 
 

 𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛) = 𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛|𝑍1 +⋯+ 𝑍𝑛 = 𝑡). 

 
 
To show this we will first state two standard results from statistical distribution theory. But first 

recall the definition of the shifted negative binomial distribution with parameters 𝑚 and 𝑝. For 

𝑍 ∼ 𝑐 - Shifted Negative Binomial Distribution(𝑚, 𝑝) we have 

 

𝑃(𝑍 = 𝑧) = (
𝑧 − 𝑐 + 𝑚 − 1

𝑚− 1
) 𝑝𝑚(1 − 𝑝)𝑧−𝑐       𝑧 ∈ {𝑐, 𝑐 + 1, … }. 

 
(I) 𝑐 - shifted negative binomial(1, 𝑝) ≡ 𝑐 - shifted geometric(𝑝)  
 

(II) If 𝑌1, … , 𝑌𝑛 are independent and if 𝑌𝑗 ∼ 𝑐𝑗  - shifted  negative binomial(𝑚𝑗, 𝑝), then  

 𝑆 = 𝑌1 +⋯+ 𝑌𝑛 ∼ 𝑐
∗ - shifted negative binomial(𝑚∗, 𝑝), where 𝑐∗ = 𝑐1 +⋯+ 𝑐𝑛 and 

 𝑚∗ = 𝑚1 +⋯+𝑚𝑛.  

 
 
We note that the 𝑚 - shifted negative binomial(𝑚, 𝑝) is simply referred to as the negative 

binomial distribution in many textbooks. However, the negative binomial and the shifted 

negative binomial are both used in this paper, sometimes in the same problem. Thus, to avoid 

confusion, it is necessary for us to delineate between these related models. 

 
Using these two results together we can state that 𝑍1 +⋯+ 𝑍𝑛 ∼ 𝑐

∗ - shifted Negative 

Binomial(𝑚∗, 1 − 𝜃) with 𝑐∗ = 1+⋯+ 1 = 𝑛 and 𝑚∗ = 1 +⋯+ 1 = 𝑛. Therefore 

 

𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛|𝑍1 +⋯+ 𝑍𝑛 = 𝑡) 

 

=
𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛 and 𝑍1 +⋯+ 𝑍𝑛 = 𝑡)

𝑃(𝑍1 +⋯+ 𝑍𝑛 = 𝑡)
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=
𝑃(𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛)

𝑃(𝑍1 +⋯+ 𝑍𝑛 = 𝑡)
 

 
 

 

=
  

∏

𝑛

𝑗=1

(1 − 𝜃)𝜃𝑐𝑗−1

 ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶

(
𝑡 − 𝑛 + 𝑛 − 1

𝑛 − 1
) (1 − 𝜃)𝑛𝜃𝑡−𝑛

   

 

=
(1 − 𝜃)𝑛𝜃(𝑐1+⋯+𝑐𝑛)−𝑛

(
𝑡 − 1
𝑛 − 1

) (1 − 𝜃)𝑛𝜃𝑡−𝑛
 

 

=
(1 − 𝜃)𝑛𝜃𝑡−𝑛

(
𝑡 − 1
𝑛 − 1

) (1 − 𝜃)𝑛𝜃𝑡−𝑛
 

 

=
1

(
𝑡 − 1
𝑛 − 1

)
= 𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛). 

 
Let 𝕊𝑛 be the product space {1,2,… } ×⋯× {1,2,… } and let 𝕊𝑡

𝑛 be the set of all vectors 

(𝑐1, … 𝑐𝑛) in 𝕊𝑛 such that 𝑐1 + …+ 𝑐𝑛 = 𝑡. Then 

 

𝐸(Ψ(𝑍1, … , 𝑍𝑛)) = 𝐸 (𝐸 (Ψ(𝑍1, … , 𝑍𝑛)|∑

𝑛

𝑖=1

𝑍𝑖)) 

=∑

∞

𝑟=0

𝐸 (Ψ(𝑍1, … , 𝑍𝑛)|∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟)𝑃(∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

=∑

∞

𝑟=0

(∑ ⋯∑

(𝑐1,…,𝑐𝑛)∈𝕊𝑟
𝑛

Ψ(𝑐1, … , 𝑐𝑛)𝑃 (𝑍1 = 𝑐1, … , 𝑍𝑛 = 𝑐𝑛|∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟))𝑃 (∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

=∑

∞

𝑟=0

(∑ ⋯∑

(𝑐1,…,𝑐𝑛)∈𝕊𝑟
𝑛

Ψ(𝑐1, … , 𝑐𝑛)𝑃(𝐶1 = 𝑐1, … , 𝐶𝑛 = 𝑐𝑛))𝑃(∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛))𝑃 (∑

𝑛

𝑖=1

𝑍𝑖 = 𝑟) 
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=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟 − 1
𝑛 − 1

) (1 − 𝜃)𝑛𝜃𝑟−𝑛 

 
and thus 
 

(
𝜃

1 − 𝜃
)
𝑛

𝐸(Ψ(𝑍1, … , 𝑍𝑛)) =∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟 − 1
𝑛 − 1

)𝜃𝑟 . 

 
It follows that 
 

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

 

=
𝑑𝑡

𝑑𝜃𝑡
(∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟 − 1
𝑛 − 1

) 𝜃𝑟)|

𝜃=0

 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟 − 1
𝑛 − 1

)(
𝑑𝑡

𝑑𝜃𝑡
𝜃𝑟|

𝜃=0

) 

=∑

∞

𝑟=0

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑟 − 1
𝑛 − 1

)(𝑡! 𝕀{𝑡}(𝑟)) 

= 𝐸(Ψ(𝐶1, … , 𝐶𝑛)) (
𝑡 − 1
𝑛 − 1

) 𝑡!. 

 
Thus, 
 

𝐸(Ψ(𝐶1, … , 𝐶𝑛)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

. 

 
 
Proof, Part II 
 

Let Ψ(𝐶1, … , 𝐶𝑛) = 𝕀((𝐶1, … , 𝐶𝑛) ∈ ℬ) for some arbitrary set ℬ. Then by the result in Part I, 

 

𝑃((𝐶1, … , 𝐶𝑛) ∈ ℬ) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝑃((𝑍1, … , 𝑍𝑛) ∈ ℬ))|

𝜃=0

. 
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But we know that our sample space consists of (
𝑡
𝑛
) equally likely outcomes. So 

 

𝑃((𝐶1, … , 𝐶𝑛) ∈ ℬ) 

 

=
𝑁(selections of 𝑛 of 𝑡 distinct objects arranged in a circle|(𝐶1, … , 𝐶𝑛) ∈ ℬ)

(
𝑡
𝑛
)

. 

 
Thus, 
 

𝑁(selections of 𝑛 of 𝑡 distinct objects arranged in a circle|(𝐶1, … , 𝐶𝑛) ∈ ℬ) 

=
(
𝑡
𝑛
) 

(
𝑡 − 1
𝑛 − 1

) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝑃((𝑍1, … , 𝑍𝑛) ∈ ℬ))|

𝜃=0

 

=
(
𝑡
𝑛)

𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝑃((𝑍1, … , 𝑍𝑛) ∈ ℬ))|

𝜃=0

. 

 
 
 
Example 2 Longest circular success run. 
 
Suppose 𝑛 𝐹’s (failures) and 𝑡 − 𝑛 𝑆’s (successes) are randomly arranged in a circle. Let 𝐿 be the 

length of the longest circular success run. Then 

 

𝑃(𝐿 ≤ 𝑟) =
(
𝑡
𝑛)

(
𝑡
𝑛
)
∑

𝑛

𝑗=0

(−1)𝑗 (
𝑡 − (𝑟 + 1)𝑗 − 1

𝑡 − (𝑟 + 1)𝑗 − 𝑛
) (
𝑛
𝑗). 

 
Now consider each ball in this circle to be a component in a circularly connected system where 

components act independently and have constant probability 𝑝 of being a successfully working 

component at the moment the system is turned on. Furthermore assume that the system has 

built in redundancy such that the system will work as long as there is no run of 𝑟 + 1 

consecutive failed components. This is referred to as a circular consecutive -(𝑟 + 1)-out of 𝑡 : 𝐹 

system in the reliability literature [?, ?, ?, ?, ?, ?]. It follows from the above result (after 

switching the role of successes and failures) that the reliability of this system, that is the 

probability that the system will work at the moment it is turned on, is 
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∑

𝑡

𝑛=1

((
𝑡
𝑛
) 𝑃(𝐿 ≤ 𝑟)) 𝑝𝑛(1 − 𝑝)𝑡−𝑛 . 

 
By switching the order of summation and applying Gould’s formula 3.118 [?], this reliability 
simplifies to 
 

∑

⌊
𝑡

𝑟+2⌋

𝑗=0

(−1)𝑗 (
𝑡

𝑡 − (𝑟 + 1)𝑗
) (
𝑡 − (𝑟 + 1)𝑗

𝑡 − (𝑟 + 2)𝑗
)𝑝𝑗(1 − 𝑝)(𝑟+1)𝑗 − (1 − 𝑝)𝑡. 

 
 
Proof 
 
To help establish the connections between the three models (sampling from a line, sampling 

from an oriented circle, and sampling from a non-oriented circle) we point out how all three 

models can be used to solve this problem. 

 

If we were starting from scratch then the sampling from a non-oriented circle model would be 

the easiest approach. We note that 𝐿 = max(𝐶1 − 1,… , 𝐶𝑛 − 1) and by Theorem ??, 

 
𝑃(max(𝐶1 − 1,… , 𝐶𝑛 − 1) ≤ 𝑟) = 𝑃(𝐶1 ≤ 𝑟 + 1, … , 𝐶𝑛 ≤ 𝑟 + 1) 

 

=
(
𝑡
𝑛
)

(
𝑡
𝑛
) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝑃(𝑍1 ≤ 𝑟 + 1,… , 𝑍𝑛 ≤ 𝑟 + 1))|

𝜃=0

 

 
and the result follows on simplification. Alternatively, we could use the sampling from an 

oriented circle model. The problem is a special case of Example ??.1 with 𝑎 = 𝑏 = 1 and 𝑎′ =

𝑏′ = 𝑟 + 1. Moser and Abramson [?] take this approach and their work demonstrates that this 

approach is considerable more involved. Finally, we note that we have already solved this 

problem for the sampling from a line model in Example ??.2(a). Noting this the final result 

follows immediately by the connection between the non-oriented circle model and line model 

as noted in the discussion after Theorem ?? (replacing 𝑛 with 𝑛 − 1 and 𝑡 with 𝑡 − 1 

throughout and taking 𝑚 = 𝑡 − 𝑛). 

 
Example 3. Sampling from a circle with a fixed number of groupings of minimum length. 
 
The number of ways to select 𝑛 objects from 𝑡 distinct objects arranged in a circle such that 

there are exactly 𝑣 groups of 𝑘 or more contiguous objects (an unbroken string of selected 
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objects) in the selection equals 

 

𝑡

𝑡 − 𝑛
(
𝑡 − 𝑛
𝑣

) ∑

𝑡−𝑛−𝑣

𝑖=0

(−1)𝑖 (
𝑡 − 𝑘(𝑖 + 𝑣) − 1

𝑡 − 𝑛 − 1
) (
𝑡 − 𝑛 − 𝑣

𝑖
). 

 
Hwang and Yao [?] derive this result for the case 𝑣 = 0. The special case 𝑘 = 1 simplifies to 
 

𝑡

𝑡 − 𝑛
(
𝑡 − 𝑛
𝑣

) (
𝑛 − 1
𝑣 − 1

). 

 
Proof 
 
The key step is in recognizing that 
 
𝑁(samples of size 𝑛 such that there are exactly 𝑣 groups of 𝑘 or more contiguous objects) 

 

= 𝑁(samples of size 𝑛 such that exactly 𝑣 of the gaps between the 𝑡 − 𝑛 

objects not selected contain 𝑘 or more objects) 

 

= 𝑁(samples of size 𝑡 − 𝑛 such that exactly 𝑣 of the gaps between the 𝑡 − 𝑛 

objects selected contain 𝑘 or more objects). 

 
 

Restated in this form we see that the problem asks for (
𝑡

𝑡 − 𝑛
) E(Ψ(𝐶1, … , 𝐶𝑡−𝑛)) where 

 

Ψ(𝐶1, … , 𝐶𝑡−𝑛) = 𝕀{exactly 𝑣 of 𝐶1, … , 𝐶𝑡−𝑛 are > 𝑘} 

 
with the 𝐶𝑗 defined as in Theorem ??. The result follows on applying Theorem ?? (replacing 𝑛 

with 𝑡 − 𝑛), recognizing that 𝑃(𝑍1 > 𝑘) = 𝜃𝑘  and using inclusion-exclusion. 
 
 
1.2  Overlapping and non-overlapping success runs 
 
 
Theorem: Overlapping and Non-Overlapping Success Runs (Linear and Circular) 
 
We considered problems of counting success runs of length exactly 𝑘 and success runs of length 

at least 𝑘 in Example 2 of Section 4.1. Non-overlapping success runs and overlapping success 

runs are alternative definitions of runs which are often considered in the statistical and 

probability literature. 
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The distinction between these different types of runs can be made clear with the sequence, 

𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑆 𝑆. We start by considering this as a linear sequence and then consider what 

changes if this is a circular sequence. That is if we suppose the final 𝑆 of the linear sequence 

wraps around and is adjacent to the initial 𝑆 of the linear sequence. 

 
For this linear sequence, 
 

𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑆 𝑆    (linear) 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 

 # success runs of length exactly 𝑘 0 1 0 1 

 # success runs of length at least 𝑘 2 2 1 1 

 # non-overlapping success runs of length 𝑘 6 3 1 1 

 # overlapping success runs of length 𝑘 6 4 2 1 

 
 
To further illustrate the differences we highlight the case 𝑘 = 2. 
 
 1 success run of length exactly 2 
  (1) 𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑺 𝑺 
 
 2 success runs of length at least 2 
  (1) 𝑺 𝑺 𝑺 𝑺 𝐹 𝐹 𝑆 𝑆 
  (2) 𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑺 𝑺 
 
 3 non-overlapping success runs of length 2 
  (1) 𝑺 𝑺 𝑆 𝑆 𝐹 𝐹 𝑆 𝑆 
  (2) 𝑆 𝑆 𝑺 𝑺 𝐹 𝐹 𝑆 𝑆 
  (3) 𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑺 𝑺 
 
 4 overlapping success runs of length 2 
  (1) 𝑺 𝑺 𝑆 𝑆 𝐹 𝐹 𝑆 𝑆 
  (2) 𝑆 𝑺 𝑺 𝑆 𝐹 𝐹 𝑆 𝑆 
  (3) 𝑆 𝑆 𝑺 𝑺 𝐹 𝐹 𝑆 𝑆 
  (4) 𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑺 𝑺. 
 
 
Now we will consider 𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑆 𝑆 as a circular sequence. 
 

𝑆 𝑆 𝑆 𝑆 𝐹 𝐹 𝑆 𝑆    (circular) 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 

# success runs of length exactly 𝑘 0 0 0 0 0 1 

# success runs of length at least 𝑘 1 1 1 1 1 1 

# non-overlapping success runs of 6 3 2 1 1 1 
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length 𝑘 

# overlapping success runs of 
length 𝑘 

6 5 4 3 2 1 

 
 
Linear Success Runs 
 
For linear success runs (overlapping and non-overlapping) of fixed length 𝑡 and with a fixed 

number of failures 𝑛, we suppose the numbers 1,… , 𝑡 are arranged in a line in increasing order. 

Let (𝑋1, … , 𝑋𝑛) be a random sample of size 𝑛 taken without replacement from these 𝑡 distinct 

numbers such that 1 ≤ 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛−1 < 𝑋𝑛 ≤ 𝑡. The chosen numbers (𝑋1, … , 𝑋𝑛) 

represent the location of our 𝑛 failures. The other 𝑡 − 𝑛 numbers represent the location of our 

𝑡 − 𝑛 successes. 

 
Define the variables 𝐶𝑗 by 

 
𝐶1 = 𝑋1 

𝐶2 = 𝑋2 − 𝑋1 

         ⋮ 

𝐶𝑛 = 𝑋𝑛 − 𝑋𝑛−1 

𝐶𝑛+1 = (𝑡 + 1) − 𝑋𝑛 . 

 
 
 
Part I: Linear Non-Overlapping Success Runs 
 
For any positive integer 𝑘 define the variables 𝐷𝑗 by 

 

𝐷𝑗 = ⌊
𝐶𝑗 − 1

𝑘
⌋      𝑗 = 1,… , 𝑛 + 1. 

 
We note that 𝐷𝑗 equals the number of non-overlapping success runs to the left of ball 𝑋1 in the 

case 𝑗 = 1, the number of non-overlapping success runs between balls 𝑋𝑗  and 𝑋𝑗−1 for 𝑗 =

2,… , 𝑛 and the number of non-overlapping success runs to the right of ball 𝑋𝑛 for the case 𝑗 =

𝑛 + 1. 

 
In this case, 
 

𝐸(Ψ(𝐷1, … ,𝐷𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!
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×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)))|

𝜃=0

 

 

where 𝑍1, …,𝑍𝑛+1 are independent and identically distributed geometric(1 − 𝜃𝑘) random 

variables. 

 
Part II: Linear Overlapping Success Runs 
 
For any positive integer 𝑘 define the variables 𝐺𝑗  by 

 

𝐺𝑗 = {
𝐶𝑗 − 𝑘 𝐶𝑗 ≥ 𝑘 + 1

0 𝐶𝑗 ≤ 𝑘
    𝑗 = 1,… , 𝑛 + 1. 

 
 

That is, 𝐺𝑗 = (𝐶𝑗 − 𝑘)𝕀(𝐶𝑗 ≥ 𝑘 + 1) = 𝑚𝑎𝑥{𝐶𝑗 − 𝑘, 0}. 

 
We note that 𝐺𝑗  equals the number of overlapping success runs to the left of ball 𝑋1 in the case 

𝑗 = 1, the number of overlapping success runs between balls 𝑋𝑗  and 𝑋𝑗−1 for 𝑗 = 2,… , 𝑛 and 

the number of overlapping success runs to the right of ball 𝑋𝑛 for the case 𝑗 = 𝑛 + 1. 

 
Let Υ𝑗

𝑛+1 be the set of all (𝑛 + 1) dimensional {0,1} vectors with exactly 𝑗 0’s. In this case, 

 

𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×∑

𝑛+1

𝑗=0

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

× ∑

𝜐∈Υ𝑗
𝑛+1

𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛+1𝑍𝑛+1)))|

𝜃=0

 

 

where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛+1) ∈ Υ𝑗
𝑛+1 and 𝑍1, …,𝑍𝑛+1 are 

independent and identically distributed 1-shifted geometric(1 − 𝜃) random variables. 

 
If Ψ(𝑎1, … , 𝑎𝑛+1) is symmetric in its arguments, then this result simplifies to 
 

𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) 
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=
1

(
𝑡
𝑛
) (𝑡 + 1)!

∑

𝑛+1

𝑗=0

(
𝑛 + 1
𝑗
)
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

× E(Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1)))|

𝜃=0

 

 
where 𝑍𝑗+1, …,𝑍𝑛+1 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 

random variables. 

 
Circular Success Runs 
 
For circular success runs (overlapping and non-overlapping) of fixed length 𝑡 and with a fixed 

number of failures 𝑛, we follow the scheme set up in Theorem 14 and start with 𝑡 different 

colored but unnumbered balls arranged in a circle. We pick 1 ball at random and attach the 

label 𝑡 to this ball. Then we attach the labels 1,… , 𝑡 − 1 to the remaining balls going clockwise 

around the circle. After attaching the labels we randomly pick 𝑛 − 1 balls from those labeled 1 

to 𝑡 − 1. Let 1 ≤ 𝑋1 < ⋯ < 𝑋𝑛−1 ≤ 𝑡 − 1 be the labels on the 𝑛 − 1 balls drawn at this second 

phase of our sample. 

 
The chosen numbers (𝑋1, … , 𝑋𝑛−1) along with ball we initially chose and labeled 𝑡 represent 

the location of our 𝑛 failures. The other 𝑡 − 𝑛 numbers represent the location of our 𝑡 − 𝑛 

successes. 

 
Define the variables 𝐶𝑗

∗ by 

𝐶1
∗ = 𝑋1 

𝐶2
∗ = 𝑋2 − 𝑋1 

         ⋮ 

𝐶𝑛−1
∗ = 𝑋𝑛−1 − 𝑋𝑛−2 

𝐶𝑛
∗ = 𝑡 − 𝑋𝑛−1. 

 
 
Part III: Circular Non-Overlapping Success Runs 
 
For any positive integer 𝑘 define the variables 𝐷𝑗

∗ by 

 

𝐷𝑗
∗ = ⌊

𝐶𝑗
∗ − 1

𝑘
⌋      𝑗 = 1, … , 𝑛. 

 
We note that 𝐷𝑗

∗ equals the number of non-overlapping success runs between balls 𝑡 and 𝑋1 in 
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the case 𝑗 = 1, the number of non-overlapping success runs between balls 𝑋𝑗  and 𝑋𝑗−1 for 𝑗 =

2,… , 𝑛 − 1 and the number of non-overlapping success runs between balls 𝑋𝑛 and 𝑡 for 𝑗 = 𝑛. 

 
In this case, 
 
 

𝐸(Ψ(𝐷1
∗, … , 𝐷𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
 

×
𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

 

 

where 𝑍1, …,𝑍𝑛 are independent and identically distributed geometric(1 − 𝜃𝑘) random 

variables. 

 

It is important to note that in Parts III and IV our sample space consists of (
𝑡
𝑛
), not (

𝑡 − 1
𝑛 − 1

), 

equally likely outcomes. 

 
Part IV: Circular Overlapping Success Runs 
 
For any positive integer 𝑘 define the variables 𝐺𝑗

∗ by 

 
 

𝐺𝑗
∗ = {  

𝐶𝑗
∗ − 𝑘 𝐶𝑗

∗ ≥ 𝑘 + 1

0 𝐶𝑗
∗ ≤ 𝑘

     𝑗 = 1,… , 𝑛. 

 
 

That is, 𝐺𝑗
∗ = (𝐶𝑗

∗ − 𝑘)𝕀(𝐶𝑗
∗ ≥ 𝑘 + 1) = 𝑚𝑎𝑥{𝐶𝑗

∗ − 𝑘, 0}. 

 
We note that 𝐺𝑗

∗ equals the number of overlapping success runs between balls 𝑡 and 𝑋1 in the 

case 𝑗 = 1, the number of overlapping success runs between balls 𝑋𝑗  and 𝑋𝑗−1 for 𝑗 = 2,… , 𝑛 −

1 and the number of overlapping success runs between balls 𝑋𝑛−1 and 𝑡 for 𝑗 = 𝑛. 

 
In this case, 
 

𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) (𝑡 + 1)!
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×∑

𝑛

𝑗=0

𝑑𝑡

𝑑𝜃𝑡
( (

𝜃

1 − 𝜃
)
𝑛

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛−𝑗) 

× ∑

𝜐∈Υ𝑗
𝑛

𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)))|

𝜃=0

 

 
where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛) ∈ Υ𝑗

𝑛 , the set of all 𝑛 dimensional {0,1} 

vectors with exactly 𝑗 0’s and where 𝑍1, …,𝑍𝑛 are independent and identically distributed 1-

shifted geometric(1 − 𝜃) random variables. 

 
If Ψ(𝑎1, … , 𝑎𝑛) is symmetric in its arguments, then this result simplifies to 
 

𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) 

 

=
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
∑

𝑛

𝑗=0

(
𝑛
𝑗 )

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛−𝑗)  

× E(Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛)))|

𝜃=0

 

 
where 𝑍𝑗+1, …,𝑍𝑛 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 

random variables. 
 
Proof, Part I 
 
For the “Sampling from a Line” model in Theorem 12 we showed that for an arbitrary function 𝜁 
 

𝐸(𝜁(𝐶1, … , 𝐶𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(𝜁(𝑊1, … ,𝑊𝑛+1)))|

𝜃=0

 

 
where 𝑊1, … ,𝑊𝑛+1 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 

random variables. 

 
For some function Ψ and positive integer 𝑘 define 
 

𝜁(𝐶1, … , 𝐶𝑛+1) 
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= Ψ(⌊
𝐶1 − 1

𝑘
⌋ ,… , ⌊

𝐶𝑛+1 − 1

𝑘
⌋) 

= Ψ(𝐷1, … ,𝐷𝑛+1) 

 

and define the random variables 𝑍𝑗 = ⌊
𝑊𝑗−1

𝑘
⌋ for 𝑗 = 1,2, … , 𝑛 + 1. In this case Theorem 12 tells 

us that 
 

𝐸(Ψ(𝐷1, … ,𝐷𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(Ψ(𝑍1, … , 𝑍𝑛+1)))|

𝜃=0

. 

 

Now it just remains to determine the distribution of the 𝑍𝑗 = ⌊
𝑊𝑗−1

𝑘
⌋ when the 𝑊𝑗  follow a 1 -

 shifted geometric (1 − 𝜃) distribution. 

 
 

𝑃(𝑍𝑗 = 𝑧) = 𝑃 (⌊
𝑊𝑗 − 1

𝑘
⌋ = 𝑧)       𝑧 = 0,1, … 

  
 

= 𝑃(𝑧𝑘 ≤ 𝑊𝑗 − 1 ≤ 𝑧𝑘 + 𝑘 − 1) = 𝑃(𝑧𝑘 + 1 ≤ 𝑊𝑗 ≤ 𝑧𝑘 + 𝑘) 

            

  = ∑

𝑧𝑘+𝑘

𝑤=𝑧𝑘+1

𝑃(𝑊𝑗 = 𝑤) = ∑

𝑧𝑘+𝑘

𝑤=𝑧𝑘+1

(1 − 𝜃)𝜃𝑤−1 

            

= (1 − 𝜃) ∑ 𝜃𝑤−1
𝑧𝑘+𝑘

𝑤=𝑧𝑘+1

= (1 − 𝜃) (
𝜃𝑧𝑘 − 𝜃𝑧𝑘+𝑘

1 − 𝜃
) 

 
 

= (𝜃𝑘)𝑧(1 − 𝜃𝑘). 
 
 

But we recognize this as the geometric distribution with parameter 1 − 𝜃𝑘 . That is, 𝑍𝑗 ∼ 

geometric(1 − 𝜃𝑘) for 𝑗 = 1,… , 𝑛 + 1. 

 
Proof, Part II 
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For the “Sampling from a Line” model in Theorem 12 we showed that for an arbitrary function 𝜁 
 

𝐸(𝜁(𝐶1, … , 𝐶𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸(𝜁(𝑊1, … ,𝑊𝑛+1)))|

𝜃=0

 

 
where 𝑊1, … ,𝑊𝑛+1 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 
random variables. 
 
For some function Ψ and positive integer 𝑘 define 
 

𝜁(𝐶1, … , 𝐶𝑛+1) 
 

= Ψ((𝐶1 − 𝑘)𝕀(𝐶1 ≥ 𝑘 + 1),… , (𝐶𝑛+1 − 𝑘)𝕀(𝐶𝑛+1 ≥ 𝑘 + 1)) 

 
= Ψ(𝐺1, … , 𝐺𝑛+1) 

 

and define the random variables 𝑄𝑗 = 𝑄(𝑊𝑗) = (𝑊𝑗 − 𝑘)𝕀(𝑊𝑗 ≥ 𝑘 + 1) for  𝑗 = 1,2,… , 𝑛 + 1. 

In this case Theorem 12 tells us that 

 

𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸 (Ψ(𝑄(𝑊1),… , 𝑄(𝑊𝑛+1))))|

𝜃=0

 

 
where 𝑊1, … ,𝑊𝑛+1 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 

random variables. 

 

Now we will focus on simplifying 𝐸 (Ψ(𝑄(𝑊1),… ,𝑄(𝑊𝑛+1))). 

 
 

𝐸 (Ψ(𝑄(𝑊1),… , 𝑄(𝑊𝑛+1))) 

 

=∑ ⋯∑
all

(𝑤1,…,𝑤𝑛+1)

Ψ(𝑄(𝑤1),… , 𝑄(𝑤𝑛+1))𝑃(𝑊1 = 𝑤1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 
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= ∑

𝑛+1

𝑗=0

∑ ⋯∑
all

(𝑤1,…,𝑤𝑛+1)∋

exactly𝑗 of

(𝑤1,…,𝑤𝑛+1)≤𝑘

Ψ(𝑄(𝑤1),… , 𝑄(𝑤𝑛+1))𝑃(𝑊1 = 𝑤1, … ,𝑊𝑛+1 = 𝑤𝑛+1). 

 
At this point it is “notationally convenient” to consider what happens in the special case when 

𝑤1 ≤ 𝑘,… ,𝑤𝑗 ≤ 𝑘 and 𝑤𝑗+1 ≥ 𝑘 + 1,… ,𝑤𝑛+1 ≥ 𝑘 + 1 and to look back to the general case 

based on what we see. 

 

∑ ⋯∑
all

(𝑤1≤𝑘,…,𝑤𝑗≤𝑘)

and all
(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(𝑄(𝑤1),… , 𝑄(𝑤𝑛+1))𝑃(𝑊1 = 𝑤1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 
 

= ∑ ⋯∑
all

(𝑤1≤𝑘,…,𝑤𝑗≤𝑘)

and all
(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… ,𝑤𝑛+1 − 𝑘)𝑃(𝑊1 = 𝑤1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 
 

= ∑ ⋯∑
all

(𝑤1≤𝑘,…,𝑤𝑗≤𝑘)

and all
(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)𝑃(𝑊1 = 𝑤1, … ,𝑊𝑗 = 𝑤𝑗) 

 

× 𝑃(𝑊𝑗+1 = 𝑤𝑗+1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

  
 

= ∑ ⋯∑
all

(𝑤1≤𝑘,…,𝑤𝑗≤𝑘)

  ∑ ⋯∑
all

(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… ,𝑤𝑛+1 − 𝑘) 

 

× 𝑃(𝑊1 = 𝑤1, … ,𝑊𝑗 = 𝑤𝑗) 

 

× 𝑃(𝑊𝑗+1 = 𝑤𝑗+1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 
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=

(

  
 
∑ ⋯∑

all
(𝑤1≤𝑘,…,𝑤𝑗≤𝑘)

𝑃(𝑊1 = 𝑤1, … ,𝑊𝑗 = 𝑤𝑗)

)

  
 

 

×  

(

  
 

∑ ⋯∑
all

(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)

)

  
 

 

 

× 𝑃(𝑊𝑗+1 = 𝑤𝑗+1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 
 

= (∑

𝑘

𝑤1=1

𝑃(𝑊1 = 𝑤1))⋯(∑

𝑘

𝑤𝑗=1

𝑃(𝑊𝑗 = 𝑤𝑗)) 

×  

(

  
 

∑ ⋯∑
all

(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)

)

  
 

 

  

× 𝑃(𝑊𝑗+1 = 𝑤𝑗+1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 

= (∑

𝑘

𝑤1=1

(1 − 𝜃)𝜃𝑤1)⋯(∑

𝑘

𝑤𝑗=1

(1 − 𝜃)𝜃𝑤𝑗) 

×  

(

  
 

∑ ⋯∑
all

(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)

)

  
 

 

 

× 𝑃(𝑊𝑗+1 = 𝑤𝑗+1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 
 
 

= (1 − 𝜃𝑘)⋯ (1 − 𝜃𝑘) 

×  

(

  
 

∑ ⋯∑
all

(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)

)
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× 𝑃(𝑊𝑗+1 = 𝑤𝑗+1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 
 

= (1 − 𝜃𝑘)𝑗  

× ( ∑

∞

𝑤𝑗+1=𝑘+1

⋯ ∑

∞

𝑤𝑛+1=𝑘+1

Ψ(0,… ,0, 𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)). 

× (1 − 𝜃)(𝑛+1−𝑗)𝜃(𝑤𝑗+1+⋯+𝑤𝑛+1)−(𝑛+1−𝑗) 
 
 
Now perform a change of variable, letting 𝑦𝑟 = 𝑤𝑟 − 𝑘 for 𝑟 = 𝑗 + 1, … , 𝑛 + 1. Then 
 

∑

∞

𝑤𝑗+1=𝑘+1

⋯ ∑

∞

𝑤𝑛+1=𝑘+1

Ψ(0,… ,0,𝑤𝑗+1 − 𝑘,… , 𝑤𝑛+1 − 𝑘)

× (1 − 𝜃)(𝑛+1−𝑗)𝜃(𝑤𝑗+1+⋯+𝑤𝑛+1)−(𝑛+1−𝑗) 
 
 

= 𝜃(𝑛+1−𝑗)𝑘 ⋅ ( ∑

∞

𝑦𝑗+1=1

⋯ ∑

∞

𝑦𝑛+1=1

Ψ(0,… ,0, 𝑦𝑗+1, … , 𝑦𝑛+1)). 

× (1 − 𝜃)(𝑛+1−𝑗)𝜃(𝑦𝑗+1+⋯+𝑦𝑛+1)−(𝑛+1−𝑗) 
 
 

But we recognize this latter factor is just E (Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1)) where 𝑍𝑗+1, … , 𝑍𝑛+1 are 

independent and identically 1 - shifted geometric(1 − 𝜃) distributed random variables. 

 
That is, in the special case where 𝑤1 ≤ 𝑘,… ,𝑤𝑗 ≤ 𝑘 and 𝑤𝑗+1 ≥ 𝑘 + 1, … ,𝑤𝑛+1 ≥ 𝑘 + 1, 

 

∑ ⋯∑
all

(𝑤1≤𝑘,…,𝑤𝑗≤𝑘)

and all
(𝑤𝑗+1≥𝑘+1,…,𝑤𝑛+1≥𝑘+1)

Ψ(𝑄(𝑤1),… , 𝑄(𝑤𝑛+1))𝑃(𝑊1 = 𝑤1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 

= (1 − 𝜃𝑘)𝑗  𝜃(𝑛+1−𝑗)𝑘  E (Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1)) 

 
 
where 𝑍𝑗+1, … , 𝑍𝑛+1 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 

random variables. 
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Recall that we defined Υ𝑗
𝑛+1 be the set of all (𝑛 + 1) dimensional {0,1} vectors with exactly 𝑗 

0’s. Let (𝑣1, … , 𝑣𝑛+1) be a vector in Υ𝑗
𝑛+1. Using this notation, we can express the solution to 

the special case we just considered in the form 

 

(1 − 𝜃𝑘)𝑗 𝜃(𝑛+1−𝑗)𝑘 E (Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1)) 

 

= (1 − 𝜃𝑘)𝑗  𝜃(𝑛+1−𝑗)𝑘 E (Ψ(𝑣1𝑍1, … , 𝑣𝑗𝑍𝑗, 𝑣𝑗+1𝑍𝑗+1, … , 𝑣𝑛+1𝑍𝑛+1)) 

 
 
with 𝑣1 = ⋯ = 𝑣𝑗 = 0 and 𝑣𝑗+1 = ⋯ = 𝑣𝑛+1 = 1 where 𝑍1, … , 𝑍𝑛+1 are independent and 

identically distributed 1 - shifted geometric(1 − 𝜃) random variables. In fact, all cases can be 

covered with this notation and we can say that 

 

𝐸 (Ψ(𝑄(𝑊1),… , 𝑄(𝑊𝑛+1))) 

 

= ∑

𝑛+1

𝑗=0

∑ ⋯∑
all

(𝑤1,…,𝑤𝑛+1)∋

exactly 𝑗 of

(𝑤1,…,𝑤𝑛+1)≤𝑘

Ψ(𝑄(𝑤1),… , 𝑄(𝑤𝑛+1))𝑃(𝑊1 = 𝑤1, … ,𝑊𝑛+1 = 𝑤𝑛+1) 

 

= ∑

𝑛+1

𝑗=0

∑

𝜐∈Υ𝑗
𝑛+1

(1 − 𝜃𝑘)𝑗  𝜃(𝑛+1−𝑗)𝑘  E(Ψ(𝑣1𝑍1, … , 𝑣𝑛+1𝑍𝑛+1)) 

 

where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛+1) ∈ Υ𝑗
𝑛+1 and 𝑍1, …,𝑍𝑛+1 are 

independent and identically distributed 1-shifted geometric(1 − 𝜃) random variables. 

 
So can conclude that 
 

𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝐸 (Ψ(𝑄(𝑊1),… , 𝑄(𝑊𝑛+1))))|

𝜃=0
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=
1

(
𝑡
𝑛
) (𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

 

×∑

𝑛+1

𝑗=0

∑

𝜐∈Υ𝑗
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛+1𝑍𝑛+1))

)

 |

𝜃=0

 

 
 

=
1

(
𝑡
𝑛
) (𝑡 + 1)!

∑

𝑛+1

𝑗=0

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗) 

 

× ∑

𝜐∈Υ𝑗
𝑛+1

𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛+1𝑍𝑛+1))

)

 |

𝜃=0

 

 
 

where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛+1) ∈ Υ𝑗
𝑛+1 and 𝑍1, …,𝑍𝑛+1 are 

independent and identically distributed 1-shifted geometric(1 − 𝜃) random variables. 

 
If Ψ(𝑎1, … , 𝑎𝑛+1) is symmetric in its arguments, then this result simplifies to 
 
 

𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) 

 

=
1

(
𝑡
𝑛
) (𝑡 + 1)!

∑

𝑛+1

𝑗=0

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

× (
𝑛 + 1
𝑗
) E (Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1)))|

𝜃=0

 

 

=
1

(
𝑡
𝑛
) (𝑡 + 1)!

∑

𝑛+1

𝑗=0

(
𝑛 + 1
𝑗
)
𝑑𝑡+1

𝑑𝜃𝑡+1
( (

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

× E(Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1)))|

𝜃=0

 

 
 
where 𝑍𝑗+1, …,𝑍𝑛+1 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 
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random variables. 

 
Proof, Part III 
 
 
By Theorem 14, Part I, we know that for an arbitrary function 𝜁 
 
 

𝐸(𝜁(𝐶1
∗, … , 𝐶𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(𝜁(𝑊1, … ,𝑊𝑛)))|

𝜃=0

 

 
where 𝑊1, … ,𝑊𝑛  are independent and identically distributed 1-shifted geometric(1 − 𝜃) 

random variables. For some function Ψ and positive integer 𝑘 define 

 
𝜁(𝐶1

∗, … , 𝐶𝑛
∗) 

= Ψ(⌊
𝐶1
∗ − 1

𝑘
⌋ , … , ⌊

𝐶𝑛
∗ − 1

𝑘
⌋) 

= Ψ(𝐷1
∗, … , 𝐷𝑛

∗). 
 
In this case we can apply Theorem 15, Part I (after replacing 𝑛 + 1 with 𝑛 and 𝑡 + 1 with 𝑡) to 
show that 
 
 

𝐸(Ψ(𝐷1
∗, … , 𝐷𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
 

×
𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(Ψ(𝑍1, … , 𝑍𝑛)))|

𝜃=0

 

 

where 𝑍1, …,𝑍𝑛 are independent and identically distributed geometric(1 − 𝜃𝑘) random 
variables. 
 
Proof, Part IV 
 
By Theorem 14, Part I, we know that for an arbitrary function 𝜁 
 
 

𝐸(𝜁(𝐶1
∗, … , 𝐶𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((

𝜃

1 − 𝜃
)
𝑛

𝐸(𝜁(𝑊1, … ,𝑊𝑛)))|

𝜃=0
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where 𝑊1, … ,𝑊𝑛  are independent and identically distributed 1-shifted geometric(1 − 𝜃) 

random variables. For some function Ψ and positive integer 𝑘 define 

 
𝜁(𝐶1

∗, … , 𝐶𝑛
∗) 

= Ψ((𝐶1
∗ − 𝑘)𝕀(𝐶1

∗ ≥ 𝑘 + 1),… , (𝐶𝑛
∗ − 𝑘)𝕀(𝐶𝑛

∗ ≥ 𝑘 + 1)) 

= Ψ(𝐺1
∗, … , 𝐺𝑛

∗). 

 
In this case we can apply Theorem 15, Part II (after replacing 𝑛 + 1 with 𝑛 and 𝑡 + 1 with 𝑡) to 
show that 
 

𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
 

×∑

𝑛

𝑗=0

𝑑𝑡

𝑑𝜃𝑡
( (

𝜃

1 − 𝜃
)
𝑛

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛−𝑗) 

× ∑

𝜐∈Υ𝑗
𝑛

𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)))|

𝜃=0

 

 
where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛) ∈ Υ𝑗

𝑛 , the set of all 𝑛 dimensional {0,1} 

vectors with exactly 𝑗 0’s and 𝑍1, … , 𝑍𝑛 are independent and identically distributed 1-shifted 

geometric(1 − 𝜃) random variables. 

 
If Ψ(𝑎1, … , 𝑎𝑛) is symmetric in its arguments, then this result simplifies to 
 

𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
∑

𝑛

𝑗=0

(
𝑛
𝑗 )

𝑑𝑡

𝑑𝜃𝑡
( (

𝜃

1 − 𝜃
)
𝑛

 

× (1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛−𝑗)𝐸 (Ψ(0,… ,0, 𝑍𝑗, … , 𝑍𝑛)))|

𝜃=0

 

 
where 𝑍𝑗,…,𝑍𝑛 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 

random variables. 
 
Example 1 .... A selection of non-overlapping and overlapping success run problems. 
 
(a) Let 𝑁𝑡,𝑘,𝑟,𝑛 equal the number of arrangements of 𝑛 failures and 𝑡 − 𝑛 successes with 𝑟 non-

 overlapping successes runs of length 𝑘. 
 
 Then 
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𝑁𝑡,𝑘,𝑟,𝑛 = ∑

⌊
𝑡−𝑛
𝑘 ⌋−𝑟

𝑖=0

(−1)𝑖 (
𝑛 + 1
𝑖
) (
𝑛 + 𝑟
𝑟

) (
𝑡 − 𝑘(𝑟 + 𝑖)

𝑡 − 𝑘(𝑟 + 𝑖) − 𝑛
) 

 
 for 𝑘𝑟 + 𝑛 ≤ 𝑡 < 𝑘(𝑟 + 𝑛 + 1) and 0 else. 
 
(b) Let 𝑁𝑡,𝑘  equal the number of non-overlapping success runs of length 𝑘 in a sequence of 𝑡 

 independent Bernoulli trials with constant success probability 𝑝.  
 
 Then 

𝑃(𝑁𝑡,𝑘 = 𝑟) = ∑

𝑡−𝑘𝑟

𝑛=⌊
𝑡
𝑘⌋
−𝑟

𝑁𝑡,𝑘,𝑟,𝑛 𝑝
𝑡−𝑛(1 − 𝑝)𝑛 

 
 and 

E ((𝑁𝑡,𝑘)(𝑤)) = ∑

𝑡−𝑘𝑤

𝑛=0

∑

⌊
𝑡−𝑛
𝑘 ⌋−𝑤

𝑖=0

( (
𝑡 − 𝑘(𝑤 + 𝑖)

𝑡 − 𝑛 − 𝑘(𝑤 + 𝑖)
) 

 

× (
𝑤 + 𝑖 − 1

𝑖
) (𝑛 + 1)[𝑤] 𝑝(𝑡−𝑛)(1 − 𝑝)𝑛). 

 
 
The probability distribution of 𝑁𝑡,𝑘  was derived by Hirano [?] and Philippou and Makri [?] and 

was simplified by Godbole [?]. The form given here agrees with Godbole’s simplified solution. 

Antzoulakos and Chadjiconstantinidis [?] derive the falling factorial moment result in a different 

but equivalent form than given here. 

 
Let 𝑀𝑡,𝑘,𝑟,𝑛 equal the number of arrangements of 𝑛 failures and 𝑡 − 𝑛 successes with 𝑟 

overlapping successes runs of length 𝑘. 

 

Then for 𝑟 ≥ 1 and ⌊
𝑡−𝑟

𝑘
⌋ ≤ 𝑛 ≤ 𝑡 − 𝑟 

 

𝑀𝑡,𝑘,𝑟,𝑛 = (
𝑟 − 1
𝑛

) 𝕀{𝑡−𝑘(𝑛+1)=𝑟−1} + 

 

∑

𝑛+1

𝑗=𝑛+1−⌊
𝑡−𝑟
𝑘 ⌋

∑

𝑗−(𝑛+1−⌊
𝑡−𝑟
𝑘 ⌋)

𝑖=0

((−1)𝑖 (
𝑗
𝑖
) (
𝑛 + 1
𝑗
) 
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× (
𝑟 − 1
𝑛 − 𝑗

) (
𝑡 − 𝑟 − 𝑘(𝑛 + 1 − 𝑗 + 𝑖)

𝑡 − 𝑟 − 𝑘(𝑛 + 1 − 𝑗 + 𝑖) − 𝑗 + 1
)) 

 

and for 𝑟 = 0 and 𝑛 ≥ ⌊
𝑡

𝑘
⌋ 

𝑀𝑡,𝑘,0,𝑛 = ∑

⌊
𝑡
𝑘⌋

𝑗=0

(−1)𝑗 (
𝑛 + 1
𝑗
) (

𝑡 − 𝑘𝑗
𝑡 − 𝑘𝑗 − 𝑛

). 

 

We note that 𝑀𝑡,𝑘,𝑟,𝑛 = 0 for 𝑟 ≥ 0 and 𝑛 < ⌊
𝑡−𝑟

𝑘
⌋ 

 
 
(d) Let 𝑀𝑡,𝑘  equal the number of overlapping success runs of length 𝑘 in a sequence of 𝑡 

 independent Bernoulli trials with constant success probability 𝑝. Then 

 

𝑃(𝑀𝑡,𝑘 = 𝑟) = ∑

𝑡−𝑟

𝑛=⌊
𝑡−𝑟
𝑘 ⌋

𝑀𝑡,𝑘,𝑟,𝑛 𝑝
𝑡−𝑛(1 − 𝑝)𝑛 

 
 and  
 

E ((𝑀𝑡,𝑘)
[𝑤]
) = ∑

𝑡

𝑛=0

∑

𝑛+1

𝑗=0

∑

𝑗

𝑖=0

((−1)𝑖 (
𝑗
𝑖
) (
𝑛 + 1
𝑗
) 

 

× (
𝑤 + 𝑡 − 𝑘(𝑛 + 1 − 𝑗 + 𝑖)

𝑡 − 𝑛 − 𝑘(𝑛 + 1 − 𝑗 + 𝑖)
) (𝑛 − 𝑗 + 1)[𝑤]𝑝𝑡−𝑛(1 − 𝑝)𝑛) 

 
 
The probability distribution of 𝑀𝑡,𝑘 was derived by Ling [?] and was simplified by Godbole [?]. 

The solution given here is similar in form to Godbole’s solution but is slightly more compact. 

𝑀𝑡,𝑘,𝑟,𝑛 can be stated more compactly than given here by using the standard extension of 

binomial coefficients to allow for a negative argument. Antzoulakos and Chadjiconstantinidis [?] 

state a formula for the falling factorial moment. The result given here is for the rising factorial 

moment. 

 
 
(e) Let 𝑁𝑡,𝑘  equal the number of non-overlapping success runs of length 𝑘 in a sample of size 𝑡 

 drawn from an urn with 𝑎 white balls and 𝑏 black balls according to the Markov-P’olya 
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 sampling scheme. Then 
 

𝑃(𝑁𝑡,𝑘 = 𝑟) = ∑

𝑡−𝑘𝑟

𝑛=⌊
𝑡
𝑘⌋
−𝑟

𝑁𝑡,𝑘,𝑟,𝑛

(
𝑛 + 𝑎 − 1
𝑎 − 1

) (
(𝑡 − 𝑛) + 𝑏 − 1

𝑏 − 1
)

(
𝑡 + 𝑎 + 𝑏 − 1
𝑎 + 𝑏 − 1

)
. 

 
 Problems of this type are considered by Sen, Agarwal and Chakraborty [?]. 
 
 
Proof 
 
For part (a) if we define 𝐶𝑗 and 𝐷𝑗 as in Theorem ??, Line ?? and consider (𝑋1, … , 𝑋𝑛) as the 

position of 𝑛 failures then 𝐷𝑗 will equal the number of non-overlapping success runs of length 𝑘 

between the (𝑗 − 1)𝑠𝑡 and 𝑗𝑡ℎ  failures. (It is understood that 𝐷1 will equal the number of non-

overlapping success runs of length 𝑘 before the first failure and 𝐷𝑛+1 the number after the last 

failure.) It then follows that 𝐷1 +⋯+ 𝐷𝑛+1 equals the total number of non-overlapping success 

runs of length 𝑘 in the random arrangement of 𝑛 failures and 𝑡 − 𝑛 successes. 

 
If we take 
 

Ψ(𝐶1, … , 𝐶𝑛+1) = 𝕀(𝐶1 +⋯+ 𝐶𝑛+1 = 𝑟) 
 
in Theorem ??, Line ??, then 
 

𝑁𝑡,𝑘,𝑟,𝑛 =
1

(𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝑃(𝑍1 +⋯+ 𝑍𝑛+1 = 𝑟))|

𝜃=0

 

 

where 𝑍1, … , 𝑍𝑛+1 are independent and identically distributed (iid) geometric(1 − 𝜃𝑘) random 

variables. However the sum of iid geometric random variables follows a negative binomial 

distribution(𝑛 + 1,1 − 𝜃𝑘) and the final result follows on simplification. That 𝑁𝑡,𝑘,𝑟,𝑛 equals 0 

for 𝑡 − 𝑘(𝑟 + 𝑛 + 1) ≥ 0 follows from identity 3.150 of Gould [?]. 

 
For the first result in part (b), clearly 
 

𝑃(𝑁𝑡,𝑘 = 𝑟) = ∑

𝑡

𝑛=0

𝑁𝑡,𝑘,𝑟,𝑛 𝑝
𝑡−𝑛(1 − 𝑝)𝑛 

 
and the more restrictive bounds on 𝑛 follow from the given bounds on 𝑡. 
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The falling factorial moment in part (b) could be computed from definition using the 

distribution calculated in part (a). However, applying Theorem ??, Line ?? results in a simpler 

form. 

 
Let 𝐹 equal the number of failures in 𝑡 independent Bernoulli trials with constant success 

probability 𝑝. Then 

 

E ((𝑁𝑡,𝑘)(𝑤)) = E (E((𝑁𝑡,𝑘)(𝑤)|𝐹 = 𝑛)) 

 

= ∑

𝑡

𝑛=0

E ((𝑁𝑡,𝑘)(𝑤)|𝐹 = 𝑛)(
𝑡
𝑛
)𝑝(𝑡−𝑛)(1 − 𝑝)𝑛 . 

 
By Theorem ??, Line ??, 
 

E ((𝑁𝑡,𝑘)(𝑤)|𝐹 = 𝑛) = E(
(𝐷1 +⋯+𝐷𝑛+1)(𝑤)) 

 

=
1

(
𝑡
𝑛
) (𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

E((𝑍1 +⋯+ 𝑍𝑛+1)(𝑤)))|

𝜃=0

 

 

=
1

(
𝑡
𝑛
) (𝑡 + 1)!

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

(
𝜃𝑘

1 − 𝜃𝑘
)

𝑤

(𝑛 + 1)[𝑤])|
𝜃=0

. 

 
 
This last equality follows using A??, the formula for the falling factorial moment of a negative 

binomial distribution. The final form follows on simplification. 

 
For part (c) if we define 𝐶𝑗 and 𝐺𝑗  as in Theorem ??, Line ?? and consider (𝑋1, … , 𝑋𝑛) as the 

position of 𝑛 failures then 𝐺𝑗  will equal the number of overlapping success runs of length 𝑘 

between the (𝑗 − 1)𝑠𝑡 and 𝑗𝑡ℎ  failures. (It is understood that 𝐺1 will equal the number of 

overlapping success runs of length 𝑘 before the first failure and 𝐺𝑛+1 the number after the last 

failure.) 

 
Accordingly, 𝐺1 +⋯+ 𝐺𝑛+1 equals the total number of overlapping success runs of length 𝑘 in 

the random arrangement of 𝑛 failures and 𝑡 − 𝑛 successes. 

 
If we take 

Ψ(𝐶1, … , 𝐶𝑛+1) = 𝕀(𝐶1 +⋯+ 𝐶𝑛+1 = 𝑟) 
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in Theorem ??, Line ??, then 
 

𝑀𝑡,𝑘,𝑟,𝑛 =
1

(𝑡 + 1)!
∑

𝑛+1

𝑗=0

𝑑𝑡+1

𝑑𝜃𝑡+1

(

 (
𝜃

1 − 𝜃
)

𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

×

(

 ∑

𝜐∈Υ𝑗
𝑛+1

𝑃(𝜐1𝑍1 +⋯+ 𝜐𝑛+1𝑍𝑛+1 = 𝑟)

)

 

)

 
 
|
|

𝜃=0

 

 
where 𝑍1, …,𝑍𝑛+1 are independent and identically distributed 1-shifted geometric(1 − 𝜃) 

random variables. 

 
We note that for 𝑟 > 0 and 𝑗 < 𝑛 + 1 
 

∑

𝜐∈Υ𝑗
𝑛+1

𝑃(𝜐1𝑍1 +⋯+ 𝜐𝑛+1𝑍𝑛+1 = 𝑟) 

 
 

= (
𝑛 + 1
𝑗
)𝑃(𝑍1 +⋯+ 𝑍𝑛+1−𝑗 = 𝑟) 

 

= (
𝑛 + 1
𝑗
) ((

𝑟 − 1
𝑛 − 𝑗

) (1 − 𝜃)𝑛+1−𝑗  𝜃𝑟−(𝑛+1−𝑗)). 

 
For 𝑟 > 0 and 𝑗 = 𝑛 + 1 we have 
 

∑

𝜐∈Υ𝑛+1
𝑛+1

𝑃(𝜐1𝑍1 +⋯+ 𝜐𝑛+1𝑍𝑛+1 = 𝑟) 

 
= 𝑃(0 ⋅ 𝑍1 +⋯+ 0 ⋅ 𝑍𝑛+1 = 𝑟) = 0 

 
and for 𝑟 = 0 
 

∑

𝜐∈Υ𝑗
𝑛+1

𝑃(𝜐1𝑍1 +⋯+ 𝜐𝑛+1𝑍𝑛+1 = 0) = 𝕀(𝑗 = 𝑛 + 1). 

 
The final result for part (c) then follows on simplification. The first result in part (d) follows as in 

(b). We can apply Theorem ??, Line ?? to compute the rising factorial moment in part (d). 
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Let 𝐹 equal the number of failures in 𝑡 independent Bernoulli trials with constant success 

probability 𝑝. Then 

 

E ((𝑀𝑡,𝑘)(𝑤)) = ∑

𝑡

𝑛=0

E ((𝑀𝑡,𝑘)(𝑤)| 𝐹 = 𝑛)(
𝑡
𝑛
) 𝑝(𝑡−𝑛)(1 − 𝑝)𝑛 . 

 
By Theorem ??, Line ??, 
 

E ((𝑀𝑡,𝑘)
[𝑤]
| 𝐹 = 𝑛) = E ((𝐷1 +⋯+ 𝐷𝑛+1)

[𝑤]) 

 

=
1

(
𝑡
𝑛
) (𝑡 + 1)!

∑

𝑛+1

𝑗=0

𝑑𝑡+1

𝑑𝜃𝑡+1

(

 
 
(
𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗  

× 𝜃𝑘(𝑛+1−𝑗)

(

 ∑

𝜐∈Υ𝑗
𝑛+1

E((𝜐1𝑍1 +⋯+ 𝜐𝑛+1𝑍𝑛+1)
[𝑤])

)

 

)

 
 
|
|

𝜃=0

. 

 

Let 𝑆 = 𝜐1𝑍1 + …+ 𝜐𝑛+1𝑍𝑛+1. It follows from A. that for all 𝜐 ∈ Υ𝑗
𝑛+1, 𝑆 ∼ (𝑛 + 1 − 𝑗)-shifted 

negative binomial(𝑛 + 1 − 𝑗, 1 − 𝜃). Therefore by A., for all 𝜐 ∈ Υ𝑗
𝑛+1, 

 

E ((𝜐1𝑍1 +⋯+ 𝜐𝑛+1𝑍𝑛+1)
[𝑤]) = (

1

1 − 𝜃
)
𝑤

(𝑛 − 𝑗 + 1)[𝑤] 

 
and the final form follows on simplification. 
 
 
1.3  Coverage of the Line and Circle 
 
 
Theorem 19, Part I, Random Coverage of the Line 
 
Consider a line of 𝑡 urns numbered 1, … , 𝑡. Let (𝑋1, … , 𝑋𝑛) be a random sample (of urns) of size 

𝑛 taken without replacement from the 𝑡 numbered urns such that 1 ≤ 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛−1 <

𝑋𝑛 ≤ 𝑡. 

 
Now suppose that we put a ball in urn 𝑋1 and in each of the 𝑘 − 1 urns to the left of urn 𝑋1, a 

ball in urn 𝑋2 and in each of the 𝑘 − 1 urns to the left of urn 𝑋2, …, and a ball in urn 𝑋𝑛 and in 
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each of the 𝑘 − 1 urns to the left of urn 𝑋𝑛 and also in each of the 𝑘 − 1 urns to the right of urn 

𝑋𝑛. 

 
If there are not enough urns at any point in this distribution scheme (e.g. if there are fewer 

than 𝑘 − 1 urns to the left of urn 𝑋1), the extra balls are just set aside. 

 
We will refer to this distribution scheme as the discrete random coverage of the line model. 
 
Clearly there is the potential that some urns will receive more than one ball, but that is not 

important to us here. Our only interest in this section is whether or not an urn is empty, that is 

whether an urn has been “covered” or not. 

 
As an example, consider a row of 𝑡 = 15 urns numbered from 1 to 15 in increasing order. 

Suppose we select 𝑛 = 4 of these urns at random and happen to select Urn 3, Urn 4, Urn 10 

and Urn 14. Then 𝑋1 = 3, 𝑋2 = 4, 𝑋3 = 10 and 𝑋4 = 14. 

 
Suppose we are interested in the case 𝑘 = 4. Then according to the directions, we put a ball in 

Urn 3 and the 𝑘 − 1 = 4 − 1 = 3 urns to the left of Urn 3. Because there are only two urns to 

the left of Urn 3 we just set the one extra ball aside. So, at this point Urns 1, 2 and 3 are 

“covered” (not empty). Continuing, we put a ball in Urn 4 and the 𝑘 − 1 = 3 urns to the left of 

Urn 4. So now Urns 1, 2, 3 and 4 are “covered”. Note that Urns 1, 2 and 3 now each have two 

balls in them while Urn 4 only has one ball. But we don’t need to keep track of this. Again, we 

are only interested in whether an urn is empty or not empty. 

 
After we put a ball in Urn 10 and the 𝑘 − 1 = 3 to the left of Urn 10, Urns 1, 2, 3, 4, 7, 8, 9 and 

10 are covered. 

 
At the final step we put a ball in Urn 14 and the 𝑘 − 1 = 3 urns to the left and to the right of 

Urn 14. So, we put a ball in Urns 11, 12, 13 and 15. Because there is only one urn to the right 

of Urn 14 we just set the two extra balls aside. Remember that it is only at this final step that 

we also distribute balls to the right of a selected urn. 

 
So, in this example, Urns 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14 and 15 are covered. Urns 5 and 6 

are the only two urns which are not covered (i.e. are left empty). 

 
The continuous analogue of the line coverage problem dates back to Whitworth [ ] and was also 

developed in a series of papers by Domb [ ]. 

 
For 𝑗 = 1,… , 𝑛 + 1 define the variables 𝐶𝑗 by 
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𝐶1 = 𝑋1 

𝐶2 = 𝑋2 − 𝑋1 

         ⋮ 

𝐶𝑛 = 𝑋𝑛 − 𝑋𝑛−1 

𝐶𝑛+1 = (𝑡 + 1) − 𝑋𝑛 . 

 
and the variables 𝐺𝑗  by 

𝐺𝑗 = {
𝐶𝑗 − 𝑘 𝐶𝑗 ≥ 𝑘 + 1

0 𝐶𝑗 ≤ 𝑘.
 

 
 
Continuing with our example, where 𝑡 = 15, 𝑛 = 4 and 𝑘 = 4 and where 𝑋1 = 3, 𝑋2 = 4, 𝑋3 =

10 and 𝑋4 = 14, we get 𝐶1 = 𝑋1 = 3, 𝐶2 = 𝑋2 − 𝑋1 = 1, 𝐶3 = 𝑋3 − 𝑋2 = 6, 𝐶4 = 𝑋4 − 𝑋3 = 4 

and 𝐶5 = (𝑡 + 1) − 𝑋𝑛 = (15 + 1) − 𝑋4 = 2. 

 
Hence, 

𝐺1 = max{𝐶1 − 𝑘, 0} = max{−1,0} = 0 

𝐺2 = max{𝐶2 − 𝑘, 0} = max{−3,0} = 0 

𝐺3 = max{𝐶3 − 𝑘, 0} = max{2,0} = 2 

𝐺4 = max{𝐶4 − 𝑘, 0} = max{0,0} = 0 

𝐺5 = 𝑚𝑎𝑥{𝐶4 − 𝑘, 0} = 𝑚𝑎𝑥{−2,0} = 0. 

 

We note that 𝐺1 counts the number of empty (uncovered) urns to the left of Urn 𝑋1 = 3, 𝐺2 

counts the number of empty urns between Urns 𝑋1 = 3 and 𝑋2 = 4, 𝐺3 counts the number of 

empty urns between Urns 𝑋2 = 4 and 𝑋3 = 10, 𝐺4 counts the number of empty urns between 

Urns 𝑋3 = 10 and 𝑋4 = 14 and 𝐺5 counts the number of empty urns to the right of Urn 𝑋𝑛 =

𝑋4 = 14. 

 
It is not hard to see that the random coverage of the line model is identical to the model for 

linear overlapping success runs if we let a chosen urn represent a “failure” and an unchosen urn 

a “success”. Then each uncovered (empty) urn corresponds to where an linear overlapping 

success run of length 𝑘 starts. 

 

It follows that the formula for 𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) given in Theorem 15, Part II for linear 

overlapping success runs holds for the random coverage of the line distribution. That is, for the 

random coverage of the line model, 
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𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×∑

𝑛+1

𝑗=0

𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

× ∑

𝜐∈Υ𝑗
𝑛+1

𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛+1𝑍𝑛+1))

)

 |

𝜃=0

 

 

where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛+1) ∈ Υ𝑗
𝑛+1 and 𝑍1, …,𝑍𝑛+1 are 

independent and identically distributed 1-shifted geometric(1 − 𝜃) random variables. 

 
Furthermore, if Ψ(𝑎1, … , 𝑎𝑛+1) is symmetric in its arguments, then this result simplifies to 
 

𝐸(Ψ(𝐺1, … , 𝐺𝑛+1)) 

=
1

0.8 (
𝑡
𝑛
) (𝑡 + 1)!

∑

𝑛+1

𝑗=0

( (
𝑛 + 1
𝑗

)
𝑑𝑡+1

𝑑𝜃𝑡+1
(
𝜃

1 − 𝜃
)
𝑛+1

(1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛+1−𝑗)  

× E (Ψ(0,… ,0, 𝑍𝑗+1, … , 𝑍𝑛+1))))|

𝜃=0

 

 
where 𝑍𝑗+1, …,𝑍𝑛+1 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 

random variables. 

 
Theorem 19, Part II, Random Coverage of the Circle 
 
Consider 𝑡 urns arranged in a circle. Suppose we pick one of these urns at random and label 

that urn with the number 𝑡 and then attach the labels 1,… , 𝑡 − 1 to the remaining urns as we 

go around the circle clockwise from urn 𝑡. Let (𝑋1, … , 𝑋𝑛−1) be a random sample (of urns) of 

size 𝑛 − 1 taken without replacement from the urns numbered 1,… , 𝑡 − 1 such that 1 ≤ 𝑋1 <

𝑋2 < ⋯ < 𝑋𝑛−2 < 𝑋𝑛−1 ≤ 𝑡 − 1. 

 
Now suppose that we put a ball in urn 𝑋1 and in each of the 𝑘 − 1 urns going counterclockwise 

from urn 𝑋1, a ball in urn 𝑋2 and in each of the 𝑘 − 1 urns going counterclockwise from urn 𝑋2, 

…, and a ball in urn 𝑡 and in each of the 𝑘 − 1 going counterclockwise from urn 𝑡. We will refer 

to this distribution scheme as the discrete random coverage of the circle model. 

 
Clearly there is the potential in this distribution scheme that some urns will receive more than 

one ball. However, in the theorem and examples which follow our interest will only be in 
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whether urns or empty or not, that is whether an urn has been “covered” or not. 

 
The continuous analogue of the circle coverage problem dates back to Stevens [ ]. Solomon [ ] 

devotes a chapter to the continuous circle coverage problem. Holst [ ] and Ivchenko [ ] consider 

the discrete version. 

 
For 𝑗 = 1,… , 𝑛 define the variables 𝐶𝑗

∗ by 

 
𝐶1
∗ = 𝑋1 

𝐶2
∗ = 𝑋2 − 𝑋1 

         ⋮ 

𝐶𝑛−1
∗ = 𝑋𝑛−1 − 𝑋𝑛−2 

𝐶𝑛
∗ = 𝑡 − 𝑋𝑛−1. 

 
and the variables 𝐺𝑗

∗ by 

 

𝐺𝑗
∗ = {

𝐶𝑗
∗ − 𝑘 𝐶𝑗

∗ ≥ 𝑘 + 1

0 𝐶𝑗
∗ ≤ 𝑘.

 

 
 
We note that 𝐺𝑗

∗ equals the number of empty urns between the selected urns 𝑡 and 𝑋1 in the 

case 𝑗 = 1, the number of empty urns between the selected urns 𝑋𝑗  and 𝑋𝑗−1 for 𝑗 = 2,… , 𝑛 −

1 and the number of empty urns between the selected urns 𝑋𝑛−1 and 𝑡 for 𝑗 = 𝑛. 

 
It is not hard to see that the random coverage of the circle model is identical to the model for 

circular overlapping success runs if we let a chosen urn represent a “failure” and an unchosen 

urn a “success”. Then each uncovered (empty) urn corresponds to where an circular 

overlapping success run of length 𝑘 starts (going clockwise). 

 

It follows that the formula for 𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) given in Theorem 15, Part IV for circular 

overlapping success runs holds for the random coverage of the circle distribution. That is, for 

the random coverage of the circle model, 

𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
∑

𝑛

𝑗=0

𝑑𝑡

𝑑𝜃𝑡
( (

𝜃

1 − 𝜃
)
𝑛

 

× (1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛−𝑗) ∑

𝜐∈Υ𝑗
𝑛

𝐸(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)))|

𝜃=0
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where the inner sum is over all vectors 𝜐 = (𝑣1, … , 𝑣𝑛) ∈ Υ𝑗

𝑛 , the set of all 𝑛 dimensional {0,1} 

vectors with exactly 𝑗 0’s and where 𝑍1, …,𝑍𝑛 are independent and identically distributed 1-

shifted geometric(1 − 𝜃) random variables. 

 
Furthermore, if Ψ(𝑎1, … , 𝑎𝑛) is symmetric in its arguments, then this result simplifies to 
 

𝐸(Ψ(𝐺1
∗, … , 𝐺𝑛

∗)) =
1

(
𝑡 − 1
𝑛 − 1

) 𝑡!
∑

𝑛

𝑗=0

(
𝑛
𝑗 )

𝑑𝑡

𝑑𝜃𝑡
( (

𝜃

1 − 𝜃
)
𝑛

 

× (1 − 𝜃𝑘)𝑗𝜃𝑘(𝑛−𝑗)𝐸 (Ψ(0,… ,0, 𝑍𝑗, … , 𝑍𝑛)))|

𝜃=0

 

 
where 𝑍𝑗,…,𝑍𝑛 are independent and identically distributed 1 - shifted geometric(1 − 𝜃) 

random variables. 

 
Example 1 Number of empty urns 
 
Let 𝑅 equal the number of empty urns in the discrete random coverage of the circle distribution 

as described above. (That is, we randomly select 𝑛 of 𝑡 urns arranged in a circle and place a ball 

in each selected urn and in the 𝑘 − 1 urns following clockwise from each selected urn.) In this 

case: 

 
If 𝑟 ≥ 1, then 
 

𝑃(𝑅 = 𝑟) =
1

(
𝑡
𝑛
)
∑

𝑛−1

𝑗=0

∑

𝑗

𝑖=0

(−1)𝑖 (
𝑡

𝑛
) (
𝑛
𝑗 ) (

𝑗
𝑖
) (

𝑟 − 1
𝑛 − 𝑗 − 1

) (
𝑡 − (𝑛 − 𝑗 + 𝑖)𝑘 − 𝑟 − 1

𝑡 − (𝑛 − 𝑗 + 𝑖)𝑘 − 𝑟 − 𝑗
) 

 
If 𝑟 = 0, then  

𝑃(𝑅 = 𝑟) =
1

(
𝑡
𝑛
)
∑

𝑛

𝑖=0

(−1)𝑖 (
𝑡

𝑛
) (
𝑛
𝑖
) (
𝑡 − 𝑖𝑘 − 1
𝑡 − 𝑖𝑘 − 𝑛

) 

 
and 
 

E(𝑅[𝑢]) =
1

(
𝑡
𝑛
)
 ∑

𝑛

𝑗=0

 ∑

𝑗

𝑖=0

(−1)𝑖 (
𝑡

𝑛
)(
𝑛
𝑗) (

𝑗
𝑖
) (
𝑛 − 𝑗 + 𝑢 − 1

𝑢
) (
𝑢 + 𝑡 − 𝑘(𝑛 − 𝑗 + 𝑖) − 1

𝑡 − 𝑘(𝑛 − 𝑗 + 𝑖) − 𝑛
). 

 
The probability distribution for 𝑅 is result is given in Holst [?]. 
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Proof 
 
The first result follows on direct application of Theorem ?? with 
 

Ψ(𝐺1, … , 𝐺𝑛) = 𝕀(𝐺1 +⋯+ 𝐺𝑛 = 𝑟). 
 
For 𝑟 ≥ 1 we note that 
 

∑

𝜐∈Υ𝑗
𝑛

E(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)) = { 
(
𝑛
𝑗) 𝑃(𝑍1 +⋯+ 𝑍𝑛−𝑗 = 𝑟) 0 ≤ 𝑗 ≤ 𝑛 − 1

0 𝑗 = 𝑛.

 

 
It follows from A. and A. that 𝑍1 +⋯+ 𝑍𝑛−𝑗  ∼ (𝑛 − 𝑗) shifted negative binomial(𝑛 − 𝑗, 1 − 𝜃). 

Hence, 

 

𝑃(𝑍1 +⋯+ 𝑍𝑛−𝑗 = 𝑟) = (
𝑧 − 1

𝑛 − 𝑗 − 1
) (1 − 𝜃)𝑛−𝑗𝜃𝑧−(𝑛−𝑗) . 

 
For 𝑟 = 0 we see that 
 

∑

𝜐∈Υ𝑗
𝑛

E(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)) = {
0 0 ≤ 𝑗 ≤ 𝑛 − 1

1 𝑗 = 𝑛.
 

 
The final form for the first result follows on simplification. The second result follows on direct 
application of Theorem ?? with 
 

Ψ(𝐺1, … , 𝐺𝑛) = (𝐺1 +⋯+ 𝐺𝑛)
[𝑢]. 

 
In this case we have that 
 

∑

𝜐∈Υ𝑗
𝑛

E(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)) = { 
(
𝑛
𝑗 )E ((𝑍1 +⋯+ 𝑍𝑛−𝑗)

[𝑢]
) 0 ≤ 𝑗 ≤ 𝑛 − 1

0 𝑗 = 𝑛.

 

 
As already noted 𝑍1 +⋯+ 𝑍𝑛−𝑗  ∼ (𝑛 − 𝑗) shifted negative binomial(𝑛 − 𝑗, 1 − 𝜃). 

 
Therefore by A.?? we have 
 

E ((𝑍1 +⋯+ 𝑍𝑛−𝑗)
[𝑢]
) = (𝑛 − 𝑗)[𝑢] (

1

1 − 𝜃
)
𝑢

. 
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The final form for the second result then follows on simplification. 
 
Example 2 Number of runs of empty urns 
 
Let 𝑊 equal the number of runs of empty urns in the discrete random coverage of the circle 
distribution as described above. In this case 
 

𝑃(𝑊 = 𝑤) =
1

(
𝑡
𝑛
)
∑

𝑛−𝑤

𝑖=0

(−1)𝑖 (
𝑡

𝑛
)(
𝑛 − 𝑤
𝑖

) (
𝑛
𝑤
) (
𝑡 − (𝑖 + 𝑤)𝑘 − 1
𝑡 − (𝑖 + 𝑤)𝑘 − 𝑛

). 

 
This result is given in Holst [?]. 
 
Proof 
 
The result follows on direct application of Theorem ?? with 
 

Ψ(𝐺1, … , 𝐺𝑛) = 𝕀(exactly 𝑤 of events 𝐺1 ≥ 1,… , 𝐺𝑛 ≥ 1 are true). 
 
In this case we have that 
 

∑

𝜐∈Υ𝑗
𝑛

E(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)) 

= (
𝑛
𝑗) 𝑃(exactly 𝑤 of events 𝑍1 ≥ 1,… , 𝑍𝑛−𝑗 ≥ 1 are true) 

 

=

{
 
 

 
 (

𝑛
𝑛 − 𝑤

) ⋅ 1 𝑗 = 𝑛 − 𝑤

(
𝑛
𝑗) ⋅ 0 𝑗 ≠ 𝑛 − 𝑤

 

 
and the final result follows on simplification. 
 
 
Example 3 Shortest run of empty urns 
 
Let 𝑆 equal the shortest run of empty urns in the discrete random coverage of the circle 
distribution as described above. If there are no empty urns then we take 𝑆 = 0. Then for 𝑠 ≥ 1 
 

𝑃(𝑆 = 𝑠) =
1

(
𝑡
𝑛
)
∑

𝑛

𝑗=0

 ∑

𝑗

𝑖=0

(−1)𝑖 (
𝑡

𝑛
)(
𝑛
𝑗) (

𝑗
𝑖
) (
𝑡 − (𝑛 − 𝑗)(𝑘 + 𝑠 − 1) − 𝑖𝑘 − 1

𝑡 − (𝑛 − 𝑗)(𝑘 + 𝑠 − 1) − 𝑖𝑘 − 𝑛
) 
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−
1

(
𝑡
𝑛
)
∑

𝑛

𝑗=0

∑

𝑗

𝑖=0

(−1)𝑖 (
𝑡

𝑛
)(
𝑛
𝑗) (

𝑗
𝑖
) (
𝑡 − (𝑛 − 𝑗)(𝑘 + 𝑠) − 𝑖𝑘 − 1

𝑡 − (𝑛 − 𝑗)(𝑘 + 𝑠) − 𝑖𝑘 − 𝑛
). 

 
In the case 𝑠 = 0 we have 
 

𝑃(𝑆 = 0) =
1

(
𝑡
𝑛
)
 ∑

𝑛

𝑖=0

(−1)𝑖 (
𝑡

𝑛
) (
𝑛
𝑖
) (
𝑡 − 𝑖𝑘 − 1
𝑡 − 𝑖𝑘 − 𝑛

). 

 
Proof 
 
The result follows on direct application of Theorem ?? with 
 

Ψ(𝐺1, … , 𝐺𝑛) = {
𝕀(smallest of all positive 𝐺𝑖 's = 𝑠) not all 𝐺𝑖 's equal 0

1 all 𝐺𝑖 's equal 0.
 

 
For 𝑠 ≥ 1 we note that 

∑

𝜐∈Υ𝑗
𝑛

E(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)) =

{
 

 (
𝑛
𝑗)𝑃(min(𝑍1, … , 𝑍𝑛−𝑗) = 𝑠) 0 ≤ 𝑗 ≤ 𝑛 − 1

(
𝑛
𝑛
) ⋅ 1 𝑗 = 𝑛.

 

 
 

It is easily verified that min(𝑍1, … , 𝑍𝑛−𝑗) ∼ 1-shifted geometric(1 − 𝜃𝑛−𝑗). Therefore 

 

𝑃(min(𝑍1, … , 𝑍𝑛−𝑗) = 𝑠) = (1 − 𝜃
𝑛−𝑗)(𝜃𝑛−𝑗)

𝑠−1
. 

 
For 𝑠 = 0 we see that 
 

∑

𝜐∈Υ𝑗
𝑛

E(Ψ(𝜐1𝑍1, … , 𝜐𝑛𝑍𝑛)) =

{
 

 (
𝑛
𝑗) ⋅ 0 0 ≤ 𝑗 ≤ 𝑛 − 1

(
𝑛
𝑛
) ⋅ 1 𝑗 = 𝑛.

 

 
 
The final result follows on simplification. 
 
 
Example 1. Number of empty urns. 
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Let 𝑅 equal the number of empty urns in the discrete random coverage of the line distribution. 

In the case 𝑟 ≥ 1 and ⌊
𝑡−𝑟

𝑘
⌋ ≤ 𝑛 ≤ 𝑡 − 𝑟 we have 

 

𝑃(𝑅 = 𝑟) =
(
𝑟 − 1
𝑛

)

(
𝑡
𝑛
)

𝕀{𝑡−𝑘(𝑛+1)=𝑟−1} 

+ 
1

(
𝑡
𝑛
)

∑

𝑛+1

𝑗=𝑛+1−⌊
𝑡−𝑟
𝑘 ⌋

∑

𝑗−(𝑛+1−⌊
𝑡−𝑟
𝑘 ⌋)

𝑖=0

((−1)𝑖 (
𝑗
𝑖
) (
𝑛 + 1
𝑗
) 

× (
𝑟 − 1
𝑛 − 𝑗

) (
𝑡 − 𝑟 − 𝑘(𝑛 + 1 − 𝑗 + 𝑖)

𝑡 − 𝑟 − 𝑘(𝑛 + 1 − 𝑗 + 𝑖) − 𝑗 + 1
)) 

 

and for 𝑟 = 0 and 𝑛 ≥ ⌊
𝑡

𝑘
⌋ 

 

𝑃(𝑅 = 𝑟) =
1

(
𝑡
𝑛
)
∑

⌊
𝑡
𝑘⌋

𝑗=0

(−1)𝑗 (
𝑛 + 1
𝑗
)(

𝑡 − 𝑘𝑗
𝑡 − 𝑘𝑗 − 𝑛

). 

 

We note that 𝑃(𝑅 = 𝑟) = 0 for 𝑟 ≥ 0 and 𝑛 < ⌊
𝑡−𝑟

𝑘
⌋. 

 
Proof 
 
Follows immediately from Example 1c of Section 4.3. 
 
 
 
Problem 4. 
 
The probability of no run of 𝑟 + 1 or more sparse urns when distributing balls according to a 
grouped Bose-Einstein distribution equals 
 

1

(
𝑀 + 𝑡 − 1

𝑡
)
∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

∑

𝑖

𝜙=0

∑

𝑛−𝑖

𝑠=0

∑

𝑠

𝜑=0

(−1)𝑖−𝜙+𝑡+𝜑+𝑗 ((
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) 

× (
𝑛 − 𝑖 + 1

𝑗
) (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑) 
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× (𝑚
(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)

𝑡
) (𝑚 + 1)𝜙+𝜑𝑚𝑖−𝜙+𝑠−𝜑) 

 
 
provided 𝑡 ≤ 𝑚(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑) 
 
(A grouped Bose-Einstein distribution results when 𝑛 urns contain 𝑚 cells each, the number of 
balls that can go into any cell is unrestricted and all possible distributions of balls into the 𝑚𝑛 
cells are equally likely. A sparse urn is defined as an urn with at most 1 ball in total.) 
 
Proof 
 
 𝑃(longest success run of length less than or equal to 𝑟 in a series of 𝑛 iid Bernoulli trials) 
 

=∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(−1)𝑗 (
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
) 𝑝𝑖(1 − 𝑝)𝑛−𝑖  

 
success ≡ event 𝑌𝑗 = {0 or 1} where 𝑌1,…,𝑌𝑛 are assumed to be independent negative binomial 

random variables such that 𝑌𝑖 ∼Negative Binomial(𝑚, 𝜃). 
 
i.e. 
 

𝑃(𝑌𝑖 = 𝑦) = (
𝑦 + 𝑚 − 1
𝑚− 1

) 𝜃𝑚(1 − 𝜃)𝑦           𝑦 ∈ {0,1,… } and  0 ≤ 𝜃 ≤ 1 

 
so 
 

𝑝 = 𝑃(𝑌𝑖 ≤ 1) = (
0 +𝑚 − 1
𝑚 − 1

) 𝜃𝑚(1 − 𝜃)0 + (
1 + 𝑚− 1
𝑚 − 1

)𝜃𝑚(1 − 𝜃)1 

 
= (𝑚 + 1)𝜃𝑚 −𝑚𝜃𝑚+1 = 𝑔(𝜃) 

 
 

𝑀 = 𝑚𝑛 
 

𝑃 ((𝑋1,𝑡, … , 𝑋𝑛,𝑡) ∈ 𝒜𝑡) =
(−1)𝑡

(
𝑀 + 𝑡 − 1

𝑡
) 𝑡!

𝑑𝑡

𝑑𝜃𝑡
((
1

𝜃
)
𝑀

𝑃((𝑌1, … , 𝑌𝑛) ∈ 𝒜))|

𝜃=1
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=
(−1)𝑡

(
𝑀 + 𝑡 − 1

𝑡
) 𝑡!

𝑑𝑡

𝑑𝜃𝑡

(

 
 
(
1

𝜃
)
𝑀

∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

((−1)𝑗 (
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
) 

× (𝑔(𝜃))
𝑖
(1 − 𝑔(𝜃))

𝑛−𝑖
)

)

 
 
|
|

𝜃=1

 

 

=
(−1)𝑡

(
𝑀 + 𝑡 − 1

𝑡
) 𝑡!

∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(

 
 
(−1)𝑗 (

𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
) 

 

×(
𝑑𝑡

𝑑𝜃𝑡
((
1

𝜃
)
𝑀

(𝑔(𝜃))
𝑖
(1 − 𝑔(𝜃))

𝑛−𝑖
) |

𝜃=1

)

)

 
 

 

 
 
 𝑀 =  𝑚𝑛 
 
 
 𝑔(𝜃) = (𝑚 + 1)𝜃𝑚 −𝑚𝜃𝑚+1 
 
 

𝑑𝑡

𝑑𝜃𝑡
((
1

𝜃
)
𝑀

(𝑔(𝜃))
𝑖
(1 − 𝑔(𝜃))

𝑛−𝑖
)|
𝜃=1

 

 

=
𝑑𝑡

𝑑𝜃𝑡
((
1

𝜃
)
𝑚𝑛

((𝑚 + 1)𝜃𝑚 −𝑚𝜃𝑚+1)
𝑖
(1 − (𝑚 + 1)𝜃𝑚 +𝑚𝜃𝑚+1)𝑛−𝑖)|

𝜃=1

 

 

=
𝑑𝑡

𝑑𝜃𝑡
( (

1

𝜃
)
𝑚𝑛

∑

𝑖

𝜙=0

∑

𝑛−𝑖

𝑠=0

∑

𝑠

𝜑=0

((−1)𝑖−𝜙+𝜑 (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑) 

× ((𝑚 + 1)𝜃𝑚)
𝜙+𝜑

(𝑚𝜃𝑚+1)
𝑖−𝜙+𝑠−𝜑

))|

𝜃=1
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=
𝑑𝑡

𝑑𝜃𝑡
(∑

𝑖

𝜙=0

∑

𝑛−𝑖

𝑠=0

∑

𝑠

𝜑=0

((−1)𝑖−𝜙+𝜑 (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑) 

× (𝑚 + 1)𝜙+𝜑  𝑚𝑖−𝜙+𝑠−𝜑  𝜃𝑚(𝑖+𝑠−𝑛)+(𝑖−𝜙+𝑠−𝜑)))|

𝜃=1

 

 

=
𝑑𝑡

𝑑𝜃𝑡
(∑∑∑ ∑ ((−1)𝑖−𝜙+𝜑+𝑢 (

𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑)

𝑚(𝑖+𝑠−𝑛)+(𝑖−𝜙+𝑠−𝜑)

𝑢=0

𝑠

𝜑=0

𝑛−𝑖

𝑠=0

𝑖

𝜙=0

  

× (𝑚
(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)

𝑢
) (𝑚 + 1)𝜙+𝜑  𝑚𝑖−𝜙+𝑠−𝜑(1 − 𝜃)𝑢))|

𝜃=1

 

 
 

= ∑∑∑ ∑ (((−1)𝑖−𝜙+𝜑+𝑢 (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑)

𝑚(𝑖+𝑠−𝑛)+(𝑖−𝜙+𝑠−𝜑)

𝑢=0

𝑠

𝜑=0

𝑛−𝑖

𝑠=0

𝑖

𝜙=0

 

× (𝑚
(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)

𝑢
) (𝑚 + 1)𝜙+𝜑  𝑚𝑖−𝜙+𝑠−𝜑)((

𝑑𝑡

𝑑𝜃𝑡
(1 − 𝜃)𝑢)|

𝜃=1

)) 

 
 

= ∑∑∑ ∑ (((−1)𝑖−𝜙+𝜑+𝑢 (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑)

𝑚(𝑖+𝑠−𝑛)+(𝑖−𝜙+𝑠−𝜑)

𝑢=0

𝑠

𝜑=0

𝑛−𝑖

𝑠=0

𝑖

𝜙=0

 

× (𝑚
(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)

𝑢
) (𝑚 + 1)𝜙+𝜑  𝑚𝑖−𝜙+𝑠−𝜑)(𝑡! (−1)𝑡I{𝑢}(𝑡))) 

 
 

= ∑

𝑖

𝜙=0

∑

𝑛−𝑖

𝑠=0

∑

𝑠

𝜑=0

((−1)𝑖−𝜙+𝜑+𝑡 (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑) (

𝑚(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)
𝑡

) 

 

×  𝑡! (𝑚 + 1)𝜙+𝜑  𝑚𝑖−𝜙+𝑠−𝜑𝐼(𝑡 ≤ 𝑚(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑))) 
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Therefore, 
 

𝑃 ((𝑋1,𝑡, … , 𝑋𝑛,𝑡) ∈ 𝒜𝑡) 

 

=
(−1)𝑡

(
𝑀 + 𝑡 − 1

𝑡
) 𝑡!

∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(

 
 
(−1)𝑗 (

𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
) 

 

×(
𝑑𝑡

𝑑𝜃𝑡
((
1

𝜃
)
𝑀

(𝑔(𝜃))
𝑖
(1 − 𝑔(𝜃))

𝑛−𝑖
) |

𝜃=1

)

)

 
 

 

 
 
 

=
(−1)𝑡

(
𝑀 + 𝑡 − 1

𝑡
) 𝑡!

∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(

 
 
(−1)𝑗 (

𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) (
𝑛 − 𝑖 + 1

𝑗
) 

× (∑

𝑖

𝜙=0

∑

𝑛−𝑖

𝑠=0

∑

𝑠

𝜑=0

((−1)𝑖−𝜙+𝜑+𝑡 (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑) (

𝑚(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)
𝑡

) 

× 𝑡! (𝑚 + 1)𝜙+𝜑  𝑚𝑖−𝜙+𝑠−𝜑𝐼(𝑡 ≤ 𝑚(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑))))

)

 
 

 

 
 
 

=
1

(
𝑀 + 𝑡 − 1

𝑡
)
∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

∑

𝑖

𝜙=0

∑

𝑛−𝑖

𝑠=0

∑

𝑠

𝜑=0

(−1)𝑖−𝜙+𝑡+𝜑+𝑗 ((
𝑛 − (𝑟 + 1)𝑗

𝑖 − (𝑟 + 1)𝑗
) 

× (
𝑛 − 𝑖 + 1

𝑗
) (
𝑖
𝜙
) (
𝑛 − 𝑖
𝑠
) (
𝑠
𝜑) 
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× (𝑚
(𝑖 + 𝑠 − 𝑛) + (𝑖 − 𝜙 + 𝑠 − 𝜑)

𝑡
) (𝑚 + 1)𝜙+𝜑𝑚𝑖−𝜙+𝑠−𝜑). 

 
 
References 
 
Companion results can be found in 
 
(𝑖) “Sparse and Crowded Cells and Dirichlet Distributions”, Sobel and Uppuluri, The Annals of 
Statistics, 1974, Vol. 2, No. 5, pages 977 - 987. 
 
(𝑖𝑖) “Exact Null Distributions of Runs Statistics for Occupancy Models with Applications to 
Disease Cluster Analysis”, Mancuso, Ph.D. Dissertation, SUNY Stony Brook, 1998. 
 
where they consider the same question but when distributing balls according to a multinomial 
distribution. 
 
 
 
Problem 5. 
 
The probability of observing 𝑟 empty urns among the first 𝑛 when distributing 𝑡 identical balls 

according to a grouped Bose-Einstein distribution where the first 𝑛 urns each contain 𝑚 cells 

and the last urn contains 𝑠 cells equals 

 

(
𝑛
𝑟
)

(
𝑚𝑛 + 𝑠 + 𝑡 − 1

𝑡
)
∑

𝑛−𝑟

𝑖=0

(−1)𝑛−𝑟−𝑖 (
𝑛 − 𝑟
𝑖
) (
𝑚𝑖 + 𝑠 + 𝑡 − 1

𝑡
) 

 

=
𝑛(𝑛−𝑟)

(𝑚𝑛 + 𝑠)(𝑡)
|𝐺(𝑡, 𝑛 − 𝑟;−𝑚,−𝑠)| 

 
 
where 𝐺(𝑡, 𝑛;𝑚, 𝑠) are the Gould-Hopper defined by 
 
 

𝐺(𝑡, 𝑛;𝑚, 𝑠) =
1

𝑛!
∑

𝑛

𝑗=0

(−1)𝑛−𝑗 (
𝑛
𝑗 ) (𝑗𝑚 + 𝑠)(𝑡)  
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in Gould, H.W. and Hopper, A.T., “Operational Formulas Connected with Two Generalizations of 

Hermite Polynomials”, Duke Mathematics Journal, Vol 29, 1962, pages 51 - 63. 

 
References 
 
This result can be found in Charalambides, Ch. A. and Koutras, M., “On the Differences of the 

Generalized Factorials at an Arbitrary Point and Their Combinatorial Applications”, Discrete 

Mathematics, Vol. 47, 1983, pages 183-201. 

 
 

(b) The 𝑢𝑡ℎ  descending factorial moment of the number of empty urns among the first 𝑛 urns 

when distributing 𝑡 balls among 𝑛 + 1 urns according to a grouped Bose-Einstein distribution 

where each of the first 𝑛 urns contains 𝑚 cells and the last urn contains 𝑠 cells equals 

 
 

𝑛(𝑢)(𝑚(𝑛 − 𝑢) + 𝑠)
(𝑡)

(𝑚𝑛 + 𝑠)(𝑡)
. 

 
provided 0 ≤ 𝑢 ≤ 𝑛. 
 
References 
 
In the paper Fu and Koutras, “Distribution Theory of Runs: A Markov Chain Approach”, Journal 

of the American Statistical Association, Vol. 89, No. 427, September 1994, pages 1050-1058, the 

authors develop a computer algorithm for finding the probabilities in (a), (c), and (d) for any 

specified values of the parameters in the more general case where the Bernoulli trials are 

independent but not necessarily identically distributed. Their approach consists of imbedding 

the problems into a finite Markov chain and expressing the probabilities in terms of transition 

probabilities of the Markov chain. The authors indicate that they will make their computer 

program for calculating these transition probabilities available on request. 

 
In the abstract to their paper the authors state, “For almost a century, even in the simplest case 

of independent and identically distributed Bernoulli trials, the exact distribution of many run 

statistics still remain unknown.” However the solution in part (a) can be found in Combinatorial 

Chance, F.N. David and D.E. Barton, (1962), page 230. Solutions to parts (b) and (c) can be 

found in “A Note on Restricted Selections”, M.T.L. Bizley, Journal of the Institute of Actuaries, 

Students Society, Vol. 16, 1969, pages 333-345, equations (4) and (5). 
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(d) Let 𝑡𝑚,𝑛(𝑘) equal the number of different sequences of length 𝑛 that can be constructed 

using a 𝑘 letter alphabet if sequences cannot contain any runs of length 𝑚 or greater of the first 

letter of the alphabet. Assume letters can be reused. Show 

 

𝑡𝑚,𝑛(𝑘) =∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(−1)𝑗 (
𝑛 − 𝑚𝑗
𝑖 − 𝑚𝑗

) (
𝑛 − 𝑖 + 1

𝑗
) (𝑘 − 1)𝑛−𝑖  

 
J. Gani considers this problem in his paper On Sequences of Events with Repetitons, 

Communications in Statistics - Stochastic Models, Vol. 14, no. 1&2, 1998, pages 265-271. His 

solution requires the calculation of eigenvalues of an 𝑚×𝑚 matrix and hence is appropriate 

when 𝑚 is not too large. Gani points out the 𝑡2,𝑛(2) equals the Fibonacci number 𝐹𝑛+2. K. 

Suman considers the problem of constructing sequences where no letter of the alphabet can 

occur in runs of length 𝑚 or greater in his paper The Longest Run of Any Letter in a Randomly 

Generated Word, Runs and Patterns in Probability, A.P. Godbole and S.G. Papastravridis 

(editors), pages 119-130. 

 
(e) Let 𝑤𝑚,𝑛(𝑘) equal the number of different distributions of 𝑘 identical balls into 𝑛 

distinguishable urns such that there are no runs of empty urns of length 𝑚 or greater. 

 

𝑤𝑚,𝑛(𝑘) =∑

𝑛

𝑖=0

∑

𝑛−𝑖+1

𝑗=0

(−1)𝑗 (
𝑛 − 𝑚𝑗
𝑖 − 𝑚𝑗

)(
𝑛 − 𝑖 + 1

𝑗
) (

𝑘 − 1
𝑘 + 𝑖 − 𝑛

) 

 
 
Problem 6. 
 
Suppose we randomly arrange 𝑚 𝑋’s and 𝑛 𝑌’s in a line. Find the 𝑃(longest run of 𝑋′s ≤ 𝑘). 
 
Solution 
 
One method of randomly arranging the 𝑚 𝑋’s and 𝑛 𝑌’s is to consider placing an urn before, 
after, and between each 𝑌 and to then distribute the 𝑚 𝑋’s into these 𝑛 + 1 urns in such a 
manner that all 
 

(
(𝑛 + 1) + 𝑚 − 1

𝑚
) = (

𝑛 +𝑚
𝑚

) 

 
distributions are equally likely. 
 
Let 𝑋𝑗,𝑚 = the number of 𝑋’s that are put into the 𝑗𝑡ℎ  urn, 𝑗 = 1,2,… , 𝑛 + 1. It follows that 

(𝑋1,𝑚 , 𝑋2,𝑚 , … , 𝑋𝑛+1,𝑚) is a random vector which is equally likely to be any value in 𝕊𝑚
𝑛+1. 
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Therefore, 

𝑃(longest run of 𝑋′s ≤ 𝑘) 

= 𝑃(𝑋1,𝑚 ≤ 𝑘,… , 𝑋𝑛+1,𝑚 ≤ 𝑘) 

= 𝑃((𝑋1,𝑚 , 𝑋2,𝑚 , … , 𝑋𝑛+1,𝑚) ∈ 𝒜𝑚) 

where 
 
 𝒜𝑚 = {(𝑠1, 𝑠2, … , 𝑠𝑛+1)|0 ≤ 𝑠1 ≤ 𝑘,… ,0 ≤ 𝑠𝑛+1 ≤ 𝑘 and 𝑠1 +⋯+ 𝑠𝑛+1 = 𝑚}. 
 
 
Define 
 
 𝒜 = {(𝑠1, 𝑠2, … , 𝑠𝑛+1)|0 ≤ 𝑠1 ≤ 𝑘,… ,0 ≤ 𝑠𝑛+1 ≤ 𝑘}. 
 
 
Then by the Geometric Randomization Theorem, 
 
 

𝑃((𝐶1, … , 𝐶𝑛+1) ∈ 𝒜𝑡) =
1

(
𝑡
𝑛
) (𝑡 + 1)!

 

×
𝑑𝑡+1

𝑑𝜃𝑡+1
((

𝜃

1 − 𝜃
)
𝑛+1

𝑃((𝑍1, … , 𝑍𝑛+1) ∈ 𝒜))|

𝜃=0

 

 
 

𝑃(longest run of 𝑋′s ≤ 𝑘) = 𝑃 ((𝑋1,𝑚 , 𝑋2,𝑚 , … , 𝑋𝑛+1,𝑚) ∈ 𝒜𝑚) 

=
(−1)𝑚

(
𝑛 +𝑚
𝑚

)𝑚!
∑

∞

𝑗=0

(
𝑛 + 𝑗
𝑗
)
𝑑𝑚

𝑑𝑝𝑚
((1 − 𝑝)𝑗𝑃((𝑌1, … , 𝑌𝑛+1) ∈ 𝒜))|

𝑝=1

 

=
(−1)𝑚

(
𝑛 + 𝑚
𝑚

)𝑚!
∑

∞

𝑗=0

(
𝑛 + 𝑗
𝑗
)
𝑑𝑚

𝑑𝑝𝑚
((1 − 𝑝)𝑗(𝑃(𝑌1 ≤ 𝑘))

𝑛+1))|
𝑝=1

 

=
(−1)𝑚

(
𝑛 +𝑚
𝑚

)𝑚!
∑

∞

𝑗=0

(
𝑛 + 𝑗
𝑗
)
𝑑𝑚

𝑑𝑝𝑚
((1 − 𝑝)𝑗(1 − (1 − 𝑝)𝑘+1)𝑛+1)|

𝑝=1
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=
(−1)𝑚

(
𝑛 + 𝑚
𝑚

)𝑚!
∑

∞

𝑗=0

(
𝑛 + 𝑗
𝑗
)
𝑑𝑚

𝑑𝑝𝑚
(∑

𝑛+1

𝑖=0

(−1)𝑖 (
𝑛 + 1
𝑖
) (1 − 𝑝)𝑗+(𝑘+1)𝑖)|

𝑝=1

 

=
(−1)𝑚

(
𝑛 +𝑚
𝑚

)𝑚!
∑

∞

𝑗=0

(
𝑛 + 𝑗
𝑗
)(∑

𝑛+1

𝑖=0

(−1)𝑖+𝑚𝑚!(
𝑛 + 1
𝑖
) 𝐼{(𝑘+1)𝑖+𝑗}(𝑚)) 

=
1

(
𝑛 +𝑚
𝑚

)𝑚!
∑

𝑛+1

𝑖=0

∑

∞

𝑗=0

(−1)𝑖 (
𝑛 + 𝑗
𝑗
) (
𝑛 + 1
𝑖
) 𝐼{𝑚−(𝑘+1)𝑖}(𝑗) 

=
1

(
𝑛 +𝑚
𝑚

)𝑚!
∑

𝑛+1

𝑖=0

(−1)𝑖 (
𝑛 +𝑚 − (𝑘 + 1)𝑖
𝑚 − (𝑘 + 1)𝑖

) (
𝑛 + 1
𝑖
). 

 
 
References 
 
 
 
 
2  Appendix 
 
 
Definition 6   
 
If 𝑊 ∼negative binomial(𝑚, 𝑝), then 𝑍 = 𝑊 + 𝑐 ∼ 𝑐-shifted negative binomial(𝑚, 𝑝). The 𝑐-

shifted geometric(𝑝) is the special case 𝑚 = 1 of the 𝑐-shifted negative binomial.  

 
 
Theorems 
 
If 𝑍 ∼ 𝑐-Shifted Negative Binomial Distribution(𝑚, 𝑝) then 
 

𝑃(𝑍 = 𝑧) = (
𝑧 − 𝑐 + 𝑚 − 1

𝑚− 1
) 𝑝𝑚(1 − 𝑝)𝑧−𝑐       𝑧 ∈ {𝑐, 𝑐 + 1, … }. 

 
 

If 𝑍1, … , 𝑍𝑛 are independent and if 𝑍𝑗 ∼ 𝑐𝑗-shifted negative binomial(𝑚𝑗, 𝑝), then 𝑆 = 𝑍1 +

⋯+ 𝑍𝑛 ∼ 𝑐
∗-shifted negative binomial(𝑚∗, 𝑝), where 𝑐∗ = 𝑐1 +⋯+ 𝑐𝑛  and 𝑚∗ = 𝑚1 +⋯+
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𝑚𝑛. 

 
 
Theorem 7  
 
Let X be a discrete random variable defined on 𝕊 ⊆ {0,1,… }. Then 
 

𝜇[𝑟] = 𝑟∑

∞

𝑛=0

𝑃(𝑋 > 𝑛)𝑛[𝑟−1]. 

 
 
In the special case 𝑟 = 1 we have the familiar result 
 

𝜇 = ∑

∞

𝑛=0

𝑃(𝑋 > 𝑛). 

 
Proof 
 

𝜇[𝑟] = 𝐸(𝑋[𝑟]) = ∑

∞

𝑛=0

𝑃(𝑋 = 𝑛)𝑛[𝑟] 

= ∑

∞

𝑛=0

𝑃(𝑋 = 𝑛) (
𝑑𝑟

𝑑𝑡𝑟
𝑡𝑛|

𝑡=1
)   

= (
𝑑𝑟

𝑑𝑡𝑟
∑

∞

𝑛=0

𝑃(𝑋 = 𝑛)𝑡𝑛)|

𝑡=1

 

= (
𝑑𝑟

𝑑𝑡𝑟
𝑔(𝑡))|

𝑡=1

 with   𝑔(𝑡) = ∑

∞

𝑛=0

𝑃(𝑋 = 𝑛)𝑡𝑛 . 

 
 
Now define ℎ(𝑡) = ∑∞𝑛=0 𝑃(𝑋 > 𝑛)𝑡𝑛. We note that 
 
 

1 + (𝑡 − 1)ℎ(𝑡) 

= 1 + (𝑡 − 1)(∑

∞

𝑛=0

𝑃(𝑋 > 𝑛)𝑡𝑛) 

= (1 − 𝑃(𝑋 > 0))𝑡0 + (𝑃(𝑋 > 0) − 𝑃(𝑋 > 1))𝑡1 + (𝑃(𝑋 > 1) − 𝑃(𝑋 > 2))𝑡2 + 

 

= (𝑃(𝑋 = 0))𝑡0 + (𝑃(𝑋 = 1))𝑡1 + (𝑃(𝑋 = 2))𝑡2 +⋯ 

 
= 𝑔(𝑡). 
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Therefore, 
 

𝑑𝑟

𝑑𝑡𝑟
𝑔(𝑡) =

𝑑𝑟

𝑑𝑡𝑟
(1 + (𝑡 − 1)ℎ(𝑡)) 

=
𝑑𝑟

𝑑𝑡𝑟
((𝑡 − 1)ℎ(𝑡)) 

=∑

𝑟

𝑗=0

(
𝑟
𝑗) (

𝑑𝑗

𝑑𝑡𝑗
(𝑡 − 1))(

𝑑𝑟−𝑗

𝑑𝑡𝑟−𝑗
ℎ(𝑡)) 

 

[Leibniz's Product Rule for Differentiation] 
 

= (
𝑟
0
) ((𝑡 − 1))(

𝑑𝑟

𝑑𝑡𝑟
ℎ(𝑡)) + (

𝑟
1
)(

𝑑𝑟−1

𝑑𝑡𝑟−1
ℎ(𝑡)) + 0. 

 
Hence, 

𝐸(𝑋[𝑟]) = (
𝑑𝑟

𝑑𝑡𝑟
𝑔(𝑡))|

𝑡=1

 

= 𝑟 (
𝑑𝑟−1

𝑑𝑡𝑟−1
ℎ(𝑡))|

𝑡=1

 

= 𝑟 (
𝑑𝑟−1

𝑑𝑡𝑟−1
∑

∞

𝑛=0

𝑃(𝑋 > 𝑛)𝑡𝑛)|

𝑡=1

 

= 𝑟∑

∞

𝑛=0

𝑃(𝑋 > 𝑛)(
𝑑𝑟−1

𝑑𝑡𝑟−1
𝑡𝑛|

𝑡=1

) 

= 𝑟∑

∞

𝑛=0

𝑃(𝑋 > 𝑛)𝑛[𝑟−1]. 

 
 
Appendix 
 
A.1 
 

𝒌𝒕𝒉 descending factorial moment 
 

𝐸((𝑋)(𝑘)) = 𝐸(𝑋(𝑋 − 1)⋯(𝑋 − 𝑘 + 1)) 

 
A.2 
 

𝒌𝒕𝒉 ascending factorial moment 
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𝐸((𝑋)[𝑘]) = 𝐸(𝑋(𝑋 + 1)⋯ (𝑋 + 𝑘 − 1)) 

 
A.3 
 

𝒌𝒕𝒉 descending factorial moment of sum of indicator variables 
 
Consider an experiment with probability space (Ω,𝒜,𝑃) and suppose 𝐴1,…,𝐴𝑛 are all events 

within 𝒜.  Suppose the experiment is performed and let 𝜔 ∈ Ω be the outcome of this 

experiment.  Define 

 
𝑋 = number of events among  𝐴1,…,𝐴𝑛 that 𝜔 is an element of =  I 𝐴1(𝜔) +⋯+I 𝐴𝑛(𝜔). 

 
Then, 
 
 

1

𝑟!
𝐸(𝑋(𝑟)) = ∑

(𝑗1,… ,𝑗𝑟)∈ℂ𝑟

𝑃(𝐴𝑗1 ∩⋯∩ 𝐴𝑗𝑟) 

 
where ℂ𝑟  is the set of all 𝑟 subsets of {1,2,… , 𝑛}. 
 
 
A.4 
 
For a discrete random variable 𝑋 defined on 𝕊 ⊆ {0,1,… } 
 

𝐸(𝑋(𝑣)) = 𝑣∑

∞

𝑟=0

(1 − 𝑃(𝑋 ≤ 𝑟)) 𝑟(𝑣−1)  

 
A.5 
 
𝒁 ∼Geometric(𝒑) 
 

𝑃(𝑍 = 𝑧) = 𝑝(1 − 𝑝)𝑧              𝑧 = 0,1, …   and  0 ≤ 𝑝 ≤ 1 
 
 
A.6 
 

𝑃(𝑍 ≥ 𝑐) = (1 − 𝑝)𝑐 
 
 
A.7 
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𝒁 ∼c-shifted Geometric(𝒑) 
 

𝑃(𝑍 = 𝑧) = 𝑝(1 − 𝑝)𝑧−𝑐                    𝑧 = 𝑐, 𝑐 + 1, …   and  0 ≤ 𝑝 ≤ 1 
  
 
A.8 
 

If 𝑊 ∼ geometric(𝑝), then 𝑍 = 𝑊 + 𝑐 ∼ 𝑐  -  shifted geometric(𝑝). 
 
A.9 
 
𝒁 ∼Left & right truncated Geometric(𝒑) on 𝒂,… , 𝒃 
 

𝑃(𝑍 = 𝑧) =
𝑝(1 − 𝑝)𝑧

(1 − 𝑝)𝑎 − (1 − 𝑝)𝑏+1
        𝑧 ∈ {𝑎, … , 𝑏}  and  0 ≤ 𝑝 ≤ 1. 

 
A.10 
 

If 𝑊 ∼ Geometric(𝑝), 
 

then 𝑍 = 𝑊 | 𝑎 ≤ 𝑊 ≤ 𝑏 ∼ Left & right truncated geometric(𝑝) 
 
 
A.11 
 

𝑐 -  shifted geometric (𝑝) ≡ Left & right truncated geometric(𝑝) on 𝑐, … ,∞ 
 
A.12 
 
𝒁 ∼Negative Binomial(𝒎, 𝒑) 
 

𝑃(𝑍 = 𝑧) = (
𝑧 + 𝑚 − 1
𝑚 − 1

)𝑝𝑚(1 − 𝑝)𝑧           𝑧 ∈ {0,1,… }  and  0 ≤ 𝑝 ≤ 1. 

 
A.13 
 

𝐸(𝑍(𝑟)) = (
1 − 𝑝

𝑝
)
𝑟

𝑚[𝑟] 

 
A.14 
 

Negative Binomial(1, 𝑝) ≡ Geometric(𝑝) 
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A.15 
 

If 𝑍1, … , 𝑍𝑛 are independent random variables such that 𝑍𝑗 ∼Negative Binomial(𝑚𝑗, 𝑝) and if 

we take 𝑆 = 𝑍1 +⋯+ 𝑍𝑛 and 𝑀 = 𝑚1 +⋯+𝑚𝑛, then 𝑆 ∼Negative Binomial(𝑀, 𝑝). 

 
A.16 
 
𝒁 ∼ 𝒄-Shifted Negative Binomial Distribution(𝒎,𝒑) 
 

𝑃(𝑍 = 𝑧) = (
𝑧 − 𝑐 + 𝑚 − 1

𝑚− 1
) 𝑝𝑚(1 − 𝑝)𝑧−𝑐       𝑧 ∈ {𝑐, 𝑐 + 1, … }. 

 
A.17 
 

𝐸((𝑍 − 𝑐 + 𝑚)[𝑟]) = 𝑚[𝑟] (
1

𝑝
)
𝑟

. 

 
Note: The 𝑚-shifted negative binomial(𝑚, 𝑝) is simply referred to as the negative binomial 

distribution in many textbooks. However the negative binomial and the shifted negative 

binomial are both used in this article, sometimes in the same problem. Thus to avoid confusion, 

it is necessary for us to delineate between these related models. 

 
A.18 
 
If 𝑊 ∼negative binomial(𝑚, 𝑝), then 𝑍 = 𝑊 + 𝑐 ∼ 𝑐-shifted negative binomial(𝑚, 𝑝). 
 
A.19 
 
𝑐-shifted negative binomial(1, 𝑝) ≡ 𝑐-shifted geometric(𝑝) 
 
A.20 
 

If 𝑍1, … , 𝑍𝑛 are independent and if 𝑍𝑗 ∼ 𝑐𝑗-shifted negative binomial(𝑚𝑗, 𝑝), then 𝑆 = 𝑍1 +

⋯+ 𝑍𝑛 ∼ 𝑐
∗-shifted negative binomial(𝑚∗, 𝑝), where 𝑐∗ = 𝑐1 +⋯+ 𝑐𝑛  and 𝑚∗ = 𝑚1 +⋯+

𝑚𝑛. 

 
A.21 
 
𝒁 ∼Poisson(𝜽) 
 

𝑃(𝑍 = 𝑧) =
𝑒−𝜃𝜃𝑧

𝑧!
          𝑧 ∈ {0,1,… }  and  𝜃 > 0 
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A.22 
 

𝐸((𝑍)(𝑟)) = 𝜽
𝑟  

 
 
 


